
Chapter 6 
Generalized Linear Mixed Models 
for Proportions and Percentages 

6.1 Response Variables as Ratios and Percentages 

In this chapter, we will review generalized linear mixed models (GLMMs) whose 
response can be either a proportion or a percentage. For proportion and percentage 
data, we refer to data whose expected value is between 0 and 1 or between 0 and 100. 
For the remainder of this book, we will refer to this type of data only in terms of 
proportion, knowing that it is possible to change it to a percentage scale only when 
multiplying it by 100. Proportions can be classified into two types: discrete and 
continuous. Discrete proportions arise when the unit of observation consists of 
N distinct entities, of which individuals have the attribute of interest “y”. N must 
be a nonnegative integer and “y” must be a positive integer; here, y ≤ N. Therefore, 
the observed proportion must be a discrete fraction, which can take values 
0 
N , 

1 
N ,⋯, N N. A binomial distribution is the sum of a series of m independent binary 

trials (i.e., trials with only two possible outcomes: success or failure), where all trials 
have the same probability of success. For binary and binomial distributions, the 
target of inference is the value of the parameter such that 0≤E y 

N = π ≤ 1. Contin-
uous proportions (ratios) arise when the researcher measures responses such as the 
fraction of the area of a leaf infested with a fungus, the proportion of damaged cloth 
in a square meter, the fraction of a contaminated area, and so on. As with the 
binomial parameter π, the continuous rates (fractions) take values between 0 and 
1, but, unlike the binomial, the continuous proportions do not result from a set of 
Bernoulli tests. Instead, the beta distribution is most often used when the response 
variable is in continuous proportions. In the following sections, we will first address 
issues in modeling when we have binary and binomial data. When the response 
variable is binomial, we have the option of using a linearization method (pseudo-
likelihood (PL)) or the Laplace or quadrature integral approximation (Stroup 2012). 
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6.2 Analysis of Discrete Proportions: Binary 
and Binomial Responses 

A binomial distribution is the number of successes from a series of N independent 
binary trials – Bernoulli trials (i.e., trials with two possible outcomes: success or 
failure), where all trials have the same probability of success. In the context of a 
GLMM, there are N binomial responses, each of which is the result of binary trials. 
The ith response consists of two pieces of information: the number of trials ni and the 
number of successes yi, as shown in the following example. 

6.2.1 Completely Randomized Design (CRD): Methylation 
Experiment 

An agent to induce demethylation is applied to plants; this agent converts methylated 
nucleotides to their unmethylated forms, thus causing epigenetic changes that 
produce or induce abnormal phenotypes such as deformation or stunting (Amoah 
et al. 2008). A pilot study was implemented to investigate the relationship between 
the dose of the demethylating agent and the observed proportion of plants with a 
normal phenotype. Seeds were treated with the demethylating agent at six different 
doses, including the control. Plants were sown in trays, with each tray containing 
seeds previously treated with the same dose of the demethylating agent. Each dose 
was replicated 4 times: 2 with 60 plants and 2 with 100 plants. The trays were 
allocated following a completely randomized design (CRD). The plants with a 
normal phenotype in each tray are shown (in Table 6.1) with the number of plants 
per tray (N ). The notation 59(60) indicates that 59 normal plants were found out of 
60 plants under study. In the same way, the notation 14(100) indicates that 14 normal 
plants were found out of 100 plants under study. 

The sources of variation and degrees of freedom (DFs) for this experiment are 
shown in Table 6.2. 

Table 6.1 Number of normal 
plants out of a total of N plants 
per tray and dose of the 
demethylating agent 

Dose 

0 0.01 0.1 0.5 1.0 1.5 

59(60) 58(60) 54(60) 4(60) 3(60) 3(60) 

58(60) 59(60) 53(60) 11(60) 2(60) 3(60) 

99(100) 98(100) 88(100) 14(100) 2(100) 1(100) 

98(100) 99(100) 87(100) 15(100) 1(100) 3(100) 

Table 6.2 Sources of 
variation and degrees of 
freedom 

Sources of variation Degrees of freedom 

Dose t - 1 = 6 - 1 = 5 
Error t(r - 1) = 6 × (4 - 1) = 18 
Total t × r - 1 = 6 × 4 - 1 = 23
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Fig. 6.1 Effect of the demethylating agent on the proportion of normal plants 

The statistical model of a completely randomized design (CRD) is 

yij = μþ τi þ εij 

where yij is the number of observed normal plants in the tray j ( j = 1, 2, 3, 4) at the 
dose i (i = 1, 2,⋯, 6), μ is the overall mean, τi is the effect of dose i of the 
demethylating agent, and εij are non-normal errors. 

The expected value (normal plants) of a set of tests ni follows a binomial 
distribution yi ~ Binomial(ni, πi), where πi is the probability of success in each 
trial, with 0 ≤ πi ≤ 1, where πi = yi=ni . Thus, the probability of observing an outcome 
yi can be written as 

P Yi = yijni, yið Þ= ni 
yi 

πyi i 1- πið Þni - yi ; yi = 0, 1,⋯, ni: 

This probability depends on the number of known tests ni, whereas the probabil-
ity of success (πi) is an unknown parameter. In Fig. 6.1, we observe that the 
probability of obtaining a normal plant depends on the applied dose of the 
demethylating agent. Given that yi has a binomial distribution, the expected value 
(the mean) is the product of the number of trials and the probability of success in 
each trial, that is, E(Yi) = niπi. Since the number of trials is fixed (once the data have 
been obtained), modeling the probability of success is equivalent to modeling the 
expected value as well as the variance since it is also a function of the number of 
trials and the probability of success. So, the expected value and variance of yi are
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E yið Þ= μi = niπi; Var yið Þ= niπi 1- πið Þ: 

This variance is small if the value πi is close to 0 or 1, and this increases to its 
maximum when πi = 0.5. This can be seen in Fig. 6.1, where proportions close 
to 0 or 1 show less variance than do proportions between 0.1 and 0.2 for a 
demethylating agent dose of 0.5. This variance can also be written in terms of the 
expected value as: 

Var yið Þ= 
μi 
ni 

ni - μið Þ: 

In this CRD, the fixed number of treatments t (doses) were randomly assigned to 
r experimental units (trays). The linear predictor describing the structure of the mean 
of this GLMM is 

ηi = η þ τi 

where ηi denotes the ith linear predictor, η is the intercept, and τi is the fixed effect 
due to treatments i (i = 1, 2,⋯, t) with t treatments and ri replicates in each 
treatment. 

The components that define this GLMM are shown below: 

Distribution: yi~Binomial(Nij, πi) 
Linear predictor: ηi = η + τi 
Link function: logit π = logit πi = η1- πi 

where ηi is the linear predictor that relates the effect of dose i (i = 1, 2,⋯, 6)  to  
probability πi. The model uses the linear predictor (ηi) to estimate the means (πi = μi) 
of the observations for each treatment. 

The following GLIMMIX program fits a CRD with a binomial response: 

proc glimmix nobound method=Laplace; 
class Dose Rep; 
model y/N= dose/link=logit; 
lsmeans dose/lines ilink; 
run; 

In this example, the distribution of the dataset was not specified to GLIMMIX in 
the model specification because by using the expression “y/N,” proc GLIMMIX 
automatically infers that this dataset has a binomial distribution. It is also important 
to note that variable dose and repetition were declared as class variables in the 
“class” command, which Statistical Analysis Software (SAS) interprets as explana-
tory variables that are nonnumerical factors. However, the variable declared “Rep” is 
not used in the model specification.
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Table 6.3 Results of the analysis of variance 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 83.46 

Pearson’s chi-square 11.95 

Pearson’s chi-square/DF 0.50 

(b) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Dose 5 15 132.53 <0.0001

(c) Dose least squares (LS) means 

Dose Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

0 3.9580 0.4122 15 9.60 <0.0001 0.9813 0.007581 

0.01 3.9580 0.4122 15 9.60 <0.0001 0.9813 0.007581 

0.1 2.0049 0.1728 15 11.60 <0.0001 0.8813 0.01808 

0.5 -1.8360 0.1623 15 -11.31 <0.0001 0.1375 0.01925 

1 -3.6633 0.3580 15 -10.23 <0.0001 0.02501 0.008729 

1.5 -3.4337 0.3212 15 -10.69 <0.0001 0.03126 0.009728 

Part of the results is shown in Table 6.3. Pearson’s chi-squared statistic value 
divided by the degrees of freedom in part (a) (Pearson′s chi - square/DF = 0.5) 
indicates that there is no evidence of extra-dispersion in the dataset. The analysis of 
variance (ANOVA) tabulated in part (b) in Table 6.3, with the type III tests of fixed 
effects, indicates that there is a highly significant difference (P = 0.0001) in the 
average proportion of normal plants with respect to the dose applied to the seeds. 

The output when using the “lsmeans” command in conjunction with the “ilink” 
option is in the “Mean” column (part (c) in Table 6.3). These values are the values of 
πi 
′ s, i.e., the estimated probabilities π̂0 = 0:9813 and π̂0:01 = 0:9813 of normal plants 

for the treatments whose doses are 0 and 0.01, respectively. For treatments with 
doses of 0.1 and 0.5, the observed probabilities of normal plants are π̂0:1 = 0:8813 
and π̂0:5 = 0:1375, respectively, whereas for the 1 and 1.5 doses, the observed 
probabilities of normal plants decrease dramatically with π̂1 = 0:02501 and 
π̂1:5 = 0:03126, respectively. 

Figure 6.2 shows the mean comparisons (least significance difference (LSD)) of 
the estimated probabilities according to the dose applied to the seeds in trays. In this 
figure, we can observe that in the treatments with dose = 0 (control) and dose = 0.01, 
the observed proportions of normal plants are not statistically different from each 
other, but they do differ with the other applied doses. At a dose of 0.1, the observed 
proportion of normal plants was 88.13%, and this was statistically different from all 
the doses used. Finally, doses at 0.5, 1, and 1.5 of the demethylating agent in the 
observed proportion of normal plants decreased drastically to 13.75%, 2.501%, and 
3.12%, respectively. The doses of 1 and 1.5 produced statistically equal proportions 
of normal plants.
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Fig. 6.2 Comparison of the estimated probabilities per dose of the demethylating agent 

If the researcher wishes to model how dose levels of the demethylating agent 
affect normal plant proportions, then the dose must be declared as a continuous 
variable. The following SAS syntax with proc GLIMMIX runs a binomial 
regression: 

proc glimmix data=crd_bin method=Laplace plots=all; 
class Rep; 
model y/N= dose/solution; 
random rep; 
run;quit. 

Most of the commands and options have already been discussed throughout this 
book; the “model y/N” command indicates that the response variable is in a ratio. 
Therefore, this dataset is modeled with a binomial distribution, which is affected by 
the different number of individuals in each repetition. proc GLIMMIX interprets the 
distribution of the data as binomial, whereas the “solution” option requests the 
parameter estimates of the model (intercept and slope). 

The components that define this GLMM are shown below: 

Distribution: yi~Binomial(Nij, πi) 
Linear predictor: ηi = η + β dosei 

Link function: logit π = logit πi = η 

Thus, the model can be written as
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Table 6.4 Regression analysis results 

(a) Fit statistics

-2 Log likelihood 231.58 

Akaike information criterion (AIC) (smaller is better) 235.58 

AICC (smaller is better) 236.15 

Bayesian information criterion (BIC) (smaller is better) 237.93 

CAIC (smaller is better) 239.93 

HQIC (smaller is better) 236.20 

Pearson’s chi-square 2317.12 

Pearson’s chi-square/DF 96.55 

(b) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Dose 1 19 475.97 <0.0001 

(c) Solutions for fixed effects 

Effect Estimate Standard error DF t-value Pr > |t| 

Intercept 2.7927 0.1302 3 21.46 0.0002 

Dose -7.6232 0.3494 19 -21.82 <0.0001 

ηi = log 
μi 

ni - μi 
= log 

niπi 
ni - niπi 

= log 
πi 

1- πi 
= logitðπiÞ= ηþ βdosei 

and the logit function can be written in terms of the probability of success, πi, as  

πi = 
1 

1þ exp - ηið Þ  

Part of the SAS output of the GLIMMIX syntax is shown below. The goodness-
of-fit statistics, type III tests of fixed effects, and parameter estimates are shown in 
Table 6.4. The analysis of variance indicates that the demethylating agent has a 
highly significant effect on the observed proportion of normal plants (P < 0.0001) 
(part (b)). The maximum likelihood estimates for the intercept and slope are 
η = 2.7927 and β = - 7.6232, respectively. 

Figure 6.3 shows that as the value of the linear predictor increases (ηi), the value 
of the residuals rapidly decreases. We can also see that the residuals plotted against 
the quantiles clearly do not follow a normal distribution because this model is not a 
linear function of the explanatory variable “dose.” 

Figure 6.4 shows that the proportions studied and fitted are not so far apart, and, 
as such, the binomial model is suitable for this dataset. The estimated linear predictor 
of this model is as follows: 

η̂i = η̂ þ β̂ × dosei = 2:7927- 7:6232× dosei:
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Fig. 6.3 A graph of residuals versus the linear predictor, quantiles 
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Fig. 6.4 Observed and estimated proportion 

The logit of the probability of success is a linear function of the explanatory 
variables, so the model can be written in terms of the probability of success 
(observing normal plants) as
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πi = 
1 

1 þ exp - ηið Þ  

Given the parameter estimates, we can predict the success probability of observ-
ing a normal plant, and given a certain concentration of the demethylating agent, this 
estimated probability (using the estimated linear predictor) can be seen plotted in 
Fig. 6.4. 

π̂i = 
1 

1þ expðη̂iÞ = 
1 

1þ expð- 2:7927þ7:6232 × doseiÞ 

6.3 Factorial Design in a Randomized Complete Block 
Design (RCBD) with Binomial Data: Toxic Effect 
of Different Treatments on Two Species of Fleas 

A group of researchers wishes to study the toxic effect of certain treatments (Trts) on 
two flea species (SP) (Daphnia magna and Ceriodaphnia dubia). To compare the 
toxicity effect of treatments on both flea species, a randomized complete block 
design (RCBD bioassay) was implemented with three replicates per treatment, 
with each replicate consisting of 10 fleas (Appendix: Fleas). The linear predictor 
describing this experiment is described below: 

ηijkl = η þ αi þ βj þ αβð Þij þ bioassayk þ rep bioassayð Þl kð Þ  

where η is the intercept, αi is the fixed effect due to species i, βj is the fixed effect 
of treatment j, (αβ)ij is the fixed effects interaction between the flea species and 
treatment, bioassayk is the random effect due to bioassay k assuming 

bioassayk � N 0, σ2 bioassay , and rep(bioassay)l(k) is the random effect due to repeti-

tion bioassay assuming rep bioassay N 0, σ2 . 

The remaining components of this GLMM with a binomial response (Nijk, πijk) are 
described below: 

Distribution: yijkl bioassayk, rep(bioassay)l(k)~Binomial(Nijk, πijk) 

bioassayk � N 0, σ2 bioassay , rep bioassayð Þl kð Þ � N 0, σ2 rep bioassayð Þ  , where Nijkl is 

the number of dead fleas, observed in species i in replicate l in bioassay k under 
treatment j, 

Link function: logit π = log πijk = η . 

The following SAS syntax allows us to fit the GLMM with a binomial response.



proc glimmix data=pulgas nobound method=laplace; 
class Bioen SP Trt Rep ; 
Model Sobrevi/n = SP|Trat/dist=binomial; 
random Bioen sp*bioen(rep); 
lsmeans SP|Trt/lines ilink; 
run; 
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Table 6.5 Results of the 
analysis of variance 

(a) Fit statistics

-2 Log likelihood 145.33 

AIC (smaller is better) 173.33 

AICC (smaller is better) 177.85 

BIC (smaller is better) 160.71 

CAIC (smaller is better) 174.71 

HQIC (smaller is better) 147.97 

(b) Fit statistics for conditional distribution

-2 Log L (Sobrevi | r. effects) 145.33 

Pearson’s chi-square 10.72 

Pearson’s chi-square/DF 0.10 

(c) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Bioen -0.1051 . 

Bioen*SP (Rep) -0.1192 . 

(d) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

SP 1 14 0.02 0.8829 

Trt 5 80 15.08 <0.0001 

SP*trt 5 80 4.66 0.0009 

Part of the results is listed in Table 6.5. The fit statistics in part (a) and the 
conditional statistics in part (b) are useful for model comparison, whereas the 
variance component estimates are shown in part (c). The value of the statistic 
Pearson’ s chi - square/DF = 0.10 indicates that the binomial model gives a good 
fit to the dataset. The variance component estimates for bioassays and replication 
nested in bioassays are σ̂2 bioassay = - 0:1051 and σ̂2 rep bioassayð Þ  = - 0:1192, respec-

tively. The type III tests of fixed effects (part (d)) show the significance tests of the 
fixed effects in the model. The treatment effect and the interaction between the flea 
species (SP) and treatment are clearly significant with P < 0.0001 and P = 0.0009, 
respectively. 

Since survival was statistically similar in both flea species, we will focus on the 
factors that were significant. Part (a) in Table 6.6 shows the means and standard 
errors of treatments on the model scale (“Estimate” column) and on the data scale 
(“Mean” column), obtained with “lsmeans” and the “ilink” option as well as the 
mean comparisons, which are on the model scale (part (b)).
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Table 6.6 Means and standard errors on the model scale and on the data scale 

(a) Trt least squares means 

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

T1 8.1179 4.3180 80 1.88 0.0637 0.9997 0.001287 

T2 4.3564 3.0554 80 1.43 0.1578 0.9873 0.03820 

T3 1.0081 0.1924 80 5.24 <0.0001 0.7326 0.03768 

T4 -1.0509 0.1712 80 -6.14 <0.0001 0.2591 0.03286 

T5 -4.7187 3.0570 80 -1.54 0.1266 0.008848 0.02681 

T6 -8.1182 4.3184 80 -1.88 0.0638 0.000298 0.001286 

(b) Conservative T grouping of Trt least squares means (α=0.05) 
LS means with the same letter are not significantly different 

Trt Estimate 

T1 8.1179 A 

T2 4.3564 B A 

T3 1.0081 B A C 

T4 -1.0509 B D C 

T5 -4.7187 D C 

T6 -8.1182 D 

The LINES display does not reflect all significant comparisons. The following additional pairs are 
significantly different: (T3,T4) 

Based on the fixed effects tests, the flea species × treatment interaction is 
significant. The means on the model scale are listed under the “Estimate” column, 
followed by their standard errors, “Standard error” (Table 6.7). The output of the 
“ilink” option in “lsmeans” applies the inverse function of the link function to the 
estimates on the model scale to obtain the estimates on the data scale. The proba-
bilities, on the data scale, are given under the “Mean” column with their respective 
standard errors and correspond to the probability of insect (flea) survival. 

Figure 6.5 shows that the survival of both species is different in treatments 2–5; 
the Daphnia species showed more resistance in treatments 2 and 3, whereas the 
Ceriodaphnia species showed greater resistance in treatments 4 and 5. On the other 
hand, in treatments 1 and 6, survival was similar in both species. 

6.4 A Split-Plot Design in an RCBD with a Normal 
Response 

A split plot is the most common treatment structure design in agricultural and agro-
industrial research areas. These experiments generally involve two or more factors 
under study. Typically, large or primary experimental units, commonly known as the 
whole plot, are grouped into blocks. The levels of the first factor are randomly 
assigned to the whole plots. Then, each whole plot is divided into smaller units, 
known as split or secondary plots. The levels of the second factor are randomly 
assigned to the subplots within each whole plot.
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Fig. 6.5 The average survival rate of both species 

The model equation for the analysis of variance assuming normality in the 
response is 

yijk = ηþ αi þ rk þ rað Þik þ βj þ αβð Þij þ eijk 

i= 1, 2,⋯, a; j= 1, 2,⋯, b; k = 1, 2,⋯, r 

where yijk is the observed response variable in the kth block at the ith level of factor A 
and at the jth level of factor B, α and β refer to the fixed treatment effects due to 
factors A and B, respectively, r is the random effect due to the blocks, (ra)ik is the 
random error term due to the whole plot that is an interaction between the blocks and 
factor A, and eijk is the random residual effect. Normally, the errors and other random 
terms are also assumed to be normal; however, when the response variable is not 
normally distributed, this way of specifying the model is not the most appropriate. 
Thus, under the assumption that the response variable is normal, this way of 
specifying the model is valid. 

6.4.1 An RCBD Split Plot with Binomial Data: Carrot Fly 
Larval Infestation of Carrots 

Data were obtained from an experiment that was designed to compare a number of 
carrot genotypes with respect to their resistance to infestation by carrot fly larvae. 
The data involved 16 genotypes that were compared at 2 pest levels to be controlled. 
The experiment was conducted in three randomized blocks. Each block consisted of
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32 plots, 1 for each combination of genotype and pest infestation level. At the end of 
the experiment, about 50 carrots were taken from each plot and assessed for 
infestation by carrot fly larvae. The data obtained are shown in Table 6.8. 
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Table 6.8 The notation 44/53 denotes that 44 carrots were infected ( y) out of a sample size of 
53 studied (N ) 

Treatment (level of infestation) 

Genotype Block1 Block2 Block3 Block1 Block2 Block3 

G1 44/53 42/48 27/51 16/60 9/52 26/54 

G2 24/48 35/42 45/52 13/44 20/48 16/53 

G3 8/49 16/49 16/50 4/52 6/51 12/43 

G4 4/51 5/42 12/46 15/52 10/56 6/48 

G5 11/52 13/51 15/44 4/51 6/43 9/46 

G6 15/50 5/49 7/50 1/51 8/49 3/54 

G7 18/52 13/47 7/47 2/52 4/52 6/52 

G8 5/47 15/49 8/50 6/56 4/50 6/42 

G9 11/52 6/45 5/51 3/54 8/51 3/53 

G10 0/51 10/39 14/48 3/50 0/50 10/51 

G11 6/52 4/46 10/37 1/52 7/38 4/48 

G12 0/52 4/55 1/40 1/50 3/50 1/45 

G13 14/45 18/43 4/40 4/51 7/46 7/45 

G14 3/52 12/53 4/55 3/52 7/48 12/49 

G15 11/52 6/54 5/49 2/50 4/46 14/53 

G16 4/53 1/40 4/52 4/56 1/44 3/42 

Table 6.9 Sources of variation and degrees of freedom 

Sources of variation Degrees of freedom 

Blocks r - 1 = 3 - 1 = 2 
Factor A (infestation) a - 1 = 2 - 1 = 1 
Errora (A*blocks) (r - 1)(a - 1) = 2 
Factor B (genotypes) b - 1 = 16 - 1 = 15 
Infestation*genotype (A*B) (a - 1)(b - 1) = 15 
Errorb a(r - 1)(b - 1) = 2 × 2 × 15 = 60 
Total r × a × b - 1 = 3 × 2 × 16 - 1 = 95 

Table 6.9 shows the analysis of variance summarizing the sources of variation 
and degrees of freedom. 

Rewriting in terms of the linear predictor 

ηijk = η þ αi þ rk þ rað Þik þ βj þ αβð Þij 

Since the observations were taken at the subplot level, conditioned on the 
structural effects of the design, these observations have a variance associated with 
the subplot. Therefore, α and β refer to the treatment fixed effects due to factors A
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and B, respectively; (αβ)ij refers to the interaction of the above factors; rk is the 
random effect due to blocks; and blocks × whole plot (ra)ik is assumed to contribute 
to the variation such that rk � N 0, σ2 r and rað Þik � N 0, σ2 block ×A . This model uses 
the linear predictor ηijk to estimate the mean of the observations μijk. 
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Table 6.10 Results of the 
analysis of variance 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 527.82 

Pearson’s chi-square 189.09 

Pearson’s chi-square/DF 1.97 

(b) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Intercept Bloque 0.004272 0.02741 

Trt Bloque 0.03344 0.03545 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Genotype 15 60 28.28 <0.0001 

Trt 1 2 16.24 0.0564 

Genotype*Trt 15 60 4.45 <0.0001 

The specification of the this GLMM is as follows: 

Distribution: yijk rk, (ra)rk~Binomial(Nijk, πijk) 
rk N 0, σ2 r , 

ra rk N 0, σ2 block A 
Link function: logit(πijk) = ηijk. 

The following SAS GLIMMIX program allows the fitting of a GLMM with a 
split-plot structure in a randomized complete block design with a binomial response. 

proc glimmix data=spd_pp nobound method=quadrature; 
class Genotype Trt Block ; 
model y/N = Genotype|Trt; 
random intercept trt /subject=block; 
lsmeans Genotype|Trt/lines ilink; 
run; 

The program uses the quadrature estimation method (method=quadrature). 
This estimation method produces similar results as the Laplace method. Part of the 
results is provided in Table 6.10. Pearson’s chi-squared/DF value in part (a) gives an 
idea of whether there is overdispersion or extra-variation in the dataset. In this case, 
Pearson’ s chi - square/DF = 1.97 indicates that there is overdispersion in the 
dataset, so it is feasible to use either the pseudo-likelihood (PL) estimation method 
or a different distribution. In addition to these results, the variance component 
estimated due to blocks and blocks × genotype (the whole plot) in part (b) are 
σ2 block = 0:004272 and σ2 block ×Að Þ  = 0:03344, respectively. The results of the fixed
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effects tests (part (c)) indicate that the effect of genotype and the interaction between 
genotype and treatment are significant. 
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The appropriate method for model evaluation depends on whether or not there is 
evidence of overdispersion, so we consider this issue below. The residual variance 
incorporates systematic discrepancies between the model and the observed 
responses, variation between replicates (observations in independent experimental 
units with the same values of the explanatory variables) and sampling variation 
arising from the distribution of the data; in this case, it is the binomial distribution. If 
there are no duplicate observations and the fitted model provides an adequate 
description of the systematic trend, then only sampling variation contributes to the 
residual variance. If this is true, then the residual deviation has an approximate 
chi-squared distribution with degrees of freedom similar to the mean squared error 
(MSE) (the residual). 

Since there is overdispersion in the data using the binomial distribution, there are 
three alternatives we can explore: (1) review the linear predictor, which involves 
carefully revising the analysis of variance table; (2) add a scale parameter; or (3) use 
another distribution for the dataset. Each of these three possible alternatives is 
discussed below, in this order. 

6.4.1.1 Linear Predictor Review (ηijk) 

If the proportion of normal plants (πijk) is being affected by the genotype within each 
infestation level (trt = αi) from plot to plot within each of the blocks, then a nested 
factorial effect of genotype within infestation levels (trt) could be included in the 
analysis of variance. Thus, the linear predictor would be defined as 

ηijk = ηþ αi þ rk þ rað Þik þ β αð Þj ið Þ  

where αi, β(τ)j(i), rk, and (ra)ik are the fixed effects due to treatments, the effect of 
genotypes nested within a treatment, random effects due to blocks rk � N 0, σ2 r , 
and the interaction between blocks and treatment ra ik N 0, σ2 RA , respectively. 

The following GLIMMIX syntax estimates the above linear predictor: 

proc glimmix data=spd_pp method=laplace; 
class Genotype Trt Block ; 
model y/N = Trt genotype(trt); 
random trt/subject=block; 
lsmeans genotype(trt)/lines ilink slice=trt slicediff=trt; 
run; 

The only difference between this proc GLIMMIX and the previous one is that in 
this program, we have included the nested effect of genotypes within treatment, 
genotype (trt), and removed only the fixed effects of genotypes. Part of the results is 
shown in Table 6.11. The value of Pearson’s chi-squared/DF statistic (part (a)) as



well as the fit statistics did not decrease when modifying the linear predictor. 
However, the F-values calculated for treatments and genotypes within treatments 
(part (c)) are smaller than those obtained in the split-plot design. 

6.4 A Split-Plot Design in an RCBD with a Normal Response 225

Table 6.11 Results of the 
analysis of variance, under a 
new linear predictor 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 527.82 

Pearson’s chi-square 189.07 

Pearson’s chi-square/DF 1.97 

(b) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Intercept Bloque 0.004265 0.02740 

Trt Bloque 0.03343 0.03544 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Trt 1 2 16.20 0.0565 

Genotype (Trt) 30 60 15.83 <0.0001 

Since the overdispersion is still present (Pearson’ s chi - square/DF = 1.97), 
another alternative is to add a scaling parameter to the model. This alternative is 
presented below. 

6.4.1.2 Scale Parameter 

If the residual deviation is larger than expected when compared to critical values of 
the appropriate chi-squared distribution, and if this cannot be corrected by redefining 
the linear predictor of the model, then there is more variation present than can be 
accounted for by the distributional likelihood assumption. In this case, we say that 
the data show overdispersion. The simplest way to deal with overdispersion is to 
extend the model for scaling the variance function. Adding the scale parameter 
replaces Var(yij) = πij(1 - πij) with Var(yij) = ϕπij(1 - πij). The rationale for this 
approach is discussed by Collett (2002). The parameter ϕ is a scale factor, called the 
dispersion parameter, which is used to summarize the degree of overdispersion 
present in the observations. Clearly, ϕ = 1 corresponds to the original distribution 
model. This parameter can be estimated in several different ways. The logarithm of 
the likelihood of the binomial distribution is given by 

log 
N 
yij 

þ yij log 
πij 

1- πij 
þ N log 1- πij 

In the logarithm of the likelihood, the term “yij log 
πij 

1- πij 
” is very important; any 

quantity that multiplies yij is known as the natural or canonical parameter, and this 
parameter is always a function of the mean. For the binomial distribution, the mean



Nijπij and the natural parameter is log πij 
1- πij 

, and, in categorical data, it is known as 

“log odds.” The generalized estimating equation (GEE) method provides a valid 
analysis for marginal means, since under a binomial distribution, in the quasi-
likelihood, the variance of the distribution is given by ϕπij(1 - πij). This is achieved 
by adding the “random _residual_” command in the following SAS syntax. 
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The following GLIMMIX commands are used to invoke the scale parameter but 
using the first predictor proposed for these data. 

proc glimmix data=spd_pp nobound; 
class GenotypeTrtBlock ; 
model y/N = Trt|genotype; 
random intercept trt/subject=block; 
random _residual__; 
lsmeans Trt|genotype/lines ilink ; 
run; 

In this syntax, we still keep the binomial distribution (y/N is equivalent to telling 
GLIMMIX in SAS that it is a binomial response) but will add the “random 
_residual_” command. In this case, we cannot obtain the maximum likelihood 
estimators because we cannot implement the Laplace method (“method = laplace”) 
or adaptive quadrature (“method = quad”) approximation method, so the estimation 
is performed through the pseudo-likelihood (PL) method. This causes the scale 
parameter to be estimated, and, consequently, it is used in the adjustment of all 
standard errors and statistical tests. Proc GLIMMIX uses the generalized statistics of 
McCullagh and Nelder (1989), i.e., χ2 /df as the estimator of the scale parameter (ϕ̂Þ. 
All standard errors from the analysis under a binomial distribution are multiplied by 

ϕ̂, and all F-tests are divided by ϕ̂ to account for overdispersion. Part of the output 

is shown below. 
The value of Pearson’s statistic in part (a) indicates that overdispersion has not 

been eliminated. Chi - square/DF = 3.13, on the contrary, indicates that this value 
has increased. This result indicates that adding a scale parameter to the model does 
not decrease the extra-variation present in the dataset, since the binomial assumption 
forces a relationship between the mean and variance of the data that might not 
contain the data being analyzed. On the other hand, the estimated scale parameter is 
ϕ̂= 3:1263 (part (b)). Pearson’s residual analysis showed that its variance is 3.6257, 
which is considerably larger than 1, implying a large overdispersion. In addition, the 
results of the fixed effects tests (part (c)) vary from those above (Table 6.12). 

Therefore, the third option based on assuming an alternative distribution (beta 
distribution) on the response variable is discussed below.
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Table 6.12 Results of the 
analysis of variance, adding a 
scale parameter to the model 

(a) Fit statistics

-2 Res log pseudo-likelihood 182.52 

Generalized chi-square 200.09 

Gener. chi-square/DF 3.13 

(b) Covariance parameter estimates 

Standard 
error 

Intercept Bloque 0.005416 0.04750 

Trt Bloque 0.03202 0.06338 

Residual variance compo-
nent (VC) 

3.1263 0.5719 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Trt 1 2 10.20 0.0856 

Genotype 15 60 9.04 <0.0001 

Genotype*Trt 15 60 1.42 0.1674 

6.4.1.3 Alternative Distribution 

Another approach to control the overdispersion would be to use a different distri-
bution in the interval [0, 1], such as the beta distribution, to model the data. 
Generally, this distribution yields good results when all experiments have the 
same number of observations (successes and failures), i.e., when Nijk = N. When 
Nijk varies a little, even in many cases, the beta distribution yields acceptable results. 
It is important to mention that the proportions come from binomial counts, and, 
therefore, we now define the response variable as pijk = yijk Nijk 

so that it can be modeled 

as the beta distribution. The components of the beta response model are listed below: 

Distribution: pijk rk, (ra)rk~Beta(πijk,ϕ) with ϕ as the scale parameter 
rk N 0, σ2 r , ra  rk N 0, σ2 RA 
Linear predictor: ηijk = η + αi + rk + (αr)ik + βj + (αβ)ij 

Link function: logit π = logit πijk = η 

As mentioned before, we now use the response variable pijk = yijk Nijk 
. This new 

response variable pijk is not the same as the one used in the binomial distribution. The 
following SAS commands fit a GLMM in a split-plot randomized complete block 
design with a beta response. It is important to mention that before implementing this 
model in SAS GLIMMIX, the variable p= pijk = yijk Nijk 

was defined. 

proc glimmix data=spd_pp nobound method=laplace; 
class GenotypeTrtBlock ; 
model p = Genotype|Trt/dist=beta; 
random intercept trt/subject=block; 
lsmeans Genotype|Trt/lines ilink; 
run;
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Table 6.13 Fit statistics 
assuming binomial and beta 
distributions 

(a) Fit statistics 

Distribution Binomial Beta

-2 Log likelihood 541.85 -246.49 

AIC (smaller is better) 609.85 -176.49 

AICC (smaller is better) 648.87 -132.28 

BIC (smaller is better) 579.20 -208.04 

CAIC (smaller is better) 613.20 -173.04 

HQIC (smaller is better) 548.24 -239.91 

(b) Fit statistics for conditional distribution 

Distribution Binomial Beta

-2 Log L (y | r. effects) 527.82 -254.68 

Pearson’s chi-square 189.09 93.95 

Pearson’s chi-square/DF 1.97 1.01 

Table 6.14 Results of the analysis of variance, assuming binomial and beta distributions 

(a) Covariance parameter estimates 

Binomial Beta 

Cov Parm Subject Estimate Standard error Estimate Standard error 

Intercept Bloque 0.004272 0.02741 -0.00524 . 

Trt Bloque 0.03344 0.03545 0.02175 0.1475 

Scale ϕ̂ . 25.7070 

(b) Type III tests of fixed effects 

Binomial Beta 

Effect Num DF Den DF F-value Pr > F-value Pr > F 

Trt 1 4 16.24 0.0564 9.98 0.0342 

Genotype 15 60 28.28 <0.0001 13.25 <0.0001 

Genotype*Trt 15 60 4.45 <0.0001 2.23 0.0146 

Some of the SAS GLIMMIX output is listed below. Based on the fit statistics 
under the binomial (first alternative) and beta distributions (Table 6.13), clearly the 
values of the statistics related to the degree of overdispersion are lower in the beta 
distribution than in the binomial distribution, indicating that the beta distribution 
provides a better fit (part (a)). Looking at the fit statistics for the conditional model in 
part (b), the values of the three fit statistics in the binomial model are higher than the 
values in the beta model. The value of Pearson’ s chi - square/DF under the beta 
distribution is 1.01. This value indicates that the overdispersion has been virtually 
eliminated from the data and that therefore the beta distribution is a better candidate 
model for this dataset. 

Adding the scale parameter (ϕ) to the model, the variance components and 
standard errors in Table 6.14 cause (part (a)) variation for each of the results and, 
therefore, the F- and t-tests are affected (part (b)). The estimated value of the scale



Genotype Estimate DF t-value Pr > |t| Mean

parameter is ϕ̂= 25:7018. The variance components based on the binomial model 
and beta are listed below. 
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Table 6.15 Estimated means and standard errors on the model scale and the data scale 

(a) Trt least squares means 

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

Trt1 -1.2362 0.01768 2 -69.94 0.0002 0.2251 0.003083 

Trt2 -1.9327 0.01768 2 -109.34 <0.0001 0.1264 0.001952 

(b) Genotype least squares means 

Standard 
error 

Standard error 
mean 

G1 0.1524 0 57 Infty <0.0001 0.5380 0 

G10 -1.4143 0 57 -Infty <0.0001 0.1956 0 

G11 -1.8698 0 57 -Infty <0.0001 0.1336 0 

G12 -2.8971 0.03885 57 -74.58 <0.0001 0.05230 0.001925 

G13 -1.4336 0 57 -Infty <0.0001 0.1925 0 

G14 -1.8761 0.1304 57 -14.39 <0.0001 0.1328 0.01502 

G15 -1.8618 0 57 -Infty <0.0001 0.1345 0 

G16 -2.6686 0 57 -Infty <0.0001 0.06485 0 

G2 0.2225 0 57 Infty <0.0001 0.5554 0 

G3 -1.3329 0 57 -Infty <0.0001 0.2087 0 

G4 -1.5897 0 57 -Infty <0.0001 0.1694 0 

G5 -1.3696 0 57 -Infty <0.0001 0.2027 0 

G6 -2.0173 0 57 -Infty <0.0001 0.1174 0 

G7 -1.7001 0.1356 57 -12.53 <0.0001 0.1545 0.01771 

G8 -1.7161 0 57 -Infty <0.0001 0.1524 0 

G9 -1.9796 0 57 -Infty <0.0001 0.1214 0 

The treatment means (part (a)) and genotypes (part (b)) are presented in 
Table 6.15. The estimates on the model scale are listed under the column “Estimate” 
with their respective standard errors “Standard error,” and the values on the data 
scale are listed under the column “MEAN” with their respective standard errors 
“Standard error mean.” In the table of least squares means for the effect of geno-
types, inconsistencies are observed in the values of t and in the standard error values 
of the means, so other estimation alternatives should be sought. 

In large samples, both binomial and normal distributions are quite similar. 
Logically, the latter two analyses, binomial and beta, are attractive because of their 
consistency with the nature of the data. Because of the inconsistencies in the 
estimates of the mean for genotypes (tvalue = Infty and standard error of the 
mean), a robust method of estimation could be used; in this case, this is the normal 
distribution. 

Assuming that pijk has a normal distribution with a mean μijk and constant 
variance σ2 , the components of this model are as follows:
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Table 6.16 Results of the 
analysis of variance, assuming 
a normal distribution 

(a) Fit statistics

-2 Res log likelihood -79.38 

AIC (smaller is better) -73.38 

AICC (smaller is better) -72.98 

BIC (smaller is better) -76.08 

CAIC (smaller is better) -73.08 

HQIC (smaller is better) -78.81 

Generalized chi-square 0.60 

Gener. chi-square/DF 0.01 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Bloque 0.000123 0.000742 

Trt*bloque 0.000329 0.000925 

Residual 0.009442 0.001724 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Genotype 15 60 12.59 <0.0001 

Trt 1 2 20.46 0.0456 

Genotype*Trt 15 60 2.93 0.0016 

ijk k ik ijk 

rk N 0, σ2 r , ra  ik N 0, σ2 RA 
Linear predictor: ηijk = η + αi + rk + (αr)ik + βj + (αβ)ij 
Link function: ηijk = μijk; identity 

Similarly, in this example, the response variable used was pctijk = yijk Nijk 
. This new 

response variable pctijk is not the same as the response variable used in the binomial 
distribution. The following SAS GLIMMIX commands adjust a linear mixed model 
(LMM) under a split plot in a randomized complete block design with a normal 
response. 

proc glimmix data=spd_pct nobound; 
class Genotype Trt Block ; 
model pct = Genotype|Trt; 
random block block*trt; 
lsmeans Genotype|Trt/lines; 
run; 

Part of the results is shown below. The values of fit statistics in part (a) of 
Table 6.16 for the model are clearly lower than those estimated in the previous 
options. This indicates that the normal distribution is reasonable, even though the 
response is a proportion. The estimated variance components, tabulated in 
part (b) due to blocks, blocks x treatment, and the mean squared error (MSE) 
(Residual = Gener. chi-square/DF) are σ̂2 block = 0:000123, σ̂2 block× trt = 0:00039, and 
σ̂2 =MSE= 0:009442 0:01, respectively.
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Table 6.17 Means and standard errors for genotypes and treatments 

(a) Genotype least squares means 

Standard 
error 

t-
value 

Standard error 
mean 

G1 0.5260 0.04086 60 12.87 <0.0001 0.5260 0.04086 

G10 0.1340 0.04086 60 3.28 0.0017 0.1340 0.04086 

G11 0.1522 0.04086 60 3.73 0.0004 0.1522 0.04086 

G12 0.03332 0.04086 60 0.82 0.4179 0.0333 0.04086 

G13 0.2026 0.04086 60 4.96 <0.0001 0.2026 0.04086 

G14 0.1342 0.04086 60 3.28 0.0017 0.1342 0.04086 

G15 0.1360 0.04086 60 3.33 0.0015 0.1360 0.04086 

G16 0.05625 0.04086 60 1.38 0.1737 0.0562 0.04086 

G2 0.5355 0.04086 60 13.11 <0.0001 0.5355 0.04086 

G3 0.2139 0.04086 60 5.24 <0.0001 0.2139 0.04086 

G4 0.1751 0.04086 60 4.28 <0.0001 0.1751 0.04086 

G5 0.2035 0.04086 60 4.98 <0.0001 0.2035 0.04086 

G6 0.1301 0.04086 60 3.18 0.0023 0.1301 0.04086 

G7 0.1671 0.04086 60 4.09 0.0001 0.1671 0.04086 

G8 0.1504 0.04086 60 3.68 0.0005 0.1504 0.04086 

G9 0.1187 0.04086 60 2.90 0.0051 0.1187 0.04086 

(b) Trt least squares means 

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

Trt1 0.2478 0.01863 2 13.30 0.0056 0.2478 0.01863 

Trt2 0.1358 0.01863 2 7.29 0.0183 0.1358 0.01863 

The F-statistics for the fixed effects of genotype, treatments, and the interaction 
between both factors provide significant statistical evidence on the proportion of 
infested carrots in each of the genotypes (part (c)). Overall, the least squares means 
for genotypes and treatments are reported in Table 6.17 in parts (a) and (b). The 
genotypes showing the highest fraction of infested carrots were 1, 2, 3, 5, and 
13, whereas genotypes 12 and 16 showed the lowest percentage of infested carrots. 
Now, for treatments, the highest proportion of infested carrots was observed in 
treatment 1 with 24.78%, whereas in treatment 2, it was 13.58%. 

Based on the fixed effects tests, the interaction effect of genotype x treatment on 
the proportion of infested carrots was statistically different. Genotypes 9 and 
16 showed higher susceptibility in treatment 1 followed by treatment 2, whereas 
genotypes 5, 11, 13, and 15 showed the same proportions of infested carrots in both 
treatments (Fig. 6.6). On the other hand, genotypes that showed higher resistance to 
infestation levels were genotypes 1, 2, and 6 followed by genotypes 3, 4, 7, 8, 
10, and 12.



232 6 Generalized Linear Mixed Models for Proportions and Percentages

0. 

0.25 

0.5 

0.75 

1. 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 

storrac
detsefnifo

noitroporP 

Interaction 

Fig. 6.6 The average proportion of infested carrots in genotypes as a function of treatment 

6.5 A Split-Split Plot in an RCBD:- In Vitro Germination 
of Seeds 

The growth of a plant in a tissue culture can be explained by various combined 
effects of A, B, and C factors. For this, the availability and efficient use of chemical 
resources (factors) is of great relevance when availability is scarce or too expensive. 
In light of this, the combination of three reagents (A, B, and C), reagent A at three 
levels and reagents B and C at two levels, were tested on the in vitro germination of 
orchid seeds. The combination of the levels of each of the factors is schematized 
below. 

Block 1 

A3 A1 A2 

B1 B2 B1 B2 B2 B1 

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 

C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 

Block 2 

A2 A1 A3 

B1 B2 B1 B2 B2 B1 

C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 

In each of the factor combinations, N orchid seeds were placed to germinate for a 
period of time. Let yijk be the number of seeds germinated at the ith level of factor A, 
at the jth level of factor B, and at the kth level of factor C. Since the observations are 
made at the sub-subplot level, conditional on the structural effects of the design, 
these observations have a variance associated with the subplot. Therefore, the 
statistical model for this experiment is given below:



Distribution: y j r , (ra) , (rαβ) ~Binomial(N , π )
� ð Þ � ð Þ �
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Table 6.18 Number of seeds 
that germinated (yijkl) in each 
of the factor combinations 

Block A B C Y N 

1 1 1 1 15 73 

2 1 1 1 10 86 

1 1 1 2 17 69 

2 1 1 2 19 32 

1 1 2 1 26 125 

2 1 2 1 21 62 

1 1 2 2 14 81 

2 1 2 2 12 21 

1 2 1 1 10 92 

2 2 1 1 12 108 

1 2 1 2 30 44 

2 2 1 2 32 33 

1 2 2 1 37 91 

2 2 2 1 30 42 

1 2 2 2 32 98 

2 2 2 2 37 44 

1 3 1 1 18 52 

2 3 1 1 18 73 

1 3 1 2 23 108 

2 3 1 2 21 55 

1 3 2 1 24 106 

2 3 2 1 27 92 

1 3 2 2 37 64 

2 3 2 2 37 97 

ijkl l il ijl ijk ijk 

rl N 0, σ2 r , ra  rk N 0, σ2 RA , rαβ ijl N 0, σ2 rab 
Linear predictor: 
ηijk = η + αi + rl + (rα)il + βj + (αβ)ij + (rαβ)ijl + γk + (αγ)ik + (βγ)jk + (αβγ)ijk, 
where blocks (rl), blocks × A ((ra)il), and blocks × A × B ((rαβ)ijl) are assumed to 

contribute to the variation such that rl � N 0, σ2 r , rað Þil � N 0, σ2 r ×A , 

rαβð Þijl � N 0, σ2 rab , respectively, and εijkl experimental errors are distributed 
as N(0, σ2 ). This model uses the linear predictor ηijk to estimate the mean of the 
observations μijk. 

Link function: logit(πijkl) = ηijkl 

Table 6.18 below shows the data obtained from this experiment. 
Table 6.19 presents the analysis of variance and shows the sources of variation 

and degrees of freedom for this experimental design. 
The following SAS GLIMMIX program allows a GLMM with a split-split plot 

structure to be fitted in an RCBD with a binomial response.
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proc GLIMMIX data=germ nobound method=laplace; 
class Block A B C; 
model Y/N = A|B|C/dist=binomial link=logit; 
random block block*A block*A block*A*B; 
lsmeans A|B|C/lines ilink; 
run; 
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Table 6.19 Sources of variation and degrees of freedom for the randomized block design with an 
arrangement of treatments under the split-split-plot structure 

Sources of variation Degrees of freedom 

Blocks r - 1 = 2 - 1 = 1 
Factor A a - 1 = 3 - 1 = 2 
Errora(Bloque*A) (r - 1)(a - 1) = 2 
Factor B b - 1 = 2 - 1 = 1 
A* B (a - 1)(b - 1) = 2 
Errorb(A*B(Bloque)) a(b - 1)(r - 1) = 3 × 1 × 1 = 3 
Factor C (c - 1) = 2 - 1 = 1 
A*C (3 - 1)(2 - 1) = 2 
B*C (b - 1)(c - 1) = 1 
A*B* C (a - 1)(b - 1)(c - 1) = 2 
Error ab(c - 1)(r - 1) = 3 × 2 × 1 × 1 = 6 
Total r × a × b × c - 1 = 2 × 3 × 2 × 2 - 1 = 23 

Part of the output is shown in Table 6.20. The value of the conditional statistic 
Pearson’ chi- square/DF = 1.81 (part (a)) indicates that there is an overdispersion in 
the dataset since these values are greater than 1. The estimated variance components 
tabulated in part (b) correspond to blocks, blocks × factor A, and blocks × fac-
tor A × factor B, which are σ2 r = 0:0752, σ2 rA = 0:088, and σ2 rab = 0:0425, respec-
tively. The type III tests of fixed effects are shown in part (c). Here, we see that 
the test of equality of treatments is not significant for factors A and B and the 
interaction AB (A,P = 0.1917,B,P = 0.0897; AB,P = 0.6262), whereas for factor 
C and the interactions AC, BC, and ABC, it is significant at a level of 5%. 

Since there is overdispersion in the dataset, the binomial distribution does not 
provide a good fit for the dataset (Pearson’ s chi - square/DF = 1.81). An alternative 
to model this dataset could be the beta distribution. Under this assumption, let the 
response variable be pijk = yijk Nijk 

, the proportion of seeds that germinated, then pijk is 

assumed to have a beta distribution rather than a binomial distribution for the success 
count yijk out of a total of Nijk Bernoulli trials. 

The components of the model are listed below: 

Distribution: pijk rl, (ra)il, (rαβ)ijl ~ Beta(πijk,ϕ), with ϕ as the scale parameter. 
rl N 0, σ2 r , ra rk N 0, σ2 rA , rαβ ijl N 0, σ2 rab 
Linear predictor: 
ηijk = η + αi + rl + (rα)il + βj + (αβ)ij + (rαβ)ijl + γk + (αγ)ik + (βγ)jk + (αβγ)ijk 

Link function: logit π = logit πijk = η
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Table 6.20 Results of the analysis of variance of the RCBD in the split-split plot under the 
binomial distribution 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 146.19 

Pearson’s chi-square 43.49 

Pearson’s chi-square/DF 1.81 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Bloque 0.07521 0.1180 

Bloque*A 0.08847 0.09319 

Bloque*A*B 0.02205 0.04258 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

A 2 2 4.22 0.1917 

B 1 3 6.12 0.0897 

A*B 2 3 0.55 0.6262 

C 1 6 65.73 0.0002 

A*C 2 6 11.68 0.0085 

B*C 1 6 29.38 0.0016 

A*B*C 2 6 31.69 0.0006 

The following SAS commands fit a GLMM on a split-split plot in a randomized 
complete block design assuming a beta distribution for the response variable. 

proc glimmix data=germ nobound method=laplace; 
class BlockABC ; 
model p = A|B|C/dist=beta ; 
random block block*A block*A*B;/*intercept A /subject=block*/; 
lsmeans A|B|C/lines ilink; 
run; 

Part of the results is listed in Table 6.21 under a beta distribution. The value of the 
fit statistic for the conditional model tabulated in (a) (Pearson’ s chi - square/ 
DF = 1.01) indicates that overdispersion has been removed and that the 
beta distribution is a good model to fit the dataset. Part (b) shows the variance 
component estimates for blocks, blockxA, and blockxAxB 
σ̂2 r = - 0:157, σ2 rA = - 0:05558, and σ2 rab = - 0:227, respectively and the value 
of the estimated scale parameter ϕ̂= 19:2789 . According to the type III tests of 
fixed effects in part (c), the main effect of factor C (P = 0.0128) and interaction 
A×B×C (P = 0.0424) are statistically significant at a level of 5%. 

The estimates of the interactions are shown in Table 6.22 on the model scale 
under the “Estimate” column and as probabilities on the data scale under the “Mean” 
column with its corresponding standard errors under the “Standard error mean” 
column.



A B C Estimate DF Pr > |t| Mean

1 1 1

2 1 1
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Table 6.21 Results of the analysis of variance of the RCBD in the split-split plot structure under 
the beta distribution 

(a) Fit statistics for conditional distribution

-2 Log L (p | r. effects) -37.51 

Pearson’s chi-square 21.31 

Pearson’s chi-square/DF 1.01 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Bloque -0.1570 . 

Bloque*A -0.05558 . 

Bloque*A*B -0.2270 . 

Scale 19.2789 5.8703 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

A 2 2 1.21 0.4521 

B 1 2 0.00 0.9687 

A*B 2 2 1.08 0.4799 

C 1 4 18.34 0.0128 

A*C 2 4 1.50 0.3257 

B*C 1 4 6.56 0.0626 

A*B*C 2 4 7.72 0.0424 

Table 6.22 Estimated least mean squares on the model scale (“Estimate” column) and the data 
scale (“Mean” column) 

A*B*C least squares means 

Standard 
error 

t-
value 

Standard error 
mean

-0.3769 0.3194 4 -1.18 0.3034 0.4069 0.07709 

1 1 2 0.9506 0.3445 4 2.76 0.0509 0.7212 0.06927 

1 2 1 0.1721 0.3147 4 0.55 0.6135 0.5429 0.07810 

1 2 2 0.7010 0.3308 4 2.12 0.1014 0.6684 0.07331

-0.6521 0.3296 4 -1.98 0.1190 0.3425 0.07422 

2 1 2 2.9148 0.8071 4 3.61 0.0225 0.9486 0.03937 

2 2 1 0.7430 0.4699 4 1.58 0.1890 0.6776 0.1026 

2 2 2 0.4056 0.4515 4 0.90 0.4198 0.6000 0.1084 

3 1 1 0.2695 0.3161 4 0.85 0.4419 0.5670 0.07761 

3 1 2 0.2752 0.3163 4 0.87 0.4334 0.5684 0.07759 

3 2 1 0.1236 0.3143 4 0.39 0.7143 0.5309 0.07827 

3 2 2 1.1726 0.3614 4 3.24 0.0315 0.7636 0.06523
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Fig. 6.7 The average seed germination rate 

The simple effects of factors show that the best combination of factor levels was 
A2*B1*C2, showing the highest seed germination proportion followed by the 
combination of factors A1*B1*C2, A3*B2*C2, and lower proportion, which were 
observed in the combination of factors A1*B2*C2, A2*B2*C1 and A2*B2*C2 
(Fig. 6.7). Finally, the combination of the factor levels A2 × B1 × C1 showed the 
lowest proportion of seed germination. 

6.6 Alternative Link Functions for Binomial Data 

In previous chapters, we used proc GLIMMIX with binomial data and, by default, it 
works with the link function “ logit. ” However, in certain applications with binomial 
data, other link functions are acceptable, either because they make it easier to 
interpret or because for certain binomial datasets, the link function “ logit” cannot 
accurately model the data and, as a result, produce biased (misleading) results. In this 
section, we consider two alternative link functions to the logit for binomial data: the 
link “ probit” and the complementary log-log link. 

The probit model is also used to model dichotomous (Bernoulli) or binomial (sum 
of Bernoulli trials) responses. For this model, the link function, called the probit link, 
uses the inverse of the cumulative distribution function of a standard normal 
distribution to transform probabilities to the standard normal variable. That is, 
Φ-1 (πi) = ηi, which implies that πi = Φ(ηi), where Φ Z = z

-
1p e-

1 
2t
2 
dt. 

The use of the probit regression model dates back to Bliss (1934). Bliss was 
interested in finding an effective pesticide to control insects that fed on grape leaves.
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He discovered that the relationship between the response and a dose of pesticide was 
sigmoid, and he applied the probit link function to transform the dose–response 
curve from a sigmoid to a linear relationship. 
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The complementary function log - log defined as ηi = log (- log (1 - πi)), 
whose inverse is πi = 1- e- eηi , is useful for data in which most of the probabilities 
are near zero or near one. For small values of πi, the log-log transformation produces 
results highly similar to those produced when using a logit link. As the probability 
increases, the transformation approaches infinity more slowly than the probit or logit 
model. 

6.6.1 Probit Link: A Split-Split Plot in an RCBD 
with a Binomial Response 

This example takes the dataset of the split-split plot in an RCBD (Exercise 6.8.5). In 
this example, the data were modeled using the function “ logit.” In this exercise, we 
will fit the dataset using the link function “ probit, ” and we will compare and contrast 
the results using a logit link. The components of the GLMM are identical to those in 
Example 6.5, except for the link function. That is, we replace: 

Link function: logit π = logit πijk = η by -1 (π ) = η . 

The following GLIMMIX syntax implements the fitting of the binomial data 
using the link function “ probit. ” 

proc glimmix data=germ nobound method=laplace; 
class Block A B C; 
model Y/N = A|B|C/link=probit; 
random block block*A block*A*B; 
lsmeans A|B|C/lines ilink; 
run; 

Table 6.23 shows part of the results under the binomial distribution with the 
“probit” link function. In parts (a) and (b), we see the mean squared error and 
variance component estimates for blocks, whole plot, subplot, and sub-subplot, 
where it can be observed that these values are positive and not negative, as the 
ones obtained with the link function “ logit. ” Since the variance components are 
positive, this analysis makes more sense than the one based on the logit link. 

The type III tests of fixed effects are tabulated in part (c) of Table 6.23; the main 
effects of factors A and B and the interactions A*B, A*C, and B*C are not significant 
in both link functions, whereas the main effect of factor C and the interaction A*B*C 
are statistically significant under the “probit” link. 

The estimated probabilities π̂ijk and their respective standard errors are 
presented in Table 6.24 for each of the combinations of the three factors, which
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are very similar in both link functions. However, the average standard error 
is slightly higher with the “logit” link function ðstandar:error:meanlogit = 0:0711Þ 
compared to the “probit” link standar:errormeanprobit = 0:0693 . 
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Table 6.23 Results of the analysis of variance of the RCBD in the split-split plot structure under 
the binomial distribution using the “probit” link 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 146.43 

Pearson’s chi-square 43.01 

Pearson’s chi-square/DF CME= σ̂2 1.09 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Block σ̂2 block 0.02411 0.03707 

Block*A σ̂2 block×A 0.02128 0.02830 

Block*A*B σ̂2 block ×A B 0.01617 0.01896 

(c) Type III tests of fixed effects 

Probit Logit 

Effect Num DF Den DF F-value Pr > F Pr > F 

A 2 2 5.49 0.1541 0.4521 

B 1 3 4.17 0.1339 0.9687 

A*B 2 3 0.36 0.7226 0.4799 

C 1 6 67.13 0.0002 0.0128 

A*C 2 6 12.34 0.0075 0.3257 

B*C 1 6 29.16 0.0017 0.0626 

A*B*C 2 6 33.93 0.0005 0.0424 

6.6.2 Complementary Log-Log Link Function: A Split Plot 
in an RCBD with a Binomial Response 

Researchers studied three different micro-minerals (A, B, and C) on the attachment 
of explants of a commercial culture. In this vein, micro-mineral A was tested at three 
levels (i = 1, 2, and 3), and micro-minerals B and C at two levels ( j, k = 1,2 and). 
The combination of the different levels yielded a total of 12 combinations. Since the 
researchers wanted to study factor C with greater precision, a split-plot treatment 
structure was designed in which micro-minerals A and B were placed in the whole 
plot (a large plot) and micro-mineral C in the subplot (a small plot). Treatment factor 
combinations were placed in an RCBD manner (r = 1, 2). The outcome of interest 
was the number of live plants (yijkr) out of the total number of plants growing in the
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unit (nijkr). The data can be referred to in the Appendix (Data: Commercial crop 
explant attachment). 
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Table 6.24 Means and standard errors using the probit and logit link functions 

A*B*C least squares means 

Probit Logit 

A B C Mean Standard error mean Mean Standard error mean 

1 1 1 0.1543 0.05050 0.1494 0.04796 

1 1 2 0.3723 0.08296 0.3780 0.08767 

1 2 1 0.2724 0.06746 0.2694 0.06896 

1 2 2 0.2954 0.07798 0.2953 0.08053 

2 1 1 0.1023 0.03805 0.09593 0.03409 

2 1 2 0.8255 0.06338 0.8292 0.06135 

2 2 1 0.5684 0.08306 0.5703 0.08845 

2 2 2 0.5529 0.08327 0.5530 0.08847 

3 1 1 0.2844 0.07196 0.2844 0.07418 

3 1 2 0.2751 0.06868 0.2733 0.07041 

3 2 1 0.2568 0.06452 0.2563 0.06589 

3 2 2 0.4612 0.08017 0.4608 0.08553 

The GLMM for this experiment is described below (log-log data): 

Distribution: yijkl rl, r(aβ)ijl~Binomial(Nijk, πijk) 
rl N 0, σ2 r , r aβ ijl N 0, σ2 rab , 
Linear predictor: ηijkl= η + rl + αi + βj + (αβ)ijl + r(αβ)il + γk + (αγ)ik + (βγ)jk + (αβγ)ijk, 

i + βj + (αβ)ijl + r(αβ)il + γk + (αγ)ik + (βγ)jk + (αβγ)ijk, where blocks (rl) and blocks 
x (A x B) ((r(aβ))ijl) are assumed to contribute to the variation such that rl �
N 0, σ2 r and r aβ ijl N 0, σ2 rab , respectively. 

Link function: log - log (πijkl) = ηijkl 

The following GLIMMIX code adjusts the binomial proportions with a comple-
mentary link function log - log in an RCBD manner. 

proc glimmix data=spp nobound method=laplace; 
class block A B C; 
model y/n = A|B|C/link=ccll; 
random block block(A*B); 
lsmeans A|B|C/lines ilink; 
run; 

The “link = ccll” option specifies that “proc GLIMMIX” will fit the model using 
the complementary (log - log) link function. The “lsmeans A|B|C/lines ilink” 
command calls for estimation of the linear predictors ηijk, whereas the “lines” and 
“ilink” options provide the comparison between the linear predictors and their 
inverse. Part of the output is shown below. Table 6.25 shows the variance compo-
nent estimates of blocks and blocks (A×B) using alternative link functions. Under
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the link “probit,” the variance components are smaller compared to those obtained 
with the link functions “log – log” and “logit.” 
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Table 6.25 Variance component estimates using the same distribution but a different link function 

Covariance parameter estimates 

Log – log Logit Probit 

Standard 
error 

Standard 
error 

Standard 
error 

Block 0.05808 0.07112 0.08144 0.1042 0.02676 0.03494 

Block 
(A*B) 

0.05065 0.03121 0.09203 0.05754 0.03374 0.02111 

Table 6.26 Type III tests of fixed effects using the same distribution but with a different link 
function 

Type III tests of fixed effects 

Log - log Logit Probit 

Effect Num DF Den DF F-value Pr > F-value Pr > F-value Pr > F 

A 2 5 6.27 0.0434 7.44 0.0318 8.17 0.0266 

B 1 5 4.85 0.0789 3.13 0.1370 2.81 0.1543 

A*B 2 5 0.65 0.5613 0.28 0.7693 0.24 0.7971 

C 1 6 68.84 0.0002 65.29 0.0002 66.70 0.0002 

A*C 2 6 11.94 0.0081 11.53 0.0088 12.12 0.0078 

B*C 1 6 27.51 0.0019 28.88 0.0017 28.77 0.0017 

A*B*C 2 6 32.44 0.0006 32.36 0.0006 33.93 0.0005 

Table 6.27 Fit statistics 
using the same distribution but 
a different link function 

Covariance parameter estimates 

Log - log Logit Probit

-2 Log likelihood 164.85 172.57 170.88 

AIC (smaller is better) 192.85 200.57 198.88 

AICC (smaller is better) 239.51 247.24 245.55 

BIC (smaller is better) 174.55 182.27 180.59 

CAIC (smaller is better) 188.55 196.27 194.59 

HQIC (smaller is better) 154.58 162.31 160.62 

The values of the hypothesis tests for the fixed effects, both main effects and 
interactions, are shown in Table 6.26. The three link functions behave similarly. 

One tool that might be useful in choosing which link function provides a better fit, 
or which best describes the variability of a dataset, is the model fit statistics. The fit 
statistics indicate that the model with the complementary “log - log” link function 
provides the best fit (Table 6.27). 

Table 6.28 shows the maximum likelihood estimators π̂ijk for each of the link 
functions and the combination of factor levels, and it can be verified that they 
provide very similar estimates. It is important to mention that the correct
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specification of the linear predictor as well as the distribution of the response variable 
are the most important elements for obtaining a good fit. 
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Table 6.28 Means and standard errors using the same distribution but with a different link function 

A*B*C least squares means 

Log - log Logit Probit 

Standard error 
mean 

Standard error 
mean 

Standard error 
mean 

1 1 1 0.1494 0.04259 0.1513 0.04732 0.1547 0.05030 

1 1 2 0.3776 0.08554 0.3727 0.08510 0.3696 0.08223 

1 2 1 0.2661 0.06257 0.2706 0.06744 0.2737 0.06718 

1 2 2 0.3001 0.07718 0.2993 0.07951 0.2980 0.07789 

2 1 1 0.1020 0.03079 0.1023 0.03451 0.1047 0.03829 

2 1 2 0.8389 0.08212 0.8188 0.06189 0.8196 0.06375 

2 2 1 0.5558 0.09578 0.5733 0.08633 0.5700 0.08251 

2 2 2 0.5578 0.09596 0.5560 0.08635 0.5546 0.08273 

3 1 1 0.2770 0.06780 0.2805 0.07192 0.2827 0.07131 

3 1 2 0.2782 0.06574 0.2779 0.06929 0.2778 0.06855 

3 2 1 0.2555 0.05987 0.2561 0.06416 0.2569 0.06410 

3 2 2 0.4599 0.08735 0.4610 0.08331 0.4609 0.07965 

6.7 Percentages 

In this section, we consider proportions that have been calculated from discrete 
counts, for example, the number of infected plants in treatment i of total Ni plants 
that are likely to have a binomial distribution. This class of models allows the 
response to arise from different distributions and probabilities. 

6.7.1 RCBD: Dead Aphid Rate 

An experiment was designed to study the effect of conidial density on the transmis-
sion of a fungus that attacks aphids. Aphid carcasses killed by the fungus, and from 
which the fungus released spores, were placed on bean plants at three densities 
(A = 1, B = 5, or C = 10 carcasses per plant) to provide different doses of fungal 
conidia. Densities were assigned to individual bean plants in a completely random-
ized design with six replicates. A total of 20 live uninfected (N ) aphids were placed 
on each plant with a ladybug that was allowed to forage (feed on the bean plants) to 
facilitate the transfer of conidia between the carcasses and the live aphids. For each 
plant, the number of aphids infected with the fungus was counted (nij) and the 
proportion of aphids infected with the fungus was calculated 7 days after the
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inoculum was placed. The results shown below correspond to the proportion of 
infected aphids calculated at each of the inoculum concentrations ( pij = nij/N; 
N = 20) to each of the conidial concentrations (density) tested (Table 6.29). 
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Table 6.29 Proportion of 
infested aphids 

Plant Density pij 
1 C 0.34299 

2 A 0.16659 

3 B 0.47004 

4 C 0.62481 

5 B 0.21926 

6 B 0.16659 

7 C 0.47502 

8 C 0.52747 

9 A 0.41581 

10 B 0.42556 

11 A 0.19466 

12 A 0.34299 

13 C 0.677 

14 C 0.76674 

15 A 0.13124 

16 B 0.58419 

17 B 0.38225 

18 A 0.28905 

Table 6.30 Sources of varia-
tion and degrees of freedom 

Sources of variation Degrees of freedom 

Trt t - 1 = 2 
Error t(r - 1) = 15 
Total t × r - 1 = 17 

The sources of variation and degrees of freedom for this experiment are shown in 
Table 6.30. 

The components of the GLMM having a beta response are listed below: 

Distributions: pij density(plant)i( j ) ~ Beta(πij,ϕ) 

density plant N 0, σ2 

Linear predictor: ηij = μ + densityi + density(plant)i( j ); i = 1, 2, 3; j = 1, ⋯, 6  

Link function: log πij = logit π = η 

The following GLIMMIX program fits a GLMM in a completely randomized 
design with a beta distribution. Here, density is conc_ino. 

proc glimmix data=thumbs nobound method=laplace; 
class plant conc_ino; 
model p = conc_ino /dist=beta link=logit; 
random conc_ino(plant);
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lsmeans conc_ino/lines ilink; 
run; 
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Table 6.31 Results of the 
analysis of variance 

(a) Fit statistics for conditional distribution

-2 Log L (P | r. effects) -24.13 

Pearson’s chi-square 18.45 

Pearson’s chi-square/DF 1.02 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Conc_Ino (Planta) -0.1833 . 

Scale 12.9999 4.1954 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Conc_Ino 2 15 8.25 0.0038 

Table 6.32 Means and standard errors on the model scale and the data scale 

Conc_Ino least squares means 

t-
value 

A -1.0340 0.2438 15 -4.24 0.0007 0.2623 0.04717 

B -0.5282 0.2246 15 -2.35 0.0328 0.3709 0.05241 

C 0.2775 0.2197 15 1.26 0.2259 0.5689 0.05388 

Part of the results is shown in Table 6.31. The value of the conditional fit statistic 
in part (a), Pearson’ s chi - square/DF = 1.02, indicates that there is no 
overdispersion in the data and that the beta distribution is a good model for this 
dataset. The estimated variance of the plants’ nested inoculum density is 
σ̂2 density plantð Þ  = - 0:1833 and the estimated scale parameter is ϕ̂= 12:999; both are 

tabulated in part (b). In part (c) of the same table, the type III tests of fixed effects are 
shown, indicating that the density (concentration) of the inoculum has a significant 
effect (P = 0.0038) on the proportion of infected aphids with the fungus. 

The values under the column “Estimates” are estimated mean proportions on the 
model scale, whereas the column “Mean” shows the estimated mean proportions on 
the data scale with their respective standard errors (Table 6.32). These estimates 
where obtained with the “lsmeans” and “ilink” option. 

Figure 6.8 shows a linear trend in the proportion of aphids infested as conidial 
density increases. Conidia densities A and B showed statistically equal proportions 
of infested aphids compared to density C. Finally, the highest proportion of infested 
aphids was observed at density C.
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Fig. 6.8 Proportion of aphids infected at different conidia concentration densities 

6.7.2 RCBD: Percentage of Quality Malt 

An agro-industrial engineer is interested in studying the effect of germination time in 
minutes (48, 96, and 144) on the percentage of quality malt obtained from six 
sorghum varieties (sorghum bicolor): Gambella 1107, Macia, Meko, Red Swazi, 
Teshale, and 76T1#23 (Bekele et al. 2012). The percentage of quality malt (y) as a  
function of both factors is shown in Table 6.33. 

For this purpose, an RCBD was implemented with a treatment factorial structure 
(variety × germination time). The statistical model to analyze the dataset is the 
following: 

Distributions: yijk rk ~ Beta(πijk,ϕ); i = 1, ⋯, 6;  j, k = 1, 2, 3 
rk � N 0, σ2 block , where yijk is the kth percentage of malt quality observed at the ith 

variety with the jth fermentation time. 
Linear predictor: ηijk = μ + rk + αi + βj + (αβ)ij, where μ is the overall mean, αi is the 

fixed effect due to variety i, βj is the fixed effect due to germination time j, 
and (αβ)ij is the interaction effect between variety and germination time. 

Link function: logit(πijk) = ηijk 

Table 6.34 shows the sources of variation and degrees of freedom for this 
experiment. 

The following GLIMMIX commands adjust a GLMM with a beta response. 

proc glimmix data=malting nobound method=laplace; 
class var_sorghum ger_time block; 
model p = var_sorghum|ger_time/dist=beta link=logit; 
random block; 
lsmeans var_sorghum|ger_time/lines ilink; 
run;
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Table 6.33 Percentage of quality malt as a function of both factors (variety and germination time) 

Variety Time Block y Variety Time Block y 

Gambella T1 1 7.25 Red Swazi T2 1 21 

Gambella T1 2 11.16 Red Swazi T2 2 15.09 

Gambella T1 3 15.9 Red Swazi T2 3 24.84 

Macia T1 1 10.91 Teshale T2 1 25.42 

Macia T1 2 8.75 Teshale T2 2 26.86 

Macia T1 3 10.87 Teshale T2 3 26.64 

Meko T1 1 24.65 76 T1#23 T2 1 23.69 

Meko T1 2 23.63 76 T1#23 T2 2 20.71 

Meko T1 3 28.75 76 T1#23 T2 3 26.14 

Red Swazi T1 1 20.95 Gambella T3 1 12.45 

Red Swazi T1 2 15.82 Gambella T3 2 15.34 

Red Swazi T1 3 25.24 Gambella T3 3 17.32 

Teshale T1 1 25.92 Macia T3 1 8.51 

Teshale T1 2 27.64 Macia T3 2 8.15 

Teshale T1 3 28.03 Macia T3 3 13.07 

76T1#23 T1 1 23.39 Meko T3 1 22.09 

76T1#23 T1 2 19.43 Meko T3 2 24.11 

76T1#23 T1 3 25.55 Meko T3 3 24.47 

Gambella T2 1 10.03 Red Swazi T3 1 20.81 

Gambella T2 2 12.9 Red Swazi T3 2 16.05 

Gambella T2 3 17.84 Red Swazi T3 3 23.7 

Macia T2 1 7.88 Teshale T3 1 26.42 

Macia T2 2 9.14 Teshale T3 2 27.07 

Macia T2 3 11.99 Teshale T3 3 28.01 

Meko T2 1 22.97 76 T1#23 T3 1 24.18 

Meko T2 2 25.37 76 T1#23 T3 2 19.58 

Meko T2 3 25.71 76 T1#23 T3 3 25.74 

Table 6.34 Sources of varia-
tion and degrees of freedom 

Sources of variation Degrees of freedom 

Blocks r - 1 = 3 - 1 = 2 
Variety a - 1 = 6 - 1 = 5 
Time_Germination b - 1 = 3 - 1 = 2 
Variety*germ_time (a - 1)(b - 1) = 10 
Error (ab - 1)(r - 1) = 17 × 2 = 34 
Total r × a × b - 1 = 54 - 1 = 53 

Part of the results of the above program is shown in Table 6.35. In part (a), the 

value of Pearson’s chi-square/DF is tabulated χ2 

df = 0:92 , which indicates that the 

beta distribution is a good distribution for modeling malt percentage since the t-value 
of Pearson’s chi-square/DF is close to 1. The estimated variance due to blocks is



Effect Pr > F

Var_sorghum Estimate DF t-value Pr > |t| Mean

σ̂2 block = 0:012 and the estimated scale parameter is ϕ̂= 431 (part (b)), whereas the 
type III fixed effects hypothesis tests in part (c) show that sorghum variety has a 
significant effect on malt quality percentage (P = 0.0001). 
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Table 6.35 Results of the 
analysis of variance of the 
RCBD with a beta distribution 

(a) Fit statistics for conditional distribution

-2 Log L (p | r. effects) -280.89 

Pearson’s chi-square 49.66 

Pearson’s chi-square/DF 0.92 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Block 0.01210 0.01055 

Scale 431.54 85.4922 

(c) Type III tests of fixed effects 

Num 
DF 

Den 
DF 

F-
value 

Var_sorghum 5 34 106.51 <0.0001 

Ger_time 2 34 0.26 0.7722 

Var_sorghum*ger_time 10 34 1.08 0.4041 

Table 6.36 Means and standard errors on the model scale and the data scale for sorghum varieties 

Var_sorghum least squares means 

Standard 
error 

Standard error 
mean 

76 T1#23 -1.2011 0.07401 34 -16.23 <0.0001 0.2313 0.01316 

Gambella -1.8898 0.07929 34 -23.83 <0.0001 0.1313 0.009042 

Macia -2.2067 0.08295 34 -26.60 <0.0001 0.09915 0.007409 

Meko -1.1201 0.07364 34 -15.21 <0.0001 0.2460 0.01366 

Red Swazi -1.3685 0.07493 34 -18.26 <0.0001 0.2029 0.01212 

Teshale -1.0025 0.07314 34 -13.71 <0.0001 0.2685 0.01436 

The least squares means on the model scale and the data scale for the factor 
variety are listed under the columns “Estimate” and “Mean” with their respective 
standard errors “Standard error” in Table 6.36. 

Figure 6.9 shows that Teshale produced the highest average malt percentage 
(0.2685 ± 0.01436), followed by the varieties 76 T1#23 and Meco 
(0.2313 ± 0.01316,0.246 ± 0.01366), whereas the variety Macia produced the 
lowest malt percentage (0.09915 ± 0.0074). 

6.7.3 A Split Plot in an RCBD: Cockroach Mortality 
(Blattella germanica) 

An entomologist is interested in testing six isolates of insect pathogenic fungi: five 
obtained from different hosts and one already known isolate (Control) of a fungus



j
k � r ð Þk ið Þ � r αð Þ

with potential for biological control of a particular species of cockroaches. To do so, 
the entomologist decides to test these fungal isolates on three different insect ages 
(age1 = E1, age2 = E2, and age3 = E3). Each of the isolates was placed in a Petri 
dish with 10 insects of a specific age. Each set (isolate–age) was randomly assigned 
to two blocks (Appendix: Data: Cockroaches). 
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Fig. 6.9 Percentage of quality malt of bicolor sorghum varieties 

Table 6.37 Analysis of variance with sources of variation and degrees of freedom for this 
experiment 

Sources of variation Degrees of freedom 

Blocks r - s1 = 2 - 1 = 1 
Isolation a - 1 = 6 - 1 = 5 
Block (insulation) a(r - 1) = 6 
Age b - 1 = 3 - 1 = 2 
Isolation*age (a - 1)(b - 1) = 5 × 2 = 10 
Error (a - 1)(b - 1)(r - 1) = 2 × 5 × 1 = 10 
Total r × a × b - 1 = 2 × 6 × 3 - 1 = 35 

The analysis of variance table (Table 6.37) with the sources of variation and 
degrees of freedom for this experiment is presented below. The response variable 
(percentage mortality) for this experiment is assumed to have a beta distribution. 

The components that describe the model of this experiment are listed below: 

Distributions: yijk rk, r(α)k(i)~Beta(πijk,ϕ); i = 1, ⋯, 6;  j = 1, 2, 3; k = 1, 2. 

r N 0, σ2 , r α N 0, σ2 

Linear predictor: ηijk = μ + rk + αi + r(α)k(i) + βj + (αβ)ij 
Link function: logit(πijk) = ηijk
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Table 6.38 Results of the 
analysis of variance of the 
RCBD with a factorial struc-
ture in treatments 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) -74.53 

Pearson’s chi-square 34.02 

Pearson’s chi-square/DF 1.00 

(b) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Aislamiento Block -0.03125 . 

Scale 24.1882 5.7925 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Isolation 5 6 16.48 0.0019 

Age 2 10 30.01 <0.0001 

Isolation*age 10 10 4.83 0.0102 

The following GLIMMIX commands adjust a GLMM with a beta response. 

proc glimmix nobound method=laplace; 
class block Isolation Age; 
model y = Isolation|Age/dist=beta link=logit; 
random Isolation/subject=block; 
lsmeans Insulation|Age/slice=Insulation lines ilink; 
run; 

Some of the outputs are listed below (Table 6.38). The conditional statistic 
Pearson′ s chi - square/DF = 1 indicates that the distribution used is appropriate 
for these datasets (part (a)). The variance component estimates are tabulated in part 
(b), and, for blocks, the estimate is σ̂2 r = - 0:03125 and the estimated scale param-
eter is ϕ̂= 24:1882. The hypothesis test is in part (c) with type III fixed effects of 
equality of means for type of isolation, age of the insect, and the interaction between 
both factors. These outputs indicate that they have a significant effect on insect 
mortality. 

We see the expected proportions with their respective standard errors of both 
factors on the data scale under the “Mean” column (Tables 6.39 and 6.40). These 
values arise by applying the inverse link to estimates under “Estimate” on the model 
scale. Table 6.39 shows the estimated average mortality probabilities for the isolates; 
for example, for isolate A1, applying the inverse link to the linear predictor estimate 
η̂1: = 0:1722 we get π̂1: = 1=1þ e- 0:1722 = 0:5429. In this manner, we see that the 
expected proportions for isolates 2 and 4 are π̂2: = 0:6555 and π̂4: = 0:5762, respec-
tively, whereas for the control π̂control: = 0:1157. 

Regarding the age of the insect (Table 6.40), the expected average probability of 
mortality was higher at age three (adults) with a higher mortality rate π̂:3 = 0:6435, 
whereas insects at age two (E2) had a higher resistance to the isolations, showing a 
mortality of π̂:2 = 0:2598. 

In general, fungal isolates A1, A2, A3, and A4 showed an average mortality of 
more than 75% for adult insects (E3), whereas isolates A1, A2, and A5 showed a
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mortality rate of around 65% for cockroaches of age E1 (juvenile insects). On the 
other hand, all isolates showed lower lethal effectiveness on insects of age E2 
(Fig. 6.10). 
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Table 6.39 Means and standard errors on the model scale and the data scale for isolation 

Isolate least squares means 

Isolate Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

A1 0.1722 0.1859 6 0.93 0.3900 0.5429 0.04614 

A2 0.6442 0.2100 6 3.07 0.0220 0.6557 0.04740 

A3 -0.1489 0.1952 6 -0.76 0.4746 0.4629 0.04853 

A4 0.3073 0.2088 6 1.47 0.1915 0.5762 0.05098 

A5 -0.2023 0.1806 6 -1.12 0.3053 0.4496 0.04468 

Control -2.0339 0.2418 6 -8.41 0.0002 0.1157 0.02473 

Table 6.40 Means and standard errors on the model scale and the data scale for insect age 

Age least squares means 

Age Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

E1 -0.1747 0.1310 -1.33 0.2120 0.4564 0.03251 

E2 -1.0468 0.1374 -7.62 <0.0001 0.2598 0.02643 

E3 0.5908 0.1634 3.61 0.0047 0.6435 0.03749 

6.7.4 A Split-Plot Design in an RCBD: Percentage Disease 
Inhibition 

A plant pathologist wishes to compare the response of two plant varieties to different 
doses/amounts of a pesticide formulated to protect plants against a disease. Five 
racks (blocks) were chosen to account for local variation within the greenhouse. 
Each rack was divided into four sections or rooms and were randomly assigned one 
of four pesticide levels to each rack. The four pesticide levels were 1, 2, 4, and 8 mg/ 
L. One plant of each variety was placed in each section of the rack. Of the two plant 
varieties, one variety was susceptible, labeled S, and the other variety was resistant, 
labeled R (Table 6.41). The response variable ( y) is the percentage of disease 
inhibition in the plant. 

The sources of variation and degrees of freedom for this experiment are shown in 
Table 6.42. 

Following the same reasoning used in the examples above, the components of the 
GLMM with a beta response that models the observed disease inhibition proportion 
(pijk) under dose i with variety j in block k are listed as follows:. 

Distributions: yijk rk, (rα)ik~Beta(πijk,ϕ); i = 1, ⋯, 4;  j = 1, 2; k = 1, ⋯, 5  
rk N 0, σ2 r , rα ik N 0, σ2 rA
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Fig. 6.10 Cockroach mortality percentage 

Table 6.41 Percentage of inhibition 

Block Variety Dose y Block Variety Dose y 

1 R 1 15.7 1 S 1 19.8 

2 R 1 23.1 2 S 1 17.8 

3 R 1 15.9 3 S 1 13.2 

4 R 1 20.8 4 S 1 14.8 

5 R 1 24.5 5 S 1 19.7 

1 R 2 25.1 1 S 2 21.2 

2 R 2 29.2 2 S 2 29.3 

3 R 2 29.7 3 S 2 26 

4 R 2 28.6 4 S 2 27.5 

5 R 2 26.6 5 S 2 22 

1 R 4 27.9 1 S 4 29.3 

2 R 4 29.7 2 S 4 27.2 

4 R 4 29.7 4 S 4 31.5 

5 R 4 29.6 5 S 4 27.9 

1 R 8 23.8 1 S 8 22.8 

2 R 8 31.2 2 S 8 33 

3 R 8 21.8 3 S 8 25.2 

4 R 8 23.3 4 S 8 27.2 

5 R 8 23.9 5 S 8 20.8



Linear predictor: η = μ + r + α + (rα) + β + (αβ) , where r is the random block
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Table 6.42 Sources of variation and degrees of freedom 

Sources of variation Degrees of freedom 

Blocks r - 1 = 5 - 1 = 4 
Dose a - 1 = 4 - 1 = 3 
Errora(Bloque*Dose) (r - 1)(a - 1) = 12 
Variety b - 1 = 2 - 1 = 1 
Dose*variety (a - 1)(b - 1) = 3 
Errorb a(b - 1)(r - 1) = 4 × 1 × 4 = 16 
Total r × a × b - 1 = 5 × 4 × 2 - 1 = 39 

ijk k i ik j ij k 

effect, αi is the fixed dose effect, βj is the fixed variety effect, (rα)ik is the random 
effect due to block by dose interaction, and (αβ)ij is the interaction of fixed effects 
due to dose variety. 

Link function: logit(πijk) = ηijk

The following GLIMMIX commands adjust a GLMM. 

proc glimmix nobound method=laplace; 
class Variety dose block; 
model y = dose variety dose*variety /dist=beta link=logit; 
random Block Block*dose; 
contrast 'Linear dose' dose -3 -1 1 3; 
contrast 'Quadratic dose' dose 1 -1 -1 -1 1; 
contrast 'dose Cubic' dose -1 3 -3 1; 
lsmeans variety|dose / slice=(variety dose) lines ilink; 
ods output lsmeans=dose_means; 
run; 

The “contrast” command in the program can perform a hypothesis testing to see 
what trend (linear, quadratic, or cubic) the “dose” factor has on the percentage of 
disease inhibition. Part of the output is shown in Table 6.43. The value of the 
conditional goodness-of-fit statistic Pearson’ s chi - square/DF= 0.59 indicates 
that we have no evidence of overdispersion, and, therefore, the beta distribution is 
adequate to model this dataset (part (a)). The variance component estimates in part 
(b) for block and block × dose are σ̂2 r = 0:004898 and σ̂2 r ∙ dose = 0:002372, respec-
tively. Finally, the F-value provides sufficient statistical evidence of the effect of 
dose on disease decline in plants (P = 0.0001), whereas the effect of variety and dose 
× variety do not provide sufficient evidence. 

Table 6.44 shows the polynomial contrasts for the effect of “dose,” which 
indicate that there is a significant quadratic effect on the percentage of disease 
inhibition. 

The inhibition percentage has almost a linear trend as the dose increases from 1 to 
4 ml/L in both varieties, but when the dose is higher than 4 ml/L, the inhibition of the 
disease decreases in both varieties (Fig. 6.11).
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Table 6.43 Results of the 
analysis of variance 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) -184.32 

Pearson’s chi-square 23.63 

Pearson’s chi-square/DF 0.59 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Block 0.004898 . 

Block*dose 0.002372 0.007513 

Scale 205.52 67.7447 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Dose 3 12 17.67 0.0001 

Variety 1 16 1.74 0.2057 

Dose*variety 3 16 1.22 0.3337 

Table 6.44 Polynomial 
contrasts 

Contrasts 

Label Num DF Den DF F-value Pr > F 

Linear dose 1 12 25.48 0.0003 

Quadratic dose 1 12 30.93 0.0001 

Cubic dose 1 12 0.30 0.5948 

6.7.5 Randomized Complete Block Design with a Binomial 
Response with Multiple Variance Components 

The dataset corresponds to an experiment implemented by Madden and Hughes 
(1995) on the incidence of the disease caused by the fungus Plasmopara viticola on 
grape plants (Vitis labrusca). Six different treatments in a randomized block design 
(b = 3) were tested, where treatment 1 was the control, to study the disease with 
three grape plants (v = 3). On a single date in autumn, five sprouts were (r = 5) 
randomly selected from each of the three grape plants and the number of leaves with 
at least one mildew lesion was counted (m) out of a total n leaves. The number of 
leaves per shoot ranged from 7 to 21. The data for this experiment can be found in 
the Appendix (Data: Disease incidence on grape plants). 

The statistical model that could describe the incidence of disease in this experi-
ment, if the response variable pijkl were treated as a normal variable, would be as 
described below: 

pijkl = ηþ τi þ bj þ bvð Þjk þ bvrð Þjkl þ εijkl 
i= 1, 2, . . . , 6; j= 1, 2, 3; k= 1, 2, ::, 3; l= 1, 2, . . . , 5



where p is the ijkl proportion of diseased leaves, η is the intercept, τ is the xed

block × plant × sprout

j
j � block ð Þjk � block × plant ð Þjkl � block × plant × sprout

8
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Fig. 6.11 Percentage of disease inhibition in both varieties 

ijkl i fi 

treatment effect i, bj is the random effect of blocks assuming bj � N 0, σ2 block , (bv)jk 
is the block–plant random effect assuming bvð Þjk � N 0, σ2 block× plant , (bvr)jkl 

is the random effect due to block–plant–sprouts assuming bvrð Þjkl �
N 0, σ2 , and εijkl is the experimental error assuming εijkl~N(0, σ

2 ). 

For the disease incidence data, the assumption of a normal distribution for pijkl is 
not recommended. A good starting point for the analysis is to assume that the 
observed number of diseased leaves in the sprouts (yijkl) follows a binomial distri-
bution with parameter πijkl and nijkl, the total number of leaves on the sprout. 

Therefore, the components of the GLMM with a binomial distribution in the 
response variable are as follows: 

Distribution: pijkl bj, (bv)jk, (bvr)jkl ~ binomial(πijkl, nijkl) 

b N 0, σ2 , bv N 0, σ2 , bvr N 0, σ2 

Linear predictor: ηijkl = η + τi + bj + (bv)jk + (bvr)jkl. 
Link function: logit(πijkl) = ηijkl 

The following GLIMMIX syntax fits a GLMM with a binomial response. 

proc glimmix method=laplace nobound; 
class v r b t; 
model m/n = t /dist=bin; 
random intercept v v*r/subject=b; 
lsmeans t/lines ilink; 
run;



e

j
j � block ð Þjk � block × plant ð Þjkl � block × plant × sprout
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Table 6.45 Results of the 
analysis of variance under the 
binomial distribution 

(a) Fit statistics

-2 Log likelihood 723.17 

AIC (smaller is better) 741.17 

AICC (smaller is better) 741.87 

BIC (smaller is better) 733.06 

CAIC (smaller is better) 742.06 

HQIC (smaller is better) 724.87 

(b) Fit statistics for conditional distribution

-2 Log L (m | r. effects) 665.02 

Pearson’s chi-square 398.21 

Pearson’s chi-square/DF 1.47 

(c) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Intercept b -0.00408 . 

V b 0.01917 . 

v*r b 0.1960 . 

(d) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

t 2 220 1837.99 <0.0001 

Part of the results based on the aforementioned model is shown in Table 6.45. By  
default, proc GLIMMIX provides the fit statistics useful for selecting the best model 
from a group of models (part (a)). 

In addition to accuracy considerations, the Laplace (or quadrature) analysis 
allows us to obtain the “conditional distribution fit statistics,” specifically 
Pearson’ s χ2 /df. Recall that this statistic helps assess the goodness of fit of th  
model. If the value of χ2 /df ≫ 1 is an indicator that there is overdispersion in the 
dataset, then this may be because the linear predictor is incomplete or the assumed 
distribution is not suitable (mis-specified) for this dataset. In part (b), we can see that 
the value of the conditional distribution statistic of Pearson’ s χ2 /df = 1.47. This value 
indicates that we have evidence of overdispersion. The variance component esti-
mates due to block, block × plant, and block × plant × sprout are tabulated in part (c), 
whereas the type III tests of fixed effects (part (d)) indicate that there is a significant 
difference (P < 0.0001) between treatments. 

Since there is overdispersion in the data in the binomial model, an alternative 
distribution is the beta distribution. The components of the GLMM are as follows: 

Distribution: pijkl bj, (bv)jk, (bvr)jkl~beta(πijkl,ϕ); 

b N 0, σ2 , bv N 0, σ2 , bvr N 0, σ2 

Linear predictor: ηijkl = η + τi + bj + (bv)jk + (bvr)jkl 
Link function: logit(πijkl) = ηijkl.
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Table 6.46 Results of the 
analysis of variance under the 
beta distribution 

(a) Fit statistics

-2 Log likelihood -231.10 

AIC (smaller is better) -211.10 

AICC (smaller is better) -209.30 

BIC (smaller is better) -220.11 

CAIC (smaller is better) -210.11 

HQIC (smaller is better) -229.22 

(b) Fit statistics for conditional distribution

-2 Log L (m | r. effects) -231.10 

Pearson’s chi-square 136.55 

Pearson’s chi-square/DF 1.07 

(c) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Intercept b -0.6308 .

-0.2215 . 

v*r b -0.1843 . 

Scale ϕ̂ 9.8397 1.1926 

(d) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

t 2 220 1837.99 <0.0001 

The following SAS commands adjust an GLMM under a beta distribution. 

proc GLIMMIX method=laplace nobound; 
class v r b t; 
model pct = t /dist=beta link=logit; 
random intercept v v*r/subject=b; 
lsmeans t/lines ilink; 
run; 

Some of the outputs are shown below. Table 6.46 shows that the values of the fit 
statistics, as well as the conditional distribution statistics (parts (a) and (b)), are much 
smaller than when the binomial distribution was used. 

This indicates that the beta distribution is more appropriate for the dataset, as 
the value of Pearson’ s statistic is χ2 /df = 1.03, indicating that the problem of 
overdispersion was almost totally controlled. The variance component estimates as 
well as the estimated scale parameter ϕ̂ are tabulated in part (c). Similar to the 
previous analysis, the type III tests of fixed effects indicate that there is a highly 
significant difference (part (d)) in treatments on the average proportion of leaves 
with fungal disease. 

The least mean squares (means) on the model scale (column “Estimate”) and on 
the data scale (column “Mean”) are tabulated in Table 6.47. The results indicate that



all proposed treatments in this study reduce the proportion of diseased leaves 
compared to the control treatment (t = 1). 
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Table 6.47 Estimated means (least squares means) on the model scale and on the data scale 

Least squares means 

t Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

1 0.7223 0.09989 83 7.23 <0.0001 0.6731 0.02198 

2 -1.7482 0.1543 83 -11.33 <0.0001 0.1483 0.01949 

3 -2.0178 0.2214 83 -9.11 <0.0001 0.1174 0.02294 

4 -1.9358 0.1873 83 -10.34 <0.0001 0.1261 0.02064 

5 -1.7887 0.2173 83 -8.23 <0.0001 0.1432 0.02667 

6 -1.5360 0.1665 83 -9.23 <0.0001 0.1771 0.02427 

Table 6.48 Mean compari-
son (LSD method) 

T grouping of t least squares means (α = 0.05) 
LS means with the same letter are not significantly different 

t Estimate 

1 0.7223 A 

6 -1.5360 B 

B 

2 -1.7482 B 

B 

5 -1.7887 B 

B 

4 -1.9358 B 

B 

3 -2.0178 B 

The mean comparison (LSD) obtained with the option “lines” indicates that the 
proportion of diseased leaves in treatment one is statistically different from the rest 
of the treatments (Table 6.48). 

6.8 Exercises 

Exercise 6.8.1 Seeds of a particular crop were stored at four different temperatures 
(T1,T2,T3, and T4) under four different chemical concentrations (0, 0.1, 1.0, and 10). 
To study the effects of temperature and chemical concentration, a completely 
randomized experiment was conducted with a factorial treatment structure 4 × 4 
and four replicates. For each of the 64 experimental units, 50 seeds were placed in a 
dish and the number of seeds that germinated under standard conditions was 
recorded. Germination data were obtained from Mead et al. (1993, p. 325) 
(Table 6.49).
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Table 6.49 Seed germination experiment results 

Chemical concentration 

Temperature 0 0.1 1.0 

T1 9, 9, 3, 7 13, 12, 14, 15 21, 23, 24, 27 40, 32, 43, 34 

T2 19, 30, 21, 29 33, 32, 30, 26 43, 40, 37, 41 48, 48, 49, 48 

T3 7, 7, 2, 5 1, 2, 4, 4 8, 10, 6, 7 3, 4, 8, 5 

T4 4, 9, 3, 7 13, 6, 15, 7 16, 13, 18, 19 13, 18, 11, 16 

Table 6.50 Results of the apple sprouts experiment 

Density of inoculum Cultivate Block 1 Block 2 Block 3 Block 4 

200 Jonagold 5/1 5/2 5/1 5/0 

200 Golden delicious 5/1 5/0 5/0 5/0 

200 Jonathan 5/2 5/2 5/2 5/0 

1000 Jonagold 5/0 5/2 5/2 5/4 

1000 Golden delicious 5/0 5/0 5/2 5/0 

1000 Jonathan 5/4 5/4 5/4 5/0 

5000 Jonagold 5/5 5/5 5/4 5/5 

5000 Golden delicious 5/5 5/4 5/3 5/5 

5000 Jonathan 5/5 5/0 5/3 5/5 

The first number refers to the number of inoculations (n) and the second to the number of 
inoculations that developed the gangrenous sore (Y) 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all the components of the GLMM in (a). 
(c) Analyze this dataset and summarize the relevant results. 

Exercise 6.8.2 Data were obtained from an experiment in which separate sprouts of 
apple trees were inoculated with macroconidia of the fungus Nectria galligena, 
which causes apple cancer (canker gangrene). The experimental factors were inoc-
ulum density (three levels: 200, 1000, and 5000 macroconidia per ml) and variety 
(three levels: Jonagold, Golden Delicious, and Jonathan). The experiment was 
carried out in 4 randomized blocks with 12 plots. Each plot consisted of one sprout 
on which five inoculations were made. The numbers of successful inoculations per 
plot on day 17 after inoculation are shown in the table below (Table 6.50). 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all the components of the GLMM from part (a). 
(c) Analyze this dataset and summarize the relevant results. 
(d) Is there is an extra-variation in the dataset? What alternative distribution do you 

propose? Reanalyze the data and compare the results. 

Exercise 6.8.3 This experiment concerns the germination efficiencies of protoplasts 
obtained from plants of seven species of the genera Lycopersicon (tomato) and



1 2 3 4 5 6 7 8 9 10

Solanum (potato). For each species, three or four protoplast isolates were used and, 
depending on the availability of the protoplasts, a variable number of plates was 
carried out. Per plate, approximately 105 protoplasts were placed in a Petri dish, and, 
after 4 weeks, the proportion of dividing protoplasts was recorded. The results in 
percentages are listed below (Table 6.51). 
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Table 6.51 Protoplast germination experiment results 

Species Isolation 

1 1 8.9 6.3 10.5 

1 2 3.1 2.7 4.1 

1 3 2.1 1.9 1.4 1.5 

1 4 2.5 2.9 2.6 2.6 2.6 2.6 2.8 2.7 2.8 2.7 

2 1 0.2 0.9 0.5 0.6 1.2 0.4 

2 2 1.8 1.6 1.6 

2 3 6.6 7.5 5.4 5.3 5 6.5 6.3 5.8 5.9 5.6 

3 1 1.8 1.5 1.9 1.7 1.3 1.5 

3 2 1.5 3.2 1.1 1.3 1.8 1.2 1.6 1.4 1.2 1.8 

3 3 2 2.3 2.8 2.6 3.2 2.2 2.5 2.4 2.8 2.4 

4 1 11.4 11.3 14.4 13.7 

4 2 2.9 3.8 4.7 5.1 2.7 3.2 

4 3 2.3 4.4 4.8 4.9 5.8 4.7 5.6 4.2 3.3 4.5 

5 1 21.5 25.5 18.1 22.2 

5 2 18.7 20 

5 3 11.5 13.1 11.5 16.2 10.1 17.2 16 10.5 

6 1 4.6 3.4 2.7 3 4.1 3.1 

6 2 2.4 2.4 2 2.5 3.6 3.2 2.6 1.4 2.5 2.7 

6 3 1.6 1.1 1.6 1.3 1.6 1 0.8 1.3 0.8 2.2 

7 1 3 4 4.1 4.4 2.8 3.3 4.5 3.3 3 3.2 

7 2 2.5 2.5 2.5 2.7 2.3 2.6 

7 3 2.6 2.7 2.9 2.7 2.7 2.6 

7 4 2.9 3 3 3.1 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for the 
experimental design of this study. 

(b) Write down a generalized linear mixed model base in (a), assuming a beta 
distribution on the response variable. 

(c) Implement an analysis of these data according to the linear predictor and model 
in part (b). Summarize the relevant results. 

Exercise 6.8.4 The data in this example are the results of a triangle test for 12 raters 
tasting 10 pairs of coffee varieties (Table 6.52). The triangle test consisted of each 
rater drinking three cups, one of one variety and two of the other. Each rater had 
12 triangles for each pair of varieties, 2 for each of the following sequences: AAB, 
ABA, BAA, ABB, BAB, and BBA. The answer is the correct variety identification 
number appearing once. The experiment was conducted in two groups of six



Y n Y n

1 2 12 2 4 12

1 11 12 2 12 12

1 9 12 2 7 12

1 6 12 2 9 12

1 8 12 2 10 12

1 9 12 2 5 12

1 6 12 2 9 12

1 8 12 2 9 12

1 11 12 2 7 12

1 5 12 2 2 12

1 8 12 2 10 12

1 8 12 2 8 12

1 9 12 2 9 12

1 10 12 2 8 12

1 11 12 2 9 12

1 8 12 2 4 12

1 9 12 2 6 12

1 8 12 2 10 12

1 4 12 2 3 12

1 9 12 2 11 12

1 9 12 2 11 12

1 11 12 2 8 12

1 8 12 2 8 12

1 10 12 2 11 12

1 3 12 2 5 12

1 7 12 2 4 12

1 10 12 2 11 12

1 7 12 2 0 7 12

1 10 12 2 0 9 12

1 7 12 2 0 5 12

1 7 12 2 0 5 12

1 7 12 2 0 7 12

1 6 12 2 0 8 12

1 10 12 2 0 6 12

1 6 12 2 1 7 12

1 10 12 2 1 9 12

(continued)
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Table 6.52 Triangle test (G = group, Eval = panelist, PdV = variety pair, V_A = variety A; 
V_B = variety B; Y = number of correct discriminations, n = number of trials) 

G Eval PdV V_A V_B G Eval PdV V_A V_B 

1 1 8 9 7 1 8 9  

1 2 5 9 7 2 5 9  

1 3 9 6 7 3 9 6  

1 4 6 5 7 4 6 5  

1 5 6 8 7 5 6 8  

1 6 5 8 7 6 5 8  

1 7 7 8 7 7 7 8  

1 8 7 9 7 8 7 9  

1 9 7 5 7 9 7 5  

1 1 10 7 6 5 12 2 7 10 7 6 5 12 

2 1 8 9 8 1 8 9  

2 2 5 9 8 2 5 9  

2 3 9 6 8 3 9 6  

2 4 6 5 8 4 6 5  

2 5 6 8 8 5 6 8  

2 6 5 8 8 6 5 8  

2 7 7 8 8 7 7 8  

2 8 7 9 8 8 7 9  

2 9 7 5 8 9 7 5  

1 2 10 7 6 7 12 2 8 10 7 6 7 12 

3 1 8 9 9 1 8 9  

3 2 5 9 9 2 5 9  

3 3 9 6 9 3 9 6  

3 4 6 5 9 4 6 5  

3 5 6 8 9 5 6 8  

3 6 5 8 9 6 5 8  

3 7 7 8 9 7 7 8  

3 8 7 9 9 8 7 9  

3 9 7 5 9 9 7 5  

1 3 10 7 6 9 12 2 9 10 7 6 8 12 

4 1 8 9 1 1 8 9  

4 2 5 9 1 2 5 9  

4 3 9 6 1 3 9 6  

1 4 4 6 5 8 12 2 10 4 6 5 11 12 

4 5 6 8 1 5 6 8  

1 4 6 5 8 8 12 2 10 6 5 8 10 12 

4 7 7 8 1 7 7 8  

4 8 7 9 1 8 7 9  

4 9 7 5 1 9 7 5  

1 4 10 7 6 7 12 2 10 10 7 6 9 12 

5 1 8 9 1 1 8 9  

5 2 5 9 1 2 5 9



Y n Y n

1 4 12 2 1 6 12

1 6 12 2 1 5 12

1 8 12 2 1 8 12

1 9 12 2 1 6 12

1 9 12 2 1 9 12

1 3 12 2 2 6 12

1 9 12 2 2 7 12

1 6 12 2 2 7 12

1 9 12 2 2 7 12

1 7 12 2 2 8 12

1 10 12 2 2 11 12

1 7 12 2 2 9 12

1 7 12 2 2 9 12

evaluators, each with the aim of discriminating the abilities of the panelists for future 
evaluations. The data for this example are shown below:
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Table 6.52 (continued)

G Eval PdV V_A V_B G Eval PdV V_A V_B

5 3 9 6 1 3 9 6  

1 5 4 6 5 8 12 2 11 4 6 5 10 12 

5 5 6 8 1 5 6 8  

1 5 6 5 8 7 12 2 11 6 5 8 10 12 

5 7 7 8 1 7 7 8  

5 8 7 9 1 8 7 9  

5 9 7 5 1 9 7 5  

1 5 10 7 6 8 12 2 11 10 7 6 9 12 

6 1 8 9 1 1 8 9  

6 2 5 9 1 2 5 9  

6 3 9 6 1 3 9 6  

6 4 6 5 1 4 6 5  

6 5 6 8 1 5 6 8  

6 6 5 8 1 6 5 8  

6 7 7 8 1 7 7 8  

6 8 7 9 1 8 7 9  

1 6 9 7 5 8 12 2 12 9 7 5 10 12 

1 6 10 7 6 9 12 2 12 10 7 6 9 12 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all the components of the GLMM according to part (a). 
(c) Analyze this dataset and summarize the relevant results. 
(d) Is there an extra-variation in the dataset? If so, what alternative distribution do 

you propose? Reanalyze the data and compare the results. 

Exercise 6.8.5 Several brewing techniques are used in the production of espresso 
coffee. Among them, the most widespread are bar machines and single-dose pods, 
designed in large numbers due to their commercial popularity. This experiment tries 
to compare the foaming rate (Y, in percentage) effects of three different brewing 
techniques on espresso quality (method 1 = bar machine (BM), method 2 = hyper-
espresso method (HIP), and method 3 = I-espresso system (IT)). Nine replicates per 
method were carried out (Table 6.53). 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for the 
experimental design of this study. 

(b) Describe the generalized linear mixed model in (a), assuming a beta distribution. 
(c) Implement the analysis of these data according to the predictor and model in (b). 

Summarize the relevant results.



1 2 3 4 5 6 7  

A 10 11 8 9 7 6 9  

B 8 10 3 7 9 3 11  
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Table 6.53 Experimental 
results of espresso coffee 

Method Index Method Index Method Index 

1 36.64 2 70.84 3 56.19 

1 39.65 2 46.68 3 36.67 

1 37.74 2 73.19 3 35.35 

1 35.96 2 57.78 3 40.11 

1 38.52 2 48.61 3 33.52 

1 21.02 2 72.77 3 37.12 

1 24.81 2 65.04 3 37.33 

1 34.18 2 62.53 3 32.68 

1 23.08 2 54.26 3 48.33 

Table 6.54 Results of wheat 
germination experiment in 
pots. Number of seeds that did 
not germinate out of 50 

Treatments 

C 5 11 2 8 10 7 11 

D 1 6 4 13 7 10 10 

Exercise 6.8.6 The decision to adopt a particular scale for data involving small 
integers is not an easy one because any analysis must be – to some extent – as 
adequate as possible to obtain estimates with as little uncertainty as possible. As a 
simple example of this type of data, consider the following results from a potted 
wheat germination experiment (Table 6.54). 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all components of the GLMM in (a), assuming a binomial response variable. 
(c) Analyze this dataset and summarize the relevant results. 
(d) Is there an extra-variation in the dataset? If so, reanalyze the data with an 

alternative distribution. Summarize and compare your findings. 

Exercise 6.8.7 A greenhouse experiment was carried out to investigate how a 
disease spreads in two varieties of (agurkesyge) cucumber, which is supposed to 
depend on the climate and the amount of fertilizers used for the two varieties. The 
following data come from the Department of Plant Pathology. Two climates 
were used: (1) change to day temperature 3 hours before sunrise and (2) normal 
change to day temperature. Three amounts of fertilizer were applied, normal 
(2.0 units), high (3.5 units), and very high (4.0 units). The two varieties were 
Aminex and Dalibor. To have a better controlled experiment, the plants were 
“standardized” to equally have as many leaves, and, then (on day 0, for example), 
the plants were contaminated with the disease. Subsequently, 8 days after the plants 
were contaminated, the amount of infection (in percentage) was recorded. From the 
resulting infection curve, two measures were calculated (in a manner not specified 
here), namely, the rate of spread of the disease (%) and the level of infection at the



end of the disease period. The experiment was implemented in three blocks, each of 
which consisted of two sections. Each section consisted of three plots, which were 
divided into two subplots, each of which had six to eight plants. Thus, there were a 
total of 36 subplots. The results were recorded for each subplot. The experimental 
factors were randomly assigned to the different units as follows: two climates to the 
two sections within each block, three amounts of fertilizer to the three plots within 
each section, and, finally, the two varieties to the two subplots within each plot. The 
data are shown below (Table 6.55). 
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(a) Write down a statistical model of this experiment. 
(b) List all the components of the GLMM in (a). 
(c) Write down the null and alternative hypotheses associated with this experiment. 
(d) Construct an ANOVA table indicating the sources of variation and degrees of 

freedom. 
(e) Analyze the rate of disease spread to investigate the effect of different factors. 
(f) Comment on the results obtained. 

Exercise 6.8.8 This example is an experiment to identify damage to the uterus in 
laboratory rodents after exposure to boric acid, a compound widely used in pesti-
cides, pharmaceuticals, and other household products (Heindel et al. 1992). The 
study design included four doses of boric acid. The compound was administered to 
pregnant female mice during the first 17 days of gestation, and, then, the females 
were sacrificed and their litters examined. The table below presents the resulting 
trials for litters dying in utero (Y ) of the total number of trials conducted (N ) at each 
of the four doses tested: d1 = 0{control}, d2 = 0.1, d3 = 0.2, and d3 = 0.4 
(as percentage of boric acid in the diet) (Table 6.56). 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all the components of the GLMM in (a). 
(c) Analyze this dataset and summarize the relevant results. 
(d) Is there an extra-variation in the dataset? If so, what alternative distribution do 

you propose? Reanalyze the data and compare your findings.
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Table 6.55 Greenhouse experiment results of cucumber varieties 

Block Section Plot Weather Fertilizer Variety Proportion (%) Level 

1 1 1 2 2 Aminex 48.8981 0.06915 

1 1 1 2 2 Dalibor 42.2463 0.06595 

1 1 2 2 3.5 Aminex 48.2108 0.04679 

1 1 2 2 3.5 Dalibor 41.6767 0.04881 

1 1 3 2 4 Aminex 55.4369 0.04025 

1 1 3 2 4 Dalibor 40.9562 0.04859 

1 2 4 1 2 Aminex 51.5573 0.09353 

1 2 4 1 2 Dalibor 36.7739 0.10353 

1 2 5 1 3.5 Aminex 47.9937 0.05327 

1 2 5 1 3.5 Dalibor 47.8723 0.04397 

1 2 6 1 4 Aminex 57.9171 0.05225 

1 2 6 1 4 Dalibor 37.7185 0.09324 

1 3 7 2 2 Aminex 60.1747 0.04182 

2 3 7 2 2 Dalibor 45.6937 0.06983 

2 3 8 2 3.5 Aminex 51.0017 0.08863 

2 3 8 2 3.5 Dalibor 52.2796 0.03622 

2 3 9 2 4 Aminex 51.1251 0.05875 

2 3 9 2 4 Dalibor 48.7217 0.08169 

2 4 10 1 2 Aminex 51.6001 0.07001 

2 4 10 1 2 Dalibor 50.4463 0.09907 

2 4 11 1 3.5 Aminex 48.3387 0.05788 

2 4 11 1 3.5 Dalibor 38.6538 0.06834 

2 4 12 1 4 Aminex 51.3147 0.05695 

2 4 12 1 4 Dalibor 38.2488 0.07908 

3 5 13 1 2 Aminex 49.6958 0.07218 

3 5 13 1 2 Dalibor 29.6786 0.11351 

3 5 14 1 3.5 Aminex 46.6692 0.08825 

3 5 14 1 3.5 Dalibor 36.5892 0.09107 

3 5 15 1 4 Aminex 56.032 0.04532 

3 5 15 1 4 Dalibor 36.0955 0.08712 

3 6 16 2 2 Aminex 45.979 0.08882 

3 6 16 2 2 Dalibor 37.2489 0.12796 

3 6 17 2 3.5 Aminex 40.7277 0.06418 

3 6 17 2 3.5 Dalibor 38.4831 0.0854 

3 6 18 2 4 Aminex 44.5242 0.06215 

3 6 18 2 4 Dalibor 34.3907 0.09651
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Table 6.56 Rodent experiment results 

Dose Dose Dose Dose 

0 0 15 0.1 0 6 0.2 1 12 0.4 12 12 

0 0 3 0.1 1 14 0.2 0 12 0.4 1 12 

0 1 9 0.1 1 12 0.2 0 11 0.4 0 13 

0 1 12 0.1 0 10 0.2 0 13 0.4 2 8 

0 1 13 0.1 2 14 0.2 0 12 0.4 2 12 

0 2 13 0.1 0 12 0.2 0 14 0.4 4 13 

0 0 16 0.1 0 14 0.2 4 15 0.4 0 13 

0 0 11 0.1 3 14 0.2 0 14 0.4 1 13 

0 1 11 0.1 0 10 0.2 0 12 0.4 0 12 

0 2 8 0.1 2 12 0.2 1 6 0.4 1 9 

0 0 14 0.1 3 13 0.2 2 13 0.4 3 9 

0 0 13 0.1 1 11 0.2 0 10 0.4 0 11 

0 3 14 0.1 1 11 0.2 1 14 0.4 1 14 

0 1 13 0.1 0 11 0.2 1 12 0.4 0 10 

0 0 8 0.1 0 13 0.2 0 10 0.4 3 12 

0 0 13 0.1 0 10 0.2 0 9 0.4 2 21 

0 2 14 0.1 1 12 0.2 1 12 0.4 3 10 

0 3 14 0.1 0 11 0.2 0 13 0.4 3 11 

0 0 11 0.1 2 10 0.2 1 14 0.4 1 11 

0 2 12 0.1 2 12 0.2 0 13 0.4 1 11 

0 0 15 0.1 2 15 0.2 0 14 0.4 8 14 

0 0 15 0.1 3 12 0.2 1 13 0.4 0 15 

0 2 14 0.1 1 12 0.2 2 12 0.4 2 13 

0 1 11 0.1 0 12 0.2 1 14 0.4 8 11 

0 1 16 0.1 1 12 0.2 0 13 0.4 4 12 

0 0 12 0.1 1 13 0.2 0 12 0.4 2 12 

0 0 14 0.1 1 15 0.2 1 7 

Appendix 

Data: Fleas 

Bioen SP Treat Rep Overvi Dead 

B1 Daphnia T1 1 10 0 

B1 Daphnia T1 2 10 0 

B1 Daphnia T1 3 10 0 

B1 Daphnia T2 1 10 0 

B1 Daphnia T2 2 10 0 

B1 Daphnia T2 3 10 0 

B1 Daphnia T3 1 9 1 

B1 Daphnia T3 2 9 1 

B1 Daphnia T3 3 8 2
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Data: Fleas

Bioen SP Treat Rep Overvi Dead

B1 Daphnia T4 1 2 8 

B1 Daphnia T4 2 2 8 

B1 Daphnia T4 3 3 7 

B1 Daphnia T5 1 0 10 

B1 Daphnia T5 2 0 10 

B1 Daphnia T5 3 0 10 

B1 Daphnia T6 1 0 10 

B1 Daphnia T6 2 0 10 

B1 Daphnia T6 3 0 10 

B2 Daphnia T1 1 10 0 

B2 Daphnia T1 2 10 0 

B2 Daphnia T1 3 10 0 

B2 Daphnia T2 1 10 0 

B2 Daphnia T2 2 10 0 

B2 Daphnia T2 3 10 0 

B2 Daphnia T3 1 9 1 

B2 Daphnia T3 2 9 1 

B2 Daphnia T3 3 9 1 

B2 Daphnia T4 1 2 8 

B2 Daphnia T4 2 2 8 

B2 Daphnia T4 3 2 8 

B2 Daphnia T5 1 0 10 

B2 Daphnia T5 2 0 10 

B2 Daphnia T5 3 0 10 

B2 Daphnia T6 1 0 10 

B2 Daphnia T6 2 0 10 

B2 Daphnia T6 3 0 10 

B3 Daphnia T1 1 10 0 

B3 Daphnia T1 2 10 0 

B3 Daphnia T1 3 10 0 

B3 Daphnia T2 1 10 0 

B3 Daphnia T2 2 10 0 

B3 Daphnia T2 3 10 0 

B3 Daphnia T3 1 8 2 

B3 Daphnia T3 2 9 1 

B3 Daphnia T3 3 9 1 

B3 Daphnia T4 1 3 7 

B3 Daphnia T4 2 2 8 

B3 Daphnia T4 3 2 8 

B3 Daphnia T5 1 0 10 

B3 Daphnia T5 2 0 10 

B3 Daphnia T5 3 0 10
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Data: Fleas

Bioen SP Treat Rep Overvi Dead

B3 Daphnia T6 1 0 10 

B3 Daphnia T6 2 0 10 

B3 Daphnia T6 3 0 10 

B1 Dubia T1 1 10 0 

B1 Dubia T1 2 10 0 

B1 Dubia T1 3 10 0 

B1 Dubia T2 1 5 5 

B1 Dubia T2 2 6 4 

B1 Dubia T2 3 6 4 

B1 Dubia T3 1 5 5 

B1 Dubia T3 2 5 5 

B1 Dubia T3 3 5 5 

B1 Dubia T4 1 2 8 

B1 Dubia T4 2 3 7 

B1 Dubia T4 3 3 7 

B1 Dubia T5 1 2 8 

B1 Dubia T5 2 2 8 

B1 Dubia T5 3 2 8 

B1 Dubia T6 1 0 10 

B1 Dubia T6 2 0 10 

B1 Dubia T6 3 0 10 

B2 Dubia T1 1 10 0 

B2 Dubia T1 2 10 0 

B2 Dubia T1 3 10 0 

B2 Dubia T2 1 7 3 

B2 Dubia T2 2 5 5 

B2 Dubia T2 3 6 4 

B2 Dubia T3 1 5 5 

B2 Dubia T3 2 5 5 

B2 Dubia T3 3 5 5 

B2 Dubia T4 1 4 6 

B2 Dubia T4 2 4 6 

B2 Dubia T4 3 4 6 

B2 Dubia T5 1 2 8 

B2 Dubia T5 2 2 8 

B2 Dubia T5 3 2 8 

B2 Dubia T6 1 0 10 

B2 Dubia T6 2 0 10 

B2 Dubia T6 3 0 10 

B3 Dubia T1 1 10 0 

B3 Dubia T1 2 10 0 

B3 Dubia T1 3 10 0



1 1 1 1 15 73

2 1 1 1 10 86

1 1 1 2 17 69

2 1 1 2 19 32

1 1 2 1 26 125

2 1 2 1 21 62

1 1 2 2 14 81

2 1 2 2 12 21

1 2 1 1 10 92

2 2 1 1 12 108

1 2 1 2 30 44

2 2 1 2 32 33

1 2 2 1 37 91

2 2 2 1 30 42

1 2 2 2 32 98

2 2 2 2 37 44

1 3 1 1 18 52

2 3 1 1 18 73

1 3 1 2 23 108

2 3 1 2 21 55

1 3 2 1 24 106

2 3 2 1 27 92

1 3 2 2 37 64

2 3 2 2 37 97
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Data: Fleas

Bioen SP Treat Rep Overvi Dead

B3 Dubia T2 1 8 2 

B3 Dubia T2 2 8 2 

B3 Dubia T2 3 7 3 

B3 Dubia T3 1 5 5 

B3 Dubia T3 2 5 5 

B3 Dubia T3 3 6 4 

B3 Dubia T4 1 2 8 

B3 Dubia T4 2 3 7 

B3 Dubia T4 3 2 8 

B3 Dubia T5 1 3 7 

B3 Dubia T5 2 2 8 

B3 Dubia T5 3 2 8 

B3 Dubia T6 1 0 10 

B3 Dubia T6 2 0 10 

B3 Dubia T6 3 0 10 

Data: Commercial crop explant detachment 

Block A B C y N



Data: Cockroaches (E1 = np, E2 = ng, E3 = adult)

Bioassay Isolation Age Dead

1 Bb1 np 7

2 Bb1 np 6

1 Bb1 ng 2

2 Bb1 ng 2

1 Bb1 a 9

2 Bb1 a 6

1 Bb2 np 6

2 Bb2 np 7

1 Bb2 ng 7

2 Bb2 ng 3

1 Bb2 a 10

2 Bb2 a 8

1 Bb3 np 3

2 Bb3 np 2

1 Bb3 ng 2

2 Bb3 ng 3

1 Bb3 a 8

2 Bb3 a 9

1 Bb4 np 6

2 Bb4 np 4

1 Bb4 ng 5

2 Bb4 ng 3

1 Bb4 a 10

2 Bb4 a 8

1 Bb5 np 7

2 Bb5 np 7

1 Bb5 ng 3

2 Bb5 ng 1

1 Bb5 a 7

2 Bb5 a 3

1 Bb6 np 7

2 Bb6 np 9

1 Bb6 ng 6

2 Bb6 ng 2

1 Bb6 a 10

2 Bb6 a 7

1 Bb8 np 9

2 Bb8 np 9

1 Bb8 ng 4

2 Bb8 ng 2

1 Bb8 a 9

2 Bb8 a 10

(continued)
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Data: Cockroaches (E1 = np, E2 = ng, E3 = adult)

Bioassay Isolation Age Dead

1 Bb9 np 5

2 Bb9 np 8

1 Bb9 ng 6

2 Bb9 ng 2

1 Bb9 a 7

2 Bb9 a 5

1 Bb10 np 8

2 Bb10 np 6

1 Bb10 ng 1

2 Bb10 ng 4

1 Bb10 a 3

2 Bb10 a 4

1 Bb11 np 8

2 Bb11 np 7

1 Bb11 ng 1

2 Bb11 ng 3

1 Bb11 a 6

2 Bb11 a 8

1 Bb12 np 8

2 Bb12 np 9

1 Bb12 ng 8

2 Bb12 ng 9

1 Bb12 a 7

2 Bb12 a 6

1 Bb13 np 6

2 Bb13 np 3

1 Bb13 ng 0

2 Bb13 ng 1

1 Bb13 a 5

2 Bb13 a 6

1 Bb14 np 10

2 Bb14 np 5

1 Bb14 ng 4

2 Bb14 ng 2

1 Bb14 a 6

2 Bb14 a 6

1 Bb15 np 5

2 Bb15 np 10

1 Bb15 ng 6

2 Bb15 ng 1

1 Bb15 a 4

2 Bb15 a 5

(continued)
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Data: Cockroaches (E1 = np, E2 = ng, E3 = adult)

Bioassay Isolation Age Dead

1 Bb16 np 5

2 Bb16 np 7

1 Bb16 ng 3

2 Bb16 ng 4

1 Bb16 a 8

2 Bb16 a 6

1 Control np 1

2 Control np 0

1 Control ng 0

2 Control ng 0

1 Control a 0

2 Control a 1

Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

1 1 1 1 1 14

1 1 1 2 2 12

1 1 1 3 0 12

1 1 1 4 0 13

1 1 1 5 3 8

1 1 1 6 0 9

1 1 2 1 7 8

1 1 2 2 0 10

1 1 2 3 1 14

1 1 2 4 0 10

1 1 2 5 0 17

1 1 2 6 0 10

1 1 3 1 9 14

1 1 3 2 1 11

1 1 3 3 0 10

1 1 3 4 1 14

1 1 3 5 0 10

1 1 3 6 0 21

1 1 4 1 10 17

1 1 4 2 0 9

1 1 4 3 1 12

1 1 4 4 0 11

1 1 4 5 0 12

1 1 4 6 0 10

1 1 5 1 8 11

1 1 5 2 1 10

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

1 1 5 3 0 9

1 1 5 4 2 12

1 1 5 5 0 10

1 1 5 6 1 11

1 2 1 1 7 9

1 2 1 2 2 10

1 2 1 3 0 10

1 2 1 4 0 14

1 2 1 5 1 12

1 2 1 6 0 13

1 2 2 1 6 12

1 2 2 2 0 11

1 2 2 3 1 13

1 2 2 4 0 9

1 2 2 5 2 11

1 2 2 6 0 10

1 2 3 1 6 7

1 2 3 2 1 12

1 2 3 3 0 9

1 2 3 4 1 10

1 2 3 5 0 14

1 2 3 6 2 12

1 2 4 1 7 13

1 2 4 2 0 10

1 2 4 3 0 10

1 2 4 4 1 12

1 2 4 5 0 9

1 2 4 6 1 8

1 2 5 1 11 15

1 2 5 2 1 13

1 2 5 3 0 14

1 2 5 4 1 14

1 2 5 5 0 11

1 2 5 6 0 11

1 3 1 1 5 11

1 3 1 2 5 11

1 3 1 3 0 15

1 3 1 4 1 15

1 3 1 5 0 8

1 3 1 6 1 10

1 3 2 1 4 9

1 3 2 2 1 15

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

1 3 2 3 0 11

1 3 2 4 0 13

1 3 2 5 1 12

1 3 2 6 0 12

1 3 3 1 9 12

1 3 3 2 2 14

1 3 3 3 0 12

1 3 3 4 0 12

1 3 3 5 0 10

1 3 3 6 0 13

1 3 4 1 10 10

1 3 4 2 0 10

1 3 4 3 0 8

1 3 4 4 0 10

1 3 4 5 1 14

1 3 4 6 3 11

1 3 5 1 9 11

1 3 5 2 0 11

1 3 5 3 1 11

1 3 5 4 1 14

1 3 5 5 0 9

1 3 5 6 0 9

2 1 1 1 0 12

2 1 1 2 0 12

2 1 1 3 0 14

2 1 1 4 0 12

2 1 1 5 0 10

2 1 1 6 1 13

2 1 2 1 8 9

2 1 2 2 1 9

2 1 2 3 0 12

2 1 2 4 0 10

2 1 2 5 0 12

2 1 2 6 1 10

2 1 3 1 11 14

2 1 3 2 1 12

2 1 3 3 1 11

2 1 3 4 0 10

2 1 3 5 0 9

2 1 3 6 3 11

2 1 4 1 12 15

2 1 4 2 0 15

(continued)

Appendix 273



Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

2 1 4 3 0 10

2 1 4 4 1 9

2 1 4 5 1 10

2 1 4 6 0 16

2 1 5 1 10 14

2 1 5 2 1 9

2 1 5 3 0 11

2 1 5 4 0 11

2 1 5 5 0 11

2 1 5 6 0 11

2 2 1 1 1 9

2 2 1 2 0 9

2 2 1 3 0 12

2 2 1 4 1 10

2 2 1 5 1 12

2 2 1 6 0 17

2 2 2 1 9 12

2 2 2 2 0 12

2 2 2 3 0 11

2 2 2 4 2 14

2 2 2 5 0 11

2 2 2 6 0 10

2 2 3 1 7 13

2 2 3 2 0 16

2 2 3 3 1 12

2 2 3 4 0 10

2 2 3 5 0 10

2 2 3 6 0 11

2 2 4 1 7 13

2 2 4 2 1 18

2 2 4 3 0 10

2 2 4 4 0 11

2 2 4 5 0 11

2 2 4 6 3 13

2 2 5 1 5 10

2 2 5 2 0 10

2 2 5 3 0 10

2 2 5 4 0 10

2 2 5 5 0 9

2 2 5 6 1 12

2 3 1 1 6 13

2 3 1 2 0 10

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

2 3 1 3 1 11

2 3 1 4 3 11

2 3 1 5 0 12

2 3 1 6 1 19

2 3 2 1 12 13

2 3 2 2 0 11

2 3 2 3 0 8

2 3 2 4 0 9

2 3 2 5 0 17

2 3 2 6 0 12

2 3 3 1 8 11

2 3 3 2 4 12

2 3 3 3 0 11

2 3 3 4 0 10

2 3 3 5 0 15

2 3 3 6 3 13

2 3 4 1 5 14

2 3 4 2 1 9

2 3 4 3 0 12

2 3 4 4 1 12

2 3 4 5 0 10

2 3 4 6 2 14

2 3 5 1 10 14

2 3 5 2 0 14

2 3 5 3 1 10

2 3 5 4 1 13

2 3 5 5 1 15

2 3 5 6 4 10

3 1 1 1 8 12

3 1 1 2 1 14

3 1 1 3 0 12

3 1 1 4 0 20

3 1 1 5 1 18

3 1 1 6 7 15

3 1 2 1 9 16

3 1 2 2 1 12

3 1 2 3 0 13

3 1 2 4 0 15

3 1 2 5 0 17

3 1 2 6 1 18

3 1 3 1 7 12

3 1 3 2 0 14

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

3 1 3 3 1 13

3 1 3 4 0 18

3 1 3 5 0 14

3 1 3 6 0 14

3 1 4 1 10 14

3 1 4 2 2 17

3 1 4 3 0 10

3 1 4 4 1 19

3 1 4 5 0 17

3 1 4 6 0 16

3 1 5 1 9 10

3 1 5 2 1 14

3 1 5 3 1 11

3 1 5 4 0 18

3 1 5 5 0 15

3 1 5 6 1 11

3 2 1 1 10 10

3 2 1 2 1 11

3 2 1 3 0 12

3 2 1 4 1 15

3 2 1 5 4 20

3 2 1 6 0 14

3 2 2 1 9 12

3 2 2 2 1 10

3 2 2 3 1 12

3 2 2 4 3 18

3 2 2 5 0 16

3 2 2 6 0 12

3 2 3 1 10 11

3 2 3 2 1 16

3 2 3 3 1 14

3 2 3 4 1 17

3 2 3 5 2 15

3 2 3 6 1 16

3 2 4 1 9 11

3 2 4 2 2 14

3 2 4 3 0 10

3 2 4 4 0 18

3 2 4 5 0 17

3 2 4 6 0 12

3 2 5 1 11 12

3 2 5 2 2 12

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

3 2 5 3 0 11

3 2 5 4 0 13

3 2 5 5 0 18

3 2 5 6 0 12

3 3 1 1 7 9

3 3 1 2 0 13

3 3 1 3 0 9

3 3 1 4 0 18

3 3 1 5 0 18

3 3 1 6 0 13

3 3 2 1 6 14

3 3 2 2 3 16

3 3 2 3 1 15

3 3 2 4 0 17

3 3 2 5 1 17

3 3 2 6 3 14

3 3 3 1 10 11

3 3 3 2 0 10

3 3 3 3 1 16

3 3 3 4 1 18

3 3 3 5 0 16

3 3 3 6 0 11

3 3 4 1 10 10

3 3 4 2 1 14

3 3 4 3 0 10

3 3 4 4 1 19

3 3 4 5 2 19

3 3 4 6 2 14

3 3 5 1 8 10

3 3 5 2 0 12

3 3 5 3 0 12

3 3 5 4 0 18

3 3 5 5 0 14

3 3 5 6 0 12
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
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credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter's Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter's Creative Commons license and your intended use is not permitted by 
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