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Foreword 

This book is another example of CIMMYT’s commitment to scientific advancement, 
and comprehensive and inclusive knowledge sharing and dissemination. By using 
alternative statistical models and methods to describe and analyze data sets from 
different disciplines, such as biology and agriculture, the book facilitates the adop-
tion and effective use of these tools by publicly funded researchers and practitioners 
of national agricultural research extension systems (NARES) and universities across 
the Global South. 

The authors aim to offer different and new models, methods, and techniques to 
agricultural scientists who often lack the resources to adopt these tools or face 
practical constraints when analyzing different types of data. 

This work would not be possible with the continuous support of CIMMYT’s 
outstanding partners and donors who invest in non-profit frontier research for the 
benefit of millions of farmers and low-income communities worldwide. For that 
reason, it could not be more fitting for this book to be published as an open access 
resource for the international community to benefit from. I trust that this publication 
will greatly contribute to accelerate the development and deployment of resource-
efficient and nutritious crops for a food secure future. 

Bram Govaerts 
Director General, CIMMYT
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Chapter 1
Elements of Generalized Linear Mixed
Models

1.1 Introduction to Linear Models

Linear models are commonly used to describe and analyze datasets from different
research areas, such as biological, agricultural, social, and so on. A linear model aims
to best represent/describe the nature of a dataset. A model is usually made up of
factors or a series of factors that can be nominal or discrete variables (sex, year, etc.)
or continuous variables (age, height, etc.), which have an effect on the observed data.
Linear models are the most commonly used statistical models for estimating and
predicting a response based on a set of observations.

Linear models get their name because they are linear in the model parameters.
The general form of a linear model is given by

y=Xβþ ε ð1:1Þ

where y is the vector of dimension n × 1 observed responses, X is the design matrix
of n × (p + 1) fixed constants, β is the vector of ( p + 1) × 1 parameters to be
estimated (unknown), and ε is the vector of n × 1 random errors. Linearity arises
because the mean response of vector y is linear to the vector of unknown parameters
β. Mathematically, this is demonstrated by obtaining the first derivative of the
predictor with respect to β, and, if after derivation it is still a function of any of the
beta parameters, then the model is said to be nonlinear; otherwise, it is a linear
model. In this case, the derivative of the predictor (1.1) with respect to beta is equal
to X, so, mathematically, the model in (1.1) is linear, since after derivation, the
predictor no longer depends on the β parameters.

Several models used in statistics are examples of the general linear model
y = Xβ + e. These include regression models and analysis of variance (ANOVA)
models. Regression models generally refer to those in which the design matrix X is
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where εi are uncorrelated random errors (i = 1, 2,⋯, n) which are commonly
assumed to be normally distributed with mean 0 and variance constant σ2 > 0,
εi ~ N(0, σ2). If X11, X12, ⋯, X1n are constant (fixed), then this is a general linear
model y = Xβ + e where

of a full column rank, whereas in analysis of variance models, the design matrix X is
not of a full column rank. Some linear models are briefly described in the following
sections.

2 1 Elements of Generalized Linear Mixed Models

1.2 Regression Models

Linear models are often used to model the relationship between a variable, known as
the response or dependent variable, y, and one or more predictors, known as
independent or explanatory variables, X1, X2, ⋯, Xp.

1.2.1 Simple Linear Regression

Consider a model in which a response variable y is linearly related to an explanatory
variable X1 via

yi = β0 þ β1X1i þ εi

yn× 1 =

y1
y2
⋮
yn

, Xn× 2 =

1 X11
1
⋮

X12

⋮
1 X1n

, β2× 1 =
β0
β1

, en× 1 =

E1
E2
⋮
En

Example Let us consider the relationship between the performance test scores and
tissue concentration of lysergic acid diethylamide commonly known as LSD (from
German Lysergsäure-diethylamid) in a group of volunteers who received the drug

Table 1.1 Average
mathematical test
scores and LSD tissue
concentrations

Tissue concentration of LSD Mathematical average

1.17 78.93

2.97 58.20

3.26 67.47

4.69 37.47

5.83 45.65

6.00 32.92

6.41 29.97
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Effect Estimate DF t-value Pr > |t|

(Wagner et al. 1968). The average scores on the mathematical test and the LSD
tissue concentrations are shown in Table 1.1.

1.2 Regression Models 3

Table 1.2 Results of the
simple regression analysis

(a) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Conc 1 5 35.93 0.0019

(b) Parameter estimates

Standard
error

Intercept 89.1239 7.0475 5 12.65 <0.0001

Conc -9.0095 1.5031 5 -5.99 0.0019

Scale
σ2

50.7763 32.1137 . . .

The components of this regression model are as follows:

Distribution: yi � N ηi, σ
2

Linear predictor: ηi = β0 β1 ×Conci

Link function: μi = ηi identity

The syntax for performing a simple linear regression using the GLIMMIX
procedure in Statistical Analysis Software (SAS) is as follows:

proc glimmix;
model y= X1/solution;
run;

Part of the results is shown in Table 1.2. The analysis of variance (item a)
indicates that drug concentration has a significant effect on average mathematical
performance (P = 0.0019). The estimates of the regression model parameters (item b)
are β0 and β1, and the mean squared error (MSE scale) is shown in Table 1.2(b)
under “Parameter estimates.”

With these results, the linear predictor ηið Þ that predicts the average mathematical
performance as a function of LSD concentration is as follows:

ηi = 89:124- 9:01 ×Conci

This means that we can predict the average mathematical performance of an
individual for whom we need to know the LSD concentration (Conci) to be applied.
From the estimated parameters, we can say that there is a negative relationship
between LSD concentration and mathematical score. Figure 1.1 clearly shows that
an increase in drug supply has a negative effect on the mathematical score of the
youth. This fitted model explains 87.7% of the variability in the data (Fig. 1.1).
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y = 89.124 -9.0095*Conc
R² = 0.8778
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Fig. 1.1 Relationship between applied drug concentration and the mathematical score of the youth

Adjusted model of the relationship between the average score and LSD
concentration.

1.2.2 Multiple Linear Regression

Suppose that a response variable y is linearly related to several independent variables
X1, X2, ⋯, Xp such that

yi = β0 þ β1Xi1 þ β2Xi2 þ⋯þ βpXip þ εi

for i = 1, 2, ⋯, n. Here, εi are uncorrelated random errors (i = 1, 2,⋯, n) normally
distributed with a zero mean and constant variance σ2, i.e., εi ~ N(0, σ2). If the
explanatory variables are fixed constants, then the above model belongs to a general
linear model of the form y = Xβ + ε, as can be seen below:

yn× 1 =

y1
y2
⋮
yn

, Xn× pþ1ð Þ =

1 X11 X12⋯ X1p

1 X21 X22⋯ X2p

⋮ ⋮ ⋮ ⋮
1 Xn1 Xn2⋯ Xnp

, βp× 1 =

β0
β1
β2
⋮
βp

,

εn× 1 =

E1
E2
⋮
En
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Table 1.3 Body weight (kilograms) and its relationship with circumference (centimeters) and heart
length (centimeters) of seven young bulls

Bull 1 2 3 4 5 6 7

Weight (kilograms) 480 450 480 500 520 510 500

Circumference (centimeters) 175 177 178 175 186 183 185

Length (centimeters) 128 122 124 131 131 130 124

A regression analysis can be used to assess the relationship between explanatory
variables and the response variable. It is also a useful tool for predicting future
observations or simply describing the structure of the data.

Example Let us to fit a regression model of the relationship between body weight
and heart girth and length of the hearts of seven young bulls from the data shown in
Table 1.3.

The components of this multiple regression model are as follows:

Distribution: yi � N ηi, σ
2

Linear predictor: ηi = β0 Xi1β1 Xi2β2

Link function: μi = ηi identity

The syntax for performing a multiple regression using the GLIMMIX procedure
in SAS, assuming that there is no interaction between bull heart girth (X1) and length
(X2), is shown below:

proc glimmix;
model y = X1 X2/solution cl;
run;

Based on the regression model specifications, the option “solution cl” prompts
GLIMMIX to provide the value of the estimated parameters and their respective
confidence intervals. Other useful options available are “htype = 1, 2, and 3,” which
refer to the sum of squares of types I, II, and III. The type III fixed effects tests in
(a) of Table 1.4 indicate that there is a linear relationship between heart length (size)
and weight in young bulls. The estimated parameters with their respective confi-

dence intervals β0, β1, β2 as well as the MSE (scale) of the fitted regression model

are listed below in (b).
Note that in a linear model, the parameters are linearly entered, but the variables

do not necessarily have to be linear. For example, consider the following two
examples:

yi = β0 þ β1Xi1 þ β2 log Xi2ð Þ þ⋯þ βkXik þ Ei
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experimental units n=
i
ni.
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Table 1.4 Results of the multiple regression analysis

(a) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

X1 1 4.42 0.1034

X2 1 9.51 0.0368

(b) Parameter estimates

Effect Estimate Standard error DF t-value Pr > |t| α Lower Upper

Intercept -495.01 225.87 -2.19 0.0935 0.05 -1122.13 132.10

X1 2.2573 1.0739 2.10 0.1034 0.05 -0.7243 5.2388

X2 4.5808 1.4855 3.08 0.0368 0.05 0.4564 8.7053

Scale 139.51 98.6518 . . . . . .

yi = β0 Xβ1
i1 β2Xi2 ⋯ βk exp Xik Ei

The first example is a linear model, whereas the second one is not, since its
derivatives do not depend on the beta coefficients, with the exception of the term Xβ1

i1

whose derivative is equal to Xβ1
i1 log Xi1ð Þ . This clearly shows that the second

example is a nonlinear model because the derivative of the predictor depends on β1.

1.3 Analysis of Variance Models

1.3.1 One-Way Analysis of Variance

Consider an experiment in which you want to test t treatments (t > 2), to the level of
the ith treatment with ni experimental units that are selected and randomly assigned
to the ith treatment. The model describing this experiment is as follows:

yij = μþ τi þ Eij

for i= 1, 2,⋯, t and j= 1, 2,⋯, ni . Here, Eij are the uncorrelated random errors with
normal distribution with a zero mean and a variance constant σ2 (εij ~ N(0, σ2)). If the
treatment effects are considered as fixed constants (drawn from a finite number), then
this model is a special case of the general linear model (1), with the total number of

t
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9 23 42
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Table 1.5 Biomass
production of the
three types of bacteria

Bacteria A Bacteria B Bacteria C

12 20 40

15 19 35

Table 1.6 Analysis of
variance

Sources of variation Degrees of freedom

Bacteria type t - 1 = 3 - 1 = 2

Error t(r - 1) = 3 × 2 = 6

Total tr - 1 = 3 × 3 - 1 = 8

In matrix terms, the information under this design of experiment is equal to:

yn× 1 =

y11
y12
⋮
ytnt

, Xn × ðtþ1Þ =

1n1 1n1 0n1 ⋯ 0n1
1n2 0n2 1n2 ⋯ 0n2
⋮ ⋮ ⋮ ⋱ ⋮
1nt 0nt 0nt ⋯ 1nt

, βtþ1× 1 =

μ
τ1
τ2
⋮
τt

,

en× 1 =

ε11
ε12
E13
⋮
Etnt

where 1ni is the vector of ones of order ni and 0ni is the vector of zeros of order ni.
Note that the matrix Xn×(t+1) is not of a full column rank because its first column can
be obtained as a linear combination of its remaining columns.

Example Assume that measurements of the biomass produced by three different
types of bacteria are collected in three separate Petri dishes (replicates) in a glucose
broth culture medium for each bacterium (Table 1.5).

The sources of variation and degrees of freedom (DFs) for this experiment are
shown in Table 1.6.

The components for this one-way model, assuming that each of the response
variable yij is normally distributed, are as follows:

Distribution: yij � N μij, σ
2

Linear predictor: ηi = α τi

Link function: μi = ηi identity

where yij is the response observed at the jth repetition in the ith bacterium, ηi is the
linear predictor, α is the intercept (the grand mean), and τi is the fixed effect due to
the type of bacterium.
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Table 1.7 Results of the
one-way analysis of variance

(a) Fit statistics

-2 Res log likelihood 33.36

AIC (Akaike information criterion) (smaller is better) 41.36

AICC (Corrected Akaike information criterion) (smaller
is better)

81.36

BIC (Bayesian information criterion) (smaller is better) 40.52

CAIC (Consistent Akaike's information criterion)
(smaller is better)

44.52

HQIC (Hannan and Quinn information criterion)
(smaller is better)

38.02

Pearson’s chi-square 52.67

Pearson’s chi-square / DF 8.78

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Bacteria 64.95 <0.0001

The SAS syntax for a one-way analysis of variance (ANOVA) is as follows:

proc glimmix data=biomass;
class bacteria;
model y = bacteria;
lsmeans bacteria/lines;
run;

Similar to “proc glm” or “proc mixed,” the “class” command allows to define the
type of class variables (categorical or nominal) to be included in the model; in this
case, for the class variable “bacteria,” the “model” command allows to declare (list)
the response variable “y” and all the class or continuous variables that enter the
model, whereas the “lsmeans” command asks GLIMMIX to estimate the means of
the treatments and the “lines” option allows to make a comparison of means. Part of
the results is presented below.

By default, “proc GLIMMIX” provides the fit statistics (information criteria),
which are extremely useful for comparing or choosing a model that explains the
largest possible proportion of variation present in a dataset, i.e., the best-fit model
(part (a) of Table 1.7). The statistic “-2 res log likelihood” is most useful when
comparing nested models, and the rest of the statistics is useful for comparing
models that are not necessarily nested. The mean squared error (MSE) in GLIMMIX
is given as the statistic “Pearson′s chi - square/DF.” In this analysis, this value is
8.78. σ2 =MSE= 8:78 . In part (b), the analysis of variance indicates that at least
one type of bacterium produces a different biomass (P < 0.0001). That is, the null
hypothesis is rejected (H0 : τA = τB = τC) at a significance level of 5%.

The estimated least squares (LS) means obtained with “lsmeans” are tabulated
under the “Estimate” column with their standard errors in the “Standard error”
column of Table 1.8. These estimated means were obtained (by default) with
Fisher’s LSD (least significant difference).



1.3 Analysis of Variance Models 9

Table 1.8 Means and estimated standard errors of the one-way model

Least squares means of bacteria

Bacteria Estimate Standard error DF t-value Pr > |t|

A 12.0000 1.7105 7.02 0.0004

B 20.6667 1.7105 12.08 <0.0001

C 39.0000 1.7105 22.80 <0.0001

Table 1.9 Comparison of the
means (LSD) in the one-way
model

T grouping of the least squares means of bacteria (α = 0.05)

LS means with the same letter are not significantly different

Bacteria Estimate

C 39.0000 A

B 20.6667 B

A 12.0000 C

Finally, Table 1.9 presents a comparison of the means obtained with “lines” and
indicates that bacteria type C has a better fermentative conversion of glucose to lactic
acid compared to bacteria types B and A. Equal letters per column indicate that they
are statistically equal.

1.3.2 Two-Way Nested Analysis of Variance

Let us consider an experiment with two factors, A and B, in which each level of B is
nested within a level of factor A, that is, each level of factor B appears within a level
of factor A. Then, the model that describes this experiment is as follows:

yijk = μþ αi þ βj ið Þ þ Eijk

for i = 1, 2,⋯, a; j = 1, 2,⋯, bi; and k = 1, 2,⋯, nij. In this model, μ is the overall
mean, αi represents the effect due to the ith level of factor A, and βj(i) represents the
effect of the jth level of factor B nested within the ith level of factor A. Assuming
that all factors are fixed, and that the errors εijk are normally distributed, that is
εijk~N(0, σ

2), this model is the general linear model of the form y = Xβ + e. For
example, suppose that you have a= 3 levels of factor A, b= 2 levels of factor B, and
nij = 2, then the vectors and matrices have the following form:
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y=

y111
y112
y121
y122
y211
y212
y221
y222
y311
y312
y321
y322

, X=

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1
0
0
0
0

0
0
0
0
0
0
0
0
1
1
1
1

1
1
0
0
0
0
0
0
0
0
0
0

0
0
1
1
0
0
0
0
0
0
0
0

0
0
0
0
1
1
0
0
0
0
0
0

0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
0
0
0
0
1
1

,

β=

μ
α1
α2
α3
β11
β12
β21
β22
β31
β32

, e=

E111
E112
E121
E122
E211
E212
E221
E222
E311
E312
E321
E322

:

Example Suppose that a researcher was studying the assimilation of fluorescently
labeled proteins in rat kidneys and wanted to know whether his two technicians,
technician A and technician B, were performing the procedure consistently. Tech-
nician A randomly chose three rats, and technician B randomly chose three other
rats, and each technician measured the protein assimilation in each rat. Since rats are
expensive and measurements are cheap, both technicians measured protein assimi-
lation at various random locations in the kidneys of each rat (Table 1.10).

When performing a nested ANOVA, we are often interested in testing the null
hypothesis (Ho : τA = τB ). As in this example, we do not wish to test whether the
subgroups (rats within technicians) are significantly different, since the goal is to
prove that both technicians are performing their jobs adequately. The sources of
variation and degrees of freedom are shown in Table 1.11.

The components of this two-way model, assuming that the response variable yij is
normally distributed, are as follows:



ð Þ

1.3 Analysis of Variance Models 11

Table 1.10 Levels of protein
assimilation in the rat kidneys
measured by both technicians

Technician A Technician B

Rat1 Rat2 Rat3 Rat4 Rat5 Rat6

1.119 1.045 0.9873 1.3883 1.3952 1.2574

1.2996 1.1418 0.9873 1.104 0.9714 1.0295

1.5407 1.2569 0.8714 1.1581 1.3972 1.1941

1.5084 0.6191 0.9452 1.319 1.5369 1.0759

1.6181 1.4823 1.1186 1.1803 1.3727 1.3249

1.5962 0.8991 1.2909 0.8738 1.2909 0.9494

1.2617 0.8365 1.1502 1.387 1.1874 1.1041

1.2288 1.2898 1.1635 1.301 1.1374 1.1575

1.3471 1.1821 1.151 1.3925 1.0647 1.294

1.0206 0.9177 0.9367 1.0832 0.9486 1.4543

Table 1.11 Sources of
variation and degrees
of freedom of the two-way
nested design

Sources of variation Degrees of freedom

Technician a - 1 = 2 - 1 = 1

Rat (technical) a(b - 1) = 2(3 - 1) = 4

Error ab(r - 1) = 2 × 3(10 - 1) = 54

Total abr - 1 = 2 × 3 × 10 - 1 = 59

Distribution: yij � N μij, σ
2

Linear predictor: ηij = αþ τi þ β τð Þj ið Þ
Link function: μi = ηi identity

where yij is the level of assimilation of the fluorescent protein obtained from rat j by
technician i, α is the intercept, τi is the fixed effect due to the technician, and β(τ)j(i) is
the nested effect of rat j within technician i.

The SAS commands for the main effects of factor A and factor B nested within A
are as follows:

proc glimmix data=rata nobound;
class technician rat rep;
model protein=technical rat(technical);
lsmeans technician rat(technician)/lines;
run;

Part of the results is shown in Table 1.12. The results indicate that there is minimum
variability of the technicians since the value of the mean squared error
(Pearson′s chi - square/DF) is 0.04 (part (a)). This means that the variance between
group means is smaller than would be expected. The analysis of variance in part
(b) indicates that there is no difference in the measurement of fluorescent proteins in
the rats between technicians (P= 0.3065). Since there is variation between rats in the



average protein uptake, it is to be expected that between rats within technicians, there
are mean differences in the protein uptake (P = 0.0067).
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Table 1.12 Fit statistics of
the two-way nested design

(a) Fit statistics

-2 Res log likelihood -12.39

AIC (smaller is better) 1.61

AICC (smaller is better) 4.04

BIC (smaller is better) 15.53

CAIC (smaller is better) 22.53

HQIC (smaller is better) 6.98

Pearson’s chi-square 1.95

Pearson’s chi-square / DF 0.04

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Technician 1 1.07 0.3065

Rat (technical) 3.98 0.0067

Table 1.13 Comparison of the means (LSD) in the nested model

(a) Technical least squares means

Technician Estimate Standard error DF t-value Pr > |t|

A 1.2110 0.03466 34.94 <0.0001

B 1.1604 0.03466 33.48 <0.0001

(b) T grouping of the technical least squares means (α = 0.05)

LS means with the same letter are not significantly different

Technician Estimate

A 1.2110 A

A

B 1.1604 A

In Table 1.13 part (a), the values of the least squares means tabulated under the
“Estimate” column are shown with their respective “Standard errors.” It can be seen
that rats under technician A have statistically the same mean protein uptake as do rats
under technician B (part (b)).

Comparison of means for rat subgroups under both technicians showed similar
means for rats under technician A but different means for rats under technician B
(part (a) and (b), Table 1.14).
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Table 1.14 Comparison of the means (LSD) of the subgroups nested within technicians

(a) Least squares means of rats (technical)

Technician Rat Estimate Standard error DF t-value Pr > |t|

A 5 1.2187 0.06003 20.30 <0.0001

A 1.2302 0.06003 20.49 <0.0001

A 1.1841 0.06003 19.72 <0.0001

B 1 1.3540 0.06003 22.56 <0.0001

B 1.0670 0.06003 17.77 <0.0001

B 1.0602 0.06003 17.66 <0.0001

(b) T grouping of the least squares means (α = 0.05) of rats (technical)

LS means with the same letter are not significantly different

Technician Rat Estimate

B 1 1.3540 A

A 1.2302 B A

A 5 1.2187 B A

A 1.1841 B A

B 1.0670 B

B 1.0602 B

1.3.3 Two-Way Analysis of Variance with Interaction

This experiment is used when one wishes to test two factors A and B, with a levels of
factor A and b levels of factor B. In this experiment, both factors are crossed, this
means that each level of A occurs in combination with each level of factor B. The
model with interaction is given by:

yijk = μþ αi þ βij þ γij þ Eijk

for i = 1, 2, ⋯, a; j = 1, 2, ⋯, b; k = 1, 2, ⋯, nij; and εijk ~ N(0, σ2). If all the
parameters of the model are fixed, then this model can be expressed as y = Xβ + e.
For this model with a = 3, b = 2, and nij = 3, the matrix expression has the form:
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y=

y111
y112
y113
y121
y122
y123
y211
y212
y213
y221
y222
y223
y311
y312
y313
y321
y322
y323

, X=

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1

1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0

0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

,

β=

μ
α1
α2
α3
β1
β2
γ11
γ12
γ21
γ22
γ31
γ32

, e=

E111
E112
E113
E121
E122
E123
E211
E212
E213
E221
E222
E223
E311
E312
E313
E321
E322
E323

Example This experiment consisted of developing an in vitro efficacy test for self-
tanning formulations. Two brands, 1 = erythrulose, 2 = dihydroxyacetone (factor
A), and three formulations, 1 = solution, 2 = gel, and 3 = cream (factor B), were
tested with four replicates for each condition according to Jermann et al. (2001).
Total color change was measured for each of the combination conditions. The
dataset is shown in Table 1.15.
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Table 1.15 Color change (Y ) in each of the brands and formulations

Brand Formulation Y Brand Formulation Y

1 1 16.79 1 32.85

1 1 12.68 1 38.08

1 1 12.47 1 30.25

1 1 11.67 1 28.41

1 10.23 25.06

1 10.29 21.66

1 8.97 19.86

1 8.51 18.62

1 9.43 25.89

1 9.45 22.96

1 8.86 24.55

1 8.66 24.59

Table 1.16 Analysis of vari-
ance of the two-way model
with interaction

Sources of variation Degrees of freedom

Brand a - 1 = 2 - 1 = 1

Formulation a - 1 = 3 - 1 = 2

Brand × formulation (a - 1)(b - 1) = 1 × 2 = 2

Error ab(r - 1) = 2 × 3 × 3 = 18

Total abr - 1 = 2 × 3 × 4 - 1 = 23

For this two-way model, assuming that the response variable yijk has a normal
distribution, the components are as follows:

Distribution: yijk � N μijk, σ
2

Linear predictor: ηij = μþ αi þ βj þ γij

Link function: μij = ηij identityð Þ

where yijk is the color change observed at the kth repetition at the ith level of factor A
and at the jth level of factor B, μ is the intercept (the overall mean), αi is the fixed
effect due to the level of factor A (mark), βj represents the fixed effect of the level of
factor B (type of formulation), and γij is the fixed effect due to the interaction
between the brand and formulation. Table 1.16 shows the sources of variation and
degrees of freedom.

The following code in GLIMMIX in SAS allows us to estimate the main effects
and the interaction:

proc glimmix;
class brand formulation;
model y = brand|formulacion;
lsmeans brand|formulacion/lines;
run;
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Table 1.17 Results of the analysis of variance of the two-way model with interaction

(a) Fit statistics

-2 Res log likelihood 90.20

AIC (smaller is better) 104.20

AICC (smaller is better) 115.40

BIC (smaller is better) 110.43

CAIC (smaller is better) 117.43

HQIC (smaller is better) 105.06

Pearson’s chi-square 99.61

Pearson’s chi-square / DF 5.53

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Brand 1 257.04 <0.0001

Formulation 22.99 <0.0001

Brand × formulation 4.68 0.0231

Table 1.18 Means and standard errors of the tanning brand

Least squares means of the brand

Brand Estimate Standard error DF t-value Pr > |t|

1 10.6675 0.6791 15.71 <0.0001

26.0650 0.6791 38.38 <0.0001

T grouping of the least squares means (α =0.05)

LS means with the same letter are not significantly different

Brand Estimate

26.0650 A

1 10.6675 B

Part of the results is shown below. Of all the fit statistics in (a) of Table 1.17, the
value that we are interested in highlighting in this analysis is “Pearson′s chi -
square/DF,” which corresponds to the mean squared error (MSE), even though we
are evaluating different possible models for this given dataset. The value of the MSE
is 5.53. The type III fixed effects tests, in part (b) of Table 1.17, indicate that the type
of brand (P < 0.0001), formulation (P < 0.0001), and the interaction between both
factors (P = 0.0231) all have a significant effect on the change of self-tanning color.

The least mean squares obtained with “lsmeans” are shown in the Table 1.18 for
the levels of tanning brand factor in Table 1.19 for the levels of tanning brand
formulation and in Table 1.20 for the interaction of both factors. The “lines” option
allows us to make a comparison of means using the LSD method.

The least squares means for the tanning brand factor are given in Table 1.18.
The least squares means for the type of tanning brand formulation are given in

Table 1.19.
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Table 1.19 Means and standard errors of the tanning brand formulation

Least squares means for the tanning brand formulation

Formulation Estimate Standard error DF t-value Pr > |t|

1 22.9000 0.8317 27.53 <0.0001

15.4000 0.8317 18.52 <0.0001

16.7988 0.8317 20.20 <0.0001

T grouping of the least squares means (α = 0.05) of the tanning brand formulation

LS means with the same letter are not significantly different

Formulation Estimate

1 22.9000 A

16.7988 B

B

15.4000 B

Table 1.20 Comparison of the means of the interaction of both factors

T grouping of the least squares means (α =0.05) of the marca*formulation

LS means with the same letter are not significantly different

Brand Formulation Estimate

1 32.3975 A

24.4975 B

21.3000 B

1 1 13.4025 C

1 9.5000 D

1 9.1000 D

The hypothesis test for the interaction should be tested first, and only if the
interaction effect is not significant, should the main effects be tested. If the interac-
tion is significant, then tests for the main effects are meaningless. The interaction
analysis shows that brand 2 (dihydroxyacetone), in all three formulations, shows a
greater change compared to brand 1 (erythrulose).

Now, considering the previousmodelwithout interaction (γ11= γ12=⋯= γ32=0)
where factor A has a levels and factor B has b levels, the model without interaction is
given by:

yijk = μþ αi þ βj þ Eijk

for i = 1, 2, ⋯, a; j = 1, 2, ⋯, b; k = 1, 2, ⋯, nij; and εijk ~ N(0, σ2). The model
without interaction with a = 3, b = 2, and nij = 3 reduces to:
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y=

y111
y112
y113
y121
y122
y123
y211
y212
y213
y221
y222
y223
y311
y312
y313
y321
y322
y323

, X=

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1

1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0

0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1

, β=

μ
α1
α2
α3
β1
β2

, e=

E111
E112
⋮
E322
E323

Note that the design matrix for the model without interaction is the same as that
for the model with interaction, except that the last six columns are removed.

Let us assume that the interaction effect is not significant. The following SAS
code estimates the main effects of both factors. Running the program and analysis is
left as practice for the readers.

proc glimmix;
class brand formulation;
model y = formula brand;
lsmeans brand formulation/lines;
run;

1.4 Analysis of Covariance (ANCOVA)

Consider an experiment to compare t ≥ 2 treatments after adjusting for the effects of
a covariate x. The model for an analysis of covariance is given by:

yij = μþ τi þ βixij þ Eij

for i= 1, 2,⋯, t and j= 1, 2,⋯, niHere, Eij are the independent normally distributed
random errors with a zero mean and a variance constant σ2 > 0. In this model, μ is
the overall mean, τi is the fixed effect of the ith treatment (ignoring the covariates
x’s), βi denotes the slope of the line that relates the response variable y to x for the
ith treatment, and xij are fixed covariates. Assuming t = 3, n1 = n2 = n3 = 3,
we have:
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y=

y11
y12
y13
y21
y22
y23
y31
y32
y33

, X=

1
1
1
1
1
1
1
1
1

1
1
1
0
0
0
0
0
0

0
0
0
1
1
1
0
0
0

0
0
0
0
0
0
1
1
1

x11
x12
x13
0
0
0
0
0
0

0
0
0
x21
x22
x23
0
0
0

0
0
0
0
0
0
x31
x32
x33

, β=

μ
α1
α2
α3
β1
β2
β3

,

e=

E11
E12
E13
E21
E22
E23
E31
E32
E33

The analysis of covariance (ANCOVA), as can be seen, obeys a general linear
model of the form y = Xβ + e .

For example consider a hypothetical study of flower production in two subspecies
of plants. The number of flowers per plant may vary between the subspecies, but,
within each subspecies, flower production may also vary with the size of each plant,
and this relationship may be positive or negative. A positive relationship might arise
if plants with more resources (sunlight, water, nutrients) could invest more energy in
both growth and flower production. A negative relationship could arise if there was a
trade-off between the energy invested in growth and the energy invested in flower
production. In this study, subspecies is a categorical variable and plant size is a
continuous variable (the covariate). Measuring plant size and flower production in
the two subspecies allows the investigation of three different questions:

Is flower production influenced by subspecies?
Is flower production influenced by plant size?
Is the effect of flower production on plant size influenced by subspecies?

Example 1. The central question in plant reproductive ecology is how hermaph-
roditic plant species allocate resources to male and female structures. A study
conducted to address this question counted the number of stamens (male structures
that produce pollen) and ovules (female structures that when fertilized by a pollen
grain will become seeds) in the flowers of “prairie larkspur” plants in two
populations in southeastern Minnesota. The total number of flowers produced by
each plant was also determined to assess whether plant size affected ovule produc-
tion per flower. The dataset for this example can be found in the Appendix (Data:
Larkspur plants).
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An ANCOVA is appropriate for this study to test the following three null
hypotheses from these data:

(a) There is no difference in the average number of ovules per flower between the
two populations (the main effect).

(b) There is no effect of plant size on the average number of ovules per flower (the
covariate effect).

(c) The effect of plant size on the mean number of ovules per flower did not differ
between the study sites (the interaction effect).

The components of the ANCOVA model, assuming that the response variable yijk
is normally distributed, are as follows:

Distribution: yij � N μijk , σ
2

Linear predictor: ηij = μþ τi þ planta τð Þj ið Þ þ βi Xij -X::

Link function : μij = ηij identityð Þ

where yij is the number of ovules observed in the jth plant of the ith population, μ is
the overall mean,τi is the fixed effect due to the population i, planta(τ)j(i) is the
random effect due to the plant j in the population i, βi is the slope of the population i,
X:: is the overall mean of the size of all plants, and Xij is the plant size i in the
population j. The ANCOVA results (sources of variation and degrees of freedom)
are shown in Table 1.21.

The basic syntax in GLIMMIX for analysis of covariance with different slopes is
as follows:

proc glimmix;
class poblacion plant;
model ovules = population xbar population*xbar/ddfm=satterthwaite;
random plant(population);
lsmeans population/lines;
run;

Table 1.21 Analysis of covariance

Sources of variation Degrees of freedom

Population t - 1 = 2 - 1 = 1

β (depending on the size of the plant) 1

Population β 1

Error t

Total t



Population Estimate DF Pr > |t|
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Table 1.22 Results of the
analysis of covariance for the
two populations of larkspur
plants

(a) Covariance parameter estimates

Cov Parm Estimate Standard error

Plant (population) 12.7951 2.2416

Residual 0.9321 .

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Population 1 7.32 0.0084

Center 1 16.39 0.0001

Center x population 1 7.81 0.0066

(c) Least squares means of population

Standard
error

t-
value

Cedar.cr 20.3538 0.6062 33.58 <0.0001

St. Croix 22.7596 0.6502 35.00 <0.0001

(d) T grouping of the least squares means (α = 0.05) of
population

LS means with the same letter are not significantly different

Population Estimate

St. Croix 22.7596 A

Cedar.cr 20.3538 B

In the above syntax, the “class” command lists all classes or categorical variables,
except the covariate (continuous variable), which – in this case – is a variable
centered by the average of the size of all plants xbar= Xij -X:: : The options
“ddfm” and “lines” invoke proc GLIMMIX to do a degree-of-freedom correction
using the Satterthwaite method and a comparison of the means using the LSD
method. Part of the results is shown in Table 1.22.

The estimates of the variance components (part (a)) due to plant and within-
treatment variability are σ2planta poblacionð Þ = 12:795 and σ2 =MSE= 0:9321, respec-

tively. The analysis of variance in (b) showed that there is a significant effect
between the two populations (P = 0.0084), plant size (P = 0.0001) and plant size
is influenced by subspecies (interaction) on the average number of ovules
(P = 0.0066) per flower. The estimated means and their respective standard errors
of the average number of ovules for both populations are tabulated in the “Estimate”
column in part (c), as well as the comparison of the means in part (d).

If in the previous model we assume that the slopes were equal (β1 = β2), then the
ANCOVA reduces to:

yij = μþ τi þ β Xij -X:: þ Eij

The ANCOVA model, with t = 3, n1 = n2 = n3 = 3 for this case (equality of
slopes) reduces to:
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y=

y11
y12
y13
y21
y22
y23
y31
y32
y33

, X=

1
1
1
1
1
1
1
1
1

1
1
1
0
0
0
0
0
0

0
0
0
1
1
1
0
0
0

0
0
0
0
0
0
1
1
1

x11
x12
x13
x21
x22
x23
x31
x32
x33

, β=

μ
α1
α2
α3
β

, ε=

E11
E12
E13
E21
E22
E23
E31
E32
E33

:

The basic syntax using GLIMMIX for an analysis of covariance with equal slopes
is as follows:

proc glimmix;
class poblacion plant;
model ovules = population xbar/ddfm=satterthwaite;
random plant(population);
lsmeans population/lines;
run;

So far, we have exemplified the general linear model of the form y= Xβ +e. In the
following, some characteristics of a linear mixed model (LMM) will be described.

1.5 Mixed Models

1.5.1 Introduction

Linear mixed models (LMMs) are appropriate for analyzing continuous response
variables in which the residuals are normally distributed. These types of models are
well suited for studies of grouped datasets such as (1) students in classrooms,
animals in herds, people grouped by municipality or geographic region, or random-
ized block experimental designs such as batches of raw materials for an industrial
process and (2) longitudinal or repeated measures studies, in which subjects are
measured repeatedly over time or under different conditions. These designs occur
in a wide variety of settings: biology, agriculture, industry, and socioeconomic
sciences. LMMs provide researchers with powerful and flexible analytical
tools for these types of data.

The name linear mixed models comes from the fact that these models are linear in
the parameters and that the covariates, or independent variables, may involve a
combination of fixed and random effects. “Fixed effects” can be associated with
continuous covariates, such as weight in kilograms of an animal, maize yield in tons
per hectare, and reference test score or socioeconomic status, which will carry a
continuous range of values, or with factors, such as gender, variety, or group



treatment, which are categorical. Fixed effects are unknown constant parameters
associated with continuous covariates or levels of the categorical factors in an LMM.
The estimation of these parameters in LMMs is generally of intrinsic interest because
they indicate the relationship of the covariates with the continuous response variable.
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When the levels of a factor are drawn from a large enough sample such that each
particular level is not of interest (e.g., classrooms, regions, herds, or clinics that are
randomly sampled from a population), the effects associated with the levels of those
factors can be modeled as random effects in an LMM. “Random effects” are
represented by random (unobserved) variables that we generally assume to have a
particular distribution, with normal distribution being the most common.

Mixed models are extremely useful because they allow us to work on (address)
two important aspects:

1. From a statistical point of view, biological data are often structured in a way that
does not satisfy the assumption of independence of the dataset. Examples include
the following:

(a) Multiple measurements of the same subject/organism
(b) Experiments organized into spatial blocks
(c) Observational data in which multiple investigations were conducted in dif-

ferent locations
(d) Synthesis of data from similar experiments that were performed by different

researchers

2. From a biological perspective, the processes being measured can be affected by
multiple sources of variation, often occurring at different spatial or temporal
scales. We are interested in using statistical methods that can model multiple
sources of stochasticity, at multiple scales, so that we can measure the relative
magnitude of the different sources of variation and determine which predictors
explain variation at different scales.

1.5.2 Mixed Models

The matrix notation for a mixed model is highly similar to that for a fixed effects
(systematic) model. The main difference is that, instead of using only one design
matrix to explain the entire model in its systematic part, the matrix notation for a
mixed model uses at least two design matrices: a design matrix X to describe the
fixed effects in the model and a design matrix Z to describe the random effects in the
model. The fixed effects design matrix X is constructed in the same way as a general
linear fixed effects model (y= Xβ + ε ). X has a dimension of n × ( p + 1), where n is
the number of observations in the dataset and p + 1 is the number of parameters of
fixed effects in the model to be estimated. The design matrix for the random effects
Z is constructed in the same way as the construction of the design matrix for
fixed effects, but now for the random effects. The Z matrix has a dimension of
n × q, where q is the number of coefficients of random effects in the model.
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In matrix notation, a linear mixed model can be represented as

y= Xβ

Sistematic

þ Zb

random

þ ε

Experimental Error

ð1:2Þ
b N 0,G and ε N 0,R

where y is the vector of n × 1 observations, β is the vector of ( p + 1) × 1 fixed effects,
b is the vector of random effects of q × 1, ε is the vector of n × 1 random error terms,
X is the design matrix of n × (p + 1) for fixed effects related to observations at β, and
Z is the design matrix n × q for the random effects (b) related to observations at b.

Assuming that both b and ε are uncorrelated random variables with a zero mean
and variance–covariance matrices G and R, respectively, we have

E bð Þ= 0,E εð Þ= 0

Var b =G, Var ε =R

Cov b, ε = 0

It is not difficult to verify that Var(y) = Var(Xβ + Zb + ε) is

Var yð Þ=ZGZ0 þ R=V

Matrix V is an important component when working with linear mixed models
(LMMs) because it contains random sources of variation and also defines how such
models differ from ordinary least squares estimation. If the model contains only
random effects, such as a randomized complete block design (RCBD), then matrixG
is the first point of attention. On the other hand, for repeated measures or for spatial
analysis, matrix R is extremely important. Assuming that the random effects (blocks)
have a normal distribution,

b � N 0,Gð Þ and Var εð Þ=R

Then, the vector of observations y will have a normal distribution, that is,
y~N(Xβ,V). The same model can be written in the probability distribution form in
two different but equivalent ways. The first is the marginal model

y � N E y½ �=Xβ,V=ZGZ0 þ Rð Þ 1:3Þ

In this marginal model, the mean is based only on fixed effects and the parameters
describing the random effects appear (are contained) in the variance and covariance
matrix V (Littell et al. 2006). In general, a structure is imposed in b in terms of
Var(b) = G, and, therefore, marginally, the components of y depend on the structure
in V = ZGZ′ + R.



ð

�

1.5 Mixed Models 25

The second model is the conditional model

y j b � N Xβþ Zb,Rð Þ 1:4Þ

In this conditional model, b is distributed as shown in Eq. (1.2) for this parameter.
For LMMs, the two models are exactly the same; but if the response variable is
modeled under a non-normal distribution, then the models are different (Stroup,
2012) and generalized linear mixed models are required.

The fixed effects estimator (β) is useful to obtain the best linear unbiased
estimators (commonly known as BLUEs), whereas the estimator b is useful for
computing the best linear unbiased predictors (commonly known as BLUPs) for the
random effects b. The estimation of the expected value of the marginal LMM (1.3)
allows the estimation of the BLUEs and that of the conditional LMM (1.4), the
BLUPs. The estimators for the BLUEs of β and the BLUPs of b are as follows:

β= XTV- 1X
- 1

XTV- 1y

b=GZTV- 1 y- β

This solution is efficient when working with small datasets because, in the context
of big data, it is computationally highly demanding since the inverse of matrix V has
to be estimated. For this reason, it is normally used to obtain the solution of the
BLUEs of β and the BLUPs of b, also known as Henderson’s mixed model
equations, which are presented later in this chapter.

1.5.3 Distribution of the Response Variable Conditional
on Random Effects (y| b)

The distribution selected by the researcher from the population under study should
be true or a good approximation that represents the likely distribution of the response
variable. A good representation of the population distribution of a response variable
should not only take into account the nature of the response variable (e.g., contin-
uous, discrete, etc.) and the shape of the distribution but should also provide a good
model for the relationship between the mean and variance. For the distribution of the
dataset, in this chapter, we assume that it is normally distributed with a mean μ and a
variance σ2 {yij ~ (μ, σ2)} and, for the random effects, it will assume a normal
distribution with mean 0 and constant variance σ2b bj 0, σ2b .
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1.5.4 Types of Factors and Their Related Effects on LMMs

In an LMM, there are two types of factors, namely, fixed factors that make up the
systematic part and random factors that are the stochastic part, and their related
effects on the dependent variable (response). In the following sections, we provide a
brief description of these factors and their implications in the context of an LMM.

1.5.4.1 Fixed Factors

A fixed factor is commonly used in standard analysis of variance (ANOVA) or
analysis of covariance (ANCOVA) models. It is defined as a categorical or classi-
fication variable, for which the researcher has included all levels (or conditions) in
the model that are of interest in the study. Fixed factors may include qualitative
covariates, such as gender; classification variables implied by a sampling design,
such as a region or a stratum, or by a study design, such as the method of treatment in
a randomized clinical trial; and so on. The levels of a fixed factor are chosen to
represent specific conditions so that they can be used to define contrasts (or sets of
contrasts) of interest in the research study.

1.5.4.2 Random Factors

A random factor is a classification variable with levels that can be randomly sampled
from a population with different levels of study. All possible levels of a random
factor are not present in the dataset, but this is the intention of the researcher, i.e., to
make inference about the entire population of levels from the selected sample of
these factor levels. Random factors are considered in an analysis such that the
change in the dependent variable across random factor levels can be evaluated and
the results of the data analysis can be generalized to all random factor levels in the
population.

1.5.4.3 Fixed Versus Random Factors

In contrast to fixed factor levels, random factor levels do not represent conditions
specifically chosen to meet the objectives of the study. However, depending on the
objectives of the study, the same factor may be considered as either a fixed factor or a
random factor.

Fixed effects, commonly referred to as regression coefficients or fixed effect
parameters, describe the relationships between the dependent variable and predictor
variables (i.e., fixed factors or continuous covariates) for an entire population of
units of analysis or for a relatively small number of subpopulations defined by the
levels of a fixed factor. Fixed effects may describe the contrasts or differences



between levels of a fixed factor (e.g., sex between males and females) in the mean
responses for a continuous dependent variable or may describe the effect of a
continuous covariate on the dependent variable. Fixed effects are assumed to be
unknown fixed quantities in an LMM and are estimated based on analysis of the data
collected in a study.
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Random effects are random values associated with the levels of a random factor
(or factors) in an LMM. These values, which are specific to a given level of a random
factor, generally represent random deviations from the relationships described by
fixed effects. For example, random effects associated with levels of a random factor
may enter an LMM as random intercepts (random deviations for a given subject or
group as an overall intercept) or as random coefficients (random deviations for a
given subject or group from the total fixed effects) in the model. In contrast to fixed
effects, random effects are represented as stochastic variables in an LMM.

1.5.5 Nested Versus Crossed Factors and Their
Corresponding Effects

When a given level of one factor (random or fixed) can be measured only at a single
level of another factor and not across multiple levels, then the levels of the first factor
are said to be nested within the levels of the second factor. The effects of the nested
factor on the response variable are known as nested effects. For example, suppose
that you want to conduct a particular study at the primary level in a school zone, you
would select schools and classrooms at random. Classroom levels (one of the
random factors) are nested within school levels (another random factor), since
each classroom can appear within a single school.

When a given level of one factor (random or fixed) can be measured across
multiple levels of another factor, one factor is said to be crossed with the other and
the effects of these factors on the dependent variable are known as crossover effects.

1.5.6 Estimation Methods

Standard methods of estimation in mixed models with a normal response are
maximum likelihood (ML) and restricted maximum likelihood (REML). The linear
mixed effects model is as follows:

y=Xβþ Zbþ ε

The variance–covariance matrix V for a one-way analysis of variance (ANOVA)
with a randomized block effect and with six observations is equal to:
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V=Var yð Þ=ZGZ ′ þ σ2I=

σ2 þ σ2b
σ2b
0
0
0
0

σ2b
σ2 þ σ2b

0
0
0
0

0
0

σ2 þ σ2b
σ2b
0
0

0
0
σ2b

σ2 þ σ2b
0
0

0
0
0
0

σ2 þ σ2b
σ2b

0
0
0
0
σ2b

σ2 þ σ2b

The variance of y11 is V11 = σ2 þ σ2b and the covariance between y11 and y21 is
V12 =V21 = σ2b. These two observations come from the same block. The covariance
between y11 and other observations is zero. In matrix V, all possible covariances can
be found.

1.5.6.1 Maximum Likelihood

The likelihood function l is a function of the observations and the model parameters.
It gives us a measure of the probability of looking at a particular observation y, given
a set of model parameters β and b. The likelihood function for y j b and b for a mixed
model is given by:

l yjbð Þ= - n
2
log 2πð Þ- 1

2
log Rj j- 1

2
y-Xβ-Zbð Þ0R- 1 y-Xβ-Zbð

and

l bð Þ= - Nb

2
log 2πð Þ- 1

2
log Gj j- 1

2
bTG- 1b

where Nb represents the total number of random effect levels. Therefore, the joint
distribution of y and b is equal to:

l y, bð Þ= -
1
2

y-Xβ-Zbð ÞTR- 1 y-Xβ-Zbð Þ- 1
2

bTG- 1b

Now, after deriving the above expression with respect to β and b and then setting
it to zero and solving the resulting equations with respect to β and b, the maximum
likelihood estimators are obtained:

∂l y, bð Þ
∂βT

=XTR- 1y-XTR- 1Xβ-ZTR- 1Xb

∂l y, bð Þ
∂bT

=ZTR- 1y-XTR- 1Zβ-ZTR- 1Zb

Setting them to zero and solving for β and b, we obtain the following linear mixed
equations:



ð Þ
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XTR- 1X XTR- 1Z
ZR- 1X ZTR- 1ZþG- 1

β
b

= XTR- 1y
ZTR- 1y

The solution can be written as:

β
b

= XTR- 1X XTR- 1Z
ZR- 1X ZTR- 1ZþG- 1

- 1
XTR- 1y
ZTR- 1y

Here, β is the vector of fixed effects parameters and b is the vector of random
effects parameters. The information of these parameters is related to the two covari-
ance matrices G and R, and it no longer depends on V as in the previous solution.
Moreover, this solution, which is known as Henderson’s (1950) mixed model
equations, is computationally much more efficient than the previous one given for
the parameters (β and b) since it does not need to obtain the inverse of the matrix
V = ZGZ′ + R. The solution to these mixed model linear equations is based on the
assumption that we know the components of G and R, which, in practice, need to be
estimated. Therefore, the following is a popular method for estimating the variance
components of G and R, which is extremely versatile and powerful.

1.5.6.2 Restricted Maximum Likelihood Estimation

The restricted maximum likelihood method is also known as the residual maximum
likelihood method and is extremely useful, among other things, for estimating
variance components. This method is also based on the maximum likelihood
method, but, instead of maximizing the likelihood function of the original data, it
maximizes the likelihood function over a set of errors obtained by removing the
variables from the original response to fixed effects, which are assumed to be known.
That is, now instead of maximizing over y is maximized over Ky but to obtain the
variance components, it is assumed that K is a matrix of constants, such that KX= 0,
which implies that:

E Kyð Þ= KXβþ KZbþ Kεð Þ= 0

Var Ky = KTVK

This implies that Ky is distributed over N(0,KTVK) and the likelihood of Ky is
called the restricted maximum likelihood (REML). There are many options to
choose K and typically K = I - X(XTX)-1XT, which is the ordinary least squares
residual operator used. Therefore, the log likelihood of Ky is equal to

l VjKyð Þ= - n- p
2

log 2πð Þ- 1
2
log KTVK -

1
2

yTKT 0
KTVK- 1 Kyð Þ

This log likelihood after some algebra, according to Stroup (2012), is equal to:
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l VjKyð Þ= - n- p
2

log 2πð Þ- 1
2
log Vj j- 1

2
log XTV- 1X - 1

2
rTVr

where p = rank (X) and r= y-XβML, where βML = X0V - 1X
-
X0V - 1y

The variance components ofG and R are estimated with iterative methods such as
the Newton–Raphson or Fisher’s scoring method, which maximizes the likelihood
function l(V|Ky) with respect to the variance components. The maximization process
starts with starting values for the variance components to estimateG and R, and, with
these values of G and R, it is possible to estimate a new, more refined version of the
parameters β and b; then, these values are used to update the estimates of the
variance components of the matrices G and R, and this process continues until the
established convergence is met.

1.5.7 One-Way Random Effects Model

Suppose that we randomly select a possible levels from a sufficiently large set of
levels of the factor of interest. In this case, we say that the factor is random. Random
factors are usually categorical. Continuous covariates that cannot be measured at
random levels are generally known as “systematic” or “fixed” effects (e.g., linear,
quadratic, or even exponential terms). Random effects are not systematic. Let us
assume a simple one-way model:

yij = μþ τi þ εij; i= 1, 2,⋯, a; j= 1, 2,⋯, ni

However, in this case, the treatment effects and the error term are random
variables, i.e., τi � N 0, σ2τ and εij~N(0, σ

2), respectively. The terms τi and εij
are uncorrelated, commonly referred to as “variance components.”

There can be some confusion about the differences between noise factors and
random factors. Noise factors can be fixed or random.

Factors are random when we think of them as being/coming from a random
sample of a larger population, and their effect is not systematic. It is not always clear
when a factor is random. For example, suppose that the vice president of a chain of
stores is interested in the effects of implementing a management policy in his stores
and the experiment includes all five existing stores, he might consider “the store” as a
fixed factor because the levels of the factor “store” do not come from a random
sample. However, if the store chain has 100 stores and takes 5 stores for the
experiment, as the company is considering rapid expansion and plans to implement
the selected new policy at the new locations, then “store” could be considered as a
random factor.

In fixed effects models, the researcher’s interest would focus on testing the
equality of means of treatments (stores). This would not be appropriate, however,
for the case in which 5 stores are randomly selected out of 100 because the



numerator and N - a in the denominator, where N =
i= 1

ni.

treatments are randomly selected and we are interested in the population of treat-
ments (stores), not in a particular store or group of stores. The appropriate hypothesis
test for this random effect model would be
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H0 : σ
2
τ = 0 vs Ha : σ

2
τ > 0

Partitioning a standard analysis of variance from the total sum of squares still
works; however, the form of the appropriate test statistic depends on the expected
mean squares. In this case, the appropriate test statistic would be

Fc =
Mean SaquareTreatments

Mean SquareError
,

Fc follows an F-distribution (Fisher–Snedecor) with degrees of freedom a- 1 in the
a

In a completely random model, we are interested in estimating the variance
components. σ2τ and σ2. To do so, we use the analysis of variance method, which
consists of equating the expected mean squares with the observed values as follows:

σ2 þ nσ2τ =Mean SquareTreatments

where σ2 =Mean SquareError

σ2τ =
Mean SquareError - σ2

n

1.5.8 Analysis of Variance Model of a Randomized
Block Design

Consider a one-way analysis of variance model with a randomized block additive
effect. Assume two treatments and three blocks,

yij = μþ τi þ bj þ Eij

where bj � N 0, σ2b and Eij � N 0, σ2ð Þ with i = 1, 2, 3 and j = 1, 2, 3. The
random effects bj and Eij are independent and uncorrelated. In addition, treatment
effects are assumed to be fixed. The matrix notation of this model is as follows:
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y11

y21

y12

y22

y13

y23

y

=

1

1

1

1

1

1

1

0

1

0

1

0

0

1

0

1

0

1

X

μ

τ1

τ2

β

Sistematic

þ

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

Z

b1

b2

b3

b

þ

ε11

ε21

ε12

ε22

ε13

ε23

ε

Ramdom

where b~N(0,G) and ε~N(0,R). The variance–covariance matrix G for the random
effects in this case is a diagonal matrix 3 × 3 with diagonal elements σ2b. Note how
the matrix representation of this model exactly corresponds to the mixed model
formulation. That is,

y=Xβþ Zbþ ε, where b � N 0,Gð Þ and ε � N 0,Rð Þ:

Example An animal nutritionist is interested in comparing the effect of three diets
on weight gain in piglets. To conduct the experiment, the nutritionist randomly
selects 3 litters from a set of 20, each containing 3 healthy, similar-sized, recently
weaned piglets. In each litter, three piglets are selected and each piglet is randomly
assigned to a treatment.

A randomized complete block design (RCBD) is a variation of the completely
randomized design (CRD). In this design, blocks of experimental units are chosen in
such a way that the units within the blocks are as homogeneous as possible with
respect to each other (homogeneous) and different between blocks. In a randomized
complete block design, generally in each block, there is one experimental unit for
each treatment, but this does not limit having more than one experimental unit for
each treatment in each block.

An RCBD has two sources of variation: the factor of interest that includes the
treatments to be studied and the “block factor” that identifies the litters used in the
experiment.

Assumptions in RCBD:

1. Sampling: Blocks (litters) are independently randomly selected and treatments
are randomly assigned to each of the experimental units within each block.

2. Errors are normal, independent, and identically normally distributed with a zero
mean and a constant variance σ2.

Table 1.23 lists the weight in kilograms of piglets from three different litters
under three different diets. To make inferences about the pattern of weight gain for
the entire population (all litters) of piglets, the litters must be considered in the model
as a random effect. Thus, the linear mixed model describing the variability of piglet
weight gain in this research, as a function of diets, is as follows:
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Table 1.23 Weight gain
(kilograms) of the three litters
of piglets

Litter Diet1 Diet2 Diet3

1 54.3 53.1 59.7

53.6 52.4 59.7

55.2 57.1 67.2

Table 1.24 Analysis of vari-
ance of the randomized com-
plete block design

Sources of variation Degrees of freedom

Blocks b - 1 = 3 - 1 = 2

Diet t - 1 = 3 - 1 = 2

Error (t - 1)(b - 1) = 4

Total tb - 1 = 8

yij = μþ τi þ bj þ εij for i= 1, 2, 3; j= 1, 2, 3

where yij is the weight observed in the ijth piglet, μ is the overall mean, τi is the fixed
effect due to ith diet, bj is the random effect due to the jth block (litter) assuming
bj � N 0, σ2b , and εij is the independent and identically distributed, approximately
normal, observed error term with mean 0 and variance σ2, i.e., εij~N(0, σ

2).
Random effects, bj and εij, are assumed to be independent and uncorrelated.

Table 1.24 shows an outline of the analysis of variance for this dataset.
The SAS program to analyze this dataset is as follows:

proc glimmix data=piglets;
class litter diet;
model gain=diet/ddfm=satterthwaite;
random litter;
lsmeans diet/lines;
contrast “Diet1 vs Diet2” diet 1 -1 0;
contrast “Diet2 vs Diet3” diet 1 0 -1;
run; quit;

In the previous syntax, we can mention two commands of great importance in this
example: (1) the “ddfm = satterthwaite” command allows to make a correction of
the degrees of freedom, and this correction is of great importance when the number
of experimental units (UE) is different in each one of the treatments and (2) the
command “lines” serve to obtain the means of “lsmeans” but are grouped with
letters, and, if these averages appear with different letters, then they reflect signifi-
cant differences.

The output for this code is shown in Table 1.25. Subsection (a) of this table shows
the estimated variance due to litter ðσ2litter = 5:3117Þ and the mean squared error
σ2 = 3:2961 . The analysis of variance, part (b), shows that there is a highly
significant effect of diet on piglet weight gain (P = 0.0091). In the results (part c),
we also observe the estimated means and its standard errors (obtained with “lsmeans
diet/lines”) and the grouping of means that are statistically different (part d). In these
last results, we can observe that the weight gain of piglets under treatments I and II



are not statistically different from each other, but they are statistically different with
respect to treatment III.
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Table 1.25 Results of the
analysis of variance of the
three different diets tested on
piglet weight gain

(a) Covariance parameter estimates

Cov Parm Estimate Standard error

Litter 5.3117 6.4573

Residual 3.2961 2.3307

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Diet 19.02 0.0091

(c) Dietary least squares means

Diet Estimate Standard error DF t-value Pr > |t|

I 54.3667 1.6939 3.406 32.10 <0.0001

II 54.2000 1.6939 3.406 32.00 <0.0001

III 62.2000 1.6939 3.406 36.72 <0.0001

(d) T grouping of the dietary least squares means (α = 0.05)

LS means with the same letter are not significantly different

Diet Estimate

III 62.2000 A

I 54.3667 B

II 54.2000 B

Table 1.26 Analysis of
variance under a CRD

Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Diet 7.28 0.0248

Since the researcher wishes to make an inference about the entire population of
litters, the factor “litter” must be entered as a random effect; otherwise, the ability of
the F-test to detect differences between treatments is diminished because the P-value
changes from 0.0091 to 0.0248. Another way to see the importance of including
random effects in an ANOVA is to calculate the relative efficiency (RE) between the
two models.

Table 1.26 shows the results of the analysis of variance under a completely
randomized design (CRD), i.e., yij = μ + litteri + eij is as follows:

In this case, if the experiment had been analyzed under a CRD, then the relative
efficiency (RE) between an RCBD and a CRD would be:

RE=
CMECRD

CMERCBD
=

SSBRCBDþSCERCBDð Þ
t b- 1ð Þ

CMERCBD
=

b- 1ð ÞMSBRCBD þ b t- 1ð ÞCMERCBD

bt- 1ð ÞCMERCBD

where CMEDCA is the mean squared error under a CRD, CMERCBD is the mean
squared error under an RCBD, SSBDBCA is the sum of squares due to blocks in an
RCBD, SSEDBCA is the sum of squares of errors in an RCBD, MSBDBCA is the mean



square due to blocks, and t and b are the number of treatments and blocks,
respectively. If blocks are not useful, then the RE would be equal to 1. The higher
the RE, the more effective the blocking is in reducing the error variance. This value
can be interpreted as the relationship r=b, where r is the number of experimental units
that would have to be assigned to each treatment if a CRD were used instead of
an RCBD.
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Table 1.27 Fit statistics of a
CRD and RCBD

Fit statistics CRD RCBD

-2 Res log likelihood 33.24 31.01

AIC (smaller is better) 41.24 35.01

AICC (smaller is better) 81.24 39.01

BIC (smaller is better) 40.41 33.20

CAIC (smaller is better) 44.41 35.20

HQIC (smaller is better) 37.90 31.38

Pearson’s chi-square 51.65 19.78

Pearson’s chi-square / DF 8.61 3.30

In Table 1.27, we can observe the mean squared error (MSE) of a CRD and
RCBD (Pearson’s chi-square / DF) obtained with the GLIMMIX procedure in SAS
as well as a series of fit statistics.

The MSE for a CRD and an RCBD are 8.61 and 3.3, respectively. Substituting
these values into the above equation, we obtain

ER=
CMECRD

CMERCBD
=

8:61
3:3

= 2:609:

This value indicates that, an RCBD is 2.609 times more efficient than a CRD. In
other words, this implies that it should have taken, at least, 8 (2.609 × 3 ≈ 8) more
experimental units × treatment units in a CRD to obtain the same MSE as that
obtained in an RCBD.

1.6 Exercises

Exercise 1.6.1 The following dataset corresponds to the growth of pea plants, in
eye units, in tissue culture with auxins ( 0.114 mm). The purpose of this experiment
was to test the effects of the addition of various types of sugars to the culture medium
on growth in length. Pea plants were randomly assigned to one of five treatments:
control (no sugar), 2 % of glucose, 2 % of fructose, 1 % of glucose + 1 % of fructose,
and 2% sucrose. A total of 10 observations were taken in each of the treatments,
assuming that the measurements are approximately normally distributed with con-
stant variance. Here, the individual plants to which the treatments were applied are
the experimental units. The data from this experiment are shown below (Table 1.28):



1 75

2 67

3 70

4 75

5 65

6 71

7 67

8 67

9 76

Table 1.29 Growth (height
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Table 1.28 Growth of pea plants in the culture medium with auxins with different types of sugars

Plant Control 2% Glucose 2% Fructose 1% Glucose +1% fructose 2% Sucrose

57 58 58 62

58 61 59 66

60 56 58 65

59 58 61 63

62 57 57 64

60 56 56 62

60 61 58 65

57 60 57 62

59 57 57 62

10 68 61 58 59 67

in centimeters) of the two
forage species with three
types of fertilizers plus
a control

Fertilizer

Control F1 F2 F3

21 32 22.5 28

19.5 30.5 26 27.5

Species A 22.5 25 28 31

21.5 27.5 27 29.5

20.5 28 26.5 30

21 28.6 25.2 29.2

23.7 30.1 30.6 36.1

Species B 23.8 28.9 30.6 36.1

23.8 30.9 28.1 38.7

23.7 34.4 34.9 37.1

22.8 32.7 30.1 36.8

24.4 32.7 25.5 37.1

(a) Write the statistical model that best describes this dataset, indicating its
components.

(b) Calculate the analysis of variance for this experiment.
(c) Is there any significant difference between treatments on average plant growth?

Exercise 1.6.2 A forage company wants to test three different types of fertilizers
(F1, F2, and F3) for the production of two forage species (A and B) for cattle and
compare them with a fertilizer they usually apply, which we will call control. For
this, he decides to use 48 pots with 6 replications in the greenhouse to test the
combinations of fertilizers and forage species. The data from this experiment are
shown in Table 1.29:
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(a) Write and describe the statistical model of the experimental design with all its
components.

(b) Calculate the analysis of variance for this experiment.
(c) Is there any significant difference between treatments on average plant growth?

Exercise 1.6.3 The data in this experiment are the number of plants regrown after
grazing with sheep–goats. The initial size of the plant at the top of its rootstock is
recorded, and the weight of seeds (g) that it produces at the end of the season is the
response or dependent variable. The data for this experiment are as follows
(Table 1.30):

(a) List and describe all the components of the linear mixed model.
(b) Calculate the ANOVA for this dataset and answer the following questions:

Is seed weight influenced by the type of grazing?
Is seed weight influenced by the plant size?
Is the effect of grazing type on plant size influenced by the initial plant size?

Exercise 1.6.4 An experiment was conducted to study the effect of supplementation
of weaned lambs on health and growth rate when exposed to helminthiasis. A total of
16 Dorper (breed 1) and 16 Red Maasai (breed 2) lambs were treated with an
anthelmintic at 3 months of age (after weaning) and randomly allocated into
“blocks” of 4 per breed, classified on the basis of 3-month body weight for
supplemented and unsupplemented groups. Therefore, two lambs in each block
were randomly allocated to supplemented (night-fed cotton seed meal and wheat
bran) and unsupplemented groups. All lambs were kept on grazing for a further
3 months. Data recorded included the initial body weight (kilograms) at weaning and
weight at 3 months after weaning, percentage red blood cell volume (RBCV), and
fecal egg count (FEC) at 6 months of age. Data from this experiment are shown
below (Table 1.31):

(a) List and describe all the components of the linear mixed model.
(b) Calculate the ANOVA for this dataset and answer the following questions:

Did supplementation improve weight gain? Did supplementation affect PRBC
and FEC, and were there differences in weight gain, PRBC, or FEC between breeds?
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Table 1.30 Fruit production
after grazing

Size Fruit Grazing

6.225 59.77 No Grazing

6.487 60.98 No Grazing

4.919 14.73 No Grazing

5.13 19.28 No Grazing

5.417 34.25 No Grazing

5.359 35.53 No Grazing

7.614 87.73 No Grazing

6.352 63.21 No Grazing

4.975 24.25 No Grazing

6.93 64.34 No Grazing

6.248 52.92 No Grazing

5.451 32.35 No Grazing

6.013 53.61 No Grazing

5.928 54.86 No Grazing

6.264 64.81 No Grazing

7.181 73.24 No Grazing

7.001 80.64 No Grazing

4.426 18.89 No Grazing

7.302 75.49 No Grazing

5.836 46.73 No Grazing

10.253 116.05 Grazing

6.958 38.94 Grazing

8.001 60.77 Grazing

9.039 84.37 Grazing

8.91 70.11 Grazing

6.106 14.95 Grazing

7.691 70.7 Grazing

8.988 80.31 Grazing

8.975 82.35 Grazing

9.844 105.07 Grazing

8.508 73.79 Grazing

7.354 50.08 Grazing

8.643 78.28 Grazing

7.916 41.48 Grazing

9.351 98.47 Grazing

7.066 40.15 Grazing

8.158 52.26 Grazing

7.382 46.64 Grazing

8.515 71.01 Grazing

8.53 83.03 Grazing
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Table 1.31 Supplementation trial in Dorper (breed 1) and Red Maasai (breed 2) lambs

Id Race Sex Supplement Block IW FW PRBC FEC WG

349 1 2 1 1 8 8.9 10 6500 0.9

326 1 2 1 1 9 10.1 11 2650 1.1

393 1 1 1 2 12 12.6 22 750 0.6

71 1 1 1 2 12.3 14.6 15 5200 2.3

271 1 1 1 3 13 13.7 19 4800 0.7

382 1 2 1 3 15.5 16.8 24 2450 1.3

85 1 2 1 4 16.3 18.2 27 200 1.9

176 1 2 1 4 15.9 17.7 21 3000 1.8

286 1 2 2 1 11 13.6 21 1600 2.6

183 1 1 2 1 9.9 11.7 21 450 1.8

21 1 2 2 2 11.6 13.1 25 2900 1.5

122 1 1 2 2 12.5 14.8 25 300 2.3

374 1 1 2 3 14.6 17.9 19 2250 3.3

32 1 2 2 3 14.2 16.9 22 2800 2.7

282 1 2 2 4 16.3 20.2 20 750 3.9

94 1 1 2 4 16.7 17.7 13 5600 1

127 2 2 1 1 7.5 8.1 26 1350 0.6

216 2 2 1 1 8.2 9.3 19 1150 1.1

133 2 1 1 2 10.1 11.7 30 200 1.6

249 2 1 1 2 8.8 10.4 28 0 1.6

123 2 2 1 3 1.6 12.6 23 600 1

222 2 2 1 3 11.3 13.5 24 1500 2.2

290 2 2 1 4 12.3 14.3 22 1950 2

148 2 1 1 4 13.1 14.9 26 500 1.8

142 2 2 2 1 8.2 11.5 25 850 3.3

154 2 2 2 1 9.5 12.2 35 700 3.7

166 2 1 2 2 9.7 12.8 29 400 3.1

322 2 1 2 2 8.6 12 26 800 3.4

156 2 1 2 3 10.2 13 28 1550 2.8

161 2 2 2 3 11.2 14.6 22 550 3.4

321 2 1 2 4 12.1 15.9 25 1250 3.8

324 2 1 2 4 13.8 18.1 24 1100 4.3

IW initial weight, FW final weight, PRBC percentage of red blood cells, FEC fecal egg count, WG
weight gain
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Appendix

Population Plant Stamens Eggs Total no. of flowers Ratio (stamens/ovules)

St. Croix 1 30.75 13.75 8 2.24

St. Croix 2 33.83 16.17 12 2.09

St. Croix 3 35.67 16.33 6 2.18

St. Croix 4 35.40 17.40 14 2.03

St. Croix 5 33.50 23.50 13 1.43

St. Croix 6 37.40 18.40 10 2.03

St. Croix 7 33.57 21.29 25 1.58

St. Croix 8 29.86 28.71 20 1.04

St. Croix 9 33.80 29.60 17 1.14

St. Croix 10 31.60 25.80 14 1.22

St. Croix 11 32.57 27.50 21 1.18

St. Croix 12 31.80 24.00 13 1.33

St. Croix 13 35.25 17.75 8 1.99

St. Croix 14 30.00 16.83 13 1.78

St. Croix 15 30.50 18.75 9 1.63

St. Croix 16 32.20 21.40 13 1.50

St. Croix 17 32.40 26.25 12 1.23

St. Croix 18 38.50 17.75 8 2.17

St. Croix 19 37.00 25.83 16 1.43

St. Croix 20 33.00 25.25 8 1.31

St. Croix 21 31.40 25.20 15 1.25

St. Croix 22 31.80 25.60 14 1.24

St. Croix 23 30.40 19.20 15 1.58

St. Croix 24 35.20 22.40 22 1.57

St. Croix 25 27.80 20.80 10 1.34

St. Croix 26 31.29 22.71 14 1.38

St. Croix 27 32.83 22.33 20 1.47

St. Croix 29 31.20 17.40 14 1.79

St. Croix 30 33.00 19.20 13 1.72

St. Croix 31 33.80 22.20 13 1.52

St. Croix 32 32.22 27.63 31 1.17

St. Croix 33 32.91 28.73 18 1.15

St. Croix 34 34.50 15.75 9 2.19

St. Croix 35 28.33 17.33 8 1.63

St. Croix 36 30.71 23.14 14 1.33

St. Croix 37 33.00 24.00 14 1.38

St. Croix 38 31.00 20.50 4 1.51

St. Croix 39 35.00 21.83 15 1.60
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Population Plant Stamens Eggs Total no. of flowers Ratio (stamens/ovules)

St. Croix 40 35.00 18.00 10 1.94

Cedar Creek 1 30.17 18.67 16 1.62

Cedar Creek 2 32.43 15.14 23 2.14

Cedar Creek 3 28.00 14.00 15 2.00

Cedar Creek 4 29.22 16.89 35 1.73

Cedar Creek 5 36.00 17.14 20 2.10

Cedar Creek 6 30.83 20.17 15 1.53

Cedar Creek 7 31.75 18.00 18 1.76

Cedar Creek 8 29.25 19.00 8 1.54

Cedar Creek 9 32.78 24.44 24 1.34

Cedar Creek 10 32.67 22.83 17 1.43

Cedar Creek 11 31.43 21.00 28 1.50

Cedar Creek 15 33.50 29.50 4 1.14

Cedar Creek 16 32.83 15.17 20 2.16

Cedar Creek 17 35.00 15.00 9 2.33

Cedar Creek 18 33.17 13.83 15 2.40

Cedar Creek 19 33.29 27.14 28 1.23

Cedar Creek 20 35.50 19.83 16 1.79

Cedar Creek 21 35.71 18.86 21 1.89

Cedar Creek 23 31.38 25.63 5 1.22

Cedar Creek 25 28.25 17.50 11 1.61

Cedar Creek 27 31.82 24.91 37 1.28

Cedar Creek 28 35.13 26.88 23 1.31

Cedar Creek 32 33.75 21.63 26 1.56

Cedar Creek 33 32.00 20.80 14 1.54

Cedar Creek 34 36.29 17.00 18 2.13

Cedar Creek 35 28.60 16.40 11 1.74

Cedar Creek 36 33.00 20.80 14 1.59

Cedar Creek 37 34.90 25.11 49 1.39

Cedar Creek 38 34.80 19.60 18 1.78

Cedar Creek 40 30.00 21.17 16 1.42

Cedar Creek 41 34.50 20.50 16 1.68

Cedar Creek 42 37.75 29.00 18 1.30

Cedar Creek 43 33.50 20.75 10 1.61

Cedar Creek 44 33.00 22.40 12 1.47

Cedar Creek 45 35.50 21.50 16 1.65

Cedar Creek 46 32.50 22.00 14 1.48

Cedar Creek 47 32.67 16.67 8 1.96

Cedar Creek 48 35.75 21.50 26 1.66

Cedar Creek 49 31.38 22.88 22 1.37

Cedar Creek 50 33.83 20.50 17 1.65

Data: Larkspur plants from two populations in the state of Minnesota
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Chapter 2
Generalized Linear Models

2.1 Introduction

In the generalized linear model (GLM) (which is not highly general) y = Xβ + e, the
response variables are normally distributed, with constant variance across the values
of all the predictor variables, and are linear functions of the predictor variables.
Transformations of data are used to try to force the data into a normal linear
regression model or to find a non-normal-type response variable transformation
(discrete, categorical, positive continuous scale, etc.) that is linearly related to the
predictor variables; however, this is no longer necessary. Instead of using a normal
distribution, a positively skewed distribution with values that are positive real
numbers can be selected. Generalized linear models (GLMs) go beyond linear
mixed models, taking into account that the response variables are not of continuous
scale (not normally distributed), GLMs are heteroscedastic, and there is a linear
relationship between the mean of the response variable and the predictor or explan-
atory variables.

Nelder and Wedderburn (1972) implemented a unified methodology for linear
models, thus opening a window for researchers to design models that can explain the
variation of the phenomenon under study. Later, McCullagh and Nelder (1989)
proposed an extension of linear models, called generalized linear models (GLMs).
They pointed out that the key elements of a classical linear model are as follows:
(i) the observations are independent, (ii) the mean of the observation is a linear
function of some covariates, and (iii) the variance of the observation is a constant. To
further extend these, points (ii) and (iii) are modified as follows: (ii’) the mean of the
observation is associated with a linear function of some covariates via a link function
and (iii’) the variance of the observation is a function of the mean. For more details,
see the study by McCullagh and Nelder (1989). GLMs can be adapted to a wide
variety of response variables. Special cases of GLMs include not only regression and
analysis of variance (ANOVA) but also logistic regression, probit models, Poisson
regression, log-linear models, and many more.
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where βT = (β0, β1, β2,⋯, βp) is the vector of regression parameters
and xTi = 1, x1i, x2i,⋯, xpi is the vector of predictor variables. Although η is a
linear function, the x’s can be nonlinear in form. For example, η can be a quadratic,
cubic, or higher-order polynomial. The expected value of yi and the linear predictor
ηi are related through the link function. For example, in a Poisson GLM, the
predictor is equal to log λið Þ= xTi β, since the link is a natural logarithm, better
known as the link log.
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2.2 Components of a GLM

The construction of a GLM begins with choosing the distribution of the response
variable, the predictor or explanatory variables to include in the systematic compo-
nent, and how to connect the mean of the response to the systematic component. The
three important components are described in the following sections:

2.2.1 The Random Component

The first component to specify is the random component, which consists of choosing
a probability distribution for the response variable. This can be any member of the
exponential family of distributions, such as normal, binomial, Poisson, gamma, and
so on.

2.2.2 The Systematic Component

The second component of a GLM is the systematic component or linear predictor,
which consists of a linear combination of explanatory variables (the predictor). The
systematic component of a model is the fixed structural part of the model that
explains the systematic variability between means. The linear predictor is found on
the right-hand side of the equation in the specification of a linear or nonlinear
regression model. Let x1, x2, ⋯, xp be the numerical (dummy) or discrete (category)
predictor (explanatory) variables, then the linear predictor is

ηi = β0 þ β1x1i þ β2x2i þ⋯þ βpxpi = xTi β

In normal linear regression models, the focus is on η and finding the predictors or
explanatory variables that best explain or predict the mean of the response variable.
This is also important in a GLM. Problems such as multicollinearity in normal linear
regression are also problems in generalized linear models.
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2.2.3 Predictor’s Link Function η

Finally, we will look at the specification of the link function that maps the mean of
the response variable to the linear predictor. The link function allows a nonlinear
relationship between the mean of the response variable and the linear predictor, and
this link g () connects the mean of the response variable with the linear predictor.
That is,

g μð Þ= η

The function must be monotonous (and differentiable). The mean is equal, in turn,
to the inverse transformation of g (), that is,

μ= g- 1 ηð Þ

The most natural and meaningful way to interpret the model parameters is in
terms of the scale of the data. In other words,

μ= g- 1 ηð Þ= g- 1 β0 þ β1x1i þ β2x2i þ⋯þ βpxpi

It is important to note that the link relates the mean of the response to the linear
predictor and that this is different from transforming directly to the response
variable. If the response variables are transformed (i.e., y’s), then a distribution
must be selected, which describes the population distribution of the transformed
data, thus making the original interpretation of the data more difficult. A transfor-
mation of the mean is generally not equal to the mean of the transformed values, that
is, g(E[y]) ≠ E(g[y]). For example, suppose we have a distribution with the following
values (and probabilities):

yi
prob(Y = yi) 0.125 0.375 0.375 0.125

The mean of this distribution is E[y] = 1 × 0.125 + 2 × 0.375 + 3 × 0.375 + 4 ×
0.125 = 2.5. Therefore, the logarithm of the mean of this distribution is ln(E[y])
= ln (2.5) = 0.916, whereas the mean of the logarithm is equal to E(ln[y]) = 0.845.
The value of the linear predictor η could potentially equal any value, but the expected
values of the response variable – as in the case of counts or proportions – can be
bounded. If there are no restrictions on the response variable (positive or negative
real numbers), then the “identity link” function could be used, where the mean is
identical to the linear predictor, that is,

μ= η:



Another useful alternative for these types of data is the probit link function:
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As mentioned before, the link function establishes a connection between the
linear predictor η and the mean of the distribution μ. It is important to note that the
link function in some cases is in a sense similar to a function transformation, in that it
establishes only a mathematical connection between the parameters of the model. A
function transformation is applied to the observations to better understand the
relationship between the mean and the response variables or, in some cases, to
stabilize the variance. Special cases are mentioned below:

(a) For a normal distribution, the link function is the identity function, η = μ, the
variance function is constant. i.e., Var(μ) = 1, and the scale parameter is the
variance, i.e., ϕ = σ2, allowing the use of ordinary least squares in parameter
estimation in procedures such as linear regression, analysis of variance
(ANOVA) models, or analysis of covariance (ANCOVA) models.

(b) In a binomial distribution, the response variable takes binary values like 0 and
1 or represents the relative frequency, i.e., yi = ei/ni, where ei is the number of
successes and ni is the number of trials. The mean is a probability (π) and
therefore must be between 0 and 1. The linear predictor is not bounded.
Therefore, the link function must map the real line within the interval [0, 1]. A
natural link function for binomial data is the logit link:

η= log
π

1- πð Þ → π=
eη

1þ eηð Þ

η=Φ- 1 πð Þ→ π=Φ ηð Þ

where Φ is the cumulative distribution function of a standard normal distribution.
The variance of the function has the form Var(π) = (π/(1 - π)) and the scale
parameter ϕ is known and is equal to 1 (ϕ = 1). The difference between the logit
and probit estimators is important if the estimated probabilities are extremely
small or extremely close to 1, indicating that large sample sizes are required for an
effective inference. Both the logit and probit functions produce extremely close or
equivalent results, especially with probability values around 0.5.

(c) For a Poisson distribution, the link function is the natural log:

η= log λð Þ→ λ= eη

The variance of the function has the form Var(λ) = λ, and, similar to the binomial
distribution, the scale parameter is 1. Poisson models with a log link function are
often referred to as log-linear models, commonly used when there are contin-
gency (data frequency) tables with at least two entries.
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(d) A gamma distribution has a link function of the form:

η=
1
μ

→ μ=
1
η

The variance of the function is given by Var(μ) = μ2and the scale parameter ϕ is
usually unknown. In some cases, the log link function is commonly used, which
results in an exponential inverse link. It should be noted that the link function
does not map the range of the means contained within the linear predictor.
Therefore, given its limitations, the theory only provides reasonable approxima-
tions for most applications. An exponential distribution is a special case of the
gamma distribution.

Previously, the classical methods for working with non-normal data – before the
advances in computational methods – consisted of using direct transformation of the
response variable, that is, the data were transformed using the function t( y) before
being analyzed. The goal of the transformation was to obtain a simple connection
between the mean and the linear predictor. However, obtaining a consistent scale of
variation when selecting a transformation is vitally important. The usual way for
selecting a suitable transformation is based on the assumption that, within the region
of variation of the random variable, the transformation can capture the variability
adequately through a simple linear approximation of the mean. That is, if the random
variable y has a distribution with a mean μ and variance σ2(μ), we want to find a
transformation t( y) such that it is forced to have a constant variance (stabilizes the
variance). The commonly used functions to stabilize variance are the square root

y
p

when data have a Poisson distribution; the arcsine square root when data are
binomial; and the logarithmic transformation for data with a constant coefficient of
variation.

Table 2.1 provides an overview of the most common link functions that will give
admissible values for certain types of response variables and the corresponding
inverse of the link function.

Table 2.1 Common link functions for different response variables
-1Type of response Media Variance g(μ) = η g (η)

Normal σ2 μ = η

Poisson c λ log(λ) λ = e(η)

Binomial ratio π(1 - π)/N (logit) log (π/1 - π)
(probit) Φ-1(π)

π = e(η)/(1 + eη)
π = Φ(η)

Exponential μ2 Iog(μ) μ = e(η)

Gamma μ (inverse)1/ μ = 1/η

Negative binomial λ + λ2c log(λ) λ = e(η)

Note: Φ is the cumulative distribution function of a standard normal distribution; μ and π are the
expected values of the response; η is the linear predictor; and ϕ is the scale parameter
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2.3 Assumptions of a GLM

According to McCullagh and Nelder (1989) and Agresti (2013) in Chap. 4, a GLM is
defined under the following assumptions:

(a) The data y1, y2, ⋯, yn are independent.
(b) The response variable yi does not necessarily have to have a normal distribution,

but we usually assume a distribution from an exponential family (e.g., binomial,
Poisson, multinomial, gamma, etc.).

(c) A GLM does not assume a linear relationship between the dependent variable
and the independent variables, but it does assume a linear relationship between
the response transformed in terms of the link function and the explanatory
variables; for example, for logit(π) from a binary logistic regression, logit
(π) = β0 + βx.

(d) The predictor (explanatory) variables may be in terms of power or some other
nonlinear transformations of the original independent variables.

(e) The assumption of homogeneity of variance need not be satisfied. In fact, it is not
possible in many cases, given the structure of the model and the presence of
overdispersion (when the observed variance is larger than what the model
assumes).

(f) Errors are independent but are not normally distributed.
(g) The estimation method is maximum likelihood (ML) or other methods instead of

ordinary least squares (OLS) to estimate the parameters.

2.4 Estimation and Inference of a GLM

Estimators of the regression coefficients for linear models with a normal response are
obtained using least squares or ML, and significance tests are generally used to
compare the sum of least squares under different hypothesis tests using the F-test. It
is worth mentioning that these tests are exact, and, so, no approximations are
required for their implementation.

GLMs offer a natural extension of this situation in the sense that: (1) The
computational calculations used to determine the ML estimations of the regression
parameters/coefficients are highly similar to those used in cases when the response is
normal, with the difference being that the estimation process is iterative, which
produces successive approximations that converge to the ML estimates. (2) In the
inference procedures, the test statistic commonly used is the likelihood ratio test,
which is parallel to the F-tests in linear models with a normal response. Thus, GLMs
provide a uniform method of estimation and inference. Estimation of parameter β is
highly similar to the ML method, whereas the inference methods are generally
approximations since they are based on the theory of the distribution of a sufficiently
large sample, as in the case of the likelihood ratio method. There are several
alternative tests such as the Wald test, test scores, and the likelihood ratio test.
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2.5 Specification of a GLM

In the following examples, we will describe the components of a GLM for some
normal, gamma, binomial, and Poisson regression models.

2.5.1 Continuous Normal Response Variable

In simple linear regression models, the expected mean value of a continuous
response variable depends on a set of explanatory variables, as follows:

yi = β0 þ β1xi þ εi, εi � N 0, σ2

Equivalently,

E yijxið Þ= β0 þ β1xi

This GLM can be expressed in terms of its three components:

Distribution : yi � N μi, σ
2

E yi = μi

Var yi = σ2

Linear predictor : ηi = β0 β1xi

Link function : ηi = μi identity link

where β0 and β1 are the intercept and slope, respectively. This means that we are
expressing the linear model as a GLM.

Example 1 A simple linear regression analysis was performed on the diamond price
( y) as a function of the number of carats (Table 2.2) and assuming that the response
variable “y” has a normal distribution with a mean β0 + β1xi and variance σ2.

The basic Statistical Analysis Software (SAS) syntax for simple linear regression
is as follows:

proc reg ;
model price=weight/clb p r;
output out=diag p=pred r=resid;
id weght;
run;

In the above program, “proc reg” invokes a linear regression procedure in SAS.
The “clb” option generates a confidence interval for the slope and intercept. The “p”



option generates fitted values and standard errors. The “r” option performs a residual
analysis (i.e., checks assumptions). The “output out” statement generates a new
dataset called “diag” containing the residuals and the predicted/adjusted values. The
“id weight” statement adds the specified variable to the fitted values output.
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Table 2.2 Diamond price (dollars) based on weight (carats)

Weight Price Weight Price Weight Price Weight Price Weight Price

0.17 355 0.18 462 0.18 468 0.17 0.25 655

0.16 328 0.28 823 0.16 345 0.32 918 0.35 1086

0.17 0.16 336 0.17 352 0.32 919 0.18 443

0.18 0.2 498 0.16 332 0.15 298 0.25 678

0.25 642 0.23 595 0.17 353 0.16 339 0.25 675

0.16 342 0.29 860 0.18 438 0.16 338 0.15 287

0.15 322 0.12 223 0.17 318 0.23 595 0.26 693

0.19 485 0.26 663 0.18 419 0.23 553 0.15 316

0.21 483 0.25 0.17 346 0.17 345 0.43 .

0.15 0.27 0.15 0.33 945

Table 2.3 Regression analysis results

Estimated parameters

Effect Estimate Standard error Degree of freedom (DF) t- value Pr > |t|

β0 Intercept -259.63 17.3189 46 -14.99 <0.0001

β1 Weight 3721.02 81.7859 46 45.50 <0.0001

σ2 Scale 1013.82 211.40

Part of the results is shown in Table 2.3. The estimated parameters, obtained from
“proc reg,” are shown below:

Note that the estimated parameters are all statistically significantly different from
zero. Then, the linear predictor takes the form:

η= - 259:63þ 3721:02×weighti

If the response variable “y” does not fit the data well, then the normal distribution
may barely represent the response distribution; that is, it would weakly explain the
variability of the data and, consequently, the “identity” may not be the best link
function, since the linear predictor would not include all the relevant information or
some combination of the three components of the GLM. Although other fit measure
statistics exist in the linear regression model, such as the coefficient of determination
(R2), the residual analysis is used to determine whether there is a good fit of the
model or whether the assumptions of a Gaussian model are met. In this example, the
value of R2 is R2 = 0.9783, and this value indicates that the model used explains
97.83% of the total variability of the dataset. In Fig. 2.1, we can see that the simple
linear regression model provides a good fit to this dataset.
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Fig. 2.1 A dot plot of price vs. weight (carat) and fitted model

2.5.2 Binary Logistic Regression

Logistic regression and other binomial response models are widely used in research
areas like biological sciences and agriculture. Given their importance in this section,
some relevant features of these models are mentioned.

Let yi be the observed response on a set of p explanatory variables x1, x2, ⋯, xp
whose distribution yi is binomial with ni independent Bernoulli trials and probability
of success πi on each trial, i.e.,

yi � Binomial ni, πið Þ

Then, we can model the response using a GLM with a binomial response. The
linear predictor in this case will be equal to

log
πi

1- πi
= β0 þ β1x1i þ⋯þ βpxpi

commonly known as “logit” because logit is defined as:

logit πið Þ= log
πi

1- πið Þ



which models the logarithm of the odds ratio, π , as a function of the predictor
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i
1- πið Þ

variables. The components of this GLM for binomial data are:

Distribution: yi � Binomial ni, πið Þ, with mean and variance

E yi = niπi and Var yi = niπi 1- πi

Linear predictor : ηi = β0 þ β1x1i þ⋯þ βpxpi

Link function : ηi = logitðπiÞ= log
πi

1- πi
ðlogit linkÞ

Another highly useful link function – when you have experiments – is the
“probit” link ηi = Φ-1(πi), which was mentioned before.

The basic GLM for this dataset, under the probit link, is almost identical to the
logit link as seen below:

Distribution: yi � Binomial ni, πið Þ
Linear predictor : ηi = β0 þ β1xi þ⋯þ βpxp

Link function : ηi = probit πi =Φ- 1 πi :

Example 1 An engineer is interested in studying the effect of temperature (Temp)
from 0 to 40 °C and time in days from 0 to 15 days on the germination of seeds of a
certain crop. For this reason, he placed seeds in different pots containing moist soil.
After a certain number of days, the number of germinated seeds was counted. If the
seeds germinated, then y = 1; otherwise, y = 0. The probability of germination πij
can be modeled through

ηij = β0 þ β1Dayi þ β2Tempj

where ηij is the linear predictor and β0, β1, and β2 are the parameters to be estimated.
In this GLM, the link function is

ηij = logit πij = log
πij

1- πij

and the probability in the interval (0, 1) is computed through the inverse of the link
function

πij =
1

1þ exp ηij
= g- 1 ηij
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This last expression allows to estimate the probability of germination (πij) under
different temperature conditions (°C) and time periods (days). Note that the
nonlinear relationship between the result πij and the linear predictor ηij is modeled
by the inverse of the link function. In this particular case, the link function is the
logit.

ηij = log
πij

1- πij
= g πij

For the illustration of this example, a set of data was simulated using the values
β0 = 8, β1 = - 0.19, and β2 = - 0.37 in the linear predictor and the inverse of the
linear function by varying the temperature from 0 to 40 °C and time from 0 to
15 days, i.e.,

π̂ij =
1

1þ eð8- 0:19 ×Tempi - 0:37 ×DayjÞ

Part of the simulated data is shown below:

Temp Days Germ

0 0 0.000335

0 0.5 0.000403

0 1 0.000485

0 1.5 0.000584

0 0.000703

40 13 0.987991

40 13.5 0.989999

40 14 0.991674

40 14.5 0.99307

40 15 0.994234

The following commands allow us to perform a binomial regression using the
“logit,” “probit,” and linear regression with the “identity” link. It is important to
mention that we denote temperature as t and days as d in the codes used below.

Logit Regression
proc glimmix data=germ;
model p = t d/solution dist=binomial link=logit cl;
output out=logitout pred(noblup ilink)=predicted resid=residual;
run;



Effect Estimate DF t-value Pr > |t|
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Probit Regression
proc glimmix data=germ;
model p = t d/solution dist=binomial link=probit cl;
output out=probitout pred(noblup ilink)=predicted resid=residual;
run;

Linear Regression (Identity)
proc glimmix data=germ ;
model p = t d/solution cl dist=normal;
output out=identity out pred(noblup ilink)=predicted resid=residual;
run;

“proc GLIMMIX” in SAS uses complex models without modifying the response
variable as occurs when a direct transformation is applied to the response variable.
Instead, GLIMMIX uses a link function of the response variable that is modeled as
having a linear relationship with the explanatory variables. The “model” command
specifies the response variable p as a function of the explanatory variables t and d,
which define Xβ. The “solution” option in the model specification invokes the
regression procedure to list the fixed effects parameter estimates of the model
(β0, β1, and β2). The “dist” option is used to specify the distribution of the response
variable, and the “link” option is used to specify the link function.

To get predicted probability values for each observation, the “output” option in
proc GLIMMIX is used. Two types of predicted values can be obtained with the
“output” option. The first type is the solution for the random effects (best linear
unbiased predictors (BLUPs)) in the linearized model, and the second type is the
predictions based on the fixed effects (best linear unbiased estimators (BLUEs))
(pred(noblup ilink)= predicted). The “ilink” sub-option in the “pred” option asks for
the inverse function of the predicted values, that is, the probabilities of the pre-
dictions that are stored under the predicted file name. Finally, the “resid” option is
used to request the residuals of the regression, which are stored in the residual.

Table 2.4 shows part of the output (analysis of variance (part (a)) and estimation
and significance of fixed effects (part (b)) of the regression procedure using the logit
link function.

Table 2.4 Estimation and
significance of fixed effects
using the logit link function

(a) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

T 1 2508 551.28 <0.0001

D 1 2508 407.19 <0.0001

(b) Parameters estimates

Standard
error

Intercept -8.0000 0.3189 2508 -25.08 <0.0001

T 0.1900 0.008092 2508 23.48 <0.0001

D 0.3700 0.01834 2508 20.18 <0.0001



2.5 Specification of a GLM 55

Table 2.5 Parameter estimates, linear predictor, and probability of linear, logit, and probit models

Link function Parameter Estimated value η� π�

Linear β0 -0.417 1.149 0.873

β1 0.022

β2 0.0412

Logit β0 -8.00 5.95 0.962

β1 0.190

β2 0.370

Probit β0 -4.483 3.362 0.965

β1 0.106

β2 0.207

*The linear predictor η and the probability π were estimated using D = 15 and T = 30

Fig. 2.2 (a, b) Probability of seed germination as a function of temperature and day

In Table 2.5, parameter estimates of the linear predictor for the generalized linear,
logit, and probit models are presented. The probabilities estimated by the probit and
logit models are almost identical to each other, but those of the linear probability
model are different; this is because the data were generated with a binomial distri-
bution, whereas the estimated linear predictor differs substantially from the linear
predictor under the link probit and logit.

In Fig. 2.2a, b, we observe that in an interval between 3 and 7 days and 0 and
15 °C, there is approximately 20% seed germination, but, while both factors
increase, the germination percentage also increases substantially.

2.5.2.1 Model Diagnosis

For a linear model, a plot of the predicted values against the residuals is probably the
simplest way to decide whether the model used provides a good fit to the data; but,
for a GLM, we must decide on the appropriate scale to use for the fitted values.



Generally, it is better to use linear predictors η in the plot rather than the predicted
responses μ. If there is no linear relationship between the linear predictors and the
residuals, then it could indicate a lack of fit in the model. For a linear model, we
could perform a transformation of the response variable, but this is not highly
recommended for a GLM as this could change the response distribution. Another
alternative would be to change the link function, but since there are not many link
functions that allow interpreting a model easily, this is not a good option. Moreover,
changing the linear predictor or transforming the predictor variables would not be the
best way to go.
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Fig. 2.3 Predicted vs. residual values using the logit link

Figures 2.3, 2.4, and 2.5 show the linear predictor versus residual (we can also see
the predicted value versus the residual). By investigating the nature of the relation-
ship between the predictors and the residuals in Fig. 2.3, we can see that there is a
linear relationship between the predictor and the residual, using the logit function,
whereas the probit and identity functions do not show this linear relationship.
However, with the probit link function, we observe a curvilinear relationship
between the predictor and the residual, which may be because homogeneity of
variance is not satisfied under this link function. Therefore, the logit link is shown
to be the best choice.

Example 2 Fruit flies can be a year-round problem in fruit-growing areas in many
regions of the world, such as in Mexico, and are most common especially in late
summer and fall because ripe or fermented fruits and vegetables attract insects by
serving as a natural host. If these insects are not controlled, economic losses in fruit-
growing areas could be large and devastating to the producers. In response to this,
entomologists have implemented experiments to help mitigate the damages caused
by these insects. One such experiment attempted to establish the relationship
between the concentration of a toxic agent (nicotine) for 5 hours and the number



of insects killed (common fruit fly); the data are shown in Table 2.6, and, for more
information, see the study by Myers et al. (2002).
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Fig. 2.4 Predicted values vs. residuals using the probit link

Fig. 2.5 Predicted vs. residual values using the identity link

The number of dead insects can be modeled under a binomial distribution (n, π).
Let yi denote the number of dead insects at a concentration i. The GLM components
for this dataset are:
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Table 2.6 Ratio of the concentration of a toxic agent to the number of fruit flies killed

Concentration (g/100 cc) Number of insects (n) Dead insects ( y) Proportion of dead insects

0.1 47 8 0.17

0.15 53 14 0.264

0.20 55 24 0.436

0.30 52 32 0.615

0.50 46 38 0.826

0.70 54 50 0.926

0.95 52 50 0.962

Distribution: yi � Binomial ni, πið Þ, with mean and variance
: E yið Þ= niπi and Var yið Þ= niπi 1- πið Þ
Linear predictor : ηi = β0 β1conci

Link function : ηi = logitðπiÞ= log ½ πi
1- πi

� ðlogit linkÞ

Note that we are using conci to denote the independent variable nicotine toxicant
concentration. The following SAS code allows us to perform a binomial regression
for the fruit fly dataset:

fly data;
input conc n y;
datalines;
0.1 47 8
0.15 53 14
0.2 55 24
0.3 52 32
0.5 46 38
0.7 54 50
0.95 52 50
;
proc glimmix data=nobound fly;
model y/n = conc/dist=binomial link=logit solution;
run;

The above syntax produces the following output:
The analysis of variance (Table 2.7 a) shows that there is a highly significant

effect of nicotine concentration on the number of flies killed (P = 0.0004). From the
results obtained, we can observe that, in part (b), the maximum likelihood estimator
for the intercept and slope are β0 = - 1:7361 and β1 = 6:2954, respectively, which
are used to construct the linear predictor:

ηi = - 1:7361þ 6:2954 × conci
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Table 2.7 Results of the
analysis of variance with the
logit link

(a) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Conc 1 5 71.94 0.0004

(b) Parameter estimates

Effect Estimate Standard error DF t -value Pr > |t|

Intercept -1.7361 0.2420 5 -7.17 0.0008

Conc 6.2954 0.7422 5 8.48 0.0004

Fig. 2.6 Proportion of dead insects as a function of nicotine concentration

Therefore, with the logistic regression model, we can estimate the probability that
an insect dies when exposed to a certain concentration i of nicotine using the
following expression:

π concið Þ= eηi

1þ eηi
=

e- 1:7361þ6:2954 × conci

1þ e- 1:7361þ6:2954 × conci

A plot of the mean proportion of dead insects exposed to a certain concentration
of nicotine and the regression curve (linear, quadratic, and cubic) is shown in
Fig. 2.6. In this figure, we observe that as the nicotine concentration increases, the
mean proportion of dead insects increases. The best linear predictor is of a quadratic
order.

2.5.3 Poisson Regression

Often, the outcome of a variable is numerical in the form of counts. Sometimes it is a
count of rare events such as, for example, (1) the number of plants infected by a



certain disease in a population over a period of time, (2) the number of insects
surviving after the application of an insecticide over time, (3) the number of dead fish
found per cubic kilometer due to a certain pollutant, (4) the number of sick animals
occurring in a given month in a given country, and so on. The Poisson probability
distribution is perhaps the most widely used for modeling count-type response
variables. As λ (the average count) increases, the Poisson distribution grows sym-
metrically and eventually approaches a normal distribution.
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The Poisson likelihood function is appropriate for nonnegative integer data and
this process assumes that events occur randomly over time, so the following
conditions must be met:

(a) The probability of at least one occurrence of an event in a given time interval is
proportional to the length of the interval.

(b) The probability of two or more occurrences of an event within an extremely
small interval is negligible.

(c) The number of occurrences of an event in disjoint time intervals are mutually
independent.

The probability distribution of a Poisson random variable "y, " which represents
the number of successes occurring in a given time interval or in a given region of
space, is given by the expression

P y= kð Þ= e- λλk

k!
, λ> 0, k= 1, 2,⋯

where λ is the average number of successes (the average count) in a time or space
interval. The mean and variance of this distribution are the same, that is,

E yð Þ=Var yð Þ= λ

Poisson regression belongs to a GLM and is appropriate for analyzing count data
or contingency tables. A Poisson regression assumes that the response variable “y”
has a Poisson distribution and that the logarithm of its expected value can be
modeled by a linear combination of unknown parameters and independent variables.
As in a standard linear regression, the predictors, weighted by the coefficients of x1,
x2, ⋯, xp, are summed to form the linear predictor,

ηi = β0 þ
P

p= 1

xpiβp

where β0 is the intercept and βp is the slope of the covariates xp ( p = 1,⋯,P). Thus,
the expected value of yi and the linear predictor ηi are related through the link
function. The components of a GLM with a Poisson response (yi ~ Poisson(λi)),
where λi is the expected value of yi, are as follows:
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1 6

2 8

3 12

. .

(continued)
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Fig. 2.7 Students infected with the disease

Distribution: yi � Poisson λið Þ, with E yið Þ=Var yið Þ= λi

Linear predictor : ηi = β0 þ β1x1i þ⋯þ βpxpi

Link function : ηi = log λi = g λi log link

Example 1 The following dataset corresponds to the number of students diagnosed
(Fig. 2.7) with a certain infectious disease within a period of days of an initial
outbreak. We will fit a generalized linear model for “count” data assuming a Poisson
distribution.

Note that the response distribution is skewed to the right and that the responses
are positive integers. Since the response variable is count, the initial choice of a
Poisson distribution is reasonable for this dataset with its canonical link, the natural
logarithm. The number of “days elapsed” after the initial disease outbreak is the
predictor variable in the systematic component. Thus, the GLM for this dataset
(Appendix: Data: Infected students) is:

Distribution : Inffected studentsi � Poisson λið Þ
Linear predictor : ηi = βo β1Days

Link function: ηi = log λi log link

Part of the data is shown below:

Days elapsed Infected students
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Days elapsed Infected students

109 1

110 1

112 0

For the purposes of implementation, we use days to denote elapsed days and
students to denote infected students. We can employ the Poisson regression model
using GLIMMIX in SAS, as shown below:

proc glimmix data=students method=laplace;
model students=days/solution dist=poisson link=log;
output out=sal_infection pred(noblup ilink)=predicted
resid=residual;
run;

The “proc GLIMMIX” statement invokes the SAS generalized linear mixed
model (GLMM) procedure. The “model” command specifies the response variable
and the predictor variable, whereas the “solution” option in the model specification
requests a listing of the fixed effects parameter estimates. The “dist = poisson”
option specifies the distribution of the data, and the “link = log” option declares the
link function to be used in the model. The default estimation technique in general-
ized linear mixed models is restricted pseudo-likelihood (the “RPSL method”); in
this example, we use “method = laplace.” The “output” option creates a dataset
containing predicted values and diagnostic residuals, calculated after fitting the
model. By default, all variables in the original dataset are included in the output
dataset, whereas the “out= sal_infection” statement specifies the name of the output
dataset. The “pre(noblup ilink) = predicted” option calculates the predicted values
without taking into account the random effects of the model, and “ilink” calculates
the statistics and predicted values at the scale of the data. Finally, the “resid= residual
option” calculates the residuals.

The probability estimation of a GLMM involves an integral, which, in general,
cannot be calculated explicitly. “GLIMMIX,” by default, uses the RSPL method, but
it also offers different options such as the quadrature and Laplace integration
method, among others. These integral approximation methods approximate the
probability function of an GLMM, and the optimization of the function is numeri-
cally approximated. These methods provide a real objective function for optimiza-
tion. For more details, see the SAS manual. However, in a GLM, this approximation
involving the integral is not necessary since an exact solution can be obtained to
estimate the parameters, as there are no random effects. The results of this analysis
are shown below (Table 2.8).

The fit statistics in part (a) (“Fit statistics”) give us an idea of the quality of the
goodness of the fit of the model; these statistics are very useful when we are
proposing different models to try and find the best model for the data. In this case,
the value of the generalized chi-squared statistic divided over its degrees of freedom



Effect Estimate DF t-value Pr > |t|

is close to 1. This indicates that the variability of these data has been reasonably
modeled and that there is no residual overdispersion. The value of the generalized
chi-squared statistic divided over its degrees of freedom (Pearson′s chi- square/DF)
is the experimental error of the analysis.
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Table 2.8 Results of the
analysis of variance

(a) Fit statistics (Akaike’s information criterion (AIC), a small
sample bias corrected Akaike’s information criterion
(AICC), Bozdogan Akaike’s information criterion (CAIC),
Schwarz’s Bayesian information criterion (BIC), Hannan and
Quinn information criterion (HQIC))

-2 Log likelihood 389.11

AIC (smaller is better) 393.11

AICC (smaller is better) 393.22

BIC (smaller is better) 398.49

CAIC (smaller is better) 400.49

HQIC (smaller is better) 395.29

Pearson’s chi-square 84.95

Pearson’s chi-square / DF 0.78

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Days 1 102.28 <0.0001

(c) Parameter estimates

Standard
error

Intercept 1.9902 0.08394 23.71 <0.0001

Days -
0.01746

0.001727 -
10.11

<0.0001

The “Type III tests of fixed effects” (in part (b)) and the solution for the intercept
and the days effect (“Parameter estimates”) in part (c) are shown in Table 2.8. The
negative coefficient of the covariate days indicates that as the number of days
increases, the average number of students diagnosed with the disease decreases.

That is, we reject the null hypothesis (P = 0.0001) that the expected number of
infected students is the same as the number of days increases.

We see that with a 1-day increase in the infection period, the expected
(or average) number of students diagnosed with the disease decreases by a factor
of e-0.01746 = 0.9827.

The estimated linear predictor for this GLM is:

ηi = 1:9902- 0:01746 ×Days

For example, we can calculate the probability of diagnosing "k = 2" infected
students in a period of 2 days; i.e., "Days = 2"as follows:

P Yi = kð Þ=
exp - λi λi

k

k!
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Fig. 2.8 Infected students and a Poisson regression fit

P Yi = 2ð Þ= exp - exp 1:9902- 0:0146 × 2½ �ð Þ exp 1:9902- 0:0146× 2½ð 2

2

=
exp - exp 1:961ðð ÞÞ exp 1:961ð Þð Þ2

2
= 0:0207

This value indicates that the probability of observing/diagnosing two students
with the disease in a 2-day period is 0.0207 (2.0701%).

In Fig. 2.8, we observe that the Poisson model is a good candidate for modeling
this dataset, since there is no overdispersion in this regression model.

Example 2 A forest engineer is interested in modeling the number of trees recently
infected by a certain virus. The data that he has are age (years), height (meters) of the
trees, and the number of infected trees. Using a linear model could result in negative
values of the parameter λ, which would not make sense. The link function g(λ) for a
Poisson error structure is the logarithm. Therefore, the GLM, defining yi = infected
treesi, can be as follows:

Distribution : yi � Poisson λið Þ
Linear predictor : ηi = β0 β1 ×Agei β2 × heighti

Link function : ηi = log λi = g λi log link

For this example, a dataset was simulated using the following parameter values:
β0 = - 2, β1 = - 0.03, and β2 = - 0.04. In addition, in order to obtain the linear
predictor, the variable age (years) varied from 0 to 50 and height (meters) from 0 to
30, both with increments in one unit. Thus, the values of yij were simulated with the
following expression:
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Fig. 2.9 (a, b) Probability of tree infection as a function of tree height and age in years

yij = expð- 2- 0:03 ×Agei - 0:04 ×HeightjÞ

In Fig 2.9a, b, we can see that at a young age, between 1 and 10 years and at a
height of no more than 10 meters, trees are more susceptible to be infested by the
virus. However, as their age increases, trees show greater resistance.

The following SAS code fits a Poisson regression model with two predictor
variables, assuming that there is no interaction between the two explanatory
variables.

proc glimmix data=infection method=laplace;
model infection=age height /solution dist=poisson link=log;
output out=sal_infection pred(noblup ilink)=predicted
resid=residual;
run;

In Table 2.9 part (a), the analysis of variance shows that age and tree height are
highly significant, indicating that both variables help explain the infection mecha-
nism of the trees through a Poisson model (P < 0.0001).

The linear predictor for this GLM, with Poisson distribution, in the response
variable is:

ηij = - 2- 0:03 ×Agei - 0:04×Heightj

The estimated values of the parameters of each of the explanatory variables
indicate that as age (years) and height (meters) increase by one unit, the tree is less
susceptible to the virus. If we want to calculate the probability of diagnosing "k = 3”

infected trees with the virus when they are 2 years old and 3-meters tall, we can use
the following equation:
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Table 2.9 Part of the results of the analysis of variance under a Poisson distribution

fi(a) Type III tests of xed effects

Effect Num DF Den DF F-value Pr > F

Age 1 6158 43.20 <0.0001

Height 1 6158 29.10 <0.0001

(b) Parameter estimates

Effect Estimate Standard error DF t-value Pr > |t|

Intercept -2.0000 0.1388 6158 -14.41 <0.0001

Age -0.03000 0.004564 6158 -6.57 <0.0001

Height -0.04000 0.007415 6158 -5.39 <0.0001

P Yi = kð Þ=
exp - λi λi

k

k!

P̂ðYi = 3Þ

=
expð- exp ½- 2- 0:03 ×Age- 0:04×Height�Þ ðexp ½- 2- 0:03×Age- 0:04×Height�Þ3

3!

=
expð- exp ½- 2- 0:03 × 2- 0:04 × 3�Þ ðexp ½- 2- 0:03 × 2- 0:04× 3�Þ3

3!
= 0:000215

This value indicates that the probability of observing/diagnosing three trees
with the virus causing the disease when they are 2 years old and 3-meters tall
is 0.000215 (0.0215%).

A Poisson regression model, sometimes referred to as a log-linear model, is
especially useful when it is used in contingency table modeling. Log-linear models
are models of associations between variables in a contingency table; they treat
variables symmetrically and do not distinguish one variable as a response. They
have a formal structure of double or more entries that can be fitted by binomial or
Poisson regression. These models for contingency tables have several specific
applications in biological and social sciences.

Variables can be nominal or ordinal. A nominal variable has no natural order; for
example, gender (male, female, transgender), eye color (blue, brown, green), and
type of pet (cat, bird, fish, dog, mouse). An ordinal variable has a range of orders; for
example, when you want to measure the degree of consumer satisfaction with the
consumption of a product (very dissatisfied, somewhat dissatisfied, neither satisfied
nor dissatisfied, somewhat satisfied, very satisfied).
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2.5.4 Gamma Regression

A gamma distribution is a distribution that occurs naturally in processes for which
waiting times, between events, are relevant. Lifetime data are sometimes modeled
with a gamma distribution. This distribution can take a wide range of forms due to
the relationship between the mean and variance across its two parameters (α and β)
and is suitable for dealing with heteroscedasticity of nonnegative data. The proba-
bility of observing a particular value y, given the parameters α and β, is

f yð Þ= 1
Γ αð Þβα y

α- 1e- y=βð Þ; y, α, β> 0

where Γ(∙) is the gamma function. A gamma regression uses the input variables X’s
and coefficients to make a prediction about the mean of "y, " but it actually focuses
more of its attention on the scale parameter β. The mean and variance of a Gamma
random variable are:

E Yð Þ= αβ= μ and Var Yð Þ= αβ2 = μ2=α

The probability density function gamma can be rewritten in terms of the mean
μ and the scale parameter α as follows:

f yð Þ= 1
Γ αð Þy

yα
μ

α

exp - yαμð Þ, y> 0

Plotting the gamma distribution (Fig. 2.10) with three different values of shape
α = (0.75, 1, and 2), the scale parameter μ has a multiplicative effect. In the gamma
density of the first panel α = 0.75, we see that the density is infinite at 0, whereas in
the second panel α = 1, it corresponds to the exponential density, and, in the third
panel α = 2, we see a skewed distribution.

Fig. 2.10 Gamma density: from left to right, α = 0.75, 1, and 2
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A gamma distribution can arise in different forms. The sum of "n" independent
and identically distributed exponential random variables with parameter β has a
gamma distribution (n, β). The chi-squared distribution χ2 is a special case of a
gamma distribution with β = 1/2 and α/2 degrees of freedom.

Theoretically, a Gamma distribution should be the best choice when the response
variable has a real value in the range of zero to infinity and it is appropriate when a
fixed relationship between the mean and variance is suspected. If we expect the
values "y" to be small, then we should expect a small amount of variability in the
observed values. Conversely, if we expect large values of "y, " then we should expect
(observe) a lot of variability.

Models with a gamma distribution with multiplicative covariate effects provide
additional support for modeling nonnegative right-skewed continuous responses,
such as the gamma variable with the log link function. Whether the data are modeled
with an inverse or logarithmic link function will depend on whether the rate of
change or the logarithm of the rate of change is a more meaningful measure. For
example, in studies of yield density that commonly assume that yield per plant is
inversely proportional to plant density (Shinozaki and Kira 1956), the linear
predictor is:

ηi = β0 þ β1xið Þ- 1

Example 1 In the development of coagulation agents, it is common to perform
in vitro clotting time studies. The following data were reported by McCullagh and
Nelder (1989). Plasma samples from healthy men were diluted to nine different
percentages of prothrombin-free plasma concentration; the greater the dilution, the
more interference with the ability of the blood to clot because the natural clotting
ability of the blood has been weakened. For each sample, clotting was induced by
introducing thromboplastin, a clotting agent, and the time until clotting occurred
(in seconds) was recorded. Five samples were measured at each of the nine concen-
tration percentages, and the mean clotting times were averaged; therefore, the
response is the mean clotting time across the five samples. In Fig. 2.11, the response
variable is plotted against the percentage thromboplastin concentration in which we
observe that the longer clotting times tend to be more variable than the smaller
clotting times, so a linear regression model may not be appropriate.

In this analysis, we will model clotting times as the response variable (yi) with
plasma concentration percentage as the predictor variable. Conc denotes the inde-
pendent variable concentration. The GLM for this dataset is:

Distribution: yi =Clotting timei � Gamma α, βð Þ
Linear predictor: ηi = β0 β1 × conci

Link function : μi =
1

β0 β1 × conci
ðinverse linkÞ
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Fig. 2.11 Clotting time (seconds), depending on the thromboplastin concentration

The following syntax allows us to adjust a GLM with gamma errors in
GLIMMIX:

data coagu;
input num conc y;
datalines;
1 5 118
2 10 58
3 15 42
4 20 35
5 30 27
6 40 25
7 60 21
8 80 19
9 100 18
;
proc glimmix data = coagu;
model y = conc / dist=gamma link=power(-1) solution;
output out=salgamm1 pred(noblup ilink)=predicted resid=residual;
run;

Most of the syntax has already been described in the previous examples; the only
new one is the link = power(-1) option. This statement invokes the inverse
link function in the GLIMMIX procedure.

Some of the output from this analysis is shown in Table 2.10.
The dilution percentage, part (a) in Table 2.10, of the blood plasma concentration

significantly affects the clotting time (P = 0.0004). The values for constructing the
fitted linear predictor are tabulated in part (b) of Table 2.10.

ηi = 0:008686þ 0:000658 × conci
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Table 2.10 Results of the
regression analysis under a
gamma distribution

(a) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Conc 1 41.01 0.0004

(b) Parameter estimates

Effect Estimate Standard error DF t-value Pr > |t|

Intercept 0.008686 0.002294 3.79 0.0068

Conc 0.000658 0.000103 6.40 0.0004

Scale 0.05213 0.02436 . . .

With the parameterization of the gamma distribution, previously chosen, the
intercept and the beta coefficient corresponding to the concentration variable were
calculated through GLIMMIX in SAS, as well as the scale parameter(α), which in
the SAS output corresponds to the scale. With part of this information, it is possible
to calculate the mean (E[Y] = μ) and variance (Var[Y] = μ2/α) for a concentration
conc = 10 as follows:

y= μ=
1

0:008686þ 0:000658 × conc
=

1
0:008686þ 0:000658 × 10

= 65:505

Var yð Þ= μ2

α
=

65:5052

0:052
= 85818:215

The average time it takes for blood to clot – when a thromboplastin concentration
of 10% is added – is 65.505 seconds with a variance of 85818.215.

2.5.4.1 Model Selection

Selecting a model from a set of candidate models that provides the best fit and largely
explains the variability in the data is a necessary but complex task. This process
involves trying to minimize information loss. From the field of information theory,
several information criteria have been proposed to quantify information, or the
expected value of information, and, among these, the most widely used are the
Akaike information criterion (AIC) (Akaike 1973, 1974) and the Bayesian informa-
tion criterion (BIC) (Schwarz 1978). Both AIC and BIC are based on the ML
estimates of the model parameters. In a regression fit, the estimates of β´s under
the ordinary least method and the ML method are identical. The difference between
the two methods comes from estimating the common variance σ2 of the normal
distribution of the errors, around the true mean.



Effect Num DF Den DF Pr > F

Effect Estimate DF Pr > |t|
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Table 2.11 Goodness-of-fit
metrics for each of the three
models and regression analy-
sis results for model 3

(a) Fit statistics Model 1 Model 2 Model 3

-2 Log likelihood 62.15 44.49 27.47

AIC (smaller is better) 68.15 52.49 37.47

AICC (smaller is better) 72.95 62.49 57.47

BIC (smaller is better) 68.74 53.27 38.45

CAIC (smaller is better) 71.74 57.27 43.45

HQIC (smaller is better) 66.87 50.78 35.34

Pearson’s chi-square 0.50 0.07 0.01

Pearson’s chi-square / DF 0.07 0.01 0.001

(b) Type III tests of fixed effects

F-
value

Conc 1 5 476.73 <0.0001

Conc × conc 1 5 110.78 0.0001

conc × conc × conc 1 5 50.92 0.0008

(c) Parameter estimates

Standard
error

t-
value

Intercept -
0.00040

0.000576 5 -
0.70

0.5177

Conc 0.001946 0.000089 5 21.83 <0.0001

conc × conc -
0.00003

2.576E-6 5 -
10.53

0.0001

conc × conc
× conc

1.337E-7 2.520e-
08

5 5.306 <0.0001

Scale 0.001125 0.000530 . . .

To get an idea of how to use these adjustment statistics, let us compare three
possible models that best explain the effect of the plasma dilution percentage:

Model 1: ηi = β0 þ β1 × conci

Model 2: ηi = β0 þ β1 × conci þ β2 × conc
2
i

Model 3: ηi = β0 þ β1 × conci þ β2 × conc
2
i þ β3 × conc

3
i

Since the proposed models have a gamma error structure, the commonly used fit
statistic (R2) in a simple linear regression model is not reported. Part of the results of
this analysis is shown below with various metrics as goodness-of-fit measures:

With regard to the values of the goodness-of-fit metrics (Table 2.11 part (a)), the
smaller they are, the better the fit. Based on the above, the accuracy of the fit of the
three regression models increased as the polynomial in the linear predictor increased.
That is, model three best explained the variability of the plasma clotting time. The



type III sum of squares for fixed effects and the estimated parameters under model
three are tabulated in parts (b) and (c) in Table 2.11, respectively.
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Fig. 2.12 Fitting the gamma regression model with three predictors

Parameter estimates under the linear predictor with linear, quadratic, and cubic
effects are highly significant. The results suggest that a cubic effect for the percent-
age dilution in plasma concentration in the linear predictor is more efficient in
explaining the clotting time than taking only a linear predictor with only linear or
both linear and quadratic effects (Fig. 2.12).

2.5.5 Beta Regression

Studies in various areas of knowledge, including agriculture, often face the need to
explain a variable expressed as a proportion, percentage, rate, or fraction in the
continuous range (0,1). In economics, for example, the factors that influence the
proportion of households that do not have a cement floor have been studied.
Similarly, in plant breeding, it is desired to investigate the factors that influence
the proportion of plant leaves damaged by a certain disease. In parallel, the propor-
tion of impurities in chemical compounds is of everyday interest in physics and
chemistry. While studies on electoral preferences analyze citizen participation rates
and the variables that can explain them, in the field of education and academic
performance, we try to explain the proportion of success in standardized tests.
Moreover, it is also used to identify the factors associated with the proportion of
credit used by credit card users. The public health field has also been confronted with
the need to model the proportion of coverage in health programs in order to identify
the sociodemographic and economic characteristics associated with whether a
woman is covered. Johnson et al. (1995) presented the properties of the probability
distribution of this type of variable; these researchers showed that the beta distribu-
tion can be used to model proportions, since its density can take different forms
depending on the values of the two shape parameters that index the distribution.
However, the beta regression that results from using the beta distribution as a



response variable in the context of generalized linear models is not very well known,
but its use is increasing every day, thanks to friendly software that allow its
implementation in an extremely easy manner.
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Definition Let y be a continuous random variable defined in the interval [0, 1] and
α, β > 0. Then, Y has a beta distribution with parameters of forms α and β if and
only if:

f Y yð Þ= 1
B α, βð Þ y

α- 1 1- yð Þβ- 1, 0< y< 1

where B(α, β) is the beta function defined as B α, βð Þ= Γ αð ÞΓ βð Þ
Γ αþβð Þ and Γ is the gamma

function. The mean and variance of this probability density function are given by

E Yð Þ= α
αþ β

and Var Yð Þ= αβ

αþ β þ 1ð Þ αþ βð Þ2 :

In the context of regression analysis, the density of the beta distribution provided
above is not very useful for modeling the mean of the response. Therefore, this
density is reparametrized so that it contains a precision (or dispersion) parameter.
This reparameterization consists of defining a μ= α

αþβ and ϕ = α + β, i.e., α = μϕ

and β = (1 - μ)ϕ, which means that:

E yð Þ= μ

and

Var yð Þ= μ 1- μð Þ
1þ ϕ

So, μ is the mean of the response variable and ϕ can be interpreted as a parameter
of precision in the sense that, for a fixed μ, the higher the value of ϕ, the smaller the
variance of y. The density function of y can be written as:

f ðy; μ,ϕÞ= ΓðϕÞ
ΓðμϕÞΓðð1- μÞϕÞ y

μϕ- 1ð1- yÞð1- μÞϕ- 1, 0< y< 1

where 0 < μ < 1 and ϕ > 0.
Let y1, y2, . . . , yn be independent and identically distributed random variables,

where each yi with i = 1, 2, . . . , n is modeled under the parametrized beta model
with a mean μ and an unknown parameter ϕ. The model is obtained by assuming that
the mean of yi can be written as:
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Table 2.12 Proportion of
fruit damage ( y) as a function
of concentration. Percentage is
equal to proportion ×100

Concentration Y

0.1 0.08

0.25 0.09

0.5 0.11

1 0.2

2 0.3

4 0.53

5 0.63

8 0.71

10 0.73

25 0.84

50 0.85

100 0.86

g μið Þ=
k

i= 1

xijβi = ηi

where β1, β2, . . ., βk are unknown regression parameters and xij are the k covariates
(k < n) that are fixed and known. Finally, g(∙) is a strictly monotone and differen-
tiable link function that maps to the real numbers in the interval (0, 1).

There are several possible options for the link function g(∙). For example, we can

use a logit link function g μð Þ= log μ
1- μ , which is considered the most popular and

asymptotically efficient, but it is also feasible to use the probit g(μ) = Φ-1(μ)
function, where Φ(∙) is the cumulative distribution function of a standard normal
random variable, and the complementary link function g(μ) = log {- log (1 - μ)},
among others (McCullagh and Nelder 1989).

Example 1 The objective of this experiment was to evaluate the effect of the
concentration of a chemical compound on the proportion of damage ( y) in the fruits
(Table 2.12). This compound is known to inhibit the growth of an insect, but, at a
certain concentration, it can cause damage to the fruits.

The proportion of damage to the fruits can be modeled under a beta distribution
(μ,ϕ). Let yi be the proportion of damage to the fruits due to the ith concentration.
The GLM components for this dataset are as follows:

Distribution: yi � beta μi,ϕð Þ, with E yð Þ= μ and Var yð Þ= μ 1- μð Þ
1þ ϕ

Linear predictor: ηi = β0 β1 × conci

Link function : ηi = logitðπiÞ= log
πi

1- πi
ðlogit logÞ
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Table 2.13 Goodness-of-fit
metrics for the linear and qua-
dratic models and results of
the quadratic model fit

(a) Fit statistics Linear Quadratic

-2 Log likelihood -6.23 -14.50

AIC (smaller is better) -0.23 -6.50

AICC (smaller is better) 2.77 -0.79

BIC (smaller is better) 1.22 -4.56

CAIC (smaller is better) 4.22 -0.56

HQIC (smaller is better) -0.77 -7.22

Pearson’s chi-square 12.85 15.05

Pearson’s chi-square / DF 1.07 1.25

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Conc 1 8.08 0.0193

Conc × conc 1 6.11 0.0354

(c) Parameter estimates

Standard
error

t-
value

Intercept -1.1425 0.2935 -3.89 0.0037

Conc 0.1572 0.05530 2.84 0.0193

Conc ×
conc

-0.00132 0.000534 -2.47 0.0354

Scale 9.0432 4.0045 . . .

Note that we are using conc to denote the independent variable concentration of
the chemical compound. The following SAS code allows us to perform a beta
regression for the dataset:

proc glimmix method=laplace;
model y = conc / dist=beta s;
run;

The “method = Laplace” statement asks SAS for the estimation method to be
Laplace integration, and the “dist = beta” and “s” options invoke GLIMMIX to
perform beta regression and provide fixed parameter estimation, respectively.

In order to see which type of linear, quadratic, or cubic predictor best explains the
observed variability in a dataset, we make use of the fit statistics (-2 log likelihood,
AIC, etc.). Part of the output is shown below in Table 2.13. According to the fit
statistics in part (a), the predictor that best models this experiment is the quadratic
predictor.

In Fig. 2.13, we can see that the best linear predictor to model a dataset is of the
cubic order, but due to the indeterminacy (not showing here) in the t-value (infinity),
in the hypothesis test of the estimated parameters, it was decided to take the
quadratic predictor. Both predictors, quadratic and cubic, better model the propor-
tion (percentage = proportion×100) of fruit damage caused by the concentration of
the applied chemical.
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Fig. 2.13 Fitting the beta regression model

2.6 Exercises

Exercise 2.6.1 The partial dataset corresponds to an evaluation of the effects of
increasing application rates of picloram (0, 1.1, 2.2, and 4.5 kg/ha) for the control of
larkspur plants (data in Table 2.14). The objective of this study was to study the
efficacy of picloram herbicide in controlling larkspur plants.

(a) List and describe the components of the GLM (distribution, systematic compo-
nent (predictor), and the link function).

(b) Fit the model according to part (a).
(c) Interpret your results.

Exercise 2.6.2 Effect of pH, Brix, temperature, and nisin concentration on the
growth of Alicyclobacillus acidoterrestris CRA7152 in apple juice. The objective
of this experiment was to model the presence/absence of CRA7152 growth in apple
juice as a function of pH (3.5–5.5), Brix (11–19), temperature (25–50 °C), and nisin
concentration (0–70). The data are shown below (Table 2.15):

(a) List and describe the components of the GLM (distribution, systematic compo-
nent (predictor), and the link function).

(b) Fit the model according to part (a).
(c) Interpret your findings.

Exercise 2.6.3 The objective of this experiment was to evaluate the level of toxicity
of concentrations of pyrethrin and piperonyl butoxide on the mortality of beetles
(Tribolium castaneum). Pyrethrin is a natural insecticide found in the plant Chry-
santhemum cinerariaefolium and its flowers. The active ingredients are pyrethrins I
and II, cinerins I and II, and jasmolins I and II. The dried flowers contain 0.9–1.3%
pyrethrum. The crude extract contains 50–60% pyrethrum and is imported from
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1 0 0 0 0 0 0

1 0 0 0 0 0 0
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1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1.1 0 0 0 0 0

1 1.1 0 0 0 0 0

1 1.1 0 0 0 0 0

1 1.1 0 0 0 0 0

1 1.1 0 0 0 0 0

1 1.1 0 0 0 0 0

1 1.1 0 0 0 0 0

1 1.1 0 0 0 0 0

1 1.1 0 0 0 0 0

1 1.1 0 0 0 0 0

(continued)
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Table 2.14 Toxicity of picloram in controlling larkspur plants

Rep Conc Y Rep Conc Y Rep Conc Y

1 1.1 0 0 0 1.1 0

1 1.1 0 1.1 0 1.1 0

1 1.1 0 1.1 0 1.1 0

1 1.1 1 1.1 0 1.1 0

1 1.1 1 1.1 0 1.1 0

1 1.1 1 1.1 0 1.1 0

1 1.1 1 1.1 0 1.1 0

1 1.1 1 1.1 0 1.1 0

1 1.1 1 1.1 0 1.1 0

1 1.1 1 1.1 0 1.1 0

1 1.1 1 1.1 0 1.1 0

1 1.1 1 1.1 1 1.1 0

1 1.1 1 1.1 1 1.1 0

1 1.1 1 1.1 1 1.1 0
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Table 2.14 (continued)

Rep Conc Y Rep Conc Y Rep Conc Y

1 2.2 0 1.1 1 1.1 0

1 2.2 1 1.1 1 1.1 0

1 2.2 1 1.1 1 1.1 0

1 2.2 1 1.1 1 1.1 0

1 2.2 1 1.1 1 1.1 0

1 2.2 1 1.1 1 1.1 0

1 2.2 1 1.1 1 1.1 0

1 2.2 1 1.1 1 1.1 0

1 2.2 1 2.2 0 1.1 0

1 2.2 1 2.2 0 1.1 1

1 2.2 1 2.2 0 1.1 1

1 2.2 1 2.2 0 1.1 1

1 2.2 1 2.2 0 1.1 1

1 2.2 1 2.2 0 1.1 1

1 2.2 1 2.2 1 1.1 1

1 2.2 1 2.2 1 1.1 1

1 2.2 1 2.2 1 1.1 1

1 2.2 1 2.2 1 1.1 1

1 2.2 1 2.2 1 2.2 0

1 2.2 1 2.2 1 2.2 0

1 2.2 1 2.2 1 2.2 1

1 2.2 1 2.2 1 2.2 1

1 2.2 1 2.2 1 2.2 1

1 2.2 1 2.2 1 2.2 1

1 2.2 1 2.2 1 2.2 1

1 2.2 1 2.2 1 2.2 1

1 2.2 1 2.2 1 2.2 1

1 2.2 1 2.2 1 2.2 1

1 2.2 1 2.2 1 2.2 1

1 4.5 1 2.2 1 2.2 1

1 4.5 1 2.2 1 2.2 1

1 4.5 1 2.2 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1



various countries. The extract is diluted to 20%, which is the maximum concentra-
tion commercially available in the United States. Pyrethrin oxidizes on exposure to
air but has been shown to be stable for long periods in water-based emulsions and oil
concentrates. Synergistic compounds (such as piperonyl butoxide or N-octyl
bicycloheptene dicarboximide), which enhance the effect of pyrethrin on insects,
are present in commercially available pyrethrin formulations. The results of this
study are shown below (Table 2.16).
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Table 2.14 (continued)

Rep Conc Y Rep Conc Y Rep Conc Y

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 2.2 1

1 4.5 1 4.5 1 4.5 1

1 4.5 1 4.5 1 4.5 1

1 4.5 1 4.5 1 4.5 1

1 4.5 1 4.5 1 4.5 1

1 4.5 1 4.5 1 4.5 1

1 4.5 1 4.5 1 4.5 1

1 4.5 1 4.5 1 4.5 1

1 4.5 1 4.5 1 4.5 1

1 4.5 1 4.5 1 4.5 1

4.5 1 4.5 1

4.5 1 4.5 1

4.5 1 4.5 1

4.5 1 4.5 1

4.5 1 4.5 1

4.5 1 4.5 1

4.5 1 4.5 1

4.5 1 4.5 1

4.5 1 4.5 1

4.5 1 4.5 1

4.5 1

4.5 1

4.5 1

4.5 1

4.5 1

4.5 1

4.5 1

4.5 1

Rep replicate, Conc concentration, Y =1 dead/ Y = 0 alive

(a) List and describe the components of the GLM (distribution, systematic compo-
nent (predictor), and the link function).

(b) Fit the model according to part (a).
(c) Interpret your results.



5 70 25 13 0 3.5 0 25 19 0

5 50 50 15 1 5 70 25 15 0

5 50 25 19 0 5 70 25 13 0

5 30 43 19 0 5 50 50 15 1

5 30 43 11 1 5 50 25 19 0

4 50 43 11 0 4 70 50 19 0

4 50 25 11 0 4 70 35 13 0

4 30 50 15 1 4 50 43 11 0

4 30 35 19 0 4 50 25 11 0

4 30 25 13 0 4 30 50 15 1
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Table 2.15 Growth of Alicyclobacillus acidoterrestris CRA7152

pH Nisin Temp (°C) Brix Y pH Nisin Temp (°C) Brix Y

5.5 70 50 11 0 5.5 70 50 19 0

5.5 70 43 19 0 3.5 0 25 11 0

5.5 50 43 13 1 5.5 70 50 11 0

5.5 50 35 15 1 5.5 70 43 19 0

5.5 30 35 13 1 5.5 50 43 13 1

5.5 30 25 11 0 5.5 50 35 15 1

5.5 0 50 19 0 5.5 30 35 13 1

5.5 0 25 15 1 5.5 30 25 11 0

3.5 70 43 15 0 5.5 0 50 19 0

3.5 70 35 11 0 5.5 0 25 15 1

3.5 50 50 13 0 3.5 70 43 15 0

3.5 50 35 19 0 3.5 70 35 11 0

3.5 30 50 11 0 3.5 50 50 13 0

3.5 30 43 15 0 3.5 50 35 19 0

3.5 0 25 19 0 3.5 30 50 11 0

5 70 25 15 0 3.5 30 43 15 0

5 0 50 13 1 5 30 43 19 0

5 0 35 11 1 5 30 43 11 1

4 70 50 19 0 5 0 50 13 1

4 70 35 13 0 5 0 35 11 1

4 0 43 15 1 4 30 35 19 0

4 0 43 13 1 4 30 25 13 0

3.5 0 35 11 0 4 0 43 15 1

4 0 35 11 1 4 0 43 13 1

5 0 43 11 1 3.5 0 35 11 0

4 0 35 11 1

5 0 43 11 1

5.5 70 50 19 0

3.5 0 25 11 0
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Table 2.16 Mixture: pyre-
thrin plus piperonyl; n is the
number of beetles exposed
and Y is number of beetles
killed

Mixture

1.5 150 138

1.06 149 75

0.75 150 32

1.35 151 129

1.03 151 65

0.8 150 19

3.3 149 143

3.07 150 112

2.9 140 37

10.65 150 141

10.46 150 117

10.32 149 56

0 200 1

Table 2.17 Results of the experiment with carbon disulfide

Dose Number of exposed beetles Number of dead beetles Proportion of dead beetles

49.1 59 6 0.102

53 60 13 0.217

56.9 62 18 0.29

60.8 56 28 0.5

64.8 63 52 0.825

68.7 59 53 0.898

72.6 62 61 0.984

76.5 60 61 1

Exercise 2.6.4 The objective of this experiment was to model the probability of
mortality of the toxic effect of carbon disulfide (CS2) gas on beetles. The insects
were exposed to various concentrations of this gas (in mf/L) for 5 hours (Bliss 1935),
and, then the number of dead beetles (Y ) was counted. The data are shown below
(Table 2.17).

(a) List and describe the components of the GLM (distribution, systematic compo-
nent (predictor), and the link function).

(b) Fit the model according to part (a).
(c) Interpret your results.

Exercise 2.6.5 A study was conducted to assess the fowlpox virus in chorioallantois
by the Pock counting technique. The membrane Pock count for 50 embryos exposed
to one of four dilutions of virus (multiples of 10ˆ(-3.86)). The FD column heading
corresponds to the dilution factor and the number of Pocks observed (Table 2.18).
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Table 2.18 Results of the fowl pox experiment

FD Count FD Count FD Count FD Count

0.125 1 0.25 5 0.5 5 1 12

0.125 2 0.25 2 0.5 11 1 9

0.125 2 0.25 3 0.5 7 1 11

0.125 3 0.25 2 0.5 5 1 17

0.125 2 0.25 5 0.5 4 1 11

0.125 2 0.25 0 0.5 6 1 10

0.125 1 0.25 2 0.5 5 1 8

0.125 0 0.25 2 0.5 9 1 16

0.125 0 0.25 0 0.5 4 1 15

0.125 1 0.25 3 0.5 7 1 12

0.125 2 0.25 2 0.5 4

0.125 1 0.25 2 0.5 8

0.125 1 0.5 4

0.125 2

0.125 1

Table 2.19 Number of
reversed Salmonella TA98
colonies

Quinoline dosage (μg/placa)

0 10 33 100 333 1000

15 16 16 27 33 20

21 18 26 41 38 27

19 21 33 60 41 42

(a) List and describe the components of the GLM (distribution, systematic compo-
nent (predictor), and the link function).

(b) Fit the model according to part (a).
(c) Interpret your findings.

Exercise 2.6.6 Data were provided by Margolin et al. (1981) from an Ames
Salmonella reverse mutagenicity assay. The table shows the number of reversed
colonies observed on each of the three plates (repeats) tested at each of the six
quinoline dose levels. The focus is on testing for mutagenic effects over time in the
excess variation typically observed between counts (Table 2.19).

(a) List and describe the components of the GLM (distribution, systematic compo-
nent (predictor), and the link function).

(b) Fit the model according to part a).
(c) Interpret your results.
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Appendix

Students infected with a certain disease

id Day Students id Day Students id Day Students

1 1 6 45 45 3 89 95 1

2 2 8 46 46 3 90 96 0

3 3 12 47 48 3 91 96 0

4 3 9 48 48 2 92 97 1

5 4 3 49 49 3 93 98 1

6 4 3 50 49 1 94 100 2

7 4 11 51 53 3 95 101 2

8 6 5 52 53 3 96 102 1

9 7 7 53 53 5 97 103 1

10 8 3 54 54 4 98 104 1

11 8 8 55 55 4 99 105 1

12 8 4 56 56 3 100 106 0

13 8 6 57 56 5 101 107 0

14 12 8 58 58 4 102 108 0

15 14 3 59 60 3 103 109 1

16 15 6 60 63 5 104 110 1

17 17 3 61 65 3 105 111 0

18 17 2 62 67 4 106 112 0

19 17 2 63 67 2 107 113 0

20 18 6 64 68 3 108 114 0

21 19 3 65 71 3 109 115 0

22 19 7 66 71 1

23 20 7 67 72 3

24 23 2 68 72 2

25 23 2 69 72 5

26 23 8 70 73 4

27 24 3 71 74 3

28 24 6 72 74 0

29 25 5 73 74 3

30 26 7 74 75 3

31 27 6 75 75 4

32 28 4 76 80 0

33 29 4 77 81 3

34 34 3 78 81 3

35 36 3 79 81 4

36 36 5 80 81 0

37 42 3 81 88 2

38 42 3 82 88 2

39 43 3 83 90 1

40 43 5 84 93 1
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Students infected with a certain disease

id Day Students id Day Students id Day Students

41 44 3 85 93 2

42 44 5 86 94 0

43 44 6 87 95 2

44 44 3 88 95 1
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Chapter 3
Objectives of Inference for Stochastic
Models

Throughout this book, we have been using the pseudonym GLMMs to denote
generalized linear mixed models. The common denominator among all these models
is that they all contain a linear model (LM) part, which refers to the fixed effects
component of the linear predictor Xβ. In a GLMM, the prefix “G” indicates that the
distribution of observations may not be normal, the suffix of the first M means that
the linear predictor includes mixed effects and thus contains random effects, which
are expressed by the term “Zb.” The fixed linear component of the predictor Xβ is
important because the fixed effects describe the treatment design, which, in turn, is
determined by the objectives or the initial research questions that the study wishes to
answer. Therefore, if the researcher proposes using a reasonable model to analyze an
experiment, then he/she must be able to express each objective as a question about a
model parameter or as a linear combination of model parameters.

Example Assume a factorial 2 × 2 model, with two levels in both factors A and B,
in which all possible combinations are tested. In this case, Xβ corresponds to a
two-way model with interaction and a predictor given by

ηij = μþ αi þ βj þ αβð Þij; i, j= 1, 2

As in all the statistical models studied so far, the linear predictor is expressed in
terms of the link function, and ηij can estimate the mean μij (a combination of
treatments) directly if the data follow a normal distribution and indirectly if the
data are not normally distributed. For this example, the inference should focus on
one or more of the following options (estimable functions): a treatment combination
mean; a main effect mean; the mean of factor A, which is the average of the overall
levels of factor B or vice versa; the difference of the main effects or the difference of
a single effect, i.e., the difference between two levels of factor A at a given level of B
or the difference between two levels of factor B at a given level of factor A; and so
on. Each of these options can be expressed in terms of the parameters of the linear
predictor, as shown in Table 3.1.
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Table 3.1 Estimable functions in a factorial 2 × 2 treatment structure using the identity link
function

Target estimate Parameter estimator of the linear predictor

Target estimation in
terms of the expected
value

Combination A × B η + αi + βj + (αβ)ij μij
Main effect of factor A �ηi: = ηþ αi þ 1

2
j
βj þ 1

2
j

αβð Þij �μi: =
1
2

j
μij

Main effect of factor B �η:j = ηþ 1
2

i
αi þ βj þ 1

2
i

αβð Þij �μ:j =
1
2

i
μij

Difference between
level 1 and level 2 of
factor A

�η1: - �η2: = α1 - α2 þ 1
2

j
αβð Þ1j -

j
αβð Þ2j

�μ1: - �μ2:

Difference between
level 1 and level 2 of
factor B

�η:1 - �η:2 =
1
2

i
αβð Þi1 -

i
αβð Þi2 þ β1 - β2

�μ:1 - �μ:2

Simple effect of A
given Bj (A|Bj)

η1j - η2j = α1 - α2 + (αβ)1j - (αβ)2j μ1j - μ2j

Simple effect of B
given A (B|Ai)

ηi1 - ηi2 = (αβ)i1 - (αβ)i2 + β1 - β2 μi1 - μi2

Interaction between
factors A and B
(A × B) = A|B1 - A|B2

=B A1 - B A2

(η11 - η21) - (η12 - η22) = (αβ)11 - (αβ)21
- (αβ)12 + (αβ)22= (η11 - η12) - (η21 - η22)

μ11 - μ12 - μ21 + μ22

Assuming that the data have a normal distribution, which is equivalent to using an
identity link function, the estimator, in terms of the linear predictor (column 2),
estimates the expected values of column three. If the data do not follow a normal
distribution, then column 2 indirectly estimates the expected values of column three,
and, in order to estimate the expected values, link functions are required. For link
functions other than identity, the estimates in column two require a more careful
handling. In an experimental design with a factorial treatment structure, the analysis
should focus on the interaction of the two factors. If this interaction is significant,
then the simple effects are not equal; however, if the interaction is not significant,
then the main effects provide useful information; otherwise, the main effects are
confounded. Therefore, for this reason, in this case, it is better to focus on the simple
effects.

3.1 Three Aspects to Consider for an Inference

When constructing a model, the researcher must decide whether the effects are fixed
or random. This decision has important implications with respect to the estimation
criteria and in the interpretation of the tests and estimates obtained. Given these
implications, three important aspects, described in the following sections, must be
taken into consideration in statistical modeling.
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3.1.1 Data Scale in the Modeling Process Versus
Original Data

This is a very particular issue for models with a link function other than “identity,”
since the scale of the data used in the modeling process is not always the same as the
scale of the original data when the assumption of normality in the response variable
is no longer valid. When the data are normally distributed, the estimable function
directly estimates the expected value. However, this is not true if the data follow a
non-normal distribution. For example, in a logistic model for binomial data in a
completely randomized design, the estimable function η + τi estimates a logit or
“log” odds. In this vein, η + τi must be expressed as a probability and not as a logit,
i.e., the expected value for individuals receiving the ith treatment is a probability.
This requires converting the estimate to a probability, using the inverse link; that is:

πi =
1

1þ e- ηþτið Þð Þ

Thus, for functions other than “identity,” there are two ways of expressing the
estimates: (1) in terms of the parameters directly estimated from the GLMM (model
scale) or (2) in terms of the expected value of the response variable (data scale).

3.1.2 Inference Space

This problem arises only when the linear predictor contains random effects. In these
models, the estimates are obtained through a linear combination (an estimable
function) with fixed effects, even though the linear predictor contains random
effects. K′β denotes the estimable function, where K is the matrix of order
[( p + 1) × k] and β is the vector of fixed effects parameters of order [( p + 1) × 1].
The estimable function (K′β) represents a broad inference as it generalizes results to
the entire population represented by the random effects.

Although the linear combination K′β + Z′b is a predictable function with Z′, a
matrix for random effects with nonzero coefficients, its inference is limited to only
those levels defined in b. Suppose that you are conducting an experiment with three
treatments at different locations (L ), then the estimable function τ1 - τ2 provides
information for the inference about the difference between treatments 1 and 2 in the
whole population under study. Although the predictable function [τ1 - τ2 + (Lτ)1j -
(Lτ)2j] constrains the inference space between treatments 1 and 2, it is limited to
location (Lj). The type of inference produced by predictable functions is called
“narrow inference” because the nonzero coefficients in matrix Z reduce the scope
of inference for the entire population at those levels identified in Z. Thus, the
predictive function K′β + Z′b should be used for specific estimates, whereas the
estimable function K′β should be used for valid estimates for the entire population
under study.
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3.1.3 Inference Based on Marginal and Conditional Models

As mentioned in the previous chapter, the specification of a generalized linear mixed
model (GLMM) is done in terms of two probability distributions: (1) the distribution
of the observations, given the random effects y j b and (2) the distribution of the
random effects b. This feature is very particular to Gaussian (and non-Gaussian)
mixed models (MMs), for this reason, it is also valid for mixed models with response
variables that are different from a normal distribution.

From the probability theory, the marginal probability distribution of data (y) can
be obtained by integrating over the random effects, b, from the joint probability
distribution of y and b. Of the two distributions, the marginal distribution of data is
the only one that can be known and observable. Many non-Gaussian mixed models,
which seem reasonable, do not distinguish between the distribution of y j b and y.
Models that do not make this distinction are called marginal models. Estimates
obtained by marginal models have different expected values compared to those
produced by conditional models. Therefore, marginal models are not estimated in
the same way as conditional models.

3.2 Illustrative Examples of the Data Scale
and the Model Scale

In linear models, inference begins with the estimable function K′β, and, these
models, in turn, are defined in terms of the linear function η = g(μ) = Xβ (if there
are no random effects) and η = Xβ + Zb (if there are random effects in the model),
whereas K′β produces results in terms of the link function.

For linear normal response models such as LMs and LMMs, the link function is
not visible because they use the “identity” function as the link. Linear combinations
of model parameters directly estimate desired values such as differences between
treatments and many other hypothesis tests of interest. Inference for an LM is
straightforward.

For GLMs and GLMMs with a non-normal response, the estimation of K′β yields
a linear combination of elements of the linear predictor η, which is a linear combi-
nation of g(μ), typically a nonlinear function of μ. For example, with Poisson data the
K′β is a function of logarithm (log) and for binomial data, it is a function of logit or
probit. However, most of the time, the researcher wants to see the binomial results
expressed in terms of the probability of the outcome of interest, whereas for Poisson,
the results are expressed in terms of counts. This means that since both GLMs and
GLMMs carry out the estimation process on the scale of the model (depending on the
link used) to report the results of interest in terms of the scale of the data, it is
necessary to apply the inverse link to the predictor in terms of the model scale to
express the results. To mention two examples, in the case of the logit link for
binomial, the results are expressed in terms of probability and, in the case of the



Poisson model, they are expressed in terms of counts. To exemplify the model scale
and the data scale, an example is shown below.
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Table 3.2 Percentage of germinated seeds (Y ) out of total seeds (N )

Treatment (Trt) Y (no. of germinated seeds) N (total no. of seeds)

Trt1 54 70

Trt1 41 60

Trt1 52 70

Trt2 28 70

Trt2 22 60

Trt2 21 70

Trt3 41 70

Trt3 37 60

Trt3 47 70

Example 3.1 Consider the following experiment in which three chemical seed coat
softeners were tested for studying their effect on germination of tomato seeds in
Styrofoam trays (Table 3.2).

To illustrate the above two concepts, we first analyze these data using a
completely randomized design (CRD), assuming the response variable to be normal,
and, then, we analyze the same experimental design but with a binomial response
variable. We are interested in comparing the means of treatments using a completely
randomized design. Note that for demonstrative purposes, we are assuming that
Y has a normal distribution, when in fact it has a binomial distribution.

The components of this model are defined as follows:

Distribution: yij~N(μi, σ
2)

Linear predictor: ηi = η + τi; (i = 1, 2, 3)
Link function: ηi = μi (identity link)

The analysis of variance (ANOVA) (part (a)) and estimated parameters (part (b))
of this experimental design indicate that there is a highly significant difference
between the treatments (P = 0.0033) for the germination of tomato seeds.
Table 3.3 shows part of the results.

The estimated parameter values of the model, except for treatment three, are
shown in the table above (obtained with the “solution” command) because the model
is over-parameterized. The estimable functions K′β for the treatment means are as
follows:

K0 =
1 1 0 0
1 0 1 0
1 0 0 1

; β=
η
τ1
τ2
τ3
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Table 3.3 Results of the analysis of variance using a CRD

(a) Type III tests of fixed effects

Effect Num degree of freedom (DF) Den DF F-value Pr > F

Trt 2 6 17.25 0.0033

(b) Parameter estimates

Effect Trt Estimate Standard error DF t-value Pr > |t|

Intercept η̂ 41.6667 3.1388 6 13.27 <0.0001

Trt Trt1 τ̂1 7.3333 4.4389 6 1.65 0.1496

Trt Trt2 τ̂2 -18.0000 4.4389 6 -4.06 0.0067

Trt Trt3 τ̂3 0. .. .

Scale 29.5556 17.0639. . .

From the estimated treatment parameters �τi = �μi = η̂þ τ̂i, we can obtain the
estimated mean for each one of the treatments (i = 1, 2, 3) as follows: for treatment
1, �τ1 = η̂ τ̂1 = 41:6667 7:3333= 49; for treatment
2, �τ2 = η̂ τ̂2 = 41:6667- 18= 23:6667; and for treatment
3, �τ3 = η̂ τ̂3 = 41:6667 0= 41. The value of the mean squared error (σ̂2),
which appears in the table as “Scale,” is 29.5556.

For the difference between treatments, the τi - τi′ values for i ≠ i′are as follows:
�τ1 -�τ2 = η̂þ τ̂1 - η̂þ τ̂2ð Þ= τ̂1 - τ̂2 = 7:3333- - 18ð Þ= 25:3333,�τ1 -�τ3 = η̂þ τ̂1
- η̂þ τ̂3ð Þ= τ̂1 - τ̂3 = 7:333- 0:0= 7:3333, and �τ2 -�τ3 = η̂þ τ̂2 - η̂þ τ̂3ð = τ̂2
- τ̂3 = - 18:00- 0:0= - 18:0. These estimates can be obtained using the Statis-
tical Analysis Software (SAS) “estimate” and “lsmeans” commands, as shown
below:

proc glimmix data=germi;
class trt;
model y=trt / solution;
lsmeans trt / diff e;
estimate 'lsm trt 1' intercept 1 trt 1 0;
estimate 'lsm trt 2' intercept 1 trt 0 1;
estimate 'lsm trt 3' intercept 1 trt 0 0 1;
estimate 'overall mean' intercept 1 trt 0.33333 0.33333 0.33333
0.33333;
estimate 'overall mean' intercept 3 trt 1 1 1 1 / divisor=3;
estimate 'trt diff 1&2' trt 1 -1 0;
estimate 'trt diff 2&3' trt 0 1 -1;
run;

The “estimate” command requires us to specify what we wish to estimate and the
“intercept” command refers to the intercept (η) and “Trt” to the treatment (τi) effects
under evaluation; the coefficients needed for the estimates are shown above. While
the “lsmeans” command invokes GLIMMIX in SAS to estimate the treatment
means, “diff” asks to estimate the differences between pairs of treatments, and “E”
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displays the coefficients of the estimable functions used in “lsmeans.” Some of the
outputs of the above code are shown in Table 3.4.
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Table 3.4 Results obtained using the “estimate” and “lsmeans” commands

(a) Differences of Trt least squares means

Trt Trt Estimate Standard error DF t-value Pr > |t|

Trt1 Trt2 25.3333 4.4389 6 5.71 0.0013

Trt1 Trt3 7.3333 4.4389 6 1.65 0.1496

Trt2 Trt3 -18.0000 4.4389 6 -4.06 0.0067

(b) Estimates

Label Estimate Standard error DF t-value Pr > |t|

LSM Trt 1 49.0000 3.1388 6 15.61 <0.0001

LSM Trt 2 23.6667 3.1388 6 7.54 0.0003

LSM Trt 3 41.6667 3.1388 6 13.27 <0.0001

Overall mean 38.1111 1.8122 6 21.03 <0.0001

Overall mean 38.1111 1.8122 6 21.03 <0.0001

Trt diff 1&2 25.3333 4.4389 6 5.71 0.0013

Trt diff 2&3 -18.0000 4.4389 6 -4.06 0.0067

Next, we analyze the same data, also using a CRD, but now assuming a binomial
distribution in the response variable. N indicates the independent number of
Bernoulli trials observed in the ijth observation. The components of the model are
as follows:

Distribution: yij~Binomial(Nij, πi)
Linear predictor: ηi = η + τi; (i = 1, 2, 3)

Link function: ηi = logit πi
1- πi

(logit link)

Fitting these data in a binomial model, the fixed effects solution of the parameters
obtained in terms of the model scale are tabulated in Table 3.5.

The above results were obtained using the following SAS code:

proc glimmix data=germi;
class trt;
model y/n=trt / solution;
run;

Similar to the previous example, we can estimate the mean of treatments and the
differences between two pairs of treatments. The linear predictors for the treatments
are as follows: η̂1 = η̂þ τ̂1 = 0:5108þ 0:5093= 1:0201, η̂2 = η̂þ τ̂2 = 0:5108-
1:108= - 0:5971, and η̂3 = η̂þ τ̂3 = 0:5108þ 0:0= 0:5108, and, for the differ-
ences between treatments (1 and 2, 1 and 3, and 2 and 3), they are as follows:
η̂1 - η̂2 = 1:0201- - 0:5971 = 1:6173, η̂1 - η̂3 = 1:0201- 0:5108= 0:5093, and
η̂2 - η̂3 = - 0:5971- 0:5108= - 1:1079, respectively
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Table 3.5 Estimated parameters at the model scale

Parameter estimates

Effect Trt Estimate Standard error DF t-value Pr > |t|

Intercept η̂ 0.5108 0.1461 6 3.50 0.0129

Trt Trt1 τ̂2 0.5093 0.2168 6 2.35 0.0571

Trt Trt2 τ̂2 -1.1080 0.2078 6 -5.33 0.0018

Trt Trt3 τ̂3 .

Using the relationship between the linear predictor and the link function ηi =

logit πi
1- πi

= log πi
1- πi

, we can estimate the probability of observing a favorable

outcome for each of the treatments, that is, π1, π2, and π3, respectively. Applying the
inverse link, we obtain:

π̂1 = 1= 1þ e- η̂þτ̂1ð Þ ; π̂2 = 1= 1þ e- η̂þτ̂2ð Þ ; and π̂3 = 1= 1þ e- η̂þτ̂3ð Þ

Substituting the corresponding values, we obtain

π̂1 = 1= 1þ e- η̂þτ̂1ð Þ = 1= 1þ e- 1:0201 = 0:735,

π̂2 = 1= 1þ e- η̂þτ̂2ð Þ = 1= 1þ e- - 0:5971ð Þ = 0:355, and

π̂3 = 1= 1þ e- η̂þτ̂3ð Þ = 1= 1þ e- 0:5108ð Þ = 0:625

Here, we can see that the treatment with the highest probability of success is
treatment one, followed by treatment three, whereas treatment two has the lowest
probability of success. Now, for the difference between two treatments, τi - τi′ for
i ≠ i′, we can estimate the logarithm of the odds ratio as

τi - τi0 = log
πi

1- πi
- log

πi0
1- πi0

= log πi
1- πi=

πi0
1- πi0

where, in this particular case, odds= πi
1- πi

is the odds of the treatment i and

oddsratio= log πi
1- πi=

πi0 is the odds ratio for treatments i and i′, for i ≠ i′.

When applying the inverse link to the above expression (odds ratio), we get

Oddsratio= 1= 1þe
- τ̂i - τ̂i0ð Þ
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The value of the odds ratios for treatments 1 and 3 is

Oddsratio1- 3 = 1= 1þe- τ̂1 - τ̂3ð Þ = 1 1þe- 0:5093ð Þ= 0:6246

Similarly, for the pair of treatments 1–2 and 2–3, the resulting odds ratios are
Oddsratio1 - 2= 0.8344 and Oddsratio2 - 3= 0.2483, respectively. It is important to
mention that the odds ratios are not the mean of the difference of πi - πi′for i ≠ i′.

From the previous example, it is clear that when the response variable is not
normal, parameter estimation and inference occurs at two levels. The linear predictor
Xβ and the estimable function K′β are expressed in terms of the link function, logit –
estimates on the model scale (scale of the link function) – as in the above example.
Under the logit link, the logarithm of the odds and the difference of the estimate (log
odds ratio) are very common and useful terms in categorical data analysis for the
estimation of treatments or treatment differences in terms of the data scale.

Commonly, estimation at the model scale in GLMs is not very easy to interpret,
and, as such, the data scale plays a very important role. A data scale involves
applying the inverse of the link function to the estimable function, K′β, as we did
in the previous example to convert the log of the odds for each treatment to a
probability. In general, we use the inverse of the link function to transform the
estimates at the model scale to the data scale. The inverse of the link function is not
used for estimating the differences between treatments because the link functions are
generally nonlinear. This is why the inverse of the link function is not applied to the
differences between treatments because it produces meaningless results.

Thus, in the logit model, we have two approximations for the difference. First, we
could apply the inverse of the link function to each linear predictor for each treatment
and then take the difference between probabilities: π̂i - π̂i ′ . That is, we can estimate
the difference between πi - πi′ through 1= 1þ e- ηþτið Þ - 1= 1þ e- ηþτi0ð

and not as 1= 1þ e- τ̂i - τ̂i0ð Þ . Second, we know that τi - τi′ estimates the
logarithm of the odds ratio by means of e τi - τi0ð Þ, which produces an estimate of
the odds ratio. Both approaches are valid, and the use of one approach or the other
depends on the requirements of the particular study.

With the GLIMMIX procedure, we can implement the solution in terms of the
data scale with the “ilink,” “exp,” and “oddsratio” commands, as shown in the
following SAS code:

proc glimmix;
class trt;
model y/n=trt / solution oddsratio;
lsmeans trt / diff oddsratio ilink ;
estimate 'lsm trt 1' intercept 1 trt 1 0/ilink;
estimate 'lsm trt 2' intercept 1 trt 0 1/ilink;
estimate 'lsm trt 3' intercept 1 trt 0 0 1/ilink;
estimate 'overall mean' intercept 1 trt 0.33333 0.33333 0.33333
0.33333/ilink;
estimate 'overall mean' intercept 3 trt 1 1 1 1 / divisor=3 ilink;
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estimate 'trt diff 1&2' trt 1 -1 0/ oddsratio ilink;
estimate 'trt diff 1&3' trt 1 0 -1/oddsratio ilink;
estimate 'trt diff 2&3' trt 0 1 -1/oddsratio ilink;
estimate 'trt diff 1&2' trt 1 -1 0/exp;
estimate 'trt diff 1&3' trt 1 0 -1/exp;
estimate 'trt diff 2&3' trt 0 1 -1/exp;
run;

Part of the output of “proc GLIMMIX” is shown in Table 3.6. The “Odds ratio
estimates” (part (a)) are the result of the “oddsratio” command in the previous
program, whereas the confidence intervals are provided by default.

What appears under “Estimate” (in part (b)) is in the model scale η̂i = η̂þ τ̂i, and
what appears under “Mean” (in part (b)) is an estimate of the inverse of the link
function π̂i = 1= 1þ e- η̂þτ̂ið Þ and, in this case, is a probability that corresponds to
the data scale. Similarly, what appears under “Estimate” is in model scale τ̂i - τ̂i0 ,
whereas the “Odds ratio” values were estimated using e τi - τi0ð Þ and are in data scale.

Under “Estimates” column in Table 3.7, the log odds ratio appears as an
“Exponentiated estimate” regardless of whether we use the “oddsratio” or “exp”
option in the “estimate” command. For the overall mean, the inverse of the link
function applied to η̂þ 1

3 τ̂1 þ τ̂2 þ τ̂3ð Þ is 0.5772, which is totally different from the
average of π̂is; that is, 13 π̂1 þ π̂2 þ π̂3ð Þ= 1

3 0:735þ 0:355þ 0:655ð = 0:5816. This
illustrates that we have to be extremely careful when using the output of proc
GLIMMIX, as it can produce outputs in terms of both the model scale and the
data scale through the application of the inverse of the link function; however, this
has to be applied appropriately, otherwise, we will get meaningless results.

Example 3.2: Randomized complete block design (RCBD) with normal
and binomial responses
Now, assume that we have the same example but in an RCBD. The three treatments
were tested in each of the blocks, as shown in Table 3.8.

In this example, first, the data are analyzed assuming a normal response and
assuming that the block effect is fixed; then, they are analyzed assuming a binomial
response.

The model components under a Gaussian response variable are as follows:

Distribution: yij ~ N(μij, σ
2)

Linear predictor: ηij = η + τi + blockj; (i, j = 1, 2, 3)
Link function: ηij = μij; (identity link)

From the theory of linear models, we know that we can estimate the ith treatment
mean through

�ηi • = 1=3

3

j= 1

yij = ηþ τi þ 1=3

3

j= 1

blockj = ηþ τi þ bloq •
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Table 3.6 Results of the “ilink,” “exp,” and “oddsratio” commands

(a) Odds ratio estimates

Trt Trt Estimate DF 95% confidence limits

Trt1 Trt3 1.664 6 0.979 2.829

Trt2 Trt3 0.330 6 0.199 0.549

(b) Trt least squares means

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error Mean

Trt1 1.0201 0.1602 6 6.37 0.0007 0.7350 0.03121

Trt2 -0.5971 0.1478 6 -4.04 0.0068 0.3550 0.03384

Trt3 0.5108 0.1461 6 3.50 0.0129 0.6250 0.03423

(c) Differences of Trt least squares means

Trt Trt Estimate Standard error DF t-value Pr > |t| Odds ratio

Trt1 Trt2 1.6173 0.2180 6 7.42 0.0003 5.039

Trt1 Trt3 0.5093 0.2168 6 2.35 0.0571 1.664

Trt2 Trt3 -1.1080 0.2078 6 -5.33 0.0018 0.330

Table 3.7 Estimates at the model scale and at the data scale

Estimates

Label Estimate
Standard
error DF t Value Pr> |t| Mean

Standard
error
Mean

Exponentiated
estimate

LSM
Trt 1

1.0201 0.1602 6 6.37 0.0007 0.7350 0.03121

LSM
Trt 2

-0.5971 0.1478 6 -4.04 0.0068 0.3550 0.03384

LSM
Trt 3

0.5108 0.1461 6 3.50 0.0129 0.6250 0.03423

Overall
Mean

0.3113 0.08746 6 3.56 0.0119 0.5772 0.02134

Trt diff
1&2

1.6173 0.2180 6 7.42 0.0003 0.8344 0.03011 5.0393

Trt diff
1&3

0.5093 0.2168 6 2.35 0.0571 0.6246 0.05083 1.6642

Trt diff
2&3

-1.1080 0.2078 6 -5.33 0.0018 0.2483 0.03878 0.3302

Trt diff
1&2

1.6173 0.2180 6 7.42 0.0003 5.0393

Trt diff
1&3

0.5093 0.2168 6 2.35 0.0571 1.6642

Trt diff
2&3

-1.1080 0.2078 6 -5.33 0.0018 0.3302
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Table 3.8 Percentage of germinated seeds (Y ) out of total seeds (N ) in a randomized complete
block design

Treatment Block Y (no. of germinated seeds) N (total no. of seeds)

Trt1 Block1 54 70

Trt1 Block2 41 60

Trt1 Block3 52 70

Trt2 Block1 28 70

Trt2 Block2 22 60

Trt2 Block3 21 70

Trt3 Block1 41 70

Trt3 Block2 37 60

Trt3 Block3 47 70

where bloq • = 1=3

3

j= 1
blockj:

For the mean difference of two treatments i and i’, this is estimated as

�ηi • - �ηi ′ • = ηþ τi þ �bloq • - ηþ τi0 þ �bloq •ð Þ= τi - τi ′

The goal of this experiment could be to compare the treatment means, that is,
�η1: = �η2: = �η3:, equivalently – this can be expressed as τ1 = τ2 = τ3 – or to compare
one treatment with the average of the other treatments: for example, to compare
treatment 1 with the averages of treatments 2 and 3 (Trt1.vs.average.Trt2.and.Trt3).

For the hypothesis test of the equality of treatments (τ1 = τ2 = τ3), the estimable
function K′β is given by:

K ′ =
0 1 0 - 1 0 0 0
0 0 1 - 1 0 0 0

; β=

η
τ1
τ2
τ3

bloq1
bloq2
bloq3

While for contrasts Trt1.vs.average.Trt2.and.Trt3 and Trt2.vs.average.Trt1.and.
Trt3, K′β is given by

Trt1:vs:average:Trt2:and:Trt3= �η1 • - 1=2 �η2 • þ �η3 •ð Þ= τ1 -
τ2 - τ3

2

Trt2:vs:average:Trt1:and:Trt3= �η2 • -
1=2ð�η1 • þ �η3 • Þ= τ2 -

τ1 - τ3
2
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K ′ =
0 2 - 1 - 1 0 0 0
0 1 - 2 1 0 0 0

; β=

η
τ1
τ2
τ3

bloq1
bloq2
bloq3

The following GLIMMIX procedure allows us to implement the above example.

proc glimmix;
class trt block;
model y = trt block/solution;
lsmeans trt / diff e;
estimate 'lsm trt1' intercept 3 trt 3 0 0 0 block 1 1 1 / divisor=3;
estimate 'overall mean' intercept 3 trt 1 1 1 1 block 1 1 1 1 / divisor=3;
estimate 'average trt1&trt2' intercept 6 trt 3 3 0 block 2 2 2 /
divisor=6;
estimate 'average trt1&trt2&trt3' intercept 9 trt 3 3 3 3 block 3 3 3 3
3/divider=9;
estimate 'trt1 vs trt2' trt 1 -1 0 ;
estimate 'trt1 vs trt3' trt 1 0 -1;
estimate 'trt2 vs trt3' trt 0 1 -1;
estimate 'trt1 vs trt2' trt 1 -1 0, 'trt1 vs trt3' trt 1 0 -1, 'trt2 vs
trt3' trt 0 1 -1/divisor=1,1,1 adjust=sidak;
contrast 'trt1 vs trt2' trt 1 -1 0 ;
contrast 'trt1 vs trt3' trt 1 0 -1;
contrast 'trt2 vs trt3' trt 0 1 -1;
contrast 'trt1 vs average trt1,trt2' trt 2 -1 -1;
contrast 'trt2 vs average trt1,trt3' trt -1 2 -1;
contrast 'type 3 trt ss' trt 1 0 -1 0,trt 0 1 -1;
contrast 'type 3 trt test' trt 2 -1 -1,trt -1 2 -1;
run;

Part of the GLIMMIX output is shown below in Table 3.9. Parameter estimation
for treatments 1–2 and blocks 1–2 are shown below, except for treatment and block
3. This is because it is an incomplete rank model. The generalized inverse is used in
the estimation through the SWEEP operator of SAS. In this case, it sets the last class
effect equal to zero (Table 3.9).

“Coefficients” (part (a) of Table 3.10) obtained with option E for the least squares
means of treatments in “lsmeans” shows how SAS uses this information in the
parameter solution to calculate the treatment means (part (b)). In part (c), we can see
the difference of means obtained with the “diff” option in “lsmeans.”

The estimates obtained from the “estimate” command with multiple estimable
functions and in the “Sidak” adjustment and contrasts are shown in Table 3.11. This
adjustment allows us to control for type I errors. The “adjust” option in “estimate” in
the Sidak adjustment (part (b)) allows us to obtain the adjusted P-values denoted as
AdjP in addition to Pr > |t|.
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Table 3.9 Estimation of treatment and block parameters

Parameter estimates

Effect Trt BLOCK Estimate Standard error DF t-value Pr > |t|

Intercept η̂ 43.5556 3.1866 4 13.67 0.0002

Trt τ̂1 1 7.3333 3.4907 4 2.10 0.1036

Trt τ̂2 2 -18.0000 3.4907 4 -5.16 0.0067

Trt τ̂3

BLOCK ^block1 1 1.0000 3.4907 4 0.29 0.7887

BLOCK ^block2 2 -6.6667 3.4907 4 -1.91 0.1288

BLOCK ^block3

Scale σ̂2 18.2778 12.9243

Table 3.10 Coefficients for
treatment and block used in
least squares

(a) Coefficients for Trt least squares means

Effect Trt BLOCK Row1 Row2 Row3

Intercept 1 1 1

Trt 1 1

Trt 2 1

Trt 3 1

BLOCK 1 0.3333 0.3333 0.3333

BLOCK 2 0.3333 0.3333 0.3333

BLOCK 3 0.3333 0.3333 0.3333

(b) Trt least squares means

Trt Estimate Standard error DF t-value Pr > |t|

1 49.0000 2.4683 4 19.85 <0.0001

2 23.6667 2.4683 4 9.59 0.0007

3 41.6667 2.4683 4 16.88 <0.0001

(c) Differences of Trt least squares means

Trt _Trt Estimate Standard error DF t-value Pr > |t|

1 2 25.3333 3.4907 4 7.26 0.0019

1 3 7.3333 3.4907 4 2.10 0.1036

-18.0000 3.4907 4 -5.16 0.0067

The planned contrasts in matrix K′ and with the F-values obtained with the
“contrast command” produce the same results (part (c)).

Now, the same dataset is fitted using the same predictor but assuming that the
response variable is binomial. This analysis intends to show the options available in
the SAS commands when you want to fit non-normal responses; in this case, it is
binomial. Practically, the same commands used in the previous program with normal
data are used, but, now, some other options (“ilink,” “oddsratio,” or “exp”) are
exemplified with details under what circumstances they should be used. This is
because all estimable functions produce estimates at the model scale, and we must



decide what conversions are necessary to obtain the results at the data scale. Below,
the estimable functions and the appropriate conversion required to produce the
results on the data scale are listed.
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Table 3.11 Multiple estimates and contrasts

(a) Estimates

Label Estimate Standard error DF t-value Pr > |t|

LSM Trt1 49.0000 2.4683 4 19.85 <0.0001

Overall mean 38.1111 1.4251 4 26.74 <0.0001

Average Trt1&Trt2 36.3333 1.7454 4 20.82 <0.0001

Average Trt1&Trt2&Trt3 38.1111 1.4251 4 26.74 <0.0001

Trt1 vs Trt2 25.3333 3.4907 4 7.26 0.0019

Trt1 vs Trt3 7.3333 3.4907 4 2.10 0.1036

Trt2 vs Trt3 -18.0000 3.4907 4 -5.16 0.0067

(b) Estimate adjustment for multiplicity: Sidak

Label Estimate Standard error DF t-value Pr > |t| Adj P

Trt1 vs Trt2 25.3333 3.4907 4 7.26 0.0019 0.0057

Trt1 vs Trt3 7.3333 3.4907 4 2.10 0.1036 0.2796

Trt1 vs Trt3 -18.0000 3.4907 4 -5.16 0.0067 0.0200

(c) Contrasts

Label Num DF Den DF F-value Pr > F

Trt1 vs Trt2 1 4 52.67 0.0019

Trt1 vs Trt3 1 4 4.41 0.1036

Trt2 vs Trt3 1 4 26.59 0.0067

Trt1 vs average Trt1,Trt2 1 4 29.19 0.0057

Trt2 vs average Trt1,Trt3 1 4 51.37 0.0020

Type 3 Trt SS 2 4 27.89 0.0045

Type 3 Trt Test 2 4 27.89 0.0045

(a) Least squares means (“lsmeans”) for normal data and an inverse link (“ilink”) for
non-normal data

(b) Difference between pairs of treatment means of “lsmeans” for normal data and
“odds ratio” for non-normal data

(c) Estimation of the mean of a treatment (“estimate”) for normal data and an inverse
link (“ilink”) for non-normal data

(d) Estimation of a treatment i vs treatment i′: exponentiation (“exp”) (or odds ratio)
(e) Multiple estimates of treatment differences as “exp” (or odds ratio) for

non-normal data
(f) In “contrast estimation,” conversion to the data scale is not necessary, since it is

only an F-statistic test.

The following GLIMMIX program shows how to implement this model with a
binomial response.
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proc glimmix;
class trt block;
model y/n = trt block/solution oddsratio;
lsmeans trt / diff e oddsratio;
estimate 'lsm trt1' intercept 3 trt 3 0 0 0 block 1 1 1 1/divider=3 ilink;
estimate 'difference trt1 vs trt2' trt 1 -1 0/exp;
estimate 'avg trt1&trt2&trt3' intercept 9 trt 3 3 3 3 block 3 3 3 3
3/divider=9;
estimate 'trt1 vs trt2' trt 1 -1 0/exp;
estimate 'trt1 vs trt3' trt 1 0 -1/exp;
estimate 'trt2 vs trt3' trt 0 1 -1/exp;
estimate 'trt1 vs trt2' trt 1 -1 0, 'trt1 vs trt3' trt 1 0 -1, 'trt1 vs
trt3' trt 0 1 -1/exp adjust=sidak;
contrast 'trt1 vs trt2' trt 1 -1 0;
contrast 'trt1 vs trt3' trt 1 0 -1;
contrast 'trt2 vs trt3' trt 0 1 -1;
contrast 'trt1 vs average trt1,trt2' trt 2 -1 -1;
contrast 'trt2 vs average trt1,trt3' trt -1 2 -1;
contrast 'type 3 trt ss' trt 1 0 -1 0,trt 0 1 -1;
contrast 'type 3 trt test' trt 2 -1 -1,trt -1 2 -1;
run;

Part of the output is shown in Table 3.12. The estimated treatment and block
parameters of the model are given in part (a) of Table 3.12; the last two effects of
both classes were restricted to zero because they are incomplete rank design matri-
ces. In part (b), the type III tests of fixed effects and in part (c) the odds ratio
estimates are provided. Note that σ̂2 does not appear in the output because the
variance of the binomial distribution is not an independent parameter.

In Table 3.12 (parts (b) and (c)), which shows the sum of the squares of fixed
effects type III as well as the odds ratio, it can be seen that only the effect of
treatments is significant but not the effect of blocks, which indicates that it is valid
to analyze these data using a completely randomized design. Two sets of odds ratios
were estimated (part (c)): one for the treatment effects and the other for the block
effects in the model. In the calculation of odds ratios, generally, the last level of the
factor is compared with the rest of the levels of that same factor.

The estimates obtained with “estimate”, in Table 3.13 (parts (a) and (b)), are
results in terms of the model scale, whereas the last column is obtained by applying
EXP eτi - τi0 .

The least squares means for treatment and the linear predictors of treatment
differences (parts (a) and (b) of Table 3.14, respectively) obtained with “lsmeans”
are the values under the “Estimate” column, and, these, together with their
corresponding standard errors, were obtained using the linear predictor

η̂ij = η̂ τ̂i
^block • .

These estimates are on the model scale, whereas the values under the “Mean”
column and their respective standard errors were obtained by applying the inverse
link to obtain the probabilities of success of each treatment (π̂iÞ. While the estimated
linear predictors for the mean differences were obtained with the “oddsratio” option,
the mean difference in the data scale is obtained by taking the inverse of these
predictors.
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Table 3.12 Results of the analysis of variance in a binomial model

(a) Parameter estimates

Effect Trt BLOCK Estimate Standard error DF t-value Pr > |t|

Intercept η̂ 0.5099 0.1883 4 2.71 0.0536

Trt τ̂1 1 0.5097 0.2169 4 2.35 0.0785

Trt τ̂2 2 -1.1088 0.2079 4 -5.33 0.0059

Trt τ̂3

BLOCK ^block1 1 0.06541 0.2088 4 0.31 0.7698

BLOCK ^block2 2 -0.07205 0.2164 4 -0.33 0.7559

BLOCK ^block3
(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 2 4 29.55 0.0040

BLOCK 2 4 0.20 0.8258

(c) Odds ratio estimates

Trt BLOCK _Trt _BLOCK estimate DF 95% confidence limits

1 3 1.665 4 0.912 3.040

2 3 0.330 4 0.185 0.588

1 3 1.068 4 0.598 1.906

2 3 0.930 4 0.510 1.697

3.3 Fixed and Random Effects in the Inference Space

In an analysis, inference can be directed solely at fixed effects (population inference)
or at a combination of fixed and random effects (specific inference). To illustrate
these two levels of inferences, we will consider two examples:

3.3.1 A Broad Inference Space or a Population Inference

In practice, the random effects in a linear mixed model (LMM) should represent the
population from which the data were collected and should be included in studies as if
they came from a well-planned sample. In a model, random effects can be locations,
regions, states, blocks, and so on, and they have two very particular characteristics.

• Random effects represent the target population.
• Random effects have a probability distribution.

These two characteristics allow us to have a broad inference space where we can
calculate point estimates, estimate intervals, and perform hypothesis testing appli-
cable to the entire population represented by the random effects. Formally, an
estimate or hypothesis test based on an LMM indicates that we have a broad
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inference space defined by the estimable function K′β if Z is a matrix with coeffi-
cients equal to zero; otherwise, the estimation or hypothesis test is defined by the
prediction function K′β + Z′β, which is a specific inference.
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Table 3.14 Estimated linear predictors for treatments and treatment differences with their respec-
tive inverse values

(a) Trt least squares means

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error Mean

1 1.0174 0.1603 4 6.35 0.0032 0.7345 0.03127

-0.6011 0.1480 4 -4.06 0.0153 0.3541 0.03385

0.5077 0.1462 4 3.47 0.0255 0.6243 0.03429

(b) Differences of Trt least squares means

Trt _Trt Estimate Standard error DF t-value Pr > |t| Odds ratio

1 2 1.6184 0.2181 4 7.42 0.0018 5.045

1 3 0.5097 0.2169 4 2.35 0.0785 1.665

-1.1088 0.2079 4 -5.33 0.0059 0.330

3.3.2 Mixed Models with a Normal Response

In Example 3.2, the response variable was assumed as a function of fixed effects due
to treatments and blocks, since block effects were also assumed to be fixed effects.
Now, suppose that applications of treatments were done by three different people
(blocks); then, assuming that the block effects are fixed, this would be questionable
since each person does their job according to their experience, skill, and so forth.
Clearly, there is some variability between blocks that is not due to the experiment
and this has to be removed, so the effects due to blocks must be considered random.
In this example, let us assume that the three blocks (persons) were randomly selected
from a population. Thus, the components of the model are defined as follows:

Distribution:

(a) yij blockj ~ N(μij, σ
2)

(b) bloquej N 0, σ2block

Linear predictor: ηij = η + τi + blockj (i, j = 1, 2, 3)
Link function: ηij = μij (identity link)

Note the impact of changing the estimable function for the mean of treatments. In
Example 3.2, the estimable function was defined by Eð�yi • Þ= ηþ τi þ block • . Now
with the mixed model (fixed effects and random blocks), the estimable function is



defined by E �yi •ð Þ= ηþ τi because E(block) = 0. Therefore, the estimable function
for the mean in each of the treatments is η + τi. In this situation, two questions arise:
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• How much do the results obtained from a fixed effects model differ from those
obtained from a mixed model?

• How can we compare the two results?

The following program allows us to estimate a mixed model with a normal
response.

proc glimmix;
class trt block;
model y = trt /solution;
random block/solution;
lsmeans trt / diff e;
estimate 'lsm trt1' intercept 1 trt 1 0 0 0|block 0 0 0 0;
estimate 'lsm trt2' intercept 1 trt 0 1 0|block 0 0 0 0;
estimate 'lsm trt3' intercept 1 trt 0 0 0 1|block 0 0 0 0;
estimate 'blup trt1' intercept 3 trt 3 0 0 0|block 1 1 1 / divisor=3;
estimate 'blup trt2' intercept 3 trt 0 3 0|block 1 1 1 / divisor=3;
estimate 'blup trt3' intercept 3 trt 0 0 3|block 1 1 1 / divisor=3;
run;

In the previous SAS GLIMMIX code, the “estimate” command shows the
coefficients associated with the fixed effects before the vertical bar (j) and after the
vertical bar, are provided the coefficients for the random effects associated with the
model, that is:

K ′ βþ Z ′ b=
1 1 0 0
1 0 1 0
1 0 0 1

efectosfijos

η
τ1
τ2
τ3

þ
1 1 1
1 1 1
1 1 1

efectosaleatorios

block1
block2
block3

Part of the output is shown in Table 3.15. Subsection (a) shows the estimated
variance components due to blocks, and for conditional observations, the effect of
the blocks is σ̂2block = 11:2778, whereas the mean squared error (MSE) is
σ̂2 = 18:2778. On the other hand, the fixed effects solution obtained with the
“solution” option of the parameters is provided in part by (b). The analysis of
variance (part (c)) indicates that there is a significant difference between treatments
(P = 0.0045), and so the null hypothesis must be rejected (H0 : μ1 = μ2 = μ3).

The means estimated with the “estimate” statement, given that the mean block
effect is zero, the mean and the best linear unbiased predictor for each treatment are
similar, as shown in Table 3.16 (part (a)). Subsections (b) and (c) show the means
and differences between two means estimated with the “lsmeans” statement and the
“diff” option.
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Table 3.15 Variance components, fixed effects, and fixed effects test

(a) Covariance parameter estimates

Cov Parm Estimate Standard error

BLOCK 11.2778 17.8966

Residual 18.2778 12.9243

(b) Solutions for fixed effects

Effect Trt Estimate Standard error DF t-value Pr > |t|

Intercept 41.6667 3.1388 2 13.27 0.0056

Trt 1 7.3333 3.4907 4 2.10 0.1036

Trt 2 -18.0000 3.4907 4 -5.16 0.0067

Trt ..

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 2 4 27.89 0.0045

3.4 Marginal and Conditional Models

The process of analyzing a dataset has two main objectives: the first is model
selection, which aims to find well-fitting parsimonious models for the responses
being measured, and the second is model prediction, where estimates from the
selected models are used to predict quantities of interest and their uncertainties.

The differences that may arise in this analysis process are mainly due to the
choice of unidentifiable constraints on random effects. To compare two different
models, we must compare analogous quantities. Different constraints can lead to
apparently extremely different but inferentially identical models. The conditional
model is believed to be the basic model, and any conditional model leads to a
specific marginal model. Lee and Nelder (2004) proposed and worked on condi-
tional models derived from generalized hierarchical linear models (GHLMs) and
marginal models derived from these conditional models. Marginal models have
often been fitted using generalized estimating equations (GEEs), the drawbacks of
which are also discussed.

3.4.1 Marginal Versus Conditional Models

Consider two models with a normal distribution: one is a random effects model
(a mixed model)

yij = μþ τi þ bj þ εij

where bj N 0, σ2b and εij~N(0, σ
2). The other is a marginal model
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Table 3.16 Estimated means, best linear unbiased estimates (BLUEs), and BLUPs for treatment
and the difference between two means

(a) Estimates

Label Estimate Standard error DF t-value Pr > |t|

lsm trt1 49.0000 3.1388 4 15.61 <0.0001

lsm trt2 23.6667 3.1388 4 7.54 0.0017

lsm trt3 41.6667 3.1388 4 13.27 0.0002

blup trt1 49.0000 2.4683 4 19.85 <0.0001

blup trt2 23.6667 2.4683 4 9.59 0.0007

blup trt3 41.6667 2.4683 4 16.88 <0.0001

(b) Trt least squares means

Trt Estimate Standard error DF t-value Pr > |t|

1 49.0000 3.1388 4 15.61 <0.0001

1 23.6667 3.1388 4 7.54 0.0017

2 41.6667 3.1388 4 13.27 0.0002

(c) Differences of Trt least squares means

Trt _Trt Estimate Standard error DF t-value Pr > |t|

1 2 25.3333 3.4907 4 7.26 0.0019

1 3 7.3333 3.4907 4 2.10 0.1036

-18.0000 3.4907 4 -5.16 0.0067

E yij = μþ τi

where the elements in V( y) = Σ are variances and covariances that have an arbitrary
correlation structure. Zeger et al. (1988) pointed out that given a marginal model, the
generalized estimating equations are consistent. An obvious advantage of using
random effects models is that they allow conditional inferences in addition to
marginal inferences (Robinson 1991). Using the model with random effects, we
can obtain not only the conditional mean

μCij =E yijjbj = μþ τi þ bj

but also the marginal mean

μij =E μCij =E yijjbj = μþ τi

whereas with the marginal model, we can obtain only the marginal mean μij.
It may be reasonable to assume that the unobservable characteristic of the random

effects of blocks (bj) follows a certain distribution. However, the center of this
distribution cannot be identified because it is confounded with the intercept. There-
fore, in the random effects model, we put the unidentifiable constraints E(bi)= 0 and
E(εij) = 0 as we do for error terms in linear models. In the mixed model, these
restrictions are jb̂j = 0 and jε̂ij = 0 in any estimation procedure. First, we
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consider the case in which the data follow a normal distribution. We then briefly
discuss how the results differ for data with a non-normal distribution.
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Table 3.17 Mortality of coffee seedling clones (C) in different substrates (S)

Block Mortality Pct Block Mortality Pct

1 3 1 3.33 0.0333 3 3 1 6.6 0.066

1 3 3 16 0.16 3 3 2 10 0.1

1 3 2 16 0.16 3 3 3 56.6 0.566

1 1 1 3.33 0.0333 3 2 1 3.3 0.033

1 1 3 6.6 0.066 3 2 2 26.6 0.266

1 1 2 3.3 0.033 3 2 3 40 0.4

1 2 1 10 0.1 3 4 1 3.3 0.033

1 2 3 3.33 0.0333 3 4 2 46 0.46

1 2 2 3.33 0.0333 3 4 3 33.3 0.333

1 4 1 3.33 0.0333 3 1 1 6.6 0.066

1 4 3 16 0.16 3 1 2 43.3 0.433

1 4 2 13.3 0.133 3 1 3 50 0.5

2 4 3 3.3 0.033 4 4 1 33 0.33

2 4 1 3.3 0.033 4 4 2 10 0.1

2 4 2 20 0.2 4 4 3 23.3 0.233

2 1 3 10 0.1 4 2 3 50 0.5

2 1 1 3.33 0.0333 4 1 2 23.3 0.233

2 1 2 6.6 0.066 4 1 3 6.6 0.066

2 2 3 36.6 0.366 4 2 1 16 0.16

2 2 1 26.6 0.266 4 2 2 10 0.1

2 2 2 43.3 0.433 4 2 3 16 0.16

2 3 3 3.3 0.033

3.4.2 Normal Distribution

Example The effect of different substrates (factor A), i.e., three substrates made
from vermicompost and one from compost, on the development of physiological
variables and mortality of cuttings of three clones (factor B) of robusta coffee
(Coffea canephora p.) was evaluated. The levels of factor A are randomly assigned
to rows in each block, with the following restriction: each block receives levels A1,
A2, A3, and A4 and each level of factor B (B1, B2, and B3) is randomly assigned to
each level of factor A in each block. The data for this experiment are tabulated in
Table 3.17.

Note that while there are two randomization processes, there are effectively three
sizes of experimental units: rows for A levels, columns for B levels, and row–column
intersections for A × B combinations. Thus, the experimental design used was a
complete randomized design with a strip-plot treatment arrangement.
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The model, for these data, is given below:

yijk = μþ bk þ αi þ αbð Þik þ βj þ βbð Þjk þ αβð Þij þ εijk

where yijk is the kth response observed at the ith level of factor A and at the jth level
of factor B, μ is the overall mean, bk is the random effect due to blocks assuming
bk � N 0, σ2b , αi is the fixed effect due to substrate type (S), (αb)ik is the random
effect due to the interaction of a substrate with blocks assuming αbð Þik � N 0, σ2αb ,
βj is the fixed effect due to the coffee clone type (C), (βb)jk is the random effect due to

the interaction of a coffee clone with blocks assuming βbð Þjk � N 0, σ2βb , (αβ)ij is

the interaction fixed effect between a substrate and a coffee clone, and εijk is the
normal random error εijk~N(0, σ

2). The components of the model for this dataset are
as follows:

Linear predictor: ηijk = μ + bk + αi + (αb)ik + βj + (βb)jk + (αβ)ij
Distributions: yijk bk, (αb)ik, (βb)jk~N(μijk, σ

2)

bk � N 0, σ2b ; αbð Þik � N 0, σ2αb ; βbð Þjk � N 0, σ2βb

Link function: ηijk = μijk

The following GLIMMIX syntax sets a GLMM with a normal response.

proc glimmix;
class block s c;
model y=s|c;
random intercept s w/subject=block;
lsmeans s*c/ slicediff=s;
run;

Part of the results of this analysis is shown below. The estimated variance
components for blocks, block × substrate, blocks × clon, and the MSE are
σ̂2b = 23:4714, σ̂2αb = 35:4995, σ̂2βb = 67:0160 and σ̂2 =CME= 139:58, respectively,
which are listed in part (a) of Table 3.18. However, the fixed effects tests for both
factors and the interaction (part (b)) are not statistically significant.

According to the “slicediff = s” option in the “lsmeans” statement, Table 3.19
shows the simple effects of each substrate level at varying clone levels.

3.4.3 Non-normal Distribution

Example Using the data in Table 3.17 but under a beta distribution, the components
of the GLMM change slightly:
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The following GLIMMIX syntax sets a beta response variable.
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Table 3.18 Estimated vari-
ance components and type III
tests of fixed effects

(a) Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Intercept Block 23.4714 58.9336

S Block 35.4995 44.9134

C Block 67.0160 64.0909

Residual 139.58 49.9056

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

S 3 8.318 0.48 0.7076

C 2 5.935 1.68 0.2650

S*C 6 16.65 0.44 0.8441

Table 3.19 Simple effect comparisons across substrate levels

Simple effect comparisons of S*C least squares means by S

Simple effect level C _C Estimate Standard error DF t- value Pr > |t|

S 1 1 2 -12.9814 10.9667 15 -1.18 0.2549

S 1 1 3 -12.1564 10.9667 15 -1.11 0.2851

S 1 2 3 0.8250 10.1636 15 0.08 0.9364

S 2 1 2 -6.8325 10.1636 15 -0.67 0.5116

S 2 1 3 -15.2779 9.8708 15 -1.55 0.1425

S 2 2 3 -8.4454 9.8708 15 -0.86 0.4057

S 3 1 2 -4.4620 12.8219 15 -0.35 0.7327

S 3 1 3 -19.0350 12.8124 15 -1.49 0.1581

S 3 2 3 -14.5730 11.4417 15 -1.27 0.2222

S 4 1 2 -11.5925 10.1636 15 -1.14 0.2719

S 4 1 3 -8.2425 10.1636 15 -0.81 0.4301

S 4 2 3 3.3500 10.1636 15 0.33 0.7463

Distributions: yijk bk, (αb)ik, (βb)jk~Beta(μijk,ϕ), where ϕ is the scale parameter.

bk � N 0, σ2b ; αbð Þik � N 0, σ2αb ; βbð Þjk � N 0, σ2βb

Linear predictor: ηijk = μ + bk + αi + (αb)ik + βj + (βb)jk + (αβ)ij
Link function: ηijk = logit(μijk)

proc glimmix method=laplace;
class block s c;
model pct=s|c/dist=beta;
random intercept s w/subject=block;
lsmeans s*c/plot=meanplot(sliceby=s join) slicediff=s ilink;
run;
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Table 3.20 Variance compo-
nents and the fixed effects test

(a) Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Intercept block 0.06723 0.1617

S block 0.1594 0.1420

C block 0.1932 0.1687

Scale ϕ̂ 16.6041 5.6153

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

S 3 8 0.74 0.5584

C 2 6 2.60 0.1540

S*C 6 15 0.59 0.7303

Table 3.21 Simple effect comparisons across substrate levels

Simple effect comparisons of S*C least squares means by S

Simple effect level C _C Estimate Standard error DF t-value Pr > |t|

S 1 -0.9698 0.6578 15 -1.47 0.1611

S 1 -0.9298 0.6696 15 -1.39 0.1852

S 1 2 3 0.03999 0.5457 15 0.07 0.9426

S 2 -0.4407 0.5432 15 -0.81 0.4299

S 2 -0.8555 0.5237 15 -1.63 0.1231

S 2 -0.4149 0.4911 15 -0.84 0.4115

S 3 -0.4588 0.8285 15 -0.55 0.5879

S 3 -1.3224 0.7773 15 -1.70 0.1095

S 3 -0.8636 0.6375 15 -1.35 0.1955

S 4 -0.9880 0.5619 15 -1.76 0.0991

S 4 -0.7138 0.5739 15 -1.24 0.2326

S 4 2 3 0.2741 0.5261 15 0.52 0.6099

Some of the SAS output from this analysis is shown below. The variance
components estimated for blocks, block × substrate, blocks × clon, and the scale
parameter are σ̂2b = 0:06723, σ̂2αb = 0:1594, σ̂2βb = 0:1932, and with scale parameter

ϕ̂= 16:6041, respectively, which are listed in part (a) of Table 3.20. However, the
fixed effects tests for both factors and the interaction (part (b)) are not statistically
significant. Unlike a normal distribution (the previous example), the variance com-
ponents (multiplied by 100) under the beta distribution are smaller, and the type III
fixed effects test is closer to be significant.

Table 3.21 shows, for each substrate level at varying clone levels, the estimates
(linear predictors) of the simple effects. These effects differ from the previous
results, but this is mainly because in a GLMM, these values correspond to the linear
predictors estimated at the model scale and not to the estimated means at the data



scale (Example 3.4.2). It is also important to note that the degrees-of-freedom
correction in the estimation of means cannot yet be used in the estimation of a
GLMM.
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Table 3.22 Total yields (grams) of barley varieties in 12 independent trials

Variety

Location Manchuria Svansota Velvet Trebi Peatland

1 81.0 105.4 119.7 109.7 98.3

1 80.7 85.3 80.4 87.2 84.2

2 146.6 142.0 150.7 191.5 145.7

2 100.4 115.5 112.2 147.4 108.1

3 82.3 77.3 78.4 131.3 896

3 103.1 105.1 116.5 139.9 129.6

4 119.8 121.4 124.0 140.8 124.8

4 98.9 61.9 96.2 125.5 75.7

5 98.9 89.0 69.1 89.3 104.1

5 66.4 49.9 96.7 61.9 80.3

6 86.9 77.1 78.9 101.8 96.0

6 67.7 66.7 67.4 91.8 94.1

3.5 Exercises

Exercise 3.5.1 The data in the Table 3.22 below show the yield of five barley
varieties in a randomized complete block experiment conducted in Minnesota
(Immer et al. 1934).

• Write a complete description of the statistical model associated with this study
and the assumptions of this model.

• Compute the ANOVA for the design model according to part (a) and determine
whether there is a significant difference in the varieties.

• Use the least significance difference (LSD) method to make pairwise compari-
sons of variety mean yields.

Exercise 3.5.2 Lew (2007) conducted an experiment to determine whether cultured
cells respond to two drugs (chemical formulations). The experiment was conducted
using a cell culture line placed in Petri dishes. Each experimental trial consisted of
three Petri dishes: one treated with drug 1, one treated with drug 2, and one untreated
as a control. The data are shown in the following Table 3.23:

(a) Write a complete description of the statistical model associated with this study
and the assumptions of this model.

(b) Analyze the data using a completely randomized design. Is there a significant
difference between the treatment groups?
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Table 3.23 Number of cells
cultured in different drugs

Control Drug 1 Drug 2

Ensayo 1 1147 1169 1009

Ensayo 2 1273 1323 1260

Ensayo 3 1216 1276 1143

Ensayo 4 1046 1240 1099

Ensayo 5 1108 1432 1385

Ensayo 6 1265 1562 1164

(c) Analyze the data as a randomized complete block design, where the number of
trials represents a blocking factor.

(d) Is there any difference in the results obtained in (a) and (b)? If so, explain what
might be the cause of the difference in results and what method would you
recommend?
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Chapter 4
Generalized Linear Mixed Models
for Non-normal Responses

4.1 Introduction

Generalized linear mixed models (GLMMs) have been recognized as one of the
major methodological developments in recent years, which is evidenced by the
increased use of such sophisticated statistical tools with broader applicability and
flexibility. This family of models can be applied to a wide range of different data
types (continuous, categorical (nominal or ordinal), percentages, and counts), and
each is appropriate for a specific type of data. This modern methodology allows data
to be described through a distribution of the exponential family that best fits the
response variable. These complex models were not computationally possible up until
recently when advances in statistical software have allowed users to apply GLMMs
(Zuur et al. 2009; Stroup 2012; Zuur et al. 2013). Researchers in fields other than
statistical science are also interested in modeling the structure of data. For example,
in the social sciences there have been applications in the field of education when
several tests are applied to students; in longitudinal personality studies when the
occurrence of an emotion is repeatedly observed over time over a set of people; and
in surveys to investigate the political preference of a population, among others.

Likewise, agriculture and life sciences are other major areas, where the measure-
ment of response variables depart from the conventionally used classical methodol-
ogy based on “normality” to model or describe the data set, i.e., data that generally
fall within the nominal, ordinal or interval (continuous) scales of measurement. In a
GLMM, the data response does not undergo any transformation, but, instead, the
response is modeled as a function of the expected value through a linear relationship
with the explanatory variables. GLMMs, a powerful tool, allow proper modeling of
variations between groups and between space and time, leading to accuracy in the
modeling of the observed data as well as in the estimation of variance components.
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4.2 A Brief Description of Linear Mixed Models (LMMs)

Before addressing GLMMs, we present a brief overview of linear mixed models
(LMMs). An LMM is a model whose response variable is normal and assumes:
(1) that the relationship between the mean of the dependent variable ( y) and fixed
and random effects can be modeled as a linear function; (2) that the variance is not a
function of the mean; and (3) that random effects follow a normal distribution.

The classic representation of an LMM in the matrix form, is

y=Xβþ Zbþ ε ð4:1Þ

where y is the vector (n × 1) of the response variable; X is the design matrix
(n × (p + 1)) of fixed effects with rank k; β is the vector of unknown parameters
(( p + 1) × 1); Z is the design matrix (n × q) of random effects; and b is the vector of
unknown parameters of random effects (q × 1), assuming that the vector of random
effects b follows a normal distribution with mean 0 and variance matrix G, that is,
b~N(0,G). Finally, ε is the error vector with a normal distribution with mean 0 and a
variance–covariance matrix (ε~N(0,R)); both vectors b and ε are assumed to be
independent of each other.

Model 4.1, as previously mentioned, can be described in terms of a probability
distribution in two ways: the first is the marginal model y~N(E[y] = Xβ, Var
[y] = V = ZGZ′ + R), where the mean is based solely on the fixed effects, and the
parameters describing the random effects are contained in the variance and covari-
ance matrix V (Littell et al. 2006), while the second form is the conditional model
y j b~N(Xβ + Zb,R). Under normality assumptions, both models are exactly the
same and hence produce the same solution, whereas when normality is not satisfied,
the models produce different solutions (Stroup 2012).

4.3 Generalized Linear Mixed Models

Most datasets in agricultural, biological, and social sciences often fall outside the
scope of the traditional methods taught in introductory statistics and statistical
methods. Often, these data (response variables) are: (a) binary (the presence or
absence of a trait of interest, success or failure, the infection status of an individual,
or the expression of a genetic disorder); (b) proportional (the ratio of females to
males, infection or mortality rates within a group of individuals); or (c) counts (the
number of emerging seedlings, the number of sprouts, etc.), where basic statistical
methods attempt to quantify the effects of each predictor variable. However, often,
studies of these experiments involve random effects, the purpose of which is to
quantify variation among individuals or units. The most common random effects are
blocks in experimental or observational studies that are replicated across sites
(locations or environments) or over time. Random effects also encompass variations



j

among individuals (when measuring multiple responses per individual such as
survival of multiple offspring or sex ratios of multiple offspring), genotypes, species,
and regions or periods over time.
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GLMMs are a powerful class of statistical tools that combine the concepts and
ideas of generalized linear models (GLMs) with linear mixed models (LMMs). That
is, a GLMM is an extension of the GLM, in which the linear predictor contains
random effects in addition to fixed effects. These models handle a wide range of both
response distributions and scenarios in which observations are sampled. GLMMs
extend the theory of LMMs to response variables that have a non-normal distribu-
tion. In GLMMs, the response data are not transformed; instead, the explanatory
variables are expressed as a linear relationship through a function g of the expecta-
tion of y j b; that is, the response is conditional on random effects. This performs the
link function that relates the response to the explanatory variables in a linear manner,
thus allowing the use of standard LMM techniques for estimation and hypothesis
testing.

A conditional model is used to describe a GLMM with non-Gaussian errors
(Model 4.1), given a link function (g), as shown below:

g ηð Þ=Xβþ Zb,

which is a function of the conditional expectation given by

E yjb½ �= g- 1 Xβþ Zbð Þ= g- 1 ηð Þ= μ ð4:2Þ

where g-1(∙) is the inverse link and the other terms have already been mentioned
earlier. The fixed and random effects are combined to form the conditional linear
predictor

η= g E yjb½ �ð Þ=Xβþ Zb ð4:3Þ

The relationship between the linear predictor and the vector of observations is
modeled as follows:

y j b � g- 1 ηð Þ,R ð4:4Þ

The above notation (4.4) expresses the conditional distribution of y, given b has a
mean g-1(η) and variance R. Note that instead of specifying the distribution for y as
in the case of a GLM, we specify a distribution for the conditional response y b.

The variance and covariance matrix for the observations is given by:

V yð Þ=E V yjbð Þ½ � þ V E yjb½ �ð Þ=A1=2RA1=2 þ ZGZ0 ð4:5Þ

where matrix A is a diagonal matrix containing the variance functions of the model.
GLMMs cover an important group of statistical models, such as:
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(a) Linear models (LMs): absence of random effects, identity link function and the
assumption of a normal distribution.

(b) Generalized linear models (GLMs): random effects are absent, link function is
different from the identity function, and the response variables are non-normally
distributed.

(c) Linear mixed models (LMMs): presence of random effects, identity link function
and normal distribution assumed for the response variable.

GLMMs have been formulated to correct the shortcomings of LMMs, as there are
many cases where the assumptions made in linear mixed models are inadequate.
First, an LMM assumes that the relationship between the mean of the dependent
variable (y) and fixed and random effects (β, b) can be modeled through a linear
function. This assumption is questionable, like when a researcher wishes to model
the incidence of a disease or the success or failure of an event.

The second assumption of an LMM is that variance is not a function of the mean
and that the random effects follow a normal distribution. The assumption of constant
variance is not met when the response variable is binary (1, 0). In this case, the
variance is π(1- π), which is a function of the mean. The result is a random variable,
which can take two values (0, 1); in contrast, the normal distribution can take any
real number. Finally, the predictions for an LMM can take any real value, whereas
the predictions for a binary variable are bounded in the interval (0, 1), since it is a
probability and this prediction cannot support negative values.

Historically, a number of options have been used to address and solve some
LMM problems, even though their use is not the most appropriate. These include
applying logarithmic transformations (log( y)), transformations using the square root

y
p

, arcsine transformations (seno-1(y)), and so on. However, many of these
transformations use linear mixed models by ignoring the fact that these models are
not the most accurate, despite being aware that the response variable does not satisfy
the assumption of normality. These options are attractive because they are relatively
simple and easy to implement using the LMM machinery. However, they circum-
vent the problem that a linear mixed model is not the best model for analyzing data.

4.4 The Inverse Link Function

In a GLMM, the canonical link function maps the original data to the linear predictor
of the model g(η)= Xβ + Zb. This linear predictor can be transformed to an observed
data scale through an inverse link function. In other words, the inverse link function
is used to map the value of the linear predictor for the ith observation to the
conditional mean at the data scale ηi. For example, suppose that we are conducting
an experiment in which we are assessing the number of undesirable weeds observed
in a crop of interest after the application of a certain number of treatments; the
response variable is assumed to have a Poisson distribution with a mean λij, the linear
predictor of which is given by
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ηij = ηþ τi þ bj

where η is the intercept, τi is the fixed effect due to treatments, and bj is the random
effect assuming bj N 0, σ2b .

To obtain the inverse function of the following predictor

log λij = g ηij = ηþ τi þ bj,

we proceed by exponentiating both sides of the previous equation, with which we
obtain the inverse function of the link shown below:

λij = eηþτiþbj ,

which is denoted as g-1(g(ηij)) = g-1(η + τi + bj).
Therefore, for this example, λij depends on the linear predictor through the inverse

link function and the variance σ2ij depends on λij through the variance function.

4.5 The Variance Function

The variance function is used to model the inconsistent variability of the phenom-
enon under study. With GLMMs, the residual variability arises from two sources,
namely, the variability of the distribution of sampling units in an experimental
arrangement (blocks, plots, locations, etc.) and the variability due to overdispersion.
Overdispersion can be modeled in several ways. When dealing with a GLMM, the
scale parameter or the dispersion parameter ϕ is extremely important since it can
either increase or decrease the variance in the model for each observation.

Var yijjbj =ϕVar ηij

If overdispersion exists, one way to remove it is to add the random effects (in SAS
_residual_) of each observation to the linear predictor. Another alternative is to use
another distribution to model the dataset; for example, the two-parameter negative
binomial (NB) distribution (ηij,ϕ) instead of the single-parameter Poisson distribu-
tion (λij) in the case of count data.

4.6 Specification of a GLMM

A GLMM is composed of three parts: (1) fixed effects that convey systematic and
structural differences in responses; (2) random effects that convey stochastic differ-
ences between blocks or other random factors, as these effects allow generalizations
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of the population from which the sampling units have been (randomly) sampled; and
(3) distribution of errors. Thus, a complete definition of a GLMM is as follows:
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Table 4.1 Common distributions with their respective link functions

Syntax of the link
function

Binomial Logit or probit dist = binomial|bin|b link = logit or probit

Poisson Log dist = Poisson|Poi link = log

Beta Logit dist = beta link = logit

Normal Identity dist = normal|gausian link = identity|id

Negative
binomial

Log dist = negbinomial|negbin|
nb

link = log

Multinomial Cumulative
logit

dist = multinomial|multi link = cumlogit|clogit

y j b � f μ,ϕð Þ conditional distributionð
b N 0,G random effects

g μ = η link function

η=Xβ Zb linear predictor

where the distribution function f(∙) is a member of the exponential family, g(μ) is the
linear function, X and Z are the design matrices, and β and b are the unknown
parameters for fixed and random effects, respectively.

When fitting a GLMM, the data remain on the original measurement scale (data
scale). However, when means are estimated from a linear function of the explanatory
variables (the predictor), these means are on the model scale. A link function is used
to link the model scale back to the original data scale. This is not the same as
transforming the original measurements to a different measurement scale. For
example, applying the log transformation for counts followed by an analysis of
variance (ANOVA) under a normal distribution is not the same as fitting a general-
ized linear model, assuming a Poisson distribution and using a log link (Gbur et al.
2012). In the first case, the least squares means would normally be equal to the
arithmetic means, whereas in the second case, the means are inversely linked to the
data scale, which may not be equal to the arithmetic means of the original sample.

The distribution specifications in “proc GLIMMIX” have default link functions,
but it is always highly recommended to explicitly code the link function, since for
some type of response variable, more than one alternative exists. This way, there is
no doubt that an appropriate function was used. Using the wrong link function will
lead to totally meaningless and incorrect results. Table 4.1 shows some common
distributions, the appropriate link function, and the proper syntax for each.

For a complete list, see the online Statistical Analysis Software (SAS/STAT)
documentation for PROC GLIMMIX.
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4.7 Estimation of the Dispersion Parameter

The overall measures of fit compare the observed values of the response variable
with fitted (predicted) values. The dispersion parameter is unknown and therefore
must be estimated. There are two methods for estimating the overdispersion param-
eter. McCullagh (1983) proposed estimating overdispersion as follows:

ϕ =
y- μð Þ0V - 1

μ y- μð Þ
N - p

=
Pearson0s χ2

N - p

where V - 1
μ is the diagonal matrix of the variance functions and N - p is the degree

of freedom for lack of fit. Later, McCullagh and Nelder (1989) suggested using
deviance

ϕ=
Deviance
N- p

=
- 2 ln LM1ð Þ- ln L M2ð Þð Þ½

N - p

Deviance is a global fit statistic that also compares fitted and observed values;
however, its exact function depends on the likelihood function of the random
component of the model. Deviance compares the maximum value of the likelihood
function of a model, like M1, with the maximum possible value of the likelihood
function that is calculated using data. When data are used in the likelihood function,
the model is saturated and has as many parameters as possible. Thus,M2 is saturated
and has as many parameters as the data. Model M2 tries to fit the data and gives the
highest possible value for the likelihood.

If the overdispersion parameter is significantly greater than one, this indicates that
overdispersion exists; in other words, it indicates that the variance is greater than the
mean. Therefore, the parameter should be used to adjust the variance. If
overdispersion is not taken into account, inflated test statistics may be generated.
However, when the dispersion parameter is less than 1, the test statistics are more
conservative, which is not considered a big problem.

The following example is intended to show how GLIMMIX in SAS estimates the
dispersion parameter in a GLMM.

Example An agronomist wants to test the effectiveness of a new herbicide offered
on the market (we will denote this as herb_N) and compare it with the herbicide that
has been used for several cycles (herb_C). The experimental arrangement used was a
randomized complete block design as shown below (Table 4.2).

The components of a GLMM with a Poisson response variable are listed below:

Distribution: yij j bj � Poisson λij

bj � N 0, σ2bloque



1 1 36

3 21 30

4 7 48

5 2 3

6 6 0

7 0 5

8 19 26
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Table 4.2 Number of unde-
sirable weeds per plot

Block Herb_C Herb_N

2 5 109

Linear predictor: ηij = ηþ herbicidei þ bj

Link function: log λij = ηij

This model assumes that the slopes are the same for each herbicide. The following
SAS code is used for the proposed model:

proc glimmix nobound method=laplace;
class block trt;
model count = trt/dist=poisson link=log;
random block;
lsmeans trt/ilink lines;
run;

Explanation The “method = ”option is used to specify the method used to opti-
mize the logarithm of the likelihood function. In “proc GLIMMIX,” there are two
popular methods: adaptive quadrature (quad) or Laplace (laplace), which are the
preferred methods for categorical response variables. Both of these methods fit a
conditional model. When the quadrature method is used (method = quad), subjects
(individuals) must be declared in the random effects (e.g., for the above program,
“random intercept/subject=block”). In addition, processing random effects by sub-
ject is more efficient than using the syntax “random block” random effects in blocks.
The “dist” option is where you specify the probability distribution that is appropriate
for the type of response; in this case, it is the Poisson distribution. The “link” option
is for specifying the link function of the distribution. The “ddfm” option is omitted
so that GLIMMIX uses – by default – the method for calculating the denominator
degrees of freedom for the fixed effects tests that result from the model. The “ilink”
option converts the estimates of the treatment means (lsmeans) on the model scale to
the data scale. Finally, “proc GLIMMIX” supports the “lines” option, which adds
letter groups to the mean differences resulting from using “lsmeans.”

The most relevant parts of the SAS output, for the purposes of what we want to
show, are shown in Tables 4.3 and 4.4. The fit statistics of the fitted model are shown
in part (a) and part (b) of Table 4.3. The -2 log likelihood statistic is extremely



useful for comparing nested models, whereas the different versions of information
criteria that exist, such as Akaike information criterion (AIC), Akaike’s information
criteria with small sample bias correction (AICC), Bayesian information criterion
(BIC), Bozdogan Akaike’s information criteria (CAIC), and Hannan and Quinn
information criteria (HQIC), are useful when comparing models that are not neces-
sarily nested (subsection (a)). The table of fit statistics for the conditional distribution
shows the sum of the independent contributions to the conditional (part (b)) -2 log
likelihood, the value of which is 139.03, whereas the value of Pearson’s statistic
divided by the degrees of freedom for the conditional distribution (Pearson′s chi -
square/DF) is 4.85.
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Table 4.3 Fit statistics and
variance components

(a) Fit statistics (Akaike’s information criterion (AIC), a small
sample bias corrected Akaike’s information criterion
(AICC), Bozdogan Akaike’s information criterion (CAIC),
Schwarz’s Bayesian information criterion (BIC), Hannan and
Quinn information criterion (HQIC))

-2 Log likelihood 175.35

AIC (smaller is better) 181.35

AICC (smaller is better) 183.35

BIC (smaller is better) 181.59

CAIC (smaller is better) 184.59

HQIC (smaller is better) 179.74

(b) Fit statistics for conditional distribution

-2 Log L (count | r. effects) 139.03

Pearson’s chi-square 77.56

Pearson’s chi-square/degree of freedom (DF) 4.85

(c) Covariance parameter estimates

Cov Parm Estimate Standard error

Block 1.5590 0.8690

Table 4.4 Type III fixed effects tests and estimated least squares means

(a) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Herbicide 1 7 101.34 <0.0001

(b) Trts least squares means

Trts Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

Herb_C 1.4604 0.4696 7 3.11 0.0171 4.3076 2.0227

Herb_N 2.8947 0.4561 7 6.35 0.0004 18.0778 8.2447

The estimated dispersion parameter (ϕ = Pearson’s chi-square/DF) has a value
far from 1; in this case, it is ϕ= 4:85, which indicates that there is a strong
overdispersion. This may be because the specified distribution of the data is not
appropriate, the counts are too small, or the variance function was not correctly



specified. The estimate of the variance component due to a block is tabulated in part
(c) of Table 4.2, the estimated value of which is σ2bloque = 1:559.
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The fixed effects test and least squares means are shown in Table 4.4. The type III
fixed effects tests indicate that there is a highly significant difference (part (a)) in the
effectiveness of herbicides in weed suppression; the estimated means with their respec-
tive standard errors are tabulated under the “Mean” column (part (b)). The “Estimate”
column containing the estimates of the means of lsmeans is on the model scale. They
are derived from the log likelihood function. SAS always lists the means obtained with
lsmeans from the model scale when creating least squares means test tables. The
“Mean” column has been converted back to the data scale using the “ilink” inverse
link function. These values are estimates of the average counts for each treatment level
(in this case, the herbicide type on the data scale). When we report the results, we must
replace the corresponding model’s least squares values in the test tables with these
estimates (means on the data scale corresponding to the values in the “Mean” column).

Since there is a strong overdispersion ϕ> 1 , assuming that the data have a

Poisson distribution is risky because this implies that the mean and variance are
equal, which is an assumption implying that the data have a Poisson distribution, i.e.,
that the mean and variance are the same. A useful alternative distribution might be a
negative binomial distribution; this distribution has a mean λ and variance λ + λϕ2

with ϕ > 0 commonly known as the scale parameter.
The following is the specification of the components of a GLMM with a negative

binomial (NB) response variable:

Distribution : yij j bj � Negative binomialðλij,ϕÞ
bj � Nð0, σ2bloqueÞ

Linear predictor: ηij = ηþ herbicidei þ bj

Link function: log λij = ηij

The GLIMMIX procedure also allows modeling a GLMM with a negative
binomial response variable:

proc glimmix data=itam nobound method=laplace;
class block trts;
model count = trts/dist=negbin;
random block;
lsmeans trts/ilink;
run;

Part of the output is shown in Table 4.5. The fit statistics for the model compar-
ison (part (a)) and that for the conditional distribution (part (b)) are both provided by
the GLIMMIX procedure when a conditional distribution is specified. Since in the
previous analysis, it was observed that overdispersion exists when assuming a
Poisson distribution, the results – under a negative binomial distribution – indicate
that this overdispersion problem no longer exists; i.e., the binomial distribution is no



longer overdispersed ϕ= 0:58 . In other words, the negative binomial distribution

does a better job than the Poisson distribution in fitting these data, since it effectively
controls the overdispersion.
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Table 4.5 Fit statistics
under a negative binomial
distribution

(a) Fit statistics

-2 Log likelihood 120.50

AIC (smaller is better) 128.50

AICC (smaller is better) 132.13

BIC (smaller is better) 128.81

CAIC (smaller is better) 132.81

HQIC (smaller is better) 126.35

(b) Fit statistics for conditional distribution

-2 Log L (count | r. effects) 120.50

Pearson’s chi-square 9.21

Pearson’s chi-square/DF 0.58

(c) Fit statistics and Pearson’s chi-square/DF

Poisson Negative binomial

-2 Log likelihood 175.35 120.50

AIC (smaller is better) 181.35 128.50

AICC (smaller is better) 183.35 132.13

BIC (smaller is better) 181.59 128.81

CAIC (smaller is better) 184.59 132.81

HQIC (smaller is better) 179.74 126.35

ϕ (Pearson’s chi-square/DF) 4.85 0.58

Comparing the fit statistics tabulated in Table 4.3 subsection (c) under both
distributions, we can observe that when the data are modeled under a negative
binomial distribution, the values of the fit statistics are lower than those under a
Poisson distribution, since the dispersion parameter ϕ< 1. This indicates that the
negative binomial models this dataset better.

4.8 Estimation and Inference in Generalized
Linear Mixed Models

4.8.1 Estimation

In GLMMs, inference involves the estimation and testing of the hypotheses of
unknown parameters in β, G, and R as well as the best linear unbiased predictions
(BLUPs) of random effects, b. In most modern statistical tools, including GLMMs,
parameter fitting is performed via maximum likelihood (ML) or methods derived
from this method. For simple analyses, in which the response variables are normal,
classical ANOVA methods are based on calculating the differences of the sums of



the squares that produce the same results as an ML estimation. However, this
equivalence is not obtained in models with more complex structures such as
LMMs or GLMMs. To find the ML estimators, in GLMMs, one must integrate
over all possible values of the random effects. For GLMMs, this computation is at
best slow and at worst (a large number of random effects) computationally
infeasible.
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Statisticians have proposed several ways to approximate the parameter estimates
of a GLMM, including penalized quasi-likelihood (PQL) and pseudo-likelihood
methods (Schall 1991; Wolfinger and O'Connell 1993; Breslow and Clayton
1993), Laplace approximations (Raudenbush et al. 2000) and Gauss–Hermite quad-
rature (Pinheiro and Chao (2006), and Bayesian methods based on Markov chain
Monte Carlo (Gilks et al. 1996). In all these approaches, researchers must distinguish
between a standard ML estimation, which estimates the standard deviations of the
random effects assuming that the fixed effects estimates are precisely correct, and
restricted maximum likelihood (REML), a variant that averages over the uncertainty
in the fixed effects parameters (Pinheiro and Bates 2000; Littell et al. 2006).

The ML method underestimates the standard deviations of random effects, except
in extremely large datasets, but it is most useful for comparing models with different
fixed effects. Pseudo- and quasi-likelihood methods are the simplest and the most
widely used in approximating a GLMM. They are widely implemented in statistical
packages that promote the use of GLMMs in many areas of ecology, biology, and
quantitative and evolutionary genetics (Breslow 2004). Unfortunately, pseudo- and
quasi-likelihood methods produce biases in parameter estimation if the standard
deviations of the random effects are large, especially when using binary data
(Rodriguez and Goldman 2001; Goldstein and Rasbash 1996). Lee and Nelder
(2001) have implemented several improvements to the PQL version, but these are
not available in most common statistical software packages. As a rule of thumb, PQL
performs poorly for Poisson data when the average number of counts per treatment
combination is less than five or for binomial data when the expected numbers of
successes and failures for each observation are less than five (Breslow 2004).
Another disadvantage of PQL is that it calculates a quasi-likelihood rather than the
true likelihood. Because of this, many statisticians believe that PQL-based methods
should not be used for inference.

There are two more accurate approximations available, which also reduce bias.
One is the Laplace approximation (Raudenbush et al. 2000), which approximates the
true likelihood of a GLMM instead of a quasi-likelihood, allowing the maximum
likelihood method in the GLMM inference process. The other approach is called
Gauss–Hermite quadrature (Pinheiro and Chao 2006), which is more accurate than
the Laplace approximation but is slower (requires more computational resources).
Therefore, the procedures for parameter estimation of a GLMM that are approxima-
tions are as follows:

The penalized quasi-likelihood method performs the estimation process by alternat-
ing between (1) estimating the fixed parameters by fitting a GLMwith a variance–
covariance matrix based on an LMM fit and (2) estimating the variances and
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covariances by fitting a GLM with unequal variances calculated from the previ-
ous GLM fit. Pseudo-likelihood, a close cousin of the ML method, estimates
variances differently and estimates a scale parameter to account for
overdispersion (some authors use these terms interchangeably). In summary,
GLMMs require an iterative process in parameter estimation. Two categories of
iterative procedures are used by SAS: linearization and integral approximation.
The GLIMMIX procedure uses the pseudo-likelihood method in linearization,
and integral approximation uses the Laplace approximation or adaptive methods
such as Gauss–Hermite quadrature. These methods maximize the log likelihood
of the exponential distribution family, i.e., non-normal distributions. The pseudo-
likelihood method is the default procedure in the GLIMMIX procedure (Proc
GLIMMIX). The Laplace method and quadrature are an approximation for
maximum likelihood, but the Laplace method is computationally simpler than
quadrature and also provides excellent estimates.

4.8.2 Inference

After estimating the parameter values in a GLMM, the next step is to extract
information and draw statistical conclusions from a given dataset through careful
analysis of the parameter estimates (confidence intervals, hypothesis testing) and
select a model that best describes or explains the most variability in the dataset.
Inference can generally be based on three types: (a) hypothesis testing, (b) model
comparison, and (c) Bayesian approaches. Hypothesis testing compares test statistics
(F-test in ANOVA) to verify their expected distributions under the null hypothesis
(H0), estimating the value of P (P-value) to determine whether H0 can be rejected.
On the other hand, model selection compares candidate model fits. These can be
selected using hypothesis testing; that is, testing nested versus more complex models
(Stephens et al. 2005) or using information theory approaches such as Wald tests (Z,
χ2, t, and F). In model selection, likelihood ratio (LR) tests can ensure the signifi-
cance of factors or choose the best of a pair of candidate models. On the other hand,
information criteria allow multiple comparisons and selections of non-nested
models. Among these criteria are the Akaike information criterion (AIC) and related
information criteria that use deviance as a measure of fit, adding a term to penalize
more complex models. Information criteria can provide better estimates. Variations
of AIC are highly common when sample sizes are not large (AICC), when there is
overdispersion in the data (quasi-AIC, QAIC), or when one wishes to identify/
determine the number of parameters in a model (Bayesian information criterion,
BIC).



A 10 11 8 9 7 6
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4.9 Fitting the Model

The mathematics behind a GLMM is quite complex. It is difficult to conceptualize
the use of constructs such as distributions, link functions, log likelihood, and quasi-
likelihood when fitting a model. Perhaps the following points will help explain the
modeling process.

(a) An analysis of variance model is a vector of linear predictors (equation) with
unknown parameter estimates.

(b) Each distribution has a corresponding probability function.
(c) The vector of linear predictors is substituted into the likelihood function.
(d) Solutions to the parameter estimates are found by minimizing the negative of the

log likelihood function (-log likelihood).
(e) The means (least squares means – lsmeans) are derived from the parameter

estimates and are on the model scale.
(f) The link function converts the mean estimates at the model scale to the original

data scale.

The key concepts of proc GLIMMIX are (1) it uses a distribution to estimate the
model parameters; it does not fit the data to a distribution, and (2) the data values are
not transformed by the link function; the link function converts the means (least
squares means) to the data scale after estimation at the model scale.

4.10 Exercises

1. As a simple example of these types of data, consider the following results of an
experiment on wheat germination, carried out in pots under glass. The experiment
consisted of four blocks of six treatments (Table 4.6).

(a) According to the response variable, what type(s) of probability distribution do
you suggest for the variable?

(b) Construct a GLMM to study the effect of treatments on seed germination.
(c) Analyze the dataset according to the model proposed in (a). Is the probability

distribution proposed in (a) adequate?
(d) Is there a significant difference in the proportion of germinated seeds between

treatments?

Table 4.6 Number of seeds
not germinating (out of 50)

Trt1 Trt2 Trt3 Trt4 Trt5 Trt6

C 5 11 2 8 10 7

D 1 6 4 13 7 10
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Table 4.7 Control of cockchafer larvae

Trt1 3 7 7 15 5 7 5 14 0 3 1 7 1 10 4 13

Trt2 4 3 3 12 4 2 12 5 2 3 1 6 3 5 4 11

Trt3 3 10 6 12 4 4 1 14 2 2 1 7 1 8 7 10

Trt4 5 8 4 11 1 5 5 9 2 7 3 7 0 3 3 12

Trt5 4 6 4 11 2 2 3 8 0 1 5 4 1 6 1 8

2. Table 4.7 shows the counts per sample area of a variety type of cockchafer larva
(two age groups a and b). The experiment consisted of five treatments in eight
randomized blocks and two age groups to study the differential effects of
treatments on insect age.

(a) Considering the type of answer of this exercise; what type(s) of probability
distribution(s) do you suggest for this type of response?

(b) Construct a GLMM to study the effect of treatments and the age of Cock-
chafer larvae.

(c) Analyze the dataset according to the model proposed in (a).
(d) Is the model used in (a) sufficient? If so, discuss your findings.
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Chapter 5
Generalized Linear Mixed Models
for Counts

5.1 Introduction

Data in the for of counts regularly appear in studies in which the number of
occurrences is investigated, such as the number of insects, birds, or weeds in
agricultural or agroecological studies; the number of plants transformed or
regenerated using modern breeding techniques; the number of individuals with a
certain disease in a medical study; and the number of defective products in a quality
improvement study, among others. These counts can be counted per unit of time,
area, or volume. When using a generalized linear model (GLM) with a Poisson
distribution, it is often found that there is excessive dispersion (extra variation) that is
no longer captured by the Poisson model. In these cases, the data must be modeled
with a negative binomial distribution that has the same mean as the Poisson
distribution but with a variance greater than the mean. Most experiments have
some form of structure due to the experimental design (completely randomized
design (CRD), randomized complete block design (RCBD), incomplete block, or
split-plot design) or the sampling design, which must be incorporated into the
predictor to adequately model the data.

5.2 The Poisson Model

A Poisson distribution with parameter λ belongs to the exponential family and is a
discrete random variable, whose probability function is equal to

f yð Þ= e- λλy

y!
; λ> 0, y= 0, 1, 2,⋯:
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The mean and variance of a Poisson random variable are equal, i.e., E(y) = Var
( y)= λ. A Poisson distribution is often used to model responses that are “counts.”As
λ increases, the Poisson distribution becomes more symmetric and eventually it can
be reasonably approximated by a normal distribution.

Let yij be the value of the count variable associated with unit i at level one and
with unit j at level two, given a set of explanatory variables. Therefore, we can
express this as

f yij =
e- λijλ

yij
ij

yij!
, yij = 0, 1, 2,⋯

and the logarithm of the likelihood is given by:

log f yij = log
e- λijλ

yij
ij

yij!
= - λij þ yij log λij - log yij! :

A Poisson distribution has very particular mathematical properties that are used
when we model “counts.” For example, the expected value of y is equal to the
variance of y, such that

E yikð Þ=Var yikð Þ= λij

Then, λij is necessarily a nonnegative number, which could lead to difficulties if
we consider using the identity bound function in this context. The natural logarithm
is mainly used as a link function for expected “counts.” For single-level (factor) data,
Poisson regression model is considered, where we work with the natural logarithm of
the counts, log(λi), whereas for multilevel data (more than two factors), mixed
models with Poisson data are considered a better choice for the logarithm of the
counts λij.

Suppose that given the random effects of b, the counts y1, y2, ⋯, yn are condi-
tionally independent such that yij j bj~Poisson(λij), where

log λij = ηþ τi þ bj:

This is a special case of a generalized linear mixed model (GLMM) in which the
link function of this family of distributions is g(λij) = log (λij). The dispersion
parameter ϕ, in this case, is equal to 1.

Sometimes, if the data counts are extremely large, their distribution can be
approximated to a continuous distribution. Whereas, if all the counts are large
enough, then the square root of the counts is viable for fitting the model as it allows
the variance to be stabilized. However, as mentioned in previous chapters, the
estimation process under normality can be problematic, as it can provide negative
fitted values and predictions, which is illogical.
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5.2.1 CRD with a Poisson Response

An CRD is a design in which a fixed number of t treatments is randomly assigned to
r experimental units. The linear predictor describing the mean structure of this GLM
is

ηij = ηþ τi

where ηij denotes the ijth link function of the ith treatment in the jth observation, η is
the intercept, and τi is the fixed effect due to treatment i (i= 1, 2,⋯, t; j= 1, 2,⋯ri),
with t treatments and ri replicates in each treatment i.

Example Effect of a subculture on the number of shoots during micropropagation
of sugarcane.

The objective of micropropagation in sugarcane is to produce vegetative material
identical to the donor so that its genetic integrity is preserved. Despite this,
somaclonal variation has been observed in plants derived from in vitro culture
regardless of explant, variety, ploidy level, number of subcultures, and generation
route used, among others. A total of 8 explants were planted in temporary immersion
bioreactors (explant/bioreactor) to determine whether the number of subcultures
(10 subcultures) influences the number of shoots observed per explant. In this
example, we have ri observations ( j = 1, 2, . . ., ri) on each of the 10 subcultures
(i = 1, 2, . . ., 10) in a completely randomized design (Appendix 1: Data: Subcul-
tures). The analysis of variance (ANOVA) table (Table 5.1) for this model is given
below:

The components of the GLM are set out below:

Distribution: yij � Poisson λij

Linear predictor: ηij = ηþ τi

Link function: log λij = ηij

where yij denotes the number of sprouts observed in subculture i explant j (i = 1, 2,
⋯, 10; j = 1, 2,⋯, 8), ηij is the ijth link function, η is the intercept, and τi is the fixed
effect of subculture i.

Table 5.1 Analysis of variance

Sources of variation Degrees of freedom

Unbalanced design Balanced design

Subculture t - 1 = 10 - 1 = 9 t - 1

Error 10
i= 1ri - t= 164 t(r - 1)

Total 10
i= 1ri - 1= 173 tr - 1
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Table 5.2 Model information
and estimation methods

(a) Model information

Dataset WORK.SUGAR

Response variable NB

Response distribution Poisson

Link function Log

Variance function Default

Variance matrix Diagonal

Estimation technique Maximum likelihood

Degrees of freedom method Residual

(b) Dimensions

Columns in X

Columns in Z 0

Subjects (blocks in V) 1

Max Obs per subject

The following Statistical Analysis Software (SAS) code allows analyzing an
CRD with a Poisson response.

proc glimmix data=sugar method=laplace;
class rep1 sub1 ;
model nb=sub/dist=poisson s link=log;
lsmeans sub/lines ilink;
run;quit;

While most of the commands used have been explained before, the options in the
model statement “dist,” “s,” and “link” communicate to the SAS the type of data
distribution, the fixed effects solution, and the link to use, respectively. In addition,
the “lines” option asks the GLIMMIX procedure in the “lsmeans” (least squares
means) command for mean comparisons, and the “ilink” option provides the inverse
link function.

Part of the output is shown in Table 5.2, where part (a) shows the model and the
methods used to fit the statistical model, whereas part (b) lists the dimensions of the
relevant matrices in the model specification.

Due to the absence of random effects in this model, there are no columns in
matrix Z. The 11 columns in matrix X comprise an intercept and 10 columns for the
effect of subcultures.

The goodness-of-fit statistics of the model are shown in part (a) of Table 5.3. The
value of the generalized chi-squared statistic over its degrees of freedom (DFs) is
less than 1. (Pearson′s chi - square/DF = 0.79). This indicates that there is no
overdispersion and that the variability in the data has been adequately modeled with
the Poisson distribution.

Subsection (b) of Table 5.3 shows the maximum likelihood (ML) (“Estimate”),
parameter estimates, standard errors, and t-tests for the hypothesis of the parameters.
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Table 5.3 Fit statistics and estimated parameters

(a) Fit statistics (Akaike’s information criterion (AIC), a small sample bias Corrected Akaike’s
information criterion (AICC), Bozdogan Akaike’s information criteria (CAIC), Schwarz’s
Bayesian information criterion (BIC), Hannan and Quinn information criterion (HQIC))

-2 Log likelihood 1062.11

Akaike information criterion (AIC) (smaller is better) 1082.11

AICC (smaller is better) 1083.46

Bayesian information criterion (BIC) (smaller is better) 1113.70

CAIC (smaller is better) 1123.70

HQIC (smaller is better) 1094.93

Pearson’s chi-square 137.70

Pearson’s chi-square/DF 0.79

(b) Parameter estimates

Effect sub1 Estimate Standard error DF t-value Pr > |t|

Intercept η̂ 3.6687 0.04124 164 88.96 <0.0001

sub1 1 τ̂1 -1.0809 0.07389 164 -14.63 <0.0001

sub1 2 τ̂2 -0.9043 0.06664 164 -13.57 <0.0001

sub1 3 τ̂3 -0.5596 0.06839 164 -8.18 <0.0001

sub1 4 τ̂4 -0.3412 0.06398 164 -5.33 <0.0001

sub1 5 τ̂5 0.2177 0.05540 164 3.93 0.0001

sub1 6 τ̂6 0.2257 0.05452 164 4.14 <0.0001

sub1 7 τ̂7 0.2631 0.05178 164 5.08 <0.0001

sub1 8 τ̂7 0.3387 0.05109 164 6.63 <0.0001

sub1 9 τ̂8 0.2684 0.05478 164 4.90 <0.0001

sub1 10 τ̂10 0 . . . .

Table 5.4 (part (a)) shows significance tests for the fixed effects in the model
“Type III fixed effects tests.” These tests are Wald tests and not likelihood ratio tests.
The effect of a subculture on the number of shoots is highly significant in this model
with a value of P < 0.0001, indicating that the 10 subcultures do not produce the
same number of shoots, that is, the number of subcultures affects the average shoot
production in the explant.

The least squares means obtained with “lsmeans” (part (b) in Table 5.4) are the
values under the column “Estimate,” which along with the standard errors, were
calculated with the linear predictor ηi = ηþ τi. These estimates are on the model
scale, whereas the “Mean” column values and their respective standard errors are on
the data scale, which were obtained by applying the inverse link to obtain the λi
values, i.e., λi = exp ηið Þ with their respective standard errors.

A comparison of means, using the option “lines,” is presented in Fig. 5.1. In this
figure, we can see that in the first subcultures, the average production is minimal but
it increases as subcultures increase from 5 to 8, and, in subculture 9, the average
number of shoots per explant begins to decrease.
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Table 5.4 Type III tests of fixed effects and least squares means (means)

(a) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

sub1 9 164 120.14 <0.0001

(b) sub1 least squares means

sub1 Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

1 2.5878 0.06131 164 42.21 <0.0001 13.3000 0.8155

2 2.7644 0.05234 164 52.81 <0.0001 15.8696 0.8307

3 3.1091 0.05455 164 56.99 <0.0001 22.4000 1.2220

4 3.3274 0.04891 164 68.03 <0.0001 27.8667 1.3630

5 3.8864 0.03699 164 105.08 <0.0001 48.7333 1.8025

6 3.8944 0.03567 164 109.18 <0.0001 49.1250 1.7522

7 3.9318 0.03131 164 125.57 <0.0001 51.0000 1.5969

8 4.0073 0.03015 164 132.91 <0.0001 55.0000 1.6583

9 3.9370 0.03606 164 109.18 <0.0001 51.2667 1.8487

10 3.6687 0.04124 164 88.96 <0.0001 39.2000 1.6166

ηi errorstd ηið Þ λi errorstd λi
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Fig. 5.1 Average number of shoots per subculture. Bars with different letters are statistically
different using α = 0.05

5.2.2 Example 2: CRDs with Poisson Response

Researchers want to determine whether the application of a new growth compound
to walnut trees changes the amount of nuts produced per tree. They were applied at
three different times (pre-flowering = 1, flowering= 2, and post-flowering = 3) and



in two formulations (A and B) plus a control (C). In addition to the treatments (Trt)
there was a control, where no compound was applied. In total, 7 treatments were
randomly applied to the experimental units (trees), i.e., 35 trees, in a rectangular
arrangement (as shown below). The average number of nuts yij observed in the
formulation and the time of application are provided in Table 5.5.
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Table 5.5 Number of nuts
per tree (yij) in each of the
combinations of the two
factors

Trt yij Trt yij Trt yij Trt yij Trt yij
C 1 A3 79 A3 89 B1 50 B2 138

A2 118 B3 99 C 21 A2 69 B1 69

A1 69 A1 50 A2 79 A3 69 A3 138

B1 89 B3 118 B3 99 A1 21 C 11

B1 99 A3 99 A1 79 B2 118 B2 89

B2 158 C 50 B1 118 C 30 B3 158

A1 89 A2 127 A2 89 B2 99 B3 118

The components of the GLMM are listed below:

Distribution : yij j rj � PoissonðλijÞ
rj � Nð0, σ2treeÞ

Linear predictor: ηij = ηþ τi þ rj

Link function: log λij = ηij

where yij denotes the number of nuts in treatment i on tree j (i = 1, 2,⋯, 7; j = 1, 2,
⋯, 5), ηij is the linear predictor, η is the intercept, τi is the fixed effect due to
treatment i, and rj is the random effect due to tree j.

The following SAS statements allows a GLMM to be fitted in a completely
randomized design with a Poisson response variable.

proc glimmix data=crd_nuez nobound method=laplace;
class trt rep;
model count = trt/dist=Poi link=log;
random rep;
lsmeans trt/lines ilink;
run;

The options in the model statement, dist, s and ilink communicates to SAS the
type of data distribution, the fixed effects solution and to compute the inverse link,
respectively. In addition, the option “lines” requests the GLIMMIX procedure in the
“lsmeans” (least squares means) command, and the mean comparisons and the
“ilink” option provide the inverse of the link function.

Part of the results is presented in Table 5.6. The value of the statistic for
conditional distribution (part (a)) indicates that there is a strong overdispersion (χ2/
df = 3.62), and the variance component estimates due to sampling in the experi-
mental units (trees) is σ2tree = 0:035 (part (b)).
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Table 5.6 Results of the
analysis of variance

(a) Fit statistics for conditional distribution

-2 Log L (count | r. effects) 354.60

Pearson’s chi-square 126.54

Pearson’s chi-square/DF 3.62

(b) Covariance parameter estimates

Cov Parm Estimate Standard error

rep 0.03573 0.02362

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 6 24 59.55 <0.0001

In addition, Table 5.6 (part (c)) shows the type III tests of fixed effects, indicating
that there is a significant difference between treatments on the average number of
nuts per tree (P = 0.0001). However, it is not recommended to continue with the
inference and analysis of the experiment due to the presence of extra-variance
(commonly known as overdispersion; Pearson′s chi - square/DF = 3.62) in the
data that strongly affects the F-test and the standard errors of the means.

A highly effective alternative to deal with the inconvenience of overdispersion in
the data is to use a different distribution to the Poisson distribution. A negative
binomial distribution is an excellent option for count data with overdispersion.
Assuming that the conditional distribution of the observations is given by:

yij j rj � Poisson λij ,

where λij~Gamma~(1/ϕ,ϕ), ϕ as the scale parameter and rj � Nð0, σ2treeÞ. The
resulting new GLMM is:

Distribution : yij j rj � Negative Binomialðλij,ϕÞ,
rj � Nð0, σ2treeÞ

Linear predictor : ηij = ηþ τi þ rj

Link function: log λij = ηij

The following GLIMMIX statements for fitting this model under a negative
binomial distribution in a CRD manner is provided next.

proc glimmix data=crd_nuez nobound method=laplace;
class trt rep;
model count = trt/dist=Negbin link=log;
random rep;
lsmeans trt/lines ilink;
run;
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Table 5.7 Poisson and nega-
tive binomial model fit
statistics

(a) Fit statistics

Poisson Negative Binomial

-2 Log likelihood 374.83 328.03

AIC (smaller is better) 390.83 346.03

AICC (smaller is better) 396.37 353.23

BIC (smaller is better) 387.71 342.51

CAIC (smaller is better) 395.71 351.51

HQIC (smaller is better) 382.45 336.60

(b) Fit statistics for conditional distribution

Poisson Negative Binomial

-2 Log L (count | r. effects) 354.60 316.06

Pearson’s chi-square 126.54 32.02

Pearson’s chi-square/DF 3.62 0.91

Table 5.8 Variance compo-
nent estimates and fixed
effects tests

(a) Covariance parameter estimates

Cov Parm Estimate Standard error

Rep 0.04288 0.03398

Scale 0.06141 0.02428

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 6 24 18.75 <0.0001

Part of the results is listed below. The information criteria in Table 5.7 part (a) are
helpful in choosing which model best fits the dataset. Clearly, the negative binomial
distribution provides the best fit to these data. On the other hand, in the conditional fit
statistics (part (b)), we observed that the Poisson model had a strong overdispersion
(Pearson′s chi - square/DF = 3.62) and that by fitting the data under a negative
binomial distribution, the overdispersion of the dataset was removed (Pearson′s chi-
Square/DF = 0.91).

Table 5.8 shows the variance component estimates (part (a)) and the type III tests
of fixed effects (part (b)). The estimated variance parameter, due to trees, is
σ2tree = 0:04288, and the estimated scale parameter (Scale) is ϕ= 0:06141. The
type III tests of fixed effects (part (b)) show that there is a highly significant effect
of treatments on the average number of nuts (P < 0.0001).

The values under the column “Estimates” are the estimates of the linear predictor
ηi (the model scale), and the values under “Mean” are the means λi (the data scale)
with their respective standard errors obtained with the command “lsmeans” and
“ilink” (Table 5.9). The results show that the treatments implemented in this
experiment showed a higher average number of walnuts than did the “control”
treatment C. In general, formula B applied to the walnut trees at the full-flowering
stage showed a higher nut production.
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Table 5.9 Estimates on the model scale (“Estimate”) and means on the data scale (“Mean”)

Trt least squares means

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

A1 4.0865 0.1560 24 26.19 <0.0001 59.5307 9.2890

A2 4.5624 0.1519 24 30.04 <0.0001 95.8162 14.5529

A3 4.5293 0.1519 24 29.82 <0.0001 92.6956 14.0783

B1 4.4349 0.1529 24 29.01 <0.0001 84.3417 12.8958

B2 4.7863 0.1504 24 31.82 <0.0001 119.86 18.0304

B3 4.7641 0.1504 24 31.67 <0.0001 117.23 17.6335

C 3.0499 0.1742 24 17.51 <0.0001 21.1140 3.6785

Interest often arises in areas of agricultural and biological sciences to conduct
experiments that involve random effects (blocks, locations, etc.) and response vari-
ables different from the normal distribution. For example, suppose that a certain
number of treatments are being tested at different randomly selected locations, out of
a sufficiently large number of locations. At each location, the experimental units are
randomly assigned to each of the treatments. Let yij be the number of (observed)
individuals possessing the characteristic of interest in the ith treatment in the jth
block. The model for the mean structure of this experiment is

ηij = ηþ τi þ bj

where η is the intercept, τi is the fixed effect due to the ith treatment i, and bj is the
random effect of the block j with bj � Nð0, σ2blockÞ.

5.2.3 Example 3: Control of Weeds in Cereal Crops
in an RCBD

One of the main problems when growing cereal crops is the competition that exists
between the weeds and seedlings. If a field supervisor is interested in testing five
designed treatments plus a control for weed control in cereal crops, then a random-
ized complete block design (four blocks) should be used. Table 5.10 shows the
number of weed plants observed in each of the treatments (yij) in parentheses.

Table 5.11 shows the sources of variation and the degrees of freedom of a
randomized complete block design used in this experiment.

Since the response is count, it will be modeled using a GLMM with a Poisson
response variable, which is stated below:

Distribution : yij j bj � PoissonðλijÞ
bj � Nð0, σ2blockÞ
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Table 5.10 Number of weeds in each treatment (the number in parentheses corresponds to the
treatment number)

Block

A (1) 438 (4) 17 (2) 538 (5) 18 (3) 77 (6) 115

B (3) 61 (2) 422 (6) 57 (1) 442 (5) 26 (4) 31

C (5) 77 (3) 157 (4) 87 (6) 100 (2) 377 (1) 319

D (2) 315 (1) 380 (5) 20 (3) 52 (4) 16 (6) 45

Table 5.11 Analysis of
variance

Sources of variation Degrees of freedom

Block b - 1 = 4 - 1 = 3

Treatment t - 1 = 6 - 1 = 5

Error (t - 1(b - 1)=15

Total tb - 1 = 23

Linear predictor: ηij = ηþ τi þ bj

Link function: log λij = ηij

where yij denotes the number of weed plants observed in treatment i and block
j (i = 1, 2,⋯, 6; j = 1, 2, 3, 4), ηij is the linear predictor, η is the intercept, τi is the
fixed effect due to treatment i, and bj is the random block effect bj � N 0, σ2block .

Using the GLIMMIX procedure, the following syntax specifies the analysis of a
GLMM with a Poisson response.

proc glimmix nobound method=laplace;
class Block Trt;
model Count = Trt/dist=Poisson s;
random block;
lsmeans Trt/diff lines ilink;
run; quit;

Note that in the above syntax, we use “method = laplace” (or we can also use
“method = quadrature”) to fit the mixed model and obtain the chi-squared/DF fit
statistic. If the method of integration is not specified, then a generalized chi-squared/
DF statistic is obtained. The auxiliary options after the “lsmeans” command are
described below: “diff” provides paired comparisons between treatments, “lines”
provides the pair comparison of means using letters, and “ilink” provides the value
of the inverse of the link function. Some of the outputs are listed below.

Table 5.12 (a) presents the basic information about the model and estimation
procedure used.

Subsection (b) of Table 5.12 shows/ lists the “Dimensions” of the relevant
matrices used in the model. The random effects matrix Z indicates that there are
four columns due to blocks, and the fixed effects matrix X indicates that there is one
column for the intercept plus six columns due to treatments.
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Table 5.12 Basic model
information

(a) Model information

Dataset WORK.DBCA

Response variable Counting

Response distribution Poisson

Link function Log

Variance function Default

Variance matrix Not blocked

Estimation technique Maximum likelihood

Likelihood approximation Laplace

Degrees of freedom method Containment

(b) Dimensions

G-side Cov. parameters 1

Columns in X 7

Columns in Z 4

Subjects (blocks in V) 1

Max Obs per subject 24

Table 5.13 Model fit
statistics

(a) Fit statistics

-2 Log likelihood 434.46

AIC (smaller is better) 448.46

AICC (smaller is better) 455.46

BIC (smaller is better) 444.16

CAIC (smaller is better) 451.16

HQIC (smaller is better) 439.03

(b) Fit statistics for conditional distribution

-2 Log L (Count | r. effects) 418.66

Pearson’s chi-square 283.09

Pearson’s chi-square/DF ϕ 11.80

The “Fit statistics” and “Fit statistics for conditional distribution” (parts (a) and
(b) of Table 5.13, respectively) show information about the fit of the GLMM. The
generalized chi-squared statistic measures the sum of the residual squares in the final
model and the relationship with its degrees of freedom; this is a measure of the
variability of the observations about the model around the mean.

The value of Pearson’s chi-square/DF for the conditional distribution is 11.8, well
above up 1. This value gives strong evidence of overdispersion in the dataset. In
other words, this value is calling our distribution and linear predictor assumption into
question, which means that the variance function was not adequately specified.
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Table 5.14 Variance component estimates, parameter estimates, and type III tests of fixed effects

Cov Parm Estimate Standard error

Block ðσ̂2blockÞ 0.01840 0.01377

(a) Solutions for fixed effects

Effect Trt Estimate Standard error DF t-value Pr > |t|

Intercept η 4.3637 0.08808 3 49.54 <0.0001

Trt 1 τ1 1.6056 0.06155 15 26.09 <0.0001

Trt 2 τ2 1.6508 0.06132 15 26.92 <0.0001

Trt 3 τ3 0.09042 0.07769 15 1.16 0.2627

Trt 4 τ4 -0.7416 0.09888 15 -7.50 <0.0001

Trt 5 τ5 -0.8101 0.1012 15 -8.00 <0.0001

Trt 6 τ6 0 . . ..

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 5 15 523.57 <0.0001

Table 5.15 Estimated least squares means (“Mean”)

Trt least squares means

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

1 5.9693 0.07237 15 82.49 <0.0001 391.25 28.3139

2 6.0145 0.07217 15 83.33 <0.0001 409.34 29.5437

3 4.4541 0.08652 15 51.48 <0.0001 85.9802 7.4390

4 3.6221 0.1060 15 34.19 <0.0001 37.4150 3.9643

5 3.5536 0.1081 15 32.86 <0.0001 34.9372 3.7784

6 4.3637 0.08808 15 49.54 <0.0001 78.5467 6.9186

ηi errorstd ηið Þ λi errorstd λi

The F-test for testing H0 (τ1 = τ2 = ⋯ = τ6) or equivalent (μ1 = μ2 = ⋯ = μ6)
indicates that there is a highly significant difference (P < 0.0001) in the average
number of weeds in at least one treatment (part (c)) (Table 5.14).

The estimates of the linear predictor on the model scale for each of the treatments

ηið Þ and the inverse of the linear predictor λi on the data scale (with their

respective standard errors) are calculated as follows ηi = ηþ τi and λi = exp ηið Þ,
respectively. These values are listed in Table 5.15.

The “plots” option in the “proc GLIMMIX” statement creates a set of plots for the
raw residuals, Pearson residuals, and studentized residuals.

The panel consists of a plot of studentized residuals versus the linear predictor
ηið Þ, a histogram of the residuals with a normal density superimposed, a plot of
residual versus quantiles, and a box plot for the residuals. The panel of studentized
residuals indicates the possibility of a slightly skewed distribution (Fig. 5.2). In this
figure, we can see that the range of values of the residuals changes, as do the values



of the linear predictor, indicating that the assumption of constant variance is no
longer met. The residuals–quantiles plot confirms the constant variance violation. A
nonconstant variance may also suggest an incorrect selection of the response distri-
bution or variance function.
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Fig. 5.2 Studentized conditional residuals

5.2.4 Overdispersion in Poisson Data

Linear mixed models assume that the observations have a normal distribution
conditional to the fixed effects of parameters. In addition, the mean μ is independent
of the variance σ2, whereas, in most GLMMs that assume a binomial or Poisson
distribution, the variance “dispersion” is set to 1. That is, if the mean is known, then
we assume that the variance is also known. The extra variability not predicted
by a generalized linear model’s random component reflects overdispersion.
Overdispersion occurs because the mean and variance components of a GLM are
related and depend on the same parameter that is being predicted through the
predictor set. However, if overdispersion is present in a dataset, then the estimated
standard errors and test statistics of the overall goodness of fit will be distorted and



adjustments must be made. In other words, when there is overdispersion in a dataset,
the standard errors of the estimated parameters are too small, which leads to test
statistics for the model parameters that are too large (i.e., type I error increases).
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Overdispersion can be caused by several factors: omission of predictor variables
in the model, high correlation in the observations due to nested effects,
misspecification of the systematic component, or incorrect distribution of the data.
Systematic or overdispersion deviations may be the result of incorrect assumptions
about the stochastic and/or systematic component of the model. The model may also
not fit the dataset well because of an incorrect choice of the link function. Systematic
deviations may also result from lack of either random effects or independence of
observations. These random factors should generally address deviance violations
and problems associated with the systematic component.

According to Stroup (2013), overdispersion occurs when the variance exceeds the
theoretical variance under the distribution model of the data. For any distribution
with a nontrivial variance function, overdispersion is theoretically possible for
distributions belonging to the one-parameter exponential family because they lack
a scale parameter to mitigate the mean–variance relationship; therefore, models such
as Poisson distribution are vulnerable to overdispersion. In summary, overdispersion
occurs when:

(a) The variance is larger than expected, which leads to standard errors that are not
correct.

(b) The mean structure is not well specified.
(c) The linear predictor η is not well specified.
(d) The chosen distribution of the data is not appropriate.
(e) Predictor variables are omitted.
(f) Observations are significantly correlated.

If we do not account for overdispersion, we underestimate the standard errors (for
a large variance, the standard errors are not correct) and inflate the statistical tests
causing the type I error to inflate and the confidence intervals to be unreliable.
Fig. 5.3 shows that as the predicted mean μ increases, the residuals have a larger
spread in the plot, indicating that the variance may increase as a function of the
mean, whereas Fig. 5.4 shows a nonconstant variance.

In the fit statistics obtained under the GLMM with the Poisson distribution (part
(b), Table 5.13), the value of the statistic of Pearson′s chi - square/DF = 11.8)
indicates that there is a strong overdispersion in the dataset. Another aspect provided
by the output is the value of the test statistic F (F = 523.57) tabulated in (part (c)) of
Table 5.14. A value too large may indicate that the fit is incorrect. Once the
researcher has detected overdispersion, he/she must consider the strategy that will
take to remedy it. There are three possible alternatives to evaluate (test) and eliminate
overdispersion. Below, we will review the three aforementioned alternatives.
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Fig. 5.3 Conditional residuals versus predicted values on the data scale

5.2.4.1 Using the Scale Parameter

The first alternative is to add a scale parameter and replace Var(yij| bj) = λij by
Var(yij| bj) = ϕλij. This consists of replacing the logarithm of the conditional
likelihood yij log (λij) - λij - log (yij) by the quasi-likelihood yij log (λij) - λij/ϕ,
assuming that ϕ > 1 could adequately model the observed variance.

The following GLIMMIX syntax invokes this alternative of adding a scale
parameter under a Poisson response variable.

proc glimmix;
class Block Trt;
model Count = Trt/dist=Poisson;
random intercept/subject=block;
random _residual_;
lsmeans Trt/ ilink ;
run;

The SAS code is highly similar to that previously used with the addition of the
“random _residual_” command to the program. Note that the Laplace integration
method (“method = laplace”) has been removed, which causes the estimation to be
performed using the pseudo-likelihood (PL) method; the scale parameter is esti-
mated and used in the adjustment of the standard errors and test statistics. The



GLIMMIX procedure uses the generalized chi-square divided by its degrees of

freedom Gener:chi- square=DF=ϕ as the estimate of the scale parameter. All

standard errors are multiplied by ϕ, and all F-test values are divided by ϕ.

Table 5.16 shows part of the results.

5.2 The Poisson Model 145

Fig. 5.4 Residuals on the model scale

In Table 5.16, we observe the fit statistics (part (a)), covariance parameter
estimates (part (b)), and the value of the scale parameter, which is equal to
ϕ= 19:4848 (Residual(VC)). The value of the F-statistic under the Poisson distri-
bution in the analysis is 26.87 (part (c)); this value is obtained by dividing the

F-value from the previous analysis by 523:57=ϕ . The results indicate that even

under this adjustment, overdispersion exists and that this value increases from 11.8
to 19.4848 (part (a)). The inclusion of the scale parameter affects the variance
estimate due to blocks σ2block as well as the estimates of treatment means (part (d)),
but the main impact is on the standard errors.

The inclusion of the scale parameter implies that there is a quasi-likelihood,
meaning that there is no true likelihood of the model and, therefore, there is no
true likelihood process that provides a true expected value of λ and a variance of ϕλ.
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Table 5.16 Results of the adjustment by adding the scale parameter

(a) Fit statistics

-2 Res log pseudo-likelihood 29.48

Generalized chi-square 350.73

Gener. chi-square/DF 19.48

(b) Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Intercept block 0.004981 0.02077

Residual Variance component (VC) 19.4848 7.1346

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 5 15 26.87 <0.0001

(d) Trt least squares means

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

1 5.9779 0.1166 15 51.29 <0.0001 394.60 45.9935

2 6.0231 0.1142 15 52.74 <0.0001 412.84 47.1443

3 4.4626 0.2396 15 18.63 <0.0001 86.7160 20.7753

4 3.6306 0.3609 15 10.06 <0.0001 37.7352 13.6205

5 3.5621 0.3734 15 9.54 <0.0001 35.2362 13.1576

6 4.3722 0.2504 15 17.46 <0.0001 79.2189 19.8383

5.2.4.2 Linear Predictor Review

In count and binomial response variables, it is important to check whether the linear
predictor is correctly specified, that is, whether it is being randomly affected by the
experimental units within blocks. If λij is being randomly affected by the experi-
mental units within blocks, which is important in count and binomial response
variables, then, the ANOVA table should include the effect of the block × treatment
source of variation; this must be specified in the linear predictor in a GLMM. Thus,
the linear predictor is specified as

ηij = ηþ τi þ bj þ bτð Þij
Distribution : yij j bj, bτij � PoissonðλijÞ

bj � Nð0, σ2blockÞ
bτij � Nð0, σ2block × τÞ

Linear predictor: ηij = ηþ τi þ bj þ bτð Þij
Link function: log λij = ηij:

The following GLIMMIX program allows the above model to be adjusted:
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Table 5.17 Results of the fit by redefining the predictor of the model

(a) Fit statistics for conditional distribution

-2 Log L (Count | r. effects) 156.38

Pearson’s chi-square 2.58

Pearson’s chi-square/DF 0.11

(b) Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Intercept block 0.05969 0.05758

Trt block 0.1152 0.04115

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 5 15 41.48 <0.0001

(d) Trt least squares means

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

1 5.9692 0.2106 15 28.34 <0.0001 391.20 82.3947

2 6.0037 0.2106 15 28.51 <0.0001 404.92 85.2707

3 4.3674 0.2170 15 20.12 <0.0001 78.8402 17.1100

4 3.4255 0.2301 15 14.89 <0.0001 30.7370 7.0714

5 3.4005 0.2298 15 14.80 <0.0001 29.9786 6.8891

6 4.3027 0.2175 15 19.79 <0.0001 73.8997 16.0707

proc glimmix method=laplace;
class Block Trt;
model Count = Trt/dist=Poisson;
random intercept Trt/subject=block;
lsmeans Trt/ ilink ;
run;

Part of the output is shown in Table 5.17. The results tabulated in part (a) indicate

that the overdispersion has been eliminated ϕ= 0:11 , but there is a risk of

underestimating the variance. For this reason, it is highly recommended that the
value of ϕ should be close to 1. The estimated variance components (part (b)) for
blocks and block × treatments are σ2block = 0:05969 and σ2block×Trt = 0:1152,
respectively.

The type III tests of fixed effects are highly significant (P = 0.0001), indicating
that the six treatments are not equally effective in weed control (part (c)). The values
in part (d) under the “Mean” column are the means on the original scale of the data
for each of the treatments with their respective standard errors. The values of the
means – compared with the previous ones – (using the scale parameter) do not vary
much, but the standard errors have a more marked variation.
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5.2.4.3 Using a Different Distribution

Another way to account for the problem of overdispersion when using a Poisson
distribution is to change the assumed distribution of the response variable. Poisson
variables have the same mean and variance, but, in biological sciences, with vari-
ables such as counts, this assumption is not always true. A negative binomial
distribution is a good alternative (see Example 5.2), as previously discussed. A
negative binomial variable’s mean is denoted by the parameter λ > 0 and variance
λ + ϕλ2 by ϕ> 0. That is, the expected value E(y)= λ and variance Var(y)= λ + ϕλ2,
where ϕ is the scale parameter. The components of this model are shown below:

Given that yij j bj~Poisson(λij), it is assumed that λij~Gamma~(1/ϕ,ϕ), with ϕ as
the scale parameter and bj � N 0, σ2block . The new specification of the resulting
GLMM is as follows:

Distribution : yij j bj � Negative Binomialðλij,ϕÞ
bj � Nð0, σ2blockÞ

Linear predictor: ηij = ηþ τi þ bj

Link function: log λij = ηij:

The following GLIMMIX statements fit the model with a negative binomial
distribution.

proc glimmix method=laplace;
class block Trt;
model count = Trt/dist=NegBin;
random block;
lsmeans Trt/ ilink ;
run;

Some of the most relevant outputs from GLIMMIX are presented in Table 5.18.
Pearson’s chi-squared (Pearson′s chi - square/DF) value of 0.88 (part (a)) shows
that overdispersion in the dataset has been removed. The estimated scale parameter
tabulated in part (b) (Scale) is ϕ= 0:1080. This value is not the same scale parameter
estimated using the Poisson model with the “random _residual_” command, since
the methodology for calculating them in these models is different. However, as
mentioned above, both scale parameters affect the relationship between the mean
and variance in the Poisson and negative binomial distributions.

The value of the test statistic shown in part (c) of Table 5.18, under the negative
binomial distribution for the effect of treatments, is highly similar to the value
obtained with the Poisson distribution when the effect of the block × treatment
interaction was added to the linear predictor. The values under “Estimate” are
estimates of the linear predictor on the model scale (part (d)), whereas those under
the “Mean” column are the treatment means on the data scale, using the negative
binomial distribution. Of the three proposed alternatives to fit these data, the last two
(including in the predictor the block–treatment interaction and assuming a negative
binomial distribution) provides a better fit.
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Table 5.18 Fitting results by redefining the model structure

(a) Fit statistics for conditional distribution

-2 Log L (Count | r. effects) 235.11

Pearson’s chi-square 21.13

Pearson’s chi-square/DF 0.88

(b) Covariance parameter estimates

Cov Parm Estimate Standard error

Block 0.07713 0.06955

Scale 0.1080 0.03768

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 5 15 41.11 <0.0001

(d) Trt least squares means

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

1 6.0280 0.2179 15 27.66 <0.0001 414.90 90.4085

2 6.0465 0.2174 15 27.81 <0.0001 422.64 91.8789

3 4.3941 0.2228 15 19.72 <0.0001 80.9704 18.0426

4 3.5190 0.2335 15 15.07 <0.0001 33.7516 7.8815

5 3.4684 0.2338 15 14.83 <0.0001 32.0863 7.5030

6 4.3439 0.2235 15 19.44 <0.0001 77.0085 17.2111

5.2.5 Factorial Designs

Many experiments involve studying the effects of two or more factors. Factorial
designs are the most efficient for these types of experiments. In a factorial design, all
possible combinations of factor levels are investigated in each replicate. If there are
a levels of factor A and b levels of factor B, then each replicate contains all ab
treatment combinations.

5.2.5.1 Example: A 2 × 4 Factorial with a Poisson Response

This application refers to a factorial experiment involving explants from cotyledons
of cucumber (Cucumis sativus L.) with two factors, i.e., genotype (two levels) and
culture medium (four levels). Each of the eight combinations of the genotype and
culture levels were applied to four Petri dishes, each containing six leaf explants. The
response variable was the number of buds in each of the leaf explants, i.e., the
response variable was a count. There are two sources of variation in this application,
namely, variation between Petri dishes and variation between the explants within the
Petri dishes (Table 5.19).

The sources of variation and degrees of freedom for this experiment are shown in
Table 5.20.
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The components that define this model are shown below:

Distribution : yijk j petri:dishk ,
explanteðpetri:dishÞlðkÞ � PoissonðλijkÞpetri:dishj � N 0, σ2petri:dish ,

explantðpetri:dishÞlðkÞ � N 0, σ2explantðpetri:dishÞ

Linear predictor : ηijkl = ηþ αi þ βj þ ðαβÞij þ petri:dishk þ explantðpetri:dishÞlðkÞ
Link function: log λijkl = ηijkl

where ηijkl is the linear predictor in genotype i (i = 1, 2), culture medium
j ( j = 1, 2, 3, 4), Petri.dish k (k = 1, 2, 3, 4), and explant l (l = 1, 2, 3, 4, 5, 6), η
is the intercept, αi is fixed effect due to genotype i, βj is the fixed effect due to
culture medium j, (αβ)ij is the effect of the interaction between genotype i and
culture medium j, Petri.dishk is the random effect of the Petri.dish, and explant
(Petri.dish)l(k) is the random effect of the explant within the Petri.dish, assuming
Petri:dishj � Nð0, σ2Petri:dishÞ and explantðPetri:dishÞlðkÞ � Nð0, σ2explantðPetri:dishÞÞ.

The following GLIMMIX procedure fits a factorial experiment with a Poisson
response.

proc glimmix method=laplace ;
class genotype culture petri.dish explant;
model y = genotype|culture/dist=Poisson;
random petri.dish explant(petri.dish));
lsmeans genotype|culture/ilink lines;
run;

Some of the SAS output is shown in Table 5.21. The fit statistics in part (a) for
this dataset are shown below. Note that “method = laplace” was used for the
estimation process and to obtain Pearson’s fit statistic χ2/DF. The result indicates
that there is evidence of overdispersion (Pearson′s chi - square/DF = 1.84).

Overdispersion, as discussed before, implies more variability in the data than
would be expected, potentially explaining the lack of fit in a Poisson model. Part
(b) shows the variance component estimates due to Petri_dish, which is equal
to σ̂2Petri:dish = 0:003616, and, for the explants within Petri.dish, it is
σ̂2explantðPetri:dishÞ = 0:01462. However, the type III test of fixed effects indicates that

there is a statistically significant effect of genotype, culture medium, and the
interaction of both factors (part c).

The plot of residuals against the linear predictor in Fig. 5.5 provides further
evidence of possible overdispersion.

The least squares means on the model scale for the genotype (part (a)), the culture
medium (part (b)), and the interaction between both factors (part (c)) are listed under
the “Estimate” column of Table 5.22, whereas under the “Mean” column are the
means of these factors but in terms of the data.
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Table 5.19 Number of buds counted in the cucumber experiment

Explant

Genotype Culture Petridish 1 2 3 4 5 6

1 1 10 7 5 7 12 1

12 8 18 20 20 17

11 12 18 19 14 18

3 2 5 20 0 18 5 0

4 8 5 12 10 15

4 10 4 0 5 4 8

4 5 5 6 2 3 1

4 3 7 5 10 2 10 0

4 9 5 8 4 4 7

1 13 0 3 7 5 2

2 1 8 9 10 9 15 9

18 12 6 0 13 14

3 8 12 6 4 6 11

4 9 5 1 9 15 9

4 2 6 2 3 7 0

4 4 12 2 0 4 3

4 6 1 9 3 5 8

1 2 6 16 20 5 16 13

1 3 10 12 13 0 12 15

1 4 10 12 2 8 15 2

2 1 20 16 14 18 17 20

2 2

2 3 22 13 24 15 10 14

1 2 4

3 1 20 18 15 18 20 18

3 3 17 10 20 12 14 21

3 4

1

2

4

1 1 16 9 10 11 9 12

1 2 13 7 3 2 3 12

1 3 14 6 9 9 15 18

4

2 2 11 12 8 9 12 10

2 3 15 6 9 9 16 16

2 2 4

1

3 2 10 10 12 12 15 10

3 3 10 10 17 10 14 12

3 4 10 14 14 14 9 14

1

2

3

4

Table 5.20 Sources of varia-
tion and degrees of freedom

Sources of variation Degrees of freedom

Genotype a - 1 = 2 - 1 = 1

Culture b - 1 = 4 - 1 = 3

Genotype × culture (a - 1)(b - 1) = 3

Petri.dish × Explant c(r - 1) = 4 × 6 - 1 = 23

Error (by difference) = 161

Total abcr - 1 = 191
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Table 5.21 Conditional fit statistics, variance component estimates, and type III tests of fixed
effects under the Poisson distribution

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 1168.16

Pearson’s chi-square 354.01

Pearson’s chi-square/DF 1.84

(b) Covariance parameter estimates

Cov Parm Estimate Standard error

Petri.dish 0.003616 0.006014

Explant (Petri.dish) 0.01462 0.008798

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Genotype 1 161 11.01 0.0011

Culture 3 161 57.30 <0.0001

Genotype*culture 3 161 3.95 0.0095

Since there is overdispersion in the data, we will fit the GLMM again using the
negative binomial distribution. That is, under the following GLMM:

Distribution : yij j Petri:dishk , explantðPetri:dishÞlðkÞ � Negative Binomailðλij,ϕÞ,
Petri:dishj � Nð0, σ2Petri:dishÞ,

explant ðPetri:dishÞlðkÞ � N 0, σ2explantðPetri:dishÞ ,

Linear predictor : ηijkl = ηþ αi þ βj þ ðαβÞij þ Petri:dishk þ explantðPetri:dishÞlðkÞ
Link function: log λijkl = ηijkl

and the scale parameter ϕ.
The following GLIMMIX program allows us to fit a GLMM with a negative

binomial response variable.

proc glimmix ;
class genotype culture petri.dish explant ;
model y = cultivar|culture/dist=NegBin link=log;
random petri.dish Explant(petri.dish);
lsmeans cultivar|culture;
run;

It should be noted that this program is very similar to the previous one, and the
only difference is that now a negative binomial distribution is used (“dist= negbin”).
Part of the results is presented in Table 5.23. As we have already mentioned, a
negative binomial distribution is another model for count variables when there is
overdispersion in the dataset. If Pearson’s chi-squared value divided over the degrees
of freedom is less than or equal to 1, then the overdispersion is 0 or close to 0, which
means that the model is able to efficiently capture the degree of overdispersion.



Based on the conditional distribution, Pearson’s chi-squared (χ2/DF = 0.83) fit
statistic indicates that we have no evidence of overdispersion, so we can justify
the negative binomial distribution, which is better than the Poisson distribution
implemented above. In part (b), we show that the estimated scale parameter is
ϕ= 0:1712. This value is not the same as the parameter for the quasi-Poisson
model obtained with the “random _residual_” command. Note that the variance
components were slightly affected. Additionally, in Table 5.23, we can see the type
III tests for the fixed effects of the model in part (c), where a significant effect of
genotype, culture, and the interaction between both factors (genotype*culture) can
be observed on the number of buds in the leaf explant.
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Fig. 5.5 Studentized conditional residuals

The “lines” option in the “lsmeans” command is used to obtain Fisher’s least
significant difference (LSD) means for both factors and their interaction. The means
and their respective standard errors, on the model scale (“Estimate” column) and on
the data scale (“Mean” column), are tabulated in Table 5.24, the genotype and
culture medium are in Table 5.25, and the interaction between both factors is in
Table 5.26. The estimated values in this mean comparison for cultivar (Table 5.24)
correspond to the values of the linear predictor ηi on the model scale, whereas the
means on the data scale is λi (part (a)) and the comparison of means (on the model
scale) are tabulated in part (b).
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Table 5.22 Estimates on the model scale and means on the data scale under the Poisson
distribution

(a) Genotype least squares means

Genotype Estimate
Standard
error DF

t-
value Pr > |t| Mean

Standard error
mean

1 2.2979 0.05165 161 44.49 <0.0001 9.9533 0.5141

2 2.1345 0.05298 161 40.29 <0.0001 8.4531 0.4479

(b) Culture least squares means

Culture Estimate
Standard
error DF

t-
value Pr > |t| Mean

Standard error
mean

1 2.1984 0.06180 161 35.57 <0.0001 9.0107 0.5569

2 2.5684 0.05607 161 45.81 <0.0001 13.0456 0.7314

3 2.4609 0.05738 161 42.89 <0.0001 11.7156 0.6723

4 1.6371 0.07445 161 21.99 <0.0001 5.1402 0.3827

(c) Genotype*culture least squares means

Genotype Culture Estimate
Standard
error DF

t-
value Pr > |t| Mean

Standard
error mean

1 1 2.2465 0.07676 161 29.26 <0.0001 9.4547 0.7258

1 2 2.7789 0.06395 161 43.45 <0.0001 16.1018 1.0298

1 3 2.5331 0.06932 161 36.54 <0.0001 12.5925 0.8729

1 4 1.6331 0.09793 161 16.68 <0.0001 5.1196 0.5014

2 1 2.1503 0.07958 161 27.02 <0.0001 8.5877 0.6834

2 2 2.3580 0.07370 161 31.99 <0.0001 10.5694 0.7790

2 3 2.3887 0.07290 161 32.77 <0.0001 10.8997 0.7945

2 4 1.6411 0.09760 161 16.81 <0.0001 5.1609 0.5037

Table 5.23 Conditional fit statistics, variance component estimates, and type III tests of fixed
effects under the negative binomial distribution

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 1143.90

Pearson’s chi-square 159.95

Pearson’s chi-square/DF 0.83

(b) Covariance parameter estimates

Cov Parm Estimate Standard error

Petri.dish -0.02717 .

Explant (Petri.dish) -0.04323 .

Scale 0.1712 0.03514

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Genotype 1 161 4.43 0.0369

Culture 3 161 25.91 <0.0001

Genotype*culture 3 161 1.44 0.0322
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Table 5.24 Estimates on the model scale and means on the data scale under the negative binomial
distribution

(a) Cultivar least squares means

Genotype Estimate
Standard
error DF

t-
value Pr > |t| Mean

Standard error
mean

1 2.3054 0.05407 161 42.64 <0.0001 10.0287 0.5423

2 2.1426 0.05535 161 38.71 <0.0001 8.5219 0.4717

ηi λi
(b) T grouping of genotype least squares means (α=0.05)

LS means with the same letter are not significantly different

Genotype Estimate

1 2.3054 A

2 2.1426 B

Table 5.25 Means estimates on the model scale and data scale for the culture medium

(a) Culture least squares means

Culture Estimate
Standard
error DF

t-
value Pr > |t| Mean

Standard error
mean

1 2.2061 0.07653 161 28.82 <0.0001 9.0802 0.6950

2 2.5766 0.07198 161 35.80 <0.0001 13.1527 0.9468

3 2.4684 0.07300 161 33.81 <0.0001 11.8031 0.8617

4 1.6451 0.08708 161 18.89 <0.0001 5.1815 0.4512

ηj λj
(b) T grouping of culture least squares means (α=0.05)

LS means with the same letter are not significantly different

Culture Estimate

2 2.5766 A

3 2.4684 A

1 2.2061 B

4 1.6451 C

For the culture medium (Table 5.25), the estimated values in this comparison of
means correspond to the values of the linear predictor ηj (on the model scale), but, by
applying the inverse link to ηj, we obtain the values under the “Mean” column that
provide the means on the data scale (part (a)). The mean comparisons on the model
scale are shown in part (b).

The results indicate that the means in culture media 2 and 3 provided a statisti-
cally similar average number of buds compared to the means in culture media 1 and
4 (see Fig. 5.6).

The interaction between both factors (Table 5.26), the average number of buds,
and the mean comparisons are shown in Table 5.26.
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Table 5.26 Estimates on the model scale and means on the data scale for the interaction between
genotype and culture medium

Genotype*culture least squares means

Genotype Culture Estimate
Standard
error DF

t-
value Pr > |t| Mean

Standard
error mean

1 1 2.2540 0.1072 161 21.02 <0.0001 9.5255 1.0212

1 2 2.7869 0.09844 161 28.31 <0.0001 16.2310 1.5978

1 3 2.5401 0.1020 161 24.91 <0.0001 12.6805 1.2933

1 4 1.6408 0.1233 161 13.31 <0.0001 5.1595 0.6360

2 1 2.1582 0.1093 161 19.75 <0.0001 8.6558 0.9457

2 2 2.3663 0.1050 161 22.53 <0.0001 10.6582 1.1196

2 3 2.3967 0.1045 161 22.94 <0.0001 10.9865 1.1478

2 4 1.6493 0.1230 161 13.41 <0.0001 5.2036 0.6401

ηij λij
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Fig. 5.6 Comparison of the average number of buds as a function of the type of culture medium
(LSD, α = 0.05)

The values under “Estimates” (Table 5.26) correspond to those of the linear
predictor ηij (model scale), but the values under “Mean” correspond to the means

λij on the data scale.
Graphically, Fig. 5.7 shows that genotype 1 in culture medium 2 provides the

highest number of buds, whereas the lowest number of buds was observed in culture
medium 4. For genotype 2, the highest number of buds was observed in culture
media 2 and 3. Finally, culture medium 4 is less suitable for both genotypes.
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Fig. 5.7 Effect of the cultivar × culture medium interaction on the average number of buds
(LSD, α = 0.05)

5.2.6 Latin Square (LS) Design

A Latin square (LS) is used where heterogeneity is associated with the crossing of
two factors, generally, both with the same number of levels. This design was
originally used in agricultural experimentation with plots placed in a square arrange-
ment, with expected heterogeneity along the rows and columns of the square.
Blocking in both directions across rows and columns is done in this experimental
design. Sometimes in experimentation, blocking in two directions may be appropri-
ate, i.e., the use of an LS design is a good option. Some examples are provided below
to illustrate the use of this experimental design:

• Field experiments on plots set in a square arrangement with rows and columns
that contribute to the heterogeneity between plots. For example, gradients of
fertility, moisture, management practices, and so on.

• Experiments in greenhouses, rooms with a controlled environment, or growth
chambers where the placement of shelves, trays, etc. with respect to walls or light
sources can introduce systematic variability related to temperature, humidity, or
light in different directions (e.g., left to right, back to front, or top to bottom).

• Laboratory experiments in which there are two potential sources of variability
(e.g., technicians, machines, etc.) and researchers are aware of the possible impact
of variation from both sources.

For an LS layout, the number of rows (r) and columns (c) should be equal to the
number of treatments (t) and the number of replicates of each treatment. The
assignment of treatments is such that each treatment appears exactly once in each



row and column, with each row and column containing a full set of treatments. Thus,
the treatment effect estimates are independent of the differences between rows or
columns, and the rows, columns, and treatments are orthogonal to each other.
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Table 5.27 Sources of varia-
tion and degrees of freedom of
a Latin square design

Sources of variation Degrees of freedom

Rows t - 1

Columns t - 1

Treatments t - 1

Error (t - 1)(t - 2)

Total t × t - 1

The analysis of variance for this experimental design, assuming that there are
r rows, c columns, and t treatments, with r= c= t, contains the following sources of
variability (Table 5.27).

From the analysis of variance table, the linear model for an LS design with
t treatments is as follows:

yijk = μþ f j þ ck þ τi þ εijk

where yijk is the response observed in treatment i in row f and column c, μ is the

overall mean, fj is the random effect of row j assuming f j � N 0, σ2f , ck is the

random effect of column k with ck � N 0, σ2c , τi is the fixed effect of treatment i,
and εijk is the distributed random error term N(0, σ2). Note that the treatments are
allocated in the jkth quadrant (in row j and column k).

5.2.6.1 Latin Square Design with a Poisson Response

In a series of field experiments, several “inducer-attractant” strategies were tested to
control insect pests in oilseed rape. In one experiment, the use of wild turnip rape
(turnip rape) as an earlier flowering trap crop (TR) (the “attractor”) was tested
together with the use of a repellent (an antifeedant) applied to oilseed rape in spring
(S, the “inducer”). Untreated oilseed rape (U) was included as a control. The
experiment was set up as a 6 × 6 Latin square with two replicates of each of the
three treatments per row and column. An assessment of the number of mature pollen
beetles was made on 10 plants per plot in early April, 1 day after spraying the
repellent (antifeedant). The average number of adult beetles sampled on 10 plants
per plot was recorded (Appendix 1: Data: Beatles). The question is: Is there evidence
that the attractor or inducer works? That is, are fewer beetles present in the proposed
treatments compared to the control?

The model components that define this GLMM are as described below:
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Distribution: yijkl j f j, ck � Poisson λijkl

f j � N 0, σ2f , ck � N 0, σ2c

Linear predictor: ηijkl = ηþ f j þ ck þ τi

Link function: log λijkl = ηijkl

where ηijkl is the linear predictor that relates the effect of the repetition l (l = 1, 2) in
row j ( j = 1, 2,⋯, 6) and column k (k = 1, 2, ,⋯, 6) when treatment i is applied
(i = 1, 2, 3, ), η is the intercept, τi is the fixed effect of treatment i, fj is random effect
of row j, and ck is the random effect due to column k, assuming that there is no
interaction between the rows and columns as well as between the treatments and
rows or the treatments and columns. The assumed distributions for rows and

columns are f � N 0, σ2f and ck � N 0, σ2c , respectively. The model uses the

linear predictor (ηijkl) to estimate the means (λijkl = μijkl) of the treatments.
The following GLIMMIX program fits a Latin square design with a Poisson

response:

Proc glimmix nobound method=laplace;
class Row Column Treatment;
model count = treatment/dist=Poi link=log;
random row column;
lsmeans treatment/lines ilink;
run;

Part of the output is shown in Table 5.28. In the values of the fit statistics (part
(a)), we observe that the value of Pearson’s chi-square divided by the degrees of

freedom is less than 1 χ2

DF = 0:55 , indicating that there is no overdispersion in the

data and that the Poisson distribution adequately models the dataset.
The type III tests of fixed effects in part (b) indicate that there is no significant

evidence of differences between the treatments (P = 0.0621).
Part (c) of Table 5.28 shows the estimates of treatments on the model scale

(“Estimate”) and on the data scale (“Mean”) with their respective standard errors.
The values 4.6191, 6.9396, and 5.1561 (under the “Mean” column) correspond to
the treatment means for S, TR, and U, respectively.

5.2.6.2 Randomized Complete Block Design in a Split Plot

Sometimes the researcher is interested in testing multiple factors using different
experimental units, and, in most cases, the experimenter cannot randomly accom-
modate the treatment combinations. Suppose that one wishes to test two factors, A
and B with a and b levels each, respectively. The levels of the first factor (A) are
randomly applied to the primary experimental units. Then, the levels of the second



factor (B) are applied to the secondary subunits formed within the primary unit in
which the first factor was applied. In other words, the primary experimental unit
(whole plot) was used for the application of the first factor; then, after this, it was
divided to form the secondary experimental units (subplots) for the application of the
levels of the second factor. Since the split-plot design has two levels of experimental
units, the whole plot portions (primary units) and subplots (secondary units) have
different experimental errors. Split-plot experiments were invented in agriculture by
Fisher (1925), and their importance in industrial experimentation has been widely
recognized (Yates 1935).
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Table 5.28 Results of the analysis of variance

(a) Fit statistics for conditional distribution

-2 Log L (Conteo | r. effects) 147.03

Pearson’s chi-square 19.78

Pearson’s chi-square/DF 0.55

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Treatment 3 23 3.14 0.0621

(c) Treatment least squares means

Treatment Estimate
Standard
error DF

t-
value Pr > |t| Mean

Standard error
mean

S 1.5302 0.1343 23 11.39 <0.0001 4.6191 0.6204

TR 1.9372 0.1096 23 17.68 <0.0001 6.9396 0.7605

U 1.6402 0.1271 23 12.90 <0.0001 5.1561 0.6555

τi λi

As a simple illustration, consider a study of three pulp preparation methods
(factor A) and four temperature levels (factor B) on the effect of paper tensile
strength (paper quality). A batch of pulp is produced by one of the three methods;
it is then divided into four equal portions (samples). Each portion is cooked at a
specific level of temperature. The assignment of treatments to plots and subplots is
shown in Table 5.29.

The standard ANOVA model for two factors in a split-plot design, in which there
are three levels of factor A and four levels of factor B nested within factor A, is
described below:

yijk = μþ αi þ rk þ α rð Þik þ βj þ αβð Þij þ εijk

where yijk is the observed response at level i (i = 1, 2, 3) of factor A and at level
j ( j = 1, 2, 3, 4) of factor B in block k (k = 1, 3, 3), μ is the overall mean, αi is the
effect at level i of factor A, rk is the random effect of blocks assuming rk � N 0, σ2r ,
α(r)ik is the random effect of the error of the whole plot assuming

α rð Þik � N 0, σ2α rð Þ , βj is the effect at level j of factor B, (αβ)ij is the interaction



fixed effect at level i of factor A and at level j of factor B, and εijk is the normal
random experimental error {εijk~iidN(, σ

2)}. The ANOVA table with sources of
variation is shown in Table 5.30 for this experimental design.
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Table 5.29 Assigning treatments to whole plots and subplots

Block 1 Block 2 Block 3

Preparation method Preparation method Preparation method

Temperature
B4

B2

B1

B3

A1 A3 A2 A3 A2 A1 A2 A3 A1

AB14 AB34 AB24 AB34 AB24 AB14 AB24 AB34 AB14

AB12 AB32 AB22 AB32 AB22 AB12 AB22 AB32 AB12

AB11 AB31 AB21 AB31 AB21 AB11 AB21 AB31 AB11

AB13 AB33 AB23 AB33 AB23 AB13 AB23 AB33 AB13

Table 5.30 Sources of varia-
tion and degrees of freedom
for a randomized block design
with a split-plot treatment
arrangement

Sources of variation Degrees of freedom

Blocks r - 1 = 3 - 1 = 2

Factor A a - 1 = 3 - 1 = 2

Errora (a - 1)(r - 1) = 4

Factor B b - 1 = 4 - 1 = 3

A × B (a - 1)(b - 1) = 6

Error a(r - 1)(b - 1) = 3 × 2 × 3 = 18

Total r × a × b - 1 = 3 × 3 × 4 - 1 = 35

Example 5.1 A split-plot design in randomized complete block arrangement with a
Poisson response

A split plot is probably the most common design structure in plant and soil
research. Such experiments involve two or more treatment factors. Typically, large
units called whole plots are grouped into blocks. The levels of the first factor are
randomly assigned to whole plots. Each whole plot is divided into smaller units,
called subplots (split plots). Next, the levels of the second factor are randomly
assigned to units of split plots within each whole plot.

In this example, four blocks were implemented, which were divided into seven
parts for the seven levels of the first factor (A1,A2,A3,A4,A5,A6, and A7), as whole
plots. Then, each whole plot was divided into four units for randomly assigning the
four levels of factor B, known as subplots (B1,B2,B3, and B4). Both factors were
used to control the growth of a particular weed. Both factors were randomly
allocated in each block, as shown below:

Block 1 Block 4

A1 A7 A3 A2 A5 A4 A6 ⋯ A6 A3 A7 A2 A1 A5 A4

B3 B3 B4 B1 B2 B1 B3 B3 B3 B4 B1 B2 B1 B3

B1 B2 B3 B3 B1 B2 B2 ⋯ B1 B2 B3 B3 B1 B2 B2

B2 B4 B1 B4 B3 B3 B4 B2 B4 B1 B4 B3 B3 B4

B4 B1 B2 B2 B4 B4 B1 ⋯ B4 B1 B2 B2 B4 B4 B1



Table 5.31 Sources of varia-
tion and degrees of freedom
for a randomized block design
with a split-plot treatment
arrangement

Sources of variation Degrees of freedom

Blocks r - 1 = 4 - 1 = 3

Factor A a - 1 = 7 - 1 = 6

Errora(A × r) (a - 1)(r - 1) = 18

Factor B b - 1 = 4 - 1 = 3

A × B (a - 1)(b - 1) = 18

Errorb a(r - 1)(b - 1) = 7 × 3 × 3 = 63

Total r × a × b - 1 = 4 × 7 × 4 - 1 = 111
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The sources of variation and degrees of freedom for this experiment are shown
below in Table 5.31:

In this experiment, the response variable was the number of weeds in each of the
plots (Appendix 1: Weed counts). The components that define this GLMM are as
shown below:

Distribution: yijk j rk , α rð Þik � Poisson λijk

rk � N 0, σ2r , α rð Þik � N 0, σ2ar

Linear predictor: ηijk = ηþ αi þ rk þ α rð Þik þ βj þ αβð Þij
Link function: log λijk = ηijk

where ηijk is the linear predictor that relates the effect of factor A with i levels
(i = 1, 2,⋯, 7)and factor B with j levels ( j = 1, 2, 3, 4) in block k with
(k = 1, 2, 3, 4); η is the intercept, αi is the fixed effect at level i of factor A, βj is
the fixed effect at level j of factor B, (αβ)ij is the fixed effect of the interaction
between level i of factor A and level j of factor B, rk is the random effect due to
block; and α(r)ik is the random error effect of the whole plot, assuming rk �
N 0, σ2r and α rð Þik � N 0, σ2AR , respectively. The model uses the aforementioned
linear predictor (ηijk) to estimate the means (λijk = μijk) of the treatments.

The following GLIMMIX program fits a split-plot block design with a Poisson
response variable:

proc glimmix method=laplace;
class block a b;
model count=a|b / dist=Poisson link=log;
random block block*a;
lsmeans a|b /lines ilink;
run;

Part of the output is shown below.
As in the previous examples, the Poisson model was found to be inadequate

because the value of Pearson’s chi-squared statistic divided by the degrees of



freedom is greater than 1 χ2

df = 4:50 .This indicates that we have probably

misspecified either the conditional distribution of y j b or the linear predictor, but,
in this case, there is evidence that we need to look for other distributions for this
dataset (part (a), Table 5.32. In addition, in part (b), the values of variance compo-
nent estimates due to blocks and blocks × A are tabulated
σ̂2r = 0:01526; σ̂2ra = 0:2454 . On the other hand, the type III tests of fixed effects
(part (c)) show a significant effect of factor B and the interaction between both
factors.
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Table 5.32 Results of the
analysis of variance

(a) Fit statistics for conditional distribution

-2 Log L (Conteo | r. effects) 1053.96

Pearson’s chi-square 504.44

Pearson’s chi-square/DF 4.50

(b) Covariance parameter estimates

Cov Parm Estimate Standard error

Bloque 0.01526 0.03867

Bloque*A 0.2454 0.07565

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

A 6 18 2.32 0.0775

B 3 63 22.91 <0.0001

A*B 18 63 10.06 <0.0001

An alternative to reduce the overdispersion is to keep the same linear predictor,
changing the Poison distribution in the response variable by the negative binomial
distribution, that is:

Distribution: yijk j rk, α rð Þik � Negative binonial λijk,ϕ

rk � iidN 0, σ2r , α rð Þik � iidN 0, σ2AR

Linear predictor: ηijk = ηþ αi þ rk þ α rð Þik þ βj þ αβð Þij
Link function: log λijk = ηijk

The following syntax fits a GLMM under a negative binomial distribution.

proc glimmix method=Laplace;
class block a b;
model count=a|b / dist=NegBin link=log;
random intercept a /subject=block;
lsmeans a|b/lines ilink;
run;

Part of the output is shown below (Table 5.33). According to the results tabulated
in (a), they indicate that the overdispersion has been removed from the analysis



χ2

df = 0:71 . The variance components estimates, tabulated in part (b), are σ2r =

0:0024 and σ2AR = 0:1222 for blocks and blocks × A, respectively. The estimated
scale parameter is ϕ= 0:3458. Note that the results under the negative binomial
distribution differ from those obtained under the Poisson distribution, which is due,
of course, to the fact that the negative binomial distribution better captures
overdispersion. The fixed effects F-test for factor A is significant at the 5% signif-
icance level (part (c)), whereas factor B and the interaction effect do not significantly
influence the response variable.
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Table 5.33 Results of the
analysis of variance

(a) Fit statistics for conditional distribution

-2 log L (Conteo | r. effects) 838.51

Pearson’s chi-square 79.36

Pearson’s chi-square/DF 0.71

(b) Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Intercept Bloque 0.002421 0.02768

A Bloque 0.1222 0.07102

Scale 0.3458 0.06875

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

A 6 18 2.71 0.0473

B 3 63 2.13 0.1054

A*B 18 63 1.18 0.3017

Example 5.2 A split-split plot in time in a randomized complete block design with a
Poisson response.

The propagation of coffee seedlings through grafting in nurseries depends on
several factors such as the type of substrate, the rootstock of the plant that will host
the graft, type of graft, light intensity, type and size of the container, humidity,
temperature, and so forth. The objective of this experiment was to evaluate the effect
of shade cloth (light intensity), type of container, and clone on the number of leaves
produced by the Coffea canephora P. clones grafted with the Coffea arabica
L. variety Oro azteca.

The factors studied were the color of the shade cloth (black, pearl, and red),
container size (tube of 0.5 kg and 1 kg), and five coffee clones of the variety Coffea
canephora P. plus a franc foot (Coffea arabica L. and Var. Oro azteca) over a period
of 11 months (Appendix 1: Coffee data). The clones used in the experiment are listed
below (Table 5.34). Different physiological parameters were evaluated for
11 months.

This work was implemented in four randomized complete blocks. The following
table exemplifies how a block was constructed.
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Table 5.34 Clones of Coffea canephora P

Graft carrier (Coffea canephora P.) Grafting (Coffea arabica L.) Code

Clone 1 Var. Aztec gold C1

Clone 2 Var. Aztec gold C2

Clone 3 Var. Aztec gold C3

Clone 4 Var. Aztec gold C4

Clone 5 Var. Aztec gold C5

Franc foot: Coffea arabica L. Var. Aztec gold Pf

Shade cloth red Shade cloth Perl Shade cloth black

Tray
Container
0.5 kg

Container
1 kg Tray

Container
0.5 kg

Container
1 kg Tray

Container
0.5 kg

Container
1 kg

C2 C5 C4 C4 C5 C2 C5 C2 C4

C4 Pf C3 C3 Pf C4 Pf C3 C2

C3 C1 C5 C5 C1 C3 C1 C5 C3

C5 C2 Pf Pf C2 C5 C2 Pf C5

Pf C4 C1 C1 C4 Pf C4 C1 Pf

C1 C3 C2 C2 C3 C1 C3 C24 C1

The statistical model describing a split-split plot in time design is described
below:

yijklm = μþ αi þ rm þ arð Þim þ βj þ αβð Þij þ γk þ αγð Þik þ βγð Þjk þ αβγð Þijk
þ rabγð Þijkm þ τl þ ατð Þil þ βτð Þjl þ αβτð Þij þ γτð Þkl þ αγτð Þikl
þ βγτð Þjkl þ αβγτð Þijkl þ εijklm

i= 1, 2, 3; j= 1, 2, 3, 4, 5; k= 1, 2, 3; l= 1,⋯, 11;m= 1, 2, 3, 4

where yijklm is the response variable in repetition m, shade cloth i, clone j, and tray
k in time l; μ is the overall mean; αi is the fixed effect due to the type of shade cloth;
βj, γk, and τl are the fixed effects due to clone type, tray,and sampling time,
respectively; (αβ)ij, (αγ)ik,(βγ)jk, (ατ)il, (βτ)jl, and (γτ)kl are the effects of the double
interactions of the factors shade cloth type with clone, tray, and sampling time;
(αβγ)ijk, (αβτ)ij, (αγτ)ikl, (βγτ)jkl, and (αβγτ)ijkl are the effects of the third and fourth
interactions of the factors under study; (ar)im is the random effect of blocks with type
of shade cloth with rm, (ar)im, (rabγ)ijkm are the random effect due to blocks, blocks
with type of shade cloth, blocks with type of shade cloth, and time assuming

rm � N 0, σ2r , arð Þim � N 0, σ2rα rabγð Þijkm � N 0, σ2αβγ repð Þ , and εijklm is random

error {εijklm~N(0, σ
2)}.

The following SAS program fits a GLMM in a split-split plot in time under a
randomized complete block design with a Poisson response.

proc glimmix data=work.Nhojas_cafe nobound method=laplace;
class shade clone tray rep time;



model y = shade|clone|tray|time/dist=poi link=log;
random intercept shade shade*clone*tray/subject=rep type=ar(1) ;
lsmeans shade|clone|tray|time /lines ilink;
run;
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Table 5.35 Fit statistics for choosing the correlation structure

Correlation structure

Fit statistics CS AR(1) UN TOEP(1) ANTE(1)

-2 Log likelihood 29047.38 29043.38 Not converged 29053.85 No converged

AIC (smaller is better) 30236.38 30235.38 30243.85

AICC (smaller is better) 30338.31 30337.31 30345.44

BIC (smaller is better) 29871.61 29869.61 29878.70

CAIC (smaller is better) 30469.61 30465.61 30473.70

HQIC (smaller is better) 29435.72 29432.72 29442.55

Table 5.36 Conditional fit
statistics and variance compo-
nent estimates

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 28709.17

Pearson’s chi-square 4288.74

Pearson’s chi-square/DF 0.56

(b) Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Variance Rep 0.008106 0.001392

AR(1) Rep -0.3254 0.09437

Some of the results are listed below. To study which correlation structure best fits
this experimental design, five types of correlation structures were tested
(Table 5.35): compound symmetry (“CS”), autoregression of order 1 (“AR(1)”),
unstructured (“UN”), Toeplizt of order 1 (“Toep(1)”), and ante (ANTE(1)). To do
this, in the “random” command with the “type” option, the type of correlation to be
tested is specified, and it is here where the option of type of variance–covariance
structure must be changed. The fit statistics indicate that the variance–covariance
structure that best fits the model is the autoregressive structure of order 1 hAR(1)i.
This can be seen in the following table in which the goodness-of-fit statistics for
choosing between all these variance–covariance structures are reported.

Table 5.36 shows the conditional statistics and variance component estimates.
The fit statistic Pearson′s chi - square/DF = 0.57 in part (a) indicates that, in a
conditional model, there is no evidence of mis-specifying the distribution or linear
predictor. In other words, there is no overdispersion in the dataset, and, therefore, it
is reasonable that the analysis and inference can be based on the Poisson model.

The analysis of variance for the type III tests of fixed effects (Table 5.37)
indicates that there is a highly significant effect of the main effect type of shade
cloth (P = 0.0001), clone (P = 0.0001), and tray (P = 0.0001) as well as of most of
the interactions, except for the interactions shade_cloth*clone; (P = 0.3846),



shade_cloth*tray*time (P = 0.9289), clone*tray*time (P = 0.9760), and
shade_cloth*clone*tray*time (P = 0.2484).
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Table 5.37 Type III fixed effects tests

Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Shade 2 6 3.44 0.1011

Clone 5 153 16.38 <0.0001

Shade*clone 10 153 1.08 0.3846

Tray 2 153 56.60 <0.0001

Shade*tray 4 153 8.83 <0.0001

Clone*tray 10 153 2.86 0.0027

Shade*clone*tray 20 153 1.71 0.0363

Time 10 6822 721.20 <0.0001

Shade*time 20 6822 6.91 <0.0001

Clone*time 50 6822 3.17 <0.0001

Shade*clone*time 100 6822 0.80 0.9289

Tray*time 20 6822 9.03 <0.0001

Shade*tray*time 40 6822 2.42 <0.0001

Clone*tray*time 100 6822 0.74 0.9760

Shade*clone*tray*time 200 6822 1.07 0.2484

Estimate DF t-value Pr > |t| Mean

Table 5.38 Estimated means on the model scale and on the data scale for the shade cloth

(a) Shade cloth least squares means

Shade
cloth

Standard
error

Standard error
mean

Black 1.6221 0.01542 2 105.17 <0.0001 5.0638 0.07810

Pearl 1.5472 0.01533 2 100.94 <0.0001 4.6981 0.07201

Red 1.7184 0.01301 2 132.09 <0.0001 5.5757 0.07254

(b) T grouping of shade cloth least squares means (α=0.05)

LS means with the same letter are not significantly different

Shade cloth Estimate τið Þ
Red 1.7184 A

Black 1.6221 B

Pearl 1.5472 B

The means and standard errors of each of the main effects, on the data scale, for
shade_cloth, tray, and clone are shown in the “Mean” column in part (a) of
Table 5.38, whereas in part (b), the mean comparisons for the type of shade cloth
are shown.

Table 5.39 presents the estimates of the linear predictor (“Estimates” column) in
terms of the model scale and treatment means in terms of the data scale (“Mean”
column) for the type of clone (part (a)). In addition, in Table 5.39 (part (b)), the mean
comparisons are presented for the type of clone.
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Table 5.39 Estimated means on the model scale and on the data scale for the type of clone

(a) Clone least squares means

Clone Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

C1 1.5008 0.04989 153 30.08 <0.0001 4.4854 0.2238

C2 1.4250 0.05080 153 28.05 <0.0001 4.1578 0.2112

C3 1.5064 0.05019 153 30.02 <0.0001 4.5106 0.2264

C4 1.4750 0.05029 153 29.33 <0.0001 4.3709 0.2198

C5 1.5965 0.04970 153 32.12 <0.0001 4.9357 0.2453

Pf 1.6344 0.04943 153 33.07 <0.0001 5.1264 0.2534

(b) T grouping of clone least squares means (α=0.05)

LS means with the same letter are not significantly different

Clone Estimate

Pf 1.6344 A

C5 1.5965 A

C3 1.5064 B

C1 1.5008 B

C4 1.4750 C B

C2 1.4250 C

Table 5.40 Estimated means on the model scale and on the data scale for the tray factor

(a) Tray least squares means

Tray Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

CH1 1.3843 0.04859 28.49 <0.0001 3.9921 0.1940

CH2 1.5665 0.04838 32.38 <0.0001 4.7898 0.2317

CH3 1.6183 0.04819 33.58 <0.0001 5.0443 0.2431

(b) T grouping of tray least squares means (α=0.05)

LS means with the same letter are not significantly different

Tray Estimate

CH3 1.6183 A

CH2 1.5665 B

CH1 1.3843 C

Table 5.40 presents the estimates for the levels of the tray on both scales (part (a)).
Similarly, in this table (part (b)), the treatment mean comparisons are presented for
the levels of the tray.

Tables 5.41, 5.42, 5.43, and 5.44 show the means and standard errors on both
scales of the two-factor and three-factor interactions.

Interaction type of shade cloth*clone
Interaction type of shade cloth*tray
Interaction clone*tray
Interaction shade*clone*tray
Although it is not the objective of this book, part of the results is discussed below.

In Fig. 5.8, it is possible to observe that the red shade cloth significantly stimulates
leaf production in coffee grafts, followed by the black and pearl shade cloths. The



production of leaves in coffee grafts shows a bimodal figure that can be due to factors
such as humidity and temperature. Extreme conditions of both factors cause stress at
the growing points and, therefore, the appearance of leaves.
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Table 5.41 Estimated means on the model scale and on the data scale for the type of shade
cloth*clone

Shade cloth*clone least squares means

Shade
cloth Clone Estimate

Standard
error DF

t-
value Pr > |t| Mean

Standard error
mean

Black C1 1.5109 0.06230 153 24.25 <0.0001 4.5307 0.2823

Black C2 1.3340 0.06507 153 20.50 <0.0001 3.7961 0.2470

Black C3 1.4990 0.06354 153 23.59 <0.0001 4.4771 0.2845

Black C4 1.4485 0.06425 153 22.54 <0.0001 4.2566 0.2735

Black C5 1.5916 0.06163 153 25.83 <0.0001 4.9118 0.3027

Black pf 1.6219 0.06114 153 26.53 <0.0001 5.0628 0.3095

Pearl C1 1.3835 0.07711 153 17.94 <0.0001 3.9889 0.3076

Pearl C2 1.3926 0.07781 153 17.90 <0.0001 4.0254 0.3132

Pearl C3 1.4028 0.07589 153 18.49 <0.0001 4.0666 0.3086

Pearl C4 1.4288 0.07575 153 18.86 <0.0001 4.1736 0.3161

Pearl C5 1.5216 0.07536 153 20.19 <0.0001 4.5797 0.3451

Pearl pf 1.5285 0.07458 153 20.50 <0.0001 4.6112 0.3439

Red C1 1.6081 0.06991 153 23.00 <0.0001 4.9933 0.3491

Red C2 1.5483 0.07100 153 21.81 <0.0001 4.7036 0.3339

Red C3 1.6175 0.07055 153 22.93 <0.0001 5.0404 0.3556

Red C4 1.5477 0.07072 153 21.88 <0.0001 4.7005 0.3324

Red C5 1.6762 0.06971 153 24.04 <0.0001 5.3451 0.3726

Red pf 1.7528 0.06923 153 25.32 <0.0001 5.7707 0.3995

Table 5.42 Estimated means on the model scale and on the data scale for the interaction type of
shade cloth*tray

Shade*tray least squares means

Shade
cloth Tray Estimate

Standard
error DF

t-
value Pr > |t| Mean

Standard error
mean

Black CH1 1.4274 0.05961 153 23.94 <0.0001 4.1679 0.2485

Black CH2 1.5523 0.05846 153 26.55 <0.0001 4.7224 0.2761

Black CH3 1.5232 0.05824 153 26.15 <0.0001 4.5869 0.2672

Pearl CH1 1.2070 0.07354 153 16.41 <0.0001 3.3434 0.2459

Pearl CH2 1.4972 0.07218 153 20.74 <0.0001 4.4691 0.3226

Pearl CH3 1.6247 0.07145 153 22.74 <0.0001 5.0771 0.3628

Red CH1 1.5185 0.06733 153 22.55 <0.0001 4.5655 0.3074

Red CH2 1.6499 0.06714 153 24.57 <0.0001 5.2066 0.3496

Red CH3 1.7068 0.06732 153 25.35 <0.0001 5.5114 0.3710

Regarding the type of clone used as rootstock, the clones showed a better average
leaf production in months 5 and 6, whereas the lowest production was observed in



months 1, 2, 8, and 9. The franc foot showed a higher average of leaves compared to
the rest of the clones (Fig. 5.9).
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Table 5.43 Estimated means on the model scale and on the data scale for the clone–tray interaction

Clone*tray least squares means

Clone Tray Estimate
Standard
error DF

t-
value Pr > |t| Mean

Standard error
mean

C1 CH1 1.3916 0.06112 153 22.77 <0.0001 4.0214 0.2458

C1 CH2 1.5502 0.05861 153 26.45 <0.0001 4.7122 0.2762

C1 CH3 1.5607 0.05861 153 26.63 <0.0001 4.7622 0.2791

C2 CH1 1.2242 0.06459 153 18.95 <0.0001 3.4014 0.2197

C2 CH2 1.4780 0.06029 153 24.51 <0.0001 4.3843 0.2644

C2 CH3 1.5727 0.05890 153 26.70 <0.0001 4.8196 0.2839

C3 CH1 1.2924 0.06114 153 21.14 <0.0001 3.6414 0.2226

C3 CH2 1.5433 0.05975 153 25.83 <0.0001 4.6799 0.2796

C3 CH3 1.6836 0.05841 153 28.83 <0.0001 5.3851 0.3145

C4 CH1 1.2982 0.06251 153 20.77 <0.0001 3.6626 0.2289

C4 CH2 1.5829 0.05815 153 27.22 <0.0001 4.8690 0.2831

C4 CH3 1.5439 0.05939 153 26.00 <0.0001 4.6828 0.2781

C5 CH1 1.5311 0.05843 153 26.20 <0.0001 4.6234 0.2702

C5 CH2 1.5981 0.05920 153 26.99 <0.0001 4.9438 0.2927

C5 CH3 1.6602 0.05803 153 28.61 <0.0001 5.2604 0.3053

pf CH1 1.5684 0.05794 153 27.07 <0.0001 4.7989 0.2781

pf CH2 1.6464 0.05833 153 28.23 <0.0001 5.1884 0.3026

pf CH3 1.6884 0.05728 153 29.48 <0.0001 5.4107 0.3099

5.3 Exercises

Exercise 5.3.1 A researcher in the area of plant sciences wants to know what is the
response of a plant in vitro culture when it is exposed to different concentrations
(ppm) of a chemical compound to the number of outbreaks that the explant produces
(yij). The data for this experiment are given below (Table 5.45):

(a) Write down the analysis of variance table (sources of variation and degrees of
freedom).

(b) Write down the components of the GLMM.
(c) Analyze the dataset with the model proposed in (b).
(d) Compare and contrast the results of these analyses. If necessary, reanalyze the

dataset using the same model as above, but, now, assume that the data have a
negative binomial distribution.

(e) Summarize the relevant results.
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(continued)

Table 5.44 Estimated means on the model scale and on the data scale for the shade–clone–tray
interaction

Shade*clone*tray least squares means

Shade
cloth Clone Tray Estimate

Standard
error DF

t-
value Pr > |t| Mean

Standard
error mean

Black C1 CH1 1.2821 0.1528 153 8.39 <0.0001 3.6041 0.5509

Black C1 CH2 1.4143 0.1521 153 9.30 <0.0001 4.1136 0.6258

Black C1 CH3 1.2201 0.1538 153 7.93 <0.0001 3.3874 0.5209

Black C2 CH1 0.8131 0.1615 153 5.04 <0.0001 2.2549 0.3641

Black C2 CH2 1.1486 0.1543 153 7.45 <0.0001 3.1538 0.4866

Black C2 CH3 1.3376 0.1533 153 8.72 <0.0001 3.8100 0.5842

Black C3 CH1 1.1809 0.1548 153 7.63 <0.0001 3.2574 0.5041

Black C3 CH2 1.1105 0.1550 153 7.17 <0.0001 3.0359 0.4705

Black C3 CH3 1.3672 0.1528 153 8.95 <0.0001 3.9242 0.5996

Black C4 CH1 0.7672 0.1608 153 4.77 <0.0001 2.1538 0.3462

Black C4 CH2 1.4660 0.1517 153 9.66 <0.0001 4.3318 0.6573

Black C4 CH3 1.3925 0.1523 153 9.14 <0.0001 4.0250 0.6131

Black C5 CH1 1.2316 0.1538 153 8.01 <0.0001 3.4269 0.5270

Black C5 CH2 1.6090 0.1507 153 10.67 <0.0001 4.9979 0.7534

Black C5 CH3 1.4684 0.1515 153 9.70 <0.0001 4.3422 0.6577

Black Pf CH1 1.6751 0.1503 153 11.15 <0.0001 5.3393 0.8025

Black Pf CH2 1.3126 0.1548 153 8.48 <0.0001 3.7160 0.5753

Black Pf CH3 1.5092 0.1511 153 9.99 <0.0001 4.5231 0.6834

Pearl C1 CH1 0.6441 0.1741 153 3.70 0.0003 1.9043 0.3314

Pearl C1 CH2 1.3602 0.1639 153 8.30 <0.0001 3.8970 0.6387

Pearl C1 CH3 1.6030 0.1633 153 9.82 <0.0001 4.9678 0.8111

Pearl C2 CH1 0.6336 0.1741 153 3.64 0.0004 1.8844 0.3281

Pearl C2 CH2 1.2050 0.1672 153 7.21 <0.0001 3.3366 0.5579

Pearl C2 CH3 1.5547 0.1635 153 9.51 <0.0001 4.7335 0.7740

Pearl C3 CH1 0.8786 0.1684 153 5.22 <0.0001 2.4074 0.4053

Pearl C3 CH2 1.2777 0.1646 153 7.76 <0.0001 3.5885 0.5905

Pearl C3 CH3 1.5724 0.1637 153 9.60 <0.0001 4.8184 0.7889

Pearl C4 CH1 0.9893 0.1680 153 5.89 <0.0001 2.6893 0.4519

Pearl C4 CH2 1.4198 0.1636 153 8.68 <0.0001 4.1362 0.6769

Pearl C4 CH3 1.4357 0.1646 153 8.72 <0.0001 4.2026 0.6919

Pearl C5 CH1 1.4557 0.1631 153 8.93 <0.0001 4.2875 0.6992

Pearl C5 CH2 1.1672 0.1696 153 6.88 <0.0001 3.2130 0.5449

Pearl C5 CH3 1.6010 0.1633 153 9.80 <0.0001 4.9582 0.8098

Pearl Pf CH1 1.1901 0.1649 153 7.22 <0.0001 3.2875 0.5422

Pearl Pf CH2 1.4004 0.1643 153 8.52 <0.0001 4.0570 0.6665

Pearl Pf CH3 1.7623 0.1620 153 10.88 <0.0001 5.8260 0.9440

Red C1 CH1 1.5245 0.1606 153 9.49 <0.0001 4.5930 0.7379

Red C1 CH2 1.6004 0.1605 153 9.97 <0.0001 4.9548 0.7953

Red C1 CH3 1.6327 0.1607 153 10.16 <0.0001 5.1178 0.8224

Red C2 CH1 1.3462 0.1630 153 8.26 <0.0001 3.8430 0.6264
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Table 5.44 (continued)

Shade*clone*tray least squares means

Shade
cloth Clone Tray Estimate

Standard
error DF

t-
value Pr > |t| Mean

Standard
error mean

Red C2 CH2 1.4270 0.1622 153 8.80 <0.0001 4.1663 0.6759

Red C2 CH3 1.6500 0.1620 153 10.19 <0.0001 5.2071 0.8435

Red C3 CH1 1.3915 0.1632 153 8.53 <0.0001 4.0207 0.6563

Red C3 CH2 1.4491 0.1614 153 8.98 <0.0001 4.2592 0.6872

Red C3 CH3 1.7875 0.1603 153 11.15 <0.0001 5.9747 0.9577

Red C4 CH1 1.3961 0.1614 153 8.65 <0.0001 4.0394 0.6520

Red C4 CH2 1.5874 0.1606 153 9.89 <0.0001 4.8910 0.7854

Red C4 CH3 1.3805 0.1635 153 8.44 <0.0001 3.9768 0.6503

Red C5 CH1 1.6313 0.1601 153 10.19 <0.0001 5.1103 0.8180

Red C5 CH2 1.6395 0.1605 153 10.22 <0.0001 5.1527 0.8268

Red C5 CH3 1.6470 0.1610 153 10.23 <0.0001 5.1912 0.8360

Red Pf CH1 1.7075 0.1600 153 10.67 <0.0001 5.5151 0.8825

Red Pf CH2 1.7594 0.1594 153 11.04 <0.0001 5.8087 0.9260

Red Pf CH3 1.7568 0.1601 153 10.98 <0.0001 5.7938 0.9273
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Fig. 5.8 Effect of mesh type on the average number of leaves
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Fig. 5.9 Effect of mesh type on the average number of leaves

Exercise 5.3.2 Earthworms (Lubricus terrestris L.) were counted in four replicates
of a factorial experiment at the W.K. Kellogg Biological Station in Battle Creek,
Michigan, in 1995. A 24 factorial experiment was conducted. Factors and treatment
levels were plowing (chiseled and unplowed), input level (conventional and low),
manure application (yes/no), and crop (corn and soybean). The objective of interest
was whether L. terrestris density varies according to these management protocols
and how various factors act and interact. The data (not pooled) in the table shows the
total worm counts (per square foot) in the factorial design 24 for the experimental
units 64 (24 × 4) (juvenile and adult worms). The numbers in each cell of the table
correspond to the counts in the replicates (Table 5.46).

(a) Write down the analysis of variance table (sources of variation and degrees of
freedom).

(b) Write down the components of the GLMM.
(c) Analyze the dataset with the model proposed in (b).
(d) Summarize the relevant results.

Exercise 5.3.3 This experiment involves an investigation of genotypic variation
within cultivars of pore (Allium porrum L.) with respect to adventitious shoot
formation in the callus tissue. The data in Table 5.47 refer to 20 genotypes of
1 cultivar. Each genotype is represented by six calluses. These observations are
the number of shoots per callus. The data are subject to two sources of variation, i.e.,
variation between genotypes and variation between the calluses within the
genotypes.
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Table 5.45 In vitro culture (Conc = concentration in ppm)

Conc Explant No. of outbreaks Conc Explant No. of outbreaks

0 1 39 50 13 54

0 2 32 50 15 35

0 3 36 50 16 50

0 4 46 50 17 51

0 5 30 50 18 38

0 6 40 50 19 61

0 7 46 100 1 46

0 8 28 100 2 55

0 9 29 100 3 54

0 10 25 100 4 49

0 11 29 100 5 55

0 12 36 100 6 55

0 13 28 100 7 47

0 14 35 100 8 42

0 15 35 100 9 38

0 16 45 100 10 50

25 1 45 100 11 46

25 2 38 100 12 42

25 3 34 100 13 44

25 4 47 100 14 30

25 5 36 100 15 38

25 6 47 100 16 31

25 7 35 100 17 42

25 8 38 200 1 36

25 9 39 200 2 37

25 10 42 200 3 27

25 11 42 200 4 38

25 12 41 200 5 25

25 13 31 200 6 29

25 14 33 200 7 30

25 15 37 200 8 30

25 16 38 200 9 37

50 1 54 200 10 28

50 2 45 200 11 37

50 3 57 200 12 29

50 4 38 200 13 36

50 5 60 200 14 34

50 6 35 200 15 27

50 7 45 200 16 32

50 8 44 200 17 37

50 9 33 200 18 30

50 10 49 200 19 31

50 11 58 200 20 30

50 12 45
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Table 5.46 Results of the experiment with earthworms

Tillage

Chisel ploughing No Tillage

Cultivation Manure Entry level Entry level

Low Conventional Low Conventional

Corn Yes 5, 5, 4, 2 5, 1, 5, 0 8, 4, 6, 4 14, 9, 9, 6

No 3, 11, 0, 0 2, 0, 6, 1 2, 2, 11, 4 15, 9, 6, 4

Soy Yes 8, 6, 0, 3 8, 4, 2, 2 2, 2, 13, 7 5, 3, 6, 0

No 8, 5, 3, 11 2, 6, 9, 4 7, 5, 18, 3 23, 12, 17, 9

Table 5.47 Results of the
callus tissue experiment

Callus

Genotype 1 2 3 4 5 6

1 0 0 0 0 3

2 9 0 1 5 2

3 2 4 4 0 4

4 1 2 5 9 0

5 6 3 8 3 5

6 6 2 4 4 2

7 0 2 0 0 1

8 1 1 3 1 0

9 3 3 1 0 6

01 3 6 4 7 1

11 2 6 8 8 7

12 0 0 3 2 10 6

31 9 3 5 5 6

41 2 3 2 0 3

51 0 0 0 0 1

61 5 4 4 7 7

71 1 0 0 0 0

81 0 1 0 0 1

91 1 4 6 2 0

20 4 3 5 18 4 0

Write down the analysis of variance table (sources of variation and degrees of
freedom).

(a)

(b) Write down the components of the GLMM.
(c) Analyze the dataset with the model proposed in (b).
(d) Reanalyze the dataset using the same model as above, but, now, assume that the

data have a negative binomial distribution.
(e) Compare and contrast the results of these analyses.
(f) Summarize the relevant results.
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Exercise 5.3.4 In an experiment at the Research Institute for Animal Production
“Schoonoord” in the Netherlands, the effects of active immunization against andro-
stenedione on the fertility of Texel ewes were studied (Engel and te Brake 1993).
The number of fetuses per ewe can be considered as the net result of a process that
determines the number of ovulations and a probability process for these ovulations to
produce fetuses. In this study, the goals are to model and analyze (a) the number of
ovulations and the number of fetuses in relation to Fecundin (androstenedione-7a-
carboxyethylthioether) treatment, animal age, mating period and (b) the number of
fetuses in relation to treatment, animal age, and number of ovulations observed. A
summary of the experiment and a summary of the data are shown below
(Table 5.48).

Of the 125 Texel ewes, 63 are treated with Fecundin, whereas the remaining
62 serve as a control group. The ewes are sorted into four age classes (e.g.,<0.5,
0.5 - 1.5, 1.5 - 2.5, and > 2.5 years) and two mating periods (starting on October
1 and October 22, 1986, respectively). The interactions with age are interesting and
because it is a factor, it is easier to handle than a covariate where age was entered as a
factor. The number of animals in the four age classes is 25, 44, 24, and 32, respec-
tively. The age class is evenly distributed in the combinations of mating period and
treatment groups. Ewes were slaughtered at 75–80 days after the last mating, and the
number of ovulations and number of fetuses were determined. Ovulation numbers
ranged from 1 to 5. For six animals, the number of ovulations was not known, so
these ewes were excluded from the database.

(a) Analyze the dataset using a GLMM with the predictor:
ηijkl = η + τi + αj + βk + (τα)ij + (τβ)ik + (ταβ)ijk + bl, where τ, α, and β are the
fixed effects of treatment, age, and mating period and b is the random effect due
to animal. Assuming that each b has normal distribution with a zero mean and
variance σ2b, and under the assumption that the number of ovulations and the
number of fetuses have a Poisson distribution.

(b) From the analyses performed, do you observe the presence of overdispersion in
the dataset? If so, propose an alternative distribution for the analysis for this
dataset.

(c) Reanalyze the dataset using the same model as before with the new data
distribution.

(d) Compare and contrast the results of these analyses.
(e) Summarize the relevant results.

Exercise 5.3.5 The following example deals with one of the most harmful insects in
the root system of the main crops, whose common name is “blind hen.” The
experiment consisted of six treatments formulated for larval control in a randomized
block arrangement (A, B, C, D, E, and F). The count per area shows the number of
larvae in two age groups (a and b) (Table 5.49).
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Data: Subcultures

sub1 Rep1 NB sub1 Rep1 NB sub1 Rep1 NB sub1 Rep1 NB

1 1 18 3 2 24 6 1 45 8 9 53

1 2 16 3 3 24 6 2 44 8 10 59

1 3 15 3 4 19 6 3 45 8 11 57

1 4 15 3 5 25 6 4 44 8 12 65

1 5 11 3 6 24 6 5 52 8 13 63

1 6 17 3 7 20 6 6 47 8 14 55

1 7 10 3 8 24 6 7 46 8 15 50

1 8 8 3 9 20 6 8 45 8 16 52

1 9 17 3 10 19 6 9 48 8 17 55

1 10 13 3 11 26 6 10 56 8 18 50

1 11 16 3 12 22 6 11 54 8 19 53

1 12 15 3 13 23 6 12 44 8 20 52

1 13 12 3 14 24 6 13 54 9 1 48

1 14 15 3 15 23 6 14 62 9 2 44

1 15 8 4 1 24 6 15 55 9 3 54

1 16 8 4 2 28 6 16 45 9 4 55

1 17 15 4 3 29 7 1 56 9 5 51

1 18 15 4 4 34 7 2 62 9 6 58

1 19 14 4 5 24 7 3 45 9 7 47

1 20 8 4 6 24 7 4 45 9 8 42

2 1 15 4 7 25 7 5 46 9 9 50

2 2 11 4 8 28 7 6 48 9 10 48

2 3 12 4 9 24 7 7 55 9 11 48

2 4 18 4 10 32 7 8 45 9 12 53

(continued)

A B C D E F

Trt A b A B A B A b A b A b

1 5 7 5 14 0 3 1 7 1 10 4 13

2 4 2 12 5 2 3 1 6 3 5 4 11

3 4 4 1 14 2 2 1 7 1 8 7 10

4 1 5 5 9 2 7 3 7 0 3 3 12

5 2 2 3 8 0 0 5 4 1 6 1 8
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Table 5.49 Results of the
blind hen experiment

Write down the analysis of variance table (sources of variation and degrees of
freedom).

(a)

(b) Write down the components of the GLMM.
(c) Analyze the dataset with the model proposed in (b).
(d) Does the proposed model in (b) adequately describe the variation observed in the

dataset? Summarize the relevant results.

Appendix 1



sub1 Rep1 NB sub1 Rep1 NB sub1 Rep1 NB sub1 Rep1 NB

2 5 8 4 11 34 7 9 45 9 13 54

2 6 17 4 12 30 7 10 44 9 14 59

2 7 8 4 13 26 7 11 52 9 15 58

2 8 18 4 14 27 7 12 45 10 1 46

2 9 22 4 15 29 7 13 43 10 2 38

2 10 19 5 1 38 7 14 58 10 3 29

2 11 19 5 2 38 7 15 62 10 4 30

2 12 24 5 3 37 7 16 45 10 5 31

2 13 12 5 4 41 7 17 63 10 6 33

2 14 12 5 5 46 7 18 56 10 7 35

2 15 11 5 6 44 7 19 55 10 8 59

2 16 21 5 7 54 7 20 50 10 9 37

2 17 10 5 8 45 8 1 53 10 10 44

2 18 15 5 9 60 8 2 58 10 11 42

2 19 20 5 10 57 8 3 56 10 12 41

2 20 22 5 11 51 8 4 50 10 13 45

2 21 20 5 12 54 8 5 57 10 14 38

2 22 13 5 13 51 8 6 60 10 15 40

2 23 18 5 14 62 8 7 50

3 1 19 5 15 53 8 8 52

Data: Beatles

Row Column Treatment Count

1 1 S

1 2 U

1 3 U

1 4 TR 7

1 5 S

1 6 TR 5

2 1 TR 5

2 2 S

2 3 TR 5

2 4 U

2 5 U

2 6 S

3 1 U

3 2 TR 6

3 3 U

3 4 S

3 5 S

3 6 TR 7

4 1 U

4 2 TR 4

(continued)
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Row Column Treatment Count

4 3 TR 5

4 4 S

4 5 U

4 6 S

5 1 TR 8

5 2 S

5 3 S

5 4 U

5 5 TR 9

5 6 U

6 1 S

6 2 U

6 3 S

6 4 TR 9

6 5 TR 9

Data: Weed counts

Block A B Count

1 1 1

1 1 2

1 1 3

1 1 4

1 2 1

1 2 2

1 2 3

1 2 4

1 3 1

1 3 2

1 3 3

1 3 4

1 4 1

1 4 2

1 4 3

1 4 4

1 5 1

1 5 2

1 5 3

1 5 4

1 6 1

1 6 2

1 6 3

1 6 4

1 7 1

(continued)

2

3

6

5

6

7

4

6

5

6

14

7

5

7

5

14

5

9

0

0

10

13

20

53

21

7

12

31

32

22

49

16

7

14

20
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Block A B Count

1 7 2

1 7 3

1 7 4

2 1 1

2 1 2

2 1 3

2 1 4

2 2 1

2 2 2

2 2 3

2 2 4

2 3 1

2 3 2

2 3 3

2 3 4

2 4 1

2 4 2

2 4 3

2 4 4

2 5 1

2 5 2

2 5 3

2 5 4

2 6 1

2 6 2

2 6 3

2 6 4

2 7 1

2 7 2

2 7 3

2 7 4

3 1 1

3 1 2

3 1 3

3 1 4

3 2 1

3 2 2

3 2 3

3 2 4

3 3 1

3 3 2

3 3 3

3 3 4

(continued)

20

16

6

9

9

9

19

31

11

30

29

25

11

15

23

7

22

20

3

0

28

18

18

55

58

18

19

14

44

19

17

12

8

44

0

29

11

5

49

99

66

11

15
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Block A B Count

3 4 1

3 4 2

3 4 3

3 4 4

3 5 1

3 5 2

3 5 3

3 5 4

3 6 1

3 6 2

3 6 3

3 6 4

3 7 1

3 7 2

3 7 3

3 7 4

4 1 1

4 1 2

4 1 3

4 1 4

4 2 1

4 2 2

4 2 3

4 2 4

4 3 1

4 3 2

4 3 3

4 3 4

4 4 1

4 4 2

4 4 3

4 4 4

4 5 1 112

4 5 2

4 5 3

4 5 4

4 6 1

4 6 2

4 6 3

4 6 4

4 7 1 117

4 7 2

4 7 3

4 7 4

9

8

9

21

49

49

17

22

41

21

48

11

58

34

28

20

6

9

20

0

10

0

7

9

9

29

22

4

22

31

32

41

44

24

28

8

8

11

10

78

36

38
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Chapter 6 
Generalized Linear Mixed Models 
for Proportions and Percentages 

6.1 Response Variables as Ratios and Percentages 

In this chapter, we will review generalized linear mixed models (GLMMs) whose 
response can be either a proportion or a percentage. For proportion and percentage 
data, we refer to data whose expected value is between 0 and 1 or between 0 and 100. 
For the remainder of this book, we will refer to this type of data only in terms of 
proportion, knowing that it is possible to change it to a percentage scale only when 
multiplying it by 100. Proportions can be classified into two types: discrete and 
continuous. Discrete proportions arise when the unit of observation consists of 
N distinct entities, of which individuals have the attribute of interest “y”. N must 
be a nonnegative integer and “y” must be a positive integer; here, y ≤ N. Therefore, 
the observed proportion must be a discrete fraction, which can take values 
0 
N , 

1 
N ,⋯, N N. A binomial distribution is the sum of a series of m independent binary 

trials (i.e., trials with only two possible outcomes: success or failure), where all trials 
have the same probability of success. For binary and binomial distributions, the 
target of inference is the value of the parameter such that 0≤E y 

N = π ≤ 1. Contin-
uous proportions (ratios) arise when the researcher measures responses such as the 
fraction of the area of a leaf infested with a fungus, the proportion of damaged cloth 
in a square meter, the fraction of a contaminated area, and so on. As with the 
binomial parameter π, the continuous rates (fractions) take values between 0 and 
1, but, unlike the binomial, the continuous proportions do not result from a set of 
Bernoulli tests. Instead, the beta distribution is most often used when the response 
variable is in continuous proportions. In the following sections, we will first address 
issues in modeling when we have binary and binomial data. When the response 
variable is binomial, we have the option of using a linearization method (pseudo-
likelihood (PL)) or the Laplace or quadrature integral approximation (Stroup 2012). 
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6.2 Analysis of Discrete Proportions: Binary 
and Binomial Responses 

A binomial distribution is the number of successes from a series of N independent 
binary trials – Bernoulli trials (i.e., trials with two possible outcomes: success or 
failure), where all trials have the same probability of success. In the context of a 
GLMM, there are N binomial responses, each of which is the result of binary trials. 
The ith response consists of two pieces of information: the number of trials ni and the 
number of successes yi, as shown in the following example. 

6.2.1 Completely Randomized Design (CRD): Methylation 
Experiment 

An agent to induce demethylation is applied to plants; this agent converts methylated 
nucleotides to their unmethylated forms, thus causing epigenetic changes that 
produce or induce abnormal phenotypes such as deformation or stunting (Amoah 
et al. 2008). A pilot study was implemented to investigate the relationship between 
the dose of the demethylating agent and the observed proportion of plants with a 
normal phenotype. Seeds were treated with the demethylating agent at six different 
doses, including the control. Plants were sown in trays, with each tray containing 
seeds previously treated with the same dose of the demethylating agent. Each dose 
was replicated 4 times: 2 with 60 plants and 2 with 100 plants. The trays were 
allocated following a completely randomized design (CRD). The plants with a 
normal phenotype in each tray are shown (in Table 6.1) with the number of plants 
per tray (N ). The notation 59(60) indicates that 59 normal plants were found out of 
60 plants under study. In the same way, the notation 14(100) indicates that 14 normal 
plants were found out of 100 plants under study. 

The sources of variation and degrees of freedom (DFs) for this experiment are 
shown in Table 6.2. 

Table 6.1 Number of normal 
plants out of a total of N plants 
per tray and dose of the 
demethylating agent 

Dose 

0 0.01 0.1 0.5 1.0 1.5 

59(60) 58(60) 54(60) 4(60) 3(60) 3(60) 

58(60) 59(60) 53(60) 11(60) 2(60) 3(60) 

99(100) 98(100) 88(100) 14(100) 2(100) 1(100) 

98(100) 99(100) 87(100) 15(100) 1(100) 3(100) 

Table 6.2 Sources of 
variation and degrees of 
freedom 

Sources of variation Degrees of freedom 

Dose t - 1 = 6 - 1 = 5 
Error t(r - 1) = 6 × (4 - 1) = 18 
Total t × r - 1 = 6 × 4 - 1 = 23
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Fig. 6.1 Effect of the demethylating agent on the proportion of normal plants 

The statistical model of a completely randomized design (CRD) is 

yij = μþ τi þ εij 

where yij is the number of observed normal plants in the tray j ( j = 1, 2, 3, 4) at the 
dose i (i = 1, 2,⋯, 6), μ is the overall mean, τi is the effect of dose i of the 
demethylating agent, and εij are non-normal errors. 

The expected value (normal plants) of a set of tests ni follows a binomial 
distribution yi ~ Binomial(ni, πi), where πi is the probability of success in each 
trial, with 0 ≤ πi ≤ 1, where πi = yi=ni . Thus, the probability of observing an outcome 
yi can be written as 

P Yi = yijni, yið Þ= ni 
yi 

πyi i 1- πið Þni - yi ; yi = 0, 1,⋯, ni: 

This probability depends on the number of known tests ni, whereas the probabil-
ity of success (πi) is an unknown parameter. In Fig. 6.1, we observe that the 
probability of obtaining a normal plant depends on the applied dose of the 
demethylating agent. Given that yi has a binomial distribution, the expected value 
(the mean) is the product of the number of trials and the probability of success in 
each trial, that is, E(Yi) = niπi. Since the number of trials is fixed (once the data have 
been obtained), modeling the probability of success is equivalent to modeling the 
expected value as well as the variance since it is also a function of the number of 
trials and the probability of success. So, the expected value and variance of yi are
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E yið Þ= μi = niπi; Var yið Þ= niπi 1- πið Þ: 

This variance is small if the value πi is close to 0 or 1, and this increases to its 
maximum when πi = 0.5. This can be seen in Fig. 6.1, where proportions close 
to 0 or 1 show less variance than do proportions between 0.1 and 0.2 for a 
demethylating agent dose of 0.5. This variance can also be written in terms of the 
expected value as: 

Var yið Þ= 
μi 
ni 

ni - μið Þ: 

In this CRD, the fixed number of treatments t (doses) were randomly assigned to 
r experimental units (trays). The linear predictor describing the structure of the mean 
of this GLMM is 

ηi = η þ τi 

where ηi denotes the ith linear predictor, η is the intercept, and τi is the fixed effect 
due to treatments i (i = 1, 2,⋯, t) with t treatments and ri replicates in each 
treatment. 

The components that define this GLMM are shown below: 

Distribution: yi~Binomial(Nij, πi) 
Linear predictor: ηi = η + τi 
Link function: logit π = logit πi = η1- πi 

where ηi is the linear predictor that relates the effect of dose i (i = 1, 2,⋯, 6)  to  
probability πi. The model uses the linear predictor (ηi) to estimate the means (πi = μi) 
of the observations for each treatment. 

The following GLIMMIX program fits a CRD with a binomial response: 

proc glimmix nobound method=Laplace; 
class Dose Rep; 
model y/N= dose/link=logit; 
lsmeans dose/lines ilink; 
run; 

In this example, the distribution of the dataset was not specified to GLIMMIX in 
the model specification because by using the expression “y/N,” proc GLIMMIX 
automatically infers that this dataset has a binomial distribution. It is also important 
to note that variable dose and repetition were declared as class variables in the 
“class” command, which Statistical Analysis Software (SAS) interprets as explana-
tory variables that are nonnumerical factors. However, the variable declared “Rep” is 
not used in the model specification.
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Table 6.3 Results of the analysis of variance 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 83.46 

Pearson’s chi-square 11.95 

Pearson’s chi-square/DF 0.50 

(b) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Dose 5 15 132.53 <0.0001

(c) Dose least squares (LS) means 

Dose Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

0 3.9580 0.4122 15 9.60 <0.0001 0.9813 0.007581 

0.01 3.9580 0.4122 15 9.60 <0.0001 0.9813 0.007581 

0.1 2.0049 0.1728 15 11.60 <0.0001 0.8813 0.01808 

0.5 -1.8360 0.1623 15 -11.31 <0.0001 0.1375 0.01925 

1 -3.6633 0.3580 15 -10.23 <0.0001 0.02501 0.008729 

1.5 -3.4337 0.3212 15 -10.69 <0.0001 0.03126 0.009728 

Part of the results is shown in Table 6.3. Pearson’s chi-squared statistic value 
divided by the degrees of freedom in part (a) (Pearson′s chi - square/DF = 0.5) 
indicates that there is no evidence of extra-dispersion in the dataset. The analysis of 
variance (ANOVA) tabulated in part (b) in Table 6.3, with the type III tests of fixed 
effects, indicates that there is a highly significant difference (P = 0.0001) in the 
average proportion of normal plants with respect to the dose applied to the seeds. 

The output when using the “lsmeans” command in conjunction with the “ilink” 
option is in the “Mean” column (part (c) in Table 6.3). These values are the values of 
πi 
′s, i.e., the estimated probabilities π̂0 = 0:9813 and π̂0:01 = 0:9813 of normal plants 

for the treatments whose doses are 0 and 0.01, respectively. For treatments with 
doses of 0.1 and 0.5, the observed probabilities of normal plants are π̂0:1 = 0:8813 
and π̂0:5 = 0:1375, respectively, whereas for the 1 and 1.5 doses, the observed 
probabilities of normal plants decrease dramatically with π̂1 = 0:02501 and 
π̂1:5 = 0:03126, respectively. 

Figure 6.2 shows the mean comparisons (least significance difference (LSD)) of 
the estimated probabilities according to the dose applied to the seeds in trays. In this 
figure, we can observe that in the treatments with dose = 0 (control) and dose = 0.01, 
the observed proportions of normal plants are not statistically different from each 
other, but they do differ with the other applied doses. At a dose of 0.1, the observed 
proportion of normal plants was 88.13%, and this was statistically different from all 
the doses used. Finally, doses at 0.5, 1, and 1.5 of the demethylating agent in the 
observed proportion of normal plants decreased drastically to 13.75%, 2.501%, and 
3.12%, respectively. The doses of 1 and 1.5 produced statistically equal proportions 
of normal plants.
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Fig. 6.2 Comparison of the estimated probabilities per dose of the demethylating agent 

If the researcher wishes to model how dose levels of the demethylating agent 
affect normal plant proportions, then the dose must be declared as a continuous 
variable. The following SAS syntax with proc GLIMMIX runs a binomial 
regression: 

proc glimmix data=crd_bin method=Laplace plots=all; 
class Rep; 
model y/N= dose/solution; 
random rep; 
run;quit. 

Most of the commands and options have already been discussed throughout this 
book; the “model y/N” command indicates that the response variable is in a ratio. 
Therefore, this dataset is modeled with a binomial distribution, which is affected by 
the different number of individuals in each repetition. proc GLIMMIX interprets the 
distribution of the data as binomial, whereas the “solution” option requests the 
parameter estimates of the model (intercept and slope). 

The components that define this GLMM are shown below: 

Distribution: yi~Binomial(Nij, πi) 
Linear predictor: ηi = η + β dosei 

Link function: logit π = logit πi = η 

Thus, the model can be written as
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Table 6.4 Regression analysis results 

(a) Fit statistics

-2 Log likelihood 231.58 

Akaike information criterion (AIC) (smaller is better) 235.58 

AICC (smaller is better) 236.15 

Bayesian information criterion (BIC) (smaller is better) 237.93 

CAIC (smaller is better) 239.93 

HQIC (smaller is better) 236.20 

Pearson’s chi-square 2317.12 

Pearson’s chi-square/DF 96.55 

(b) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Dose 1 19 475.97 <0.0001 

(c) Solutions for fixed effects 

Effect Estimate Standard error DF t-value Pr > |t| 

Intercept 2.7927 0.1302 3 21.46 0.0002 

Dose -7.6232 0.3494 19 -21.82 <0.0001 

ηi = log 
μi 

ni - μi 
= log 

niπi 
ni - niπi 

= log 
πi 

1- πi 
= logitðπiÞ= ηþ βdosei 

and the logit function can be written in terms of the probability of success, πi, as  

πi = 
1 

1þ exp - ηið Þ  

Part of the SAS output of the GLIMMIX syntax is shown below. The goodness-
of-fit statistics, type III tests of fixed effects, and parameter estimates are shown in 
Table 6.4. The analysis of variance indicates that the demethylating agent has a 
highly significant effect on the observed proportion of normal plants (P < 0.0001) 
(part (b)). The maximum likelihood estimates for the intercept and slope are 
η = 2.7927 and β = - 7.6232, respectively. 

Figure 6.3 shows that as the value of the linear predictor increases (ηi), the value 
of the residuals rapidly decreases. We can also see that the residuals plotted against 
the quantiles clearly do not follow a normal distribution because this model is not a 
linear function of the explanatory variable “dose.” 

Figure 6.4 shows that the proportions studied and fitted are not so far apart, and, 
as such, the binomial model is suitable for this dataset. The estimated linear predictor 
of this model is as follows: 

η̂i = η̂ þ β̂ × dosei = 2:7927- 7:6232× dosei:
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Fig. 6.3 A graph of residuals versus the linear predictor, quantiles 
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Fig. 6.4 Observed and estimated proportion 

The logit of the probability of success is a linear function of the explanatory 
variables, so the model can be written in terms of the probability of success 
(observing normal plants) as
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πi = 
1 

1 þ exp - ηið Þ  

Given the parameter estimates, we can predict the success probability of observ-
ing a normal plant, and given a certain concentration of the demethylating agent, this 
estimated probability (using the estimated linear predictor) can be seen plotted in 
Fig. 6.4. 

π̂i = 
1 

1þ expðη̂iÞ = 
1 

1þ expð- 2:7927þ7:6232 × doseiÞ 

6.3 Factorial Design in a Randomized Complete Block 
Design (RCBD) with Binomial Data: Toxic Effect 
of Different Treatments on Two Species of Fleas 

A group of researchers wishes to study the toxic effect of certain treatments (Trts) on 
two flea species (SP) (Daphnia magna and Ceriodaphnia dubia). To compare the 
toxicity effect of treatments on both flea species, a randomized complete block 
design (RCBD bioassay) was implemented with three replicates per treatment, 
with each replicate consisting of 10 fleas (Appendix: Fleas). The linear predictor 
describing this experiment is described below: 

ηijkl = η þ αi þ βj þ αβð Þij þ bioassayk þ rep bioassayð Þl kð Þ  

where η is the intercept, αi is the fixed effect due to species i, βj is the fixed effect 
of treatment j, (αβ)ij is the fixed effects interaction between the flea species and 
treatment, bioassayk is the random effect due to bioassay k assuming 

bioassayk � N 0, σ2 bioassay , and rep(bioassay)l(k) is the random effect due to repeti-

tion bioassay assuming rep bioassay N 0, σ2 . 

The remaining components of this GLMM with a binomial response (Nijk, πijk) are 
described below: 

Distribution: yijkl bioassayk, rep(bioassay)l(k)~Binomial(Nijk, πijk) 

bioassayk � N 0, σ2 bioassay , rep bioassayð Þl kð Þ � N 0, σ2 rep bioassayð Þ  , where Nijkl is 

the number of dead fleas, observed in species i in replicate l in bioassay k under 
treatment j, 

Link function: logit π = log πijk = η . 

The following SAS syntax allows us to fit the GLMM with a binomial response.



proc glimmix data=pulgas nobound method=laplace; 
class Bioen SP Trt Rep ; 
Model Sobrevi/n = SP|Trat/dist=binomial; 
random Bioen sp*bioen(rep); 
lsmeans SP|Trt/lines ilink; 
run; 
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Table 6.5 Results of the 
analysis of variance 

(a) Fit statistics

-2 Log likelihood 145.33 

AIC (smaller is better) 173.33 

AICC (smaller is better) 177.85 

BIC (smaller is better) 160.71 

CAIC (smaller is better) 174.71 

HQIC (smaller is better) 147.97 

(b) Fit statistics for conditional distribution

-2 Log L (Sobrevi | r. effects) 145.33 

Pearson’s chi-square 10.72 

Pearson’s chi-square/DF 0.10 

(c) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Bioen -0.1051 . 

Bioen*SP (Rep) -0.1192 . 

(d) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

SP 1 14 0.02 0.8829 

Trt 5 80 15.08 <0.0001 

SP*trt 5 80 4.66 0.0009 

Part of the results is listed in Table 6.5. The fit statistics in part (a) and the 
conditional statistics in part (b) are useful for model comparison, whereas the 
variance component estimates are shown in part (c). The value of the statistic 
Pearson’ s chi - square/DF = 0.10 indicates that the binomial model gives a good 
fit to the dataset. The variance component estimates for bioassays and replication 
nested in bioassays are σ̂2 bioassay = - 0:1051 and σ̂2 rep bioassayð Þ  = - 0:1192, respec-

tively. The type III tests of fixed effects (part (d)) show the significance tests of the 
fixed effects in the model. The treatment effect and the interaction between the flea 
species (SP) and treatment are clearly significant with P < 0.0001 and P = 0.0009, 
respectively. 

Since survival was statistically similar in both flea species, we will focus on the 
factors that were significant. Part (a) in Table 6.6 shows the means and standard 
errors of treatments on the model scale (“Estimate” column) and on the data scale 
(“Mean” column), obtained with “lsmeans” and the “ilink” option as well as the 
mean comparisons, which are on the model scale (part (b)).
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Table 6.6 Means and standard errors on the model scale and on the data scale 

(a) Trt least squares means 

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

T1 8.1179 4.3180 80 1.88 0.0637 0.9997 0.001287 

T2 4.3564 3.0554 80 1.43 0.1578 0.9873 0.03820 

T3 1.0081 0.1924 80 5.24 <0.0001 0.7326 0.03768 

T4 -1.0509 0.1712 80 -6.14 <0.0001 0.2591 0.03286 

T5 -4.7187 3.0570 80 -1.54 0.1266 0.008848 0.02681 

T6 -8.1182 4.3184 80 -1.88 0.0638 0.000298 0.001286 

(b) Conservative T grouping of Trt least squares means (α=0.05) 
LS means with the same letter are not significantly different 

Trt Estimate 

T1 8.1179 A 

T2 4.3564 B A 

T3 1.0081 B A C 

T4 -1.0509 B D C 

T5 -4.7187 D C 

T6 -8.1182 D 

The LINES display does not reflect all significant comparisons. The following additional pairs are 
significantly different: (T3,T4) 

Based on the fixed effects tests, the flea species × treatment interaction is 
significant. The means on the model scale are listed under the “Estimate” column, 
followed by their standard errors, “Standard error” (Table 6.7). The output of the 
“ilink” option in “lsmeans” applies the inverse function of the link function to the 
estimates on the model scale to obtain the estimates on the data scale. The proba-
bilities, on the data scale, are given under the “Mean” column with their respective 
standard errors and correspond to the probability of insect (flea) survival. 

Figure 6.5 shows that the survival of both species is different in treatments 2–5; 
the Daphnia species showed more resistance in treatments 2 and 3, whereas the 
Ceriodaphnia species showed greater resistance in treatments 4 and 5. On the other 
hand, in treatments 1 and 6, survival was similar in both species. 

6.4 A Split-Plot Design in an RCBD with a Normal 
Response 

A split plot is the most common treatment structure design in agricultural and agro-
industrial research areas. These experiments generally involve two or more factors 
under study. Typically, large or primary experimental units, commonly known as the 
whole plot, are grouped into blocks. The levels of the first factor are randomly 
assigned to the whole plots. Then, each whole plot is divided into smaller units, 
known as split or secondary plots. The levels of the second factor are randomly 
assigned to the subplots within each whole plot.



220 6 Generalized Linear Mixed Models for Proportions and Percentages

T
ab

le
 6
.7
 
M
ea
ns
 a
nd

 s
ta
nd

ar
d 
er
ro
rs
 o
n 
th
e 
m
od

el
 s
ca
le
 a
nd

 o
n 
th
e 
da
ta
 s
ca
le
 o
f 
th
e 
in
te
ra
ct
io
n 
be
tw
ee
n 
bo

th
 f
ac
to
rs
 

S
P
*t
re
at
m
en
t 
le
as
t 
sq
ua
re
s 
m
ea
ns
 

S
P

T
re
at
m
en
t

E
st
im

at
e

S
ta
nd

ar
d 
er
ro
r

D
F

t-
va
lu
e

P
r 
>
 |t
|

M
ea
n

S
ta
nd

ar
d 
er
ro
r 
m
ea
n 

D
ap

hn
ia

T
1

8.
11

79
6.
10

65
80

1.
33

0.
18

75
0.
99

97
0.
00

18
20

 

D
ap

hn
ia

T
2

8.
11

80
6.
10

68
80

1.
33

0.
18

75
0.
99

97
0.
00

18
20

 

D
ap

hn
ia

T
3

1.
97

17
0.
32

18
80

6.
13

<
0.
00

01
0.
87

78
0.
03

45
2 

D
ap

hn
ia

T
4

-
1.
25

37
0.
25

36
80

-
4.
94

<
0.
00

01
0.
22

21
0.
04

38
1 

D
ap

hn
ia

T
5

-
8.
11

86
6.
10

85
80

-
1.
33

0.
18

76
0.
00

02
0.
00

18
19

 

D
ap

hn
ia

T
6

-
8.
11

82
6.
10

73
80

-
1.
33

0.
18

75
0.
00

02
0.
00

18
19

 

C
er
io
da

ph
ni
a

T
1

8.
11

78
6.
10

64
80

1.
33

0.
18

75
0.
99

97
0.
00

18
20

 

C
er
io
da

ph
ni
a

T
2

0.
59

47
0.
22

02
80

2.
70

0.
00

84
0.
64

44
0.
05

04
6 

C
er
io
da

ph
ni
a

T
3

0.
04

44
6

0.
21

09
80

0.
21

0.
83

36
0.
51

11
0.
05

26
9 

C
er
io
da

ph
ni
a

T
4

-
0.
84

80
0.
23

01
80

-
3.
69

0.
00

04
0.
29

99
0.
04

83
0 

C
er
io
da

ph
ni
a

T
5

-
1.
31

88
0.
25

83
80

-
5.
11

<
0.
00

01
0.
21

10
0.
04

30
1 

C
er
io
da

ph
ni
a

T
6

-
8.
11

82
6.
10

71
80

-
1.
33

0.
18

75
0.
00

02
0.
00

18
19



6.4 A Split-Plot Design in an RCBD with a Normal Response 221

0. 

0.275 

0.55 

0.825 

1.1 

Trt1 Trt2 Trt3 Trt4 Trt5 Trt6 

Su
rv

iv
al

 p
ro

ba
bi

lit
y 

Treatment 
Dapnhia Ceriodaphnia 

Fig. 6.5 The average survival rate of both species 

The model equation for the analysis of variance assuming normality in the 
response is 

yijk = ηþ αi þ rk þ rað Þik þ βj þ αβð Þij þ eijk 

i= 1, 2,⋯, a; j= 1, 2,⋯, b; k = 1, 2,⋯, r 

where yijk is the observed response variable in the kth block at the ith level of factor A 
and at the jth level of factor B, α and β refer to the fixed treatment effects due to 
factors A and B, respectively, r is the random effect due to the blocks, (ra)ik is the 
random error term due to the whole plot that is an interaction between the blocks and 
factor A, and eijk is the random residual effect. Normally, the errors and other random 
terms are also assumed to be normal; however, when the response variable is not 
normally distributed, this way of specifying the model is not the most appropriate. 
Thus, under the assumption that the response variable is normal, this way of 
specifying the model is valid. 

6.4.1 An RCBD Split Plot with Binomial Data: Carrot Fly 
Larval Infestation of Carrots 

Data were obtained from an experiment that was designed to compare a number of 
carrot genotypes with respect to their resistance to infestation by carrot fly larvae. 
The data involved 16 genotypes that were compared at 2 pest levels to be controlled. 
The experiment was conducted in three randomized blocks. Each block consisted of



1 2

32 plots, 1 for each combination of genotype and pest infestation level. At the end of 
the experiment, about 50 carrots were taken from each plot and assessed for 
infestation by carrot fly larvae. The data obtained are shown in Table 6.8. 
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Table 6.8 The notation 44/53 denotes that 44 carrots were infected ( y) out of a sample size of 
53 studied (N ) 

Treatment (level of infestation) 

Genotype Block1 Block2 Block3 Block1 Block2 Block3 

G1 44/53 42/48 27/51 16/60 9/52 26/54 

G2 24/48 35/42 45/52 13/44 20/48 16/53 

G3 8/49 16/49 16/50 4/52 6/51 12/43 

G4 4/51 5/42 12/46 15/52 10/56 6/48 

G5 11/52 13/51 15/44 4/51 6/43 9/46 

G6 15/50 5/49 7/50 1/51 8/49 3/54 

G7 18/52 13/47 7/47 2/52 4/52 6/52 

G8 5/47 15/49 8/50 6/56 4/50 6/42 

G9 11/52 6/45 5/51 3/54 8/51 3/53 

G10 0/51 10/39 14/48 3/50 0/50 10/51 

G11 6/52 4/46 10/37 1/52 7/38 4/48 

G12 0/52 4/55 1/40 1/50 3/50 1/45 

G13 14/45 18/43 4/40 4/51 7/46 7/45 

G14 3/52 12/53 4/55 3/52 7/48 12/49 

G15 11/52 6/54 5/49 2/50 4/46 14/53 

G16 4/53 1/40 4/52 4/56 1/44 3/42 

Table 6.9 Sources of variation and degrees of freedom 

Sources of variation Degrees of freedom 

Blocks r - 1 = 3 - 1 = 2 
Factor A (infestation) a - 1 = 2 - 1 = 1 
Errora (A*blocks) (r - 1)(a - 1) = 2 
Factor B (genotypes) b - 1 = 16 - 1 = 15 
Infestation*genotype (A*B) (a - 1)(b - 1) = 15 
Errorb a(r - 1)(b - 1) = 2 × 2 × 15 = 60 
Total r × a × b - 1 = 3 × 2 × 16 - 1 = 95 

Table 6.9 shows the analysis of variance summarizing the sources of variation 
and degrees of freedom. 

Rewriting in terms of the linear predictor 

ηijk = η þ αi þ rk þ rað Þik þ βj þ αβð Þij 

Since the observations were taken at the subplot level, conditioned on the 
structural effects of the design, these observations have a variance associated with 
the subplot. Therefore, α and β refer to the treatment fixed effects due to factors A
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and B, respectively; (αβ)ij refers to the interaction of the above factors; rk is the 
random effect due to blocks; and blocks × whole plot (ra)ik is assumed to contribute 
to the variation such that rk � N 0, σ2 r and rað Þik � N 0, σ2 block ×A . This model uses 
the linear predictor ηijk to estimate the mean of the observations μijk. 
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Table 6.10 Results of the 
analysis of variance 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 527.82 

Pearson’s chi-square 189.09 

Pearson’s chi-square/DF 1.97 

(b) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Intercept Bloque 0.004272 0.02741 

Trt Bloque 0.03344 0.03545 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Genotype 15 60 28.28 <0.0001 

Trt 1 2 16.24 0.0564 

Genotype*Trt 15 60 4.45 <0.0001 

The specification of the this GLMM is as follows: 

Distribution: yijk rk, (ra)rk~Binomial(Nijk, πijk) 
rk N 0, σ2 r , 

ra rk N 0, σ2 block A 
Link function: logit(πijk) = ηijk. 

The following SAS GLIMMIX program allows the fitting of a GLMM with a 
split-plot structure in a randomized complete block design with a binomial response. 

proc glimmix data=spd_pp nobound method=quadrature; 
class Genotype Trt Block ; 
model y/N = Genotype|Trt; 
random intercept trt /subject=block; 
lsmeans Genotype|Trt/lines ilink; 
run; 

The program uses the quadrature estimation method (method=quadrature). 
This estimation method produces similar results as the Laplace method. Part of the 
results is provided in Table 6.10. Pearson’s chi-squared/DF value in part (a) gives an 
idea of whether there is overdispersion or extra-variation in the dataset. In this case, 
Pearson’ s chi - square/DF = 1.97 indicates that there is overdispersion in the 
dataset, so it is feasible to use either the pseudo-likelihood (PL) estimation method 
or a different distribution. In addition to these results, the variance component 
estimated due to blocks and blocks × genotype (the whole plot) in part (b) are 
σ2 block = 0:004272 and σ2 block ×Að Þ  = 0:03344, respectively. The results of the fixed
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effects tests (part (c)) indicate that the effect of genotype and the interaction between 
genotype and treatment are significant. 
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The appropriate method for model evaluation depends on whether or not there is 
evidence of overdispersion, so we consider this issue below. The residual variance 
incorporates systematic discrepancies between the model and the observed 
responses, variation between replicates (observations in independent experimental 
units with the same values of the explanatory variables) and sampling variation 
arising from the distribution of the data; in this case, it is the binomial distribution. If 
there are no duplicate observations and the fitted model provides an adequate 
description of the systematic trend, then only sampling variation contributes to the 
residual variance. If this is true, then the residual deviation has an approximate 
chi-squared distribution with degrees of freedom similar to the mean squared error 
(MSE) (the residual). 

Since there is overdispersion in the data using the binomial distribution, there are 
three alternatives we can explore: (1) review the linear predictor, which involves 
carefully revising the analysis of variance table; (2) add a scale parameter; or (3) use 
another distribution for the dataset. Each of these three possible alternatives is 
discussed below, in this order. 

6.4.1.1 Linear Predictor Review (ηijk) 

If the proportion of normal plants (πijk) is being affected by the genotype within each 
infestation level (trt = αi) from plot to plot within each of the blocks, then a nested 
factorial effect of genotype within infestation levels (trt) could be included in the 
analysis of variance. Thus, the linear predictor would be defined as 

ηijk = ηþ αi þ rk þ rað Þik þ β αð Þj ið Þ  

where αi, β(τ)j(i), rk, and (ra)ik are the fixed effects due to treatments, the effect of 
genotypes nested within a treatment, random effects due to blocks rk � N 0, σ2 r , 
and the interaction between blocks and treatment ra ik N 0, σ2 RA , respectively. 

The following GLIMMIX syntax estimates the above linear predictor: 

proc glimmix data=spd_pp method=laplace; 
class Genotype Trt Block ; 
model y/N = Trt genotype(trt); 
random trt/subject=block; 
lsmeans genotype(trt)/lines ilink slice=trt slicediff=trt; 
run; 

The only difference between this proc GLIMMIX and the previous one is that in 
this program, we have included the nested effect of genotypes within treatment, 
genotype (trt), and removed only the fixed effects of genotypes. Part of the results is 
shown in Table 6.11. The value of Pearson’s chi-squared/DF statistic (part (a)) as



well as the fit statistics did not decrease when modifying the linear predictor. 
However, the F-values calculated for treatments and genotypes within treatments 
(part (c)) are smaller than those obtained in the split-plot design. 
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Table 6.11 Results of the 
analysis of variance, under a 
new linear predictor 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 527.82 

Pearson’s chi-square 189.07 

Pearson’s chi-square/DF 1.97 

(b) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Intercept Bloque 0.004265 0.02740 

Trt Bloque 0.03343 0.03544 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Trt 1 2 16.20 0.0565 

Genotype (Trt) 30 60 15.83 <0.0001 

Since the overdispersion is still present (Pearson’ s chi - square/DF = 1.97), 
another alternative is to add a scaling parameter to the model. This alternative is 
presented below. 

6.4.1.2 Scale Parameter 

If the residual deviation is larger than expected when compared to critical values of 
the appropriate chi-squared distribution, and if this cannot be corrected by redefining 
the linear predictor of the model, then there is more variation present than can be 
accounted for by the distributional likelihood assumption. In this case, we say that 
the data show overdispersion. The simplest way to deal with overdispersion is to 
extend the model for scaling the variance function. Adding the scale parameter 
replaces Var(yij) = πij(1 - πij) with Var(yij) = ϕπij(1 - πij). The rationale for this 
approach is discussed by Collett (2002). The parameter ϕ is a scale factor, called the 
dispersion parameter, which is used to summarize the degree of overdispersion 
present in the observations. Clearly, ϕ = 1 corresponds to the original distribution 
model. This parameter can be estimated in several different ways. The logarithm of 
the likelihood of the binomial distribution is given by 

log 
N 
yij 

þ yij log 
πij 

1- πij 
þ N log 1- πij 

In the logarithm of the likelihood, the term “yij log 
πij 

1- πij 
” is very important; any 

quantity that multiplies yij is known as the natural or canonical parameter, and this 
parameter is always a function of the mean. For the binomial distribution, the mean



Nijπij and the natural parameter is log πij 
1- πij 

, and, in categorical data, it is known as 

“log odds.” The generalized estimating equation (GEE) method provides a valid 
analysis for marginal means, since under a binomial distribution, in the quasi-
likelihood, the variance of the distribution is given by ϕπij(1 - πij). This is achieved 
by adding the “random _residual_” command in the following SAS syntax. 
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The following GLIMMIX commands are used to invoke the scale parameter but 
using the first predictor proposed for these data. 

proc glimmix data=spd_pp nobound; 
class GenotypeTrtBlock ; 
model y/N = Trt|genotype; 
random intercept trt/subject=block; 
random _residual__; 
lsmeans Trt|genotype/lines ilink ; 
run; 

In this syntax, we still keep the binomial distribution (y/N is equivalent to telling 
GLIMMIX in SAS that it is a binomial response) but will add the “random 
_residual_” command. In this case, we cannot obtain the maximum likelihood 
estimators because we cannot implement the Laplace method (“method = laplace”) 
or adaptive quadrature (“method = quad”) approximation method, so the estimation 
is performed through the pseudo-likelihood (PL) method. This causes the scale 
parameter to be estimated, and, consequently, it is used in the adjustment of all 
standard errors and statistical tests. Proc GLIMMIX uses the generalized statistics of 
McCullagh and Nelder (1989), i.e., χ2 /df as the estimator of the scale parameter (ϕ̂Þ. 
All standard errors from the analysis under a binomial distribution are multiplied by 

ϕ̂, and all F-tests are divided by ϕ̂ to account for overdispersion. Part of the output 

is shown below. 
The value of Pearson’s statistic in part (a) indicates that overdispersion has not 

been eliminated. Chi - square/DF = 3.13, on the contrary, indicates that this value 
has increased. This result indicates that adding a scale parameter to the model does 
not decrease the extra-variation present in the dataset, since the binomial assumption 
forces a relationship between the mean and variance of the data that might not 
contain the data being analyzed. On the other hand, the estimated scale parameter is 
ϕ̂= 3:1263 (part (b)). Pearson’s residual analysis showed that its variance is 3.6257, 
which is considerably larger than 1, implying a large overdispersion. In addition, the 
results of the fixed effects tests (part (c)) vary from those above (Table 6.12). 

Therefore, the third option based on assuming an alternative distribution (beta 
distribution) on the response variable is discussed below.
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Cov Parm Subject Estimate

6.4 A Split-Plot Design in an RCBD with a Normal Response 227

Table 6.12 Results of the 
analysis of variance, adding a 
scale parameter to the model 

(a) Fit statistics

-2 Res log pseudo-likelihood 182.52 

Generalized chi-square 200.09 

Gener. chi-square/DF 3.13 

(b) Covariance parameter estimates 

Standard 
error 

Intercept Bloque 0.005416 0.04750 

Trt Bloque 0.03202 0.06338 

Residual variance compo-
nent (VC) 

3.1263 0.5719 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Trt 1 2 10.20 0.0856 

Genotype 15 60 9.04 <0.0001 

Genotype*Trt 15 60 1.42 0.1674 

6.4.1.3 Alternative Distribution 

Another approach to control the overdispersion would be to use a different distri-
bution in the interval [0, 1], such as the beta distribution, to model the data. 
Generally, this distribution yields good results when all experiments have the 
same number of observations (successes and failures), i.e., when Nijk = N. When 
Nijk varies a little, even in many cases, the beta distribution yields acceptable results. 
It is important to mention that the proportions come from binomial counts, and, 
therefore, we now define the response variable as pijk = yijk Nijk 

so that it can be modeled 

as the beta distribution. The components of the beta response model are listed below: 

Distribution: pijk rk, (ra)rk~Beta(πijk,ϕ) with ϕ as the scale parameter 
rk N 0, σ2 r , ra  rk N 0, σ2 RA 
Linear predictor: ηijk = η + αi + rk + (αr)ik + βj + (αβ)ij 

Link function: logit π = logit πijk = η 

As mentioned before, we now use the response variable pijk = yijk Nijk 
. This new 

response variable pijk is not the same as the one used in the binomial distribution. The 
following SAS commands fit a GLMM in a split-plot randomized complete block 
design with a beta response. It is important to mention that before implementing this 
model in SAS GLIMMIX, the variable p= pijk = yijk Nijk 

was defined. 

proc glimmix data=spd_pp nobound method=laplace; 
class GenotypeTrtBlock ; 
model p = Genotype|Trt/dist=beta; 
random intercept trt/subject=block; 
lsmeans Genotype|Trt/lines ilink; 
run;
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Table 6.13 Fit statistics 
assuming binomial and beta 
distributions 

(a) Fit statistics 

Distribution Binomial Beta

-2 Log likelihood 541.85 -246.49 

AIC (smaller is better) 609.85 -176.49 

AICC (smaller is better) 648.87 -132.28 

BIC (smaller is better) 579.20 -208.04 

CAIC (smaller is better) 613.20 -173.04 

HQIC (smaller is better) 548.24 -239.91 

(b) Fit statistics for conditional distribution 

Distribution Binomial Beta

-2 Log L (y | r. effects) 527.82 -254.68 

Pearson’s chi-square 189.09 93.95 

Pearson’s chi-square/DF 1.97 1.01 

Table 6.14 Results of the analysis of variance, assuming binomial and beta distributions 

(a) Covariance parameter estimates 

Binomial Beta 

Cov Parm Subject Estimate Standard error Estimate Standard error 

Intercept Bloque 0.004272 0.02741 -0.00524 . 

Trt Bloque 0.03344 0.03545 0.02175 0.1475 

Scale ϕ̂ . 25.7070 

(b) Type III tests of fixed effects 

Binomial Beta 

Effect Num DF Den DF F-value Pr > F-value Pr > F 

Trt 1 4 16.24 0.0564 9.98 0.0342 

Genotype 15 60 28.28 <0.0001 13.25 <0.0001 

Genotype*Trt 15 60 4.45 <0.0001 2.23 0.0146 

Some of the SAS GLIMMIX output is listed below. Based on the fit statistics 
under the binomial (first alternative) and beta distributions (Table 6.13), clearly the 
values of the statistics related to the degree of overdispersion are lower in the beta 
distribution than in the binomial distribution, indicating that the beta distribution 
provides a better fit (part (a)). Looking at the fit statistics for the conditional model in 
part (b), the values of the three fit statistics in the binomial model are higher than the 
values in the beta model. The value of Pearson’ s chi - square/DF under the beta 
distribution is 1.01. This value indicates that the overdispersion has been virtually 
eliminated from the data and that therefore the beta distribution is a better candidate 
model for this dataset. 

Adding the scale parameter (ϕ) to the model, the variance components and 
standard errors in Table 6.14 cause (part (a)) variation for each of the results and, 
therefore, the F- and t-tests are affected (part (b)). The estimated value of the scale
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parameter is ϕ̂= 25:7018. The variance components based on the binomial model 
and beta are listed below. 
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Table 6.15 Estimated means and standard errors on the model scale and the data scale 

(a) Trt least squares means 

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

Trt1 -1.2362 0.01768 2 -69.94 0.0002 0.2251 0.003083 

Trt2 -1.9327 0.01768 2 -109.34 <0.0001 0.1264 0.001952 

(b) Genotype least squares means 

Standard 
error 

Standard error 
mean 

G1 0.1524 0 57 Infty <0.0001 0.5380 0 

G10 -1.4143 0 57 -Infty <0.0001 0.1956 0 

G11 -1.8698 0 57 -Infty <0.0001 0.1336 0 

G12 -2.8971 0.03885 57 -74.58 <0.0001 0.05230 0.001925 

G13 -1.4336 0 57 -Infty <0.0001 0.1925 0 

G14 -1.8761 0.1304 57 -14.39 <0.0001 0.1328 0.01502 

G15 -1.8618 0 57 -Infty <0.0001 0.1345 0 

G16 -2.6686 0 57 -Infty <0.0001 0.06485 0 

G2 0.2225 0 57 Infty <0.0001 0.5554 0 

G3 -1.3329 0 57 -Infty <0.0001 0.2087 0 

G4 -1.5897 0 57 -Infty <0.0001 0.1694 0 

G5 -1.3696 0 57 -Infty <0.0001 0.2027 0 

G6 -2.0173 0 57 -Infty <0.0001 0.1174 0 

G7 -1.7001 0.1356 57 -12.53 <0.0001 0.1545 0.01771 

G8 -1.7161 0 57 -Infty <0.0001 0.1524 0 

G9 -1.9796 0 57 -Infty <0.0001 0.1214 0 

The treatment means (part (a)) and genotypes (part (b)) are presented in 
Table 6.15. The estimates on the model scale are listed under the column “Estimate” 
with their respective standard errors “Standard error,” and the values on the data 
scale are listed under the column “MEAN” with their respective standard errors 
“Standard error mean.” In the table of least squares means for the effect of geno-
types, inconsistencies are observed in the values of t and in the standard error values 
of the means, so other estimation alternatives should be sought. 

In large samples, both binomial and normal distributions are quite similar. 
Logically, the latter two analyses, binomial and beta, are attractive because of their 
consistency with the nature of the data. Because of the inconsistencies in the 
estimates of the mean for genotypes (tvalue = Infty and standard error of the 
mean), a robust method of estimation could be used; in this case, this is the normal 
distribution. 

Assuming that pijk has a normal distribution with a mean μijk and constant 
variance σ2 , the components of this model are as follows:



Distribution: pct j r , (ra) ~Normal(μ , σ2)
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Table 6.16 Results of the 
analysis of variance, assuming 
a normal distribution 

(a) Fit statistics

-2 Res log likelihood -79.38 

AIC (smaller is better) -73.38 

AICC (smaller is better) -72.98 

BIC (smaller is better) -76.08 

CAIC (smaller is better) -73.08 

HQIC (smaller is better) -78.81 

Generalized chi-square 0.60 

Gener. chi-square/DF 0.01 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Bloque 0.000123 0.000742 

Trt*bloque 0.000329 0.000925 

Residual 0.009442 0.001724 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Genotype 15 60 12.59 <0.0001 

Trt 1 2 20.46 0.0456 

Genotype*Trt 15 60 2.93 0.0016 

ijk k ik ijk 

rk N 0, σ2 r , ra  ik N 0, σ2 RA 
Linear predictor: ηijk = η + αi + rk + (αr)ik + βj + (αβ)ij 
Link function: ηijk = μijk; identity 

Similarly, in this example, the response variable used was pctijk = yijk Nijk 
. This new 

response variable pctijk is not the same as the response variable used in the binomial 
distribution. The following SAS GLIMMIX commands adjust a linear mixed model 
(LMM) under a split plot in a randomized complete block design with a normal 
response. 

proc glimmix data=spd_pct nobound; 
class Genotype Trt Block ; 
model pct = Genotype|Trt; 
random block block*trt; 
lsmeans Genotype|Trt/lines; 
run; 

Part of the results is shown below. The values of fit statistics in part (a) of 
Table 6.16 for the model are clearly lower than those estimated in the previous 
options. This indicates that the normal distribution is reasonable, even though the 
response is a proportion. The estimated variance components, tabulated in 
part (b) due to blocks, blocks x treatment, and the mean squared error (MSE) 
(Residual = Gener. chi-square/DF) are σ̂2 block = 0:000123, σ̂2 block× trt = 0:00039, and 
σ̂2 =MSE= 0:009442 0:01, respectively.



Genotype Estimate DF Pr > |t| Mean

6.4 A Split-Plot Design in an RCBD with a Normal Response 231

Table 6.17 Means and standard errors for genotypes and treatments 

(a) Genotype least squares means 

Standard 
error 

t-
value 

Standard error 
mean 

G1 0.5260 0.04086 60 12.87 <0.0001 0.5260 0.04086 

G10 0.1340 0.04086 60 3.28 0.0017 0.1340 0.04086 

G11 0.1522 0.04086 60 3.73 0.0004 0.1522 0.04086 

G12 0.03332 0.04086 60 0.82 0.4179 0.0333 0.04086 

G13 0.2026 0.04086 60 4.96 <0.0001 0.2026 0.04086 

G14 0.1342 0.04086 60 3.28 0.0017 0.1342 0.04086 

G15 0.1360 0.04086 60 3.33 0.0015 0.1360 0.04086 

G16 0.05625 0.04086 60 1.38 0.1737 0.0562 0.04086 

G2 0.5355 0.04086 60 13.11 <0.0001 0.5355 0.04086 

G3 0.2139 0.04086 60 5.24 <0.0001 0.2139 0.04086 

G4 0.1751 0.04086 60 4.28 <0.0001 0.1751 0.04086 

G5 0.2035 0.04086 60 4.98 <0.0001 0.2035 0.04086 

G6 0.1301 0.04086 60 3.18 0.0023 0.1301 0.04086 

G7 0.1671 0.04086 60 4.09 0.0001 0.1671 0.04086 

G8 0.1504 0.04086 60 3.68 0.0005 0.1504 0.04086 

G9 0.1187 0.04086 60 2.90 0.0051 0.1187 0.04086 

(b) Trt least squares means 

Trt Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

Trt1 0.2478 0.01863 2 13.30 0.0056 0.2478 0.01863 

Trt2 0.1358 0.01863 2 7.29 0.0183 0.1358 0.01863 

The F-statistics for the fixed effects of genotype, treatments, and the interaction 
between both factors provide significant statistical evidence on the proportion of 
infested carrots in each of the genotypes (part (c)). Overall, the least squares means 
for genotypes and treatments are reported in Table 6.17 in parts (a) and (b). The 
genotypes showing the highest fraction of infested carrots were 1, 2, 3, 5, and 
13, whereas genotypes 12 and 16 showed the lowest percentage of infested carrots. 
Now, for treatments, the highest proportion of infested carrots was observed in 
treatment 1 with 24.78%, whereas in treatment 2, it was 13.58%. 

Based on the fixed effects tests, the interaction effect of genotype x treatment on 
the proportion of infested carrots was statistically different. Genotypes 9 and 
16 showed higher susceptibility in treatment 1 followed by treatment 2, whereas 
genotypes 5, 11, 13, and 15 showed the same proportions of infested carrots in both 
treatments (Fig. 6.6). On the other hand, genotypes that showed higher resistance to 
infestation levels were genotypes 1, 2, and 6 followed by genotypes 3, 4, 7, 8, 
10, and 12.
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Fig. 6.6 The average proportion of infested carrots in genotypes as a function of treatment 

6.5 A Split-Split Plot in an RCBD:- In Vitro Germination 
of Seeds 

The growth of a plant in a tissue culture can be explained by various combined 
effects of A, B, and C factors. For this, the availability and efficient use of chemical 
resources (factors) is of great relevance when availability is scarce or too expensive. 
In light of this, the combination of three reagents (A, B, and C), reagent A at three 
levels and reagents B and C at two levels, were tested on the in vitro germination of 
orchid seeds. The combination of the levels of each of the factors is schematized 
below. 

Block 1 

A3 A1 A2 

B1 B2 B1 B2 B2 B1 

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 

C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 

Block 2 

A2 A1 A3 

B1 B2 B1 B2 B2 B1 

C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 

In each of the factor combinations, N orchid seeds were placed to germinate for a 
period of time. Let yijk be the number of seeds germinated at the ith level of factor A, 
at the jth level of factor B, and at the kth level of factor C. Since the observations are 
made at the sub-subplot level, conditional on the structural effects of the design, 
these observations have a variance associated with the subplot. Therefore, the 
statistical model for this experiment is given below:



Distribution: y j r , (ra) , (rαβ) ~Binomial(N , π )
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Table 6.18 Number of seeds 
that germinated (yijkl) in each 
of the factor combinations 

Block A B C Y N 

1 1 1 1 15 73 

2 1 1 1 10 86 

1 1 1 2 17 69 

2 1 1 2 19 32 

1 1 2 1 26 125 

2 1 2 1 21 62 

1 1 2 2 14 81 

2 1 2 2 12 21 

1 2 1 1 10 92 

2 2 1 1 12 108 

1 2 1 2 30 44 

2 2 1 2 32 33 

1 2 2 1 37 91 

2 2 2 1 30 42 

1 2 2 2 32 98 

2 2 2 2 37 44 

1 3 1 1 18 52 

2 3 1 1 18 73 

1 3 1 2 23 108 

2 3 1 2 21 55 

1 3 2 1 24 106 

2 3 2 1 27 92 

1 3 2 2 37 64 

2 3 2 2 37 97 

ijkl l il ijl ijk ijk 

rl N 0, σ2 r , ra  rk N 0, σ2 RA , rαβ ijl N 0, σ2 rab 
Linear predictor: 
ηijk = η + αi + rl + (rα)il + βj + (αβ)ij + (rαβ)ijl + γk + (αγ)ik + (βγ)jk + (αβγ)ijk, 
where blocks (rl), blocks × A ((ra)il), and blocks × A × B ((rαβ)ijl) are assumed to 

contribute to the variation such that rl � N 0, σ2 r , rað Þil � N 0, σ2 r ×A , 

rαβð Þijl � N 0, σ2 rab , respectively, and εijkl experimental errors are distributed 
as N(0, σ2 ). This model uses the linear predictor ηijk to estimate the mean of the 
observations μijk. 

Link function: logit(πijkl) = ηijkl 

Table 6.18 below shows the data obtained from this experiment. 
Table 6.19 presents the analysis of variance and shows the sources of variation 

and degrees of freedom for this experimental design. 
The following SAS GLIMMIX program allows a GLMM with a split-split plot 

structure to be fitted in an RCBD with a binomial response.
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proc GLIMMIX data=germ nobound method=laplace; 
class Block A B C; 
model Y/N = A|B|C/dist=binomial link=logit; 
random block block*A block*A block*A*B; 
lsmeans A|B|C/lines ilink; 
run; 
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Table 6.19 Sources of variation and degrees of freedom for the randomized block design with an 
arrangement of treatments under the split-split-plot structure 

Sources of variation Degrees of freedom 

Blocks r - 1 = 2 - 1 = 1 
Factor A a - 1 = 3 - 1 = 2 
Errora(Bloque*A) (r - 1)(a - 1) = 2 
Factor B b - 1 = 2 - 1 = 1 
A* B (a - 1)(b - 1) = 2 
Errorb(A*B(Bloque)) a(b - 1)(r - 1) = 3 × 1 × 1 = 3 
Factor C (c - 1) = 2 - 1 = 1 
A*C (3 - 1)(2 - 1) = 2 
B*C (b - 1)(c - 1) = 1 
A*B* C (a - 1)(b - 1)(c - 1) = 2 
Error ab(c - 1)(r - 1) = 3 × 2 × 1 × 1 = 6 
Total r × a × b × c - 1 = 2 × 3 × 2 × 2 - 1 = 23 

Part of the output is shown in Table 6.20. The value of the conditional statistic 
Pearson’ chi- square/DF = 1.81 (part (a)) indicates that there is an overdispersion in 
the dataset since these values are greater than 1. The estimated variance components 
tabulated in part (b) correspond to blocks, blocks × factor A, and blocks × fac-
tor A × factor B, which are σ2 r = 0:0752, σ2 rA = 0:088, and σ2 rab = 0:0425, respec-
tively. The type III tests of fixed effects are shown in part (c). Here, we see that 
the test of equality of treatments is not significant for factors A and B and the 
interaction AB (A,P = 0.1917,B,P = 0.0897; AB,P = 0.6262), whereas for factor 
C and the interactions AC, BC, and ABC, it is significant at a level of 5%. 

Since there is overdispersion in the dataset, the binomial distribution does not 
provide a good fit for the dataset (Pearson’ s chi - square/DF = 1.81). An alternative 
to model this dataset could be the beta distribution. Under this assumption, let the 
response variable be pijk = yijk Nijk 

, the proportion of seeds that germinated, then pijk is 

assumed to have a beta distribution rather than a binomial distribution for the success 
count yijk out of a total of Nijk Bernoulli trials. 

The components of the model are listed below: 

Distribution: pijk rl, (ra)il, (rαβ)ijl ~ Beta(πijk,ϕ), with ϕ as the scale parameter. 
rl N 0, σ2 r , ra rk N 0, σ2 rA , rαβ ijl N 0, σ2 rab 
Linear predictor: 
ηijk = η + αi + rl + (rα)il + βj + (αβ)ij + (rαβ)ijl + γk + (αγ)ik + (βγ)jk + (αβγ)ijk 

Link function: logit π = logit πijk = η
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Table 6.20 Results of the analysis of variance of the RCBD in the split-split plot under the 
binomial distribution 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 146.19 

Pearson’s chi-square 43.49 

Pearson’s chi-square/DF 1.81 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Bloque 0.07521 0.1180 

Bloque*A 0.08847 0.09319 

Bloque*A*B 0.02205 0.04258 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

A 2 2 4.22 0.1917 

B 1 3 6.12 0.0897 

A*B 2 3 0.55 0.6262 

C 1 6 65.73 0.0002 

A*C 2 6 11.68 0.0085 

B*C 1 6 29.38 0.0016 

A*B*C 2 6 31.69 0.0006 

The following SAS commands fit a GLMM on a split-split plot in a randomized 
complete block design assuming a beta distribution for the response variable. 

proc glimmix data=germ nobound method=laplace; 
class BlockABC ; 
model p = A|B|C/dist=beta ; 
random block block*A block*A*B;/*intercept A /subject=block*/; 
lsmeans A|B|C/lines ilink; 
run; 

Part of the results is listed in Table 6.21 under a beta distribution. The value of the 
fit statistic for the conditional model tabulated in (a) (Pearson’ s chi - square/ 
DF = 1.01) indicates that overdispersion has been removed and that the 
beta distribution is a good model to fit the dataset. Part (b) shows the variance 
component estimates for blocks, blockxA, and blockxAxB 
σ̂2 r = - 0:157, σ2 rA = - 0:05558, and σ2 rab = - 0:227, respectively and the value 
of the estimated scale parameter ϕ̂= 19:2789 . According to the type III tests of 
fixed effects in part (c), the main effect of factor C (P = 0.0128) and interaction 
A×B×C (P = 0.0424) are statistically significant at a level of 5%. 

The estimates of the interactions are shown in Table 6.22 on the model scale 
under the “Estimate” column and as probabilities on the data scale under the “Mean” 
column with its corresponding standard errors under the “Standard error mean” 
column.



A B C Estimate DF Pr > |t| Mean

1 1 1

2 1 1
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Table 6.21 Results of the analysis of variance of the RCBD in the split-split plot structure under 
the beta distribution 

(a) Fit statistics for conditional distribution

-2 Log L (p | r. effects) -37.51 

Pearson’s chi-square 21.31 

Pearson’s chi-square/DF 1.01 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Bloque -0.1570 . 

Bloque*A -0.05558 . 

Bloque*A*B -0.2270 . 

Scale 19.2789 5.8703 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

A 2 2 1.21 0.4521 

B 1 2 0.00 0.9687 

A*B 2 2 1.08 0.4799 

C 1 4 18.34 0.0128 

A*C 2 4 1.50 0.3257 

B*C 1 4 6.56 0.0626 

A*B*C 2 4 7.72 0.0424 

Table 6.22 Estimated least mean squares on the model scale (“Estimate” column) and the data 
scale (“Mean” column) 

A*B*C least squares means 

Standard 
error 

t-
value 

Standard error 
mean

-0.3769 0.3194 4 -1.18 0.3034 0.4069 0.07709 

1 1 2 0.9506 0.3445 4 2.76 0.0509 0.7212 0.06927 

1 2 1 0.1721 0.3147 4 0.55 0.6135 0.5429 0.07810 

1 2 2 0.7010 0.3308 4 2.12 0.1014 0.6684 0.07331

-0.6521 0.3296 4 -1.98 0.1190 0.3425 0.07422 

2 1 2 2.9148 0.8071 4 3.61 0.0225 0.9486 0.03937 

2 2 1 0.7430 0.4699 4 1.58 0.1890 0.6776 0.1026 

2 2 2 0.4056 0.4515 4 0.90 0.4198 0.6000 0.1084 

3 1 1 0.2695 0.3161 4 0.85 0.4419 0.5670 0.07761 

3 1 2 0.2752 0.3163 4 0.87 0.4334 0.5684 0.07759 

3 2 1 0.1236 0.3143 4 0.39 0.7143 0.5309 0.07827 

3 2 2 1.1726 0.3614 4 3.24 0.0315 0.7636 0.06523
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Fig. 6.7 The average seed germination rate 

The simple effects of factors show that the best combination of factor levels was 
A2*B1*C2, showing the highest seed germination proportion followed by the 
combination of factors A1*B1*C2, A3*B2*C2, and lower proportion, which were 
observed in the combination of factors A1*B2*C2, A2*B2*C1 and A2*B2*C2 
(Fig. 6.7). Finally, the combination of the factor levels A2 × B1 × C1 showed the 
lowest proportion of seed germination. 

6.6 Alternative Link Functions for Binomial Data 

In previous chapters, we used proc GLIMMIX with binomial data and, by default, it 
works with the link function “ logit. ” However, in certain applications with binomial 
data, other link functions are acceptable, either because they make it easier to 
interpret or because for certain binomial datasets, the link function “ logit” cannot 
accurately model the data and, as a result, produce biased (misleading) results. In this 
section, we consider two alternative link functions to the logit for binomial data: the 
link “ probit” and the complementary log-log link. 

The probit model is also used to model dichotomous (Bernoulli) or binomial (sum 
of Bernoulli trials) responses. For this model, the link function, called the probit link, 
uses the inverse of the cumulative distribution function of a standard normal 
distribution to transform probabilities to the standard normal variable. That is, 
Φ-1 (πi) = ηi, which implies that πi = Φ(ηi), where Φ Z = z

-
1p e-

1 
2t
2 
dt. 

The use of the probit regression model dates back to Bliss (1934). Bliss was 
interested in finding an effective pesticide to control insects that fed on grape leaves.
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He discovered that the relationship between the response and a dose of pesticide was 
sigmoid, and he applied the probit link function to transform the dose–response 
curve from a sigmoid to a linear relationship. 
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The complementary function log - log defined as ηi = log (- log (1 - πi)), 
whose inverse is πi = 1- e- eηi , is useful for data in which most of the probabilities 
are near zero or near one. For small values of πi, the log-log transformation produces 
results highly similar to those produced when using a logit link. As the probability 
increases, the transformation approaches infinity more slowly than the probit or logit 
model. 

6.6.1 Probit Link: A Split-Split Plot in an RCBD 
with a Binomial Response 

This example takes the dataset of the split-split plot in an RCBD (Exercise 6.8.5). In 
this example, the data were modeled using the function “ logit.” In this exercise, we 
will fit the dataset using the link function “ probit, ” and we will compare and contrast 
the results using a logit link. The components of the GLMM are identical to those in 
Example 6.5, except for the link function. That is, we replace: 

Link function: logit π = logit πijk = η by -1 (π ) = η . 

The following GLIMMIX syntax implements the fitting of the binomial data 
using the link function “ probit. ” 

proc glimmix data=germ nobound method=laplace; 
class Block A B C; 
model Y/N = A|B|C/link=probit; 
random block block*A block*A*B; 
lsmeans A|B|C/lines ilink; 
run; 

Table 6.23 shows part of the results under the binomial distribution with the 
“probit” link function. In parts (a) and (b), we see the mean squared error and 
variance component estimates for blocks, whole plot, subplot, and sub-subplot, 
where it can be observed that these values are positive and not negative, as the 
ones obtained with the link function “ logit. ” Since the variance components are 
positive, this analysis makes more sense than the one based on the logit link. 

The type III tests of fixed effects are tabulated in part (c) of Table 6.23; the main 
effects of factors A and B and the interactions A*B, A*C, and B*C are not significant 
in both link functions, whereas the main effect of factor C and the interaction A*B*C 
are statistically significant under the “probit” link. 

The estimated probabilities π̂ijk and their respective standard errors are 
presented in Table 6.24 for each of the combinations of the three factors, which
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are very similar in both link functions. However, the average standard error 
is slightly higher with the “logit” link function ðstandar:error:meanlogit = 0:0711Þ 
compared to the “probit” link standar:errormeanprobit = 0:0693 . 
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Table 6.23 Results of the analysis of variance of the RCBD in the split-split plot structure under 
the binomial distribution using the “probit” link 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 146.43 

Pearson’s chi-square 43.01 

Pearson’s chi-square/DF CME= σ̂2 1.09 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Block σ̂2 block 0.02411 0.03707 

Block*A σ̂2 block×A 0.02128 0.02830 

Block*A*B σ̂2 block ×A B 0.01617 0.01896 

(c) Type III tests of fixed effects 

Probit Logit 

Effect Num DF Den DF F-value Pr > F Pr > F 

A 2 2 5.49 0.1541 0.4521 

B 1 3 4.17 0.1339 0.9687 

A*B 2 3 0.36 0.7226 0.4799 

C 1 6 67.13 0.0002 0.0128 

A*C 2 6 12.34 0.0075 0.3257 

B*C 1 6 29.16 0.0017 0.0626 

A*B*C 2 6 33.93 0.0005 0.0424 

6.6.2 Complementary Log-Log Link Function: A Split Plot 
in an RCBD with a Binomial Response 

Researchers studied three different micro-minerals (A, B, and C) on the attachment 
of explants of a commercial culture. In this vein, micro-mineral A was tested at three 
levels (i = 1, 2, and 3), and micro-minerals B and C at two levels ( j, k = 1,2 and). 
The combination of the different levels yielded a total of 12 combinations. Since the 
researchers wanted to study factor C with greater precision, a split-plot treatment 
structure was designed in which micro-minerals A and B were placed in the whole 
plot (a large plot) and micro-mineral C in the subplot (a small plot). Treatment factor 
combinations were placed in an RCBD manner (r = 1, 2). The outcome of interest 
was the number of live plants (yijkr) out of the total number of plants growing in the
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unit (nijkr). The data can be referred to in the Appendix (Data: Commercial crop 
explant attachment). 
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Table 6.24 Means and standard errors using the probit and logit link functions 

A*B*C least squares means 

Probit Logit 

A B C Mean Standard error mean Mean Standard error mean 

1 1 1 0.1543 0.05050 0.1494 0.04796 

1 1 2 0.3723 0.08296 0.3780 0.08767 

1 2 1 0.2724 0.06746 0.2694 0.06896 

1 2 2 0.2954 0.07798 0.2953 0.08053 

2 1 1 0.1023 0.03805 0.09593 0.03409 

2 1 2 0.8255 0.06338 0.8292 0.06135 

2 2 1 0.5684 0.08306 0.5703 0.08845 

2 2 2 0.5529 0.08327 0.5530 0.08847 

3 1 1 0.2844 0.07196 0.2844 0.07418 

3 1 2 0.2751 0.06868 0.2733 0.07041 

3 2 1 0.2568 0.06452 0.2563 0.06589 

3 2 2 0.4612 0.08017 0.4608 0.08553 

The GLMM for this experiment is described below (log-log data): 

Distribution: yijkl rl, r(aβ)ijl~Binomial(Nijk, πijk) 
rl N 0, σ2 r , r aβ ijl N 0, σ2 rab , 
Linear predictor: ηijkl= η + rl + αi + βj + (αβ)ijl + r(αβ)il + γk + (αγ)ik + (βγ)jk + (αβγ)ijk, 

i + βj + (αβ)ijl + r(αβ)il + γk + (αγ)ik + (βγ)jk + (αβγ)ijk, where blocks (rl) and blocks 
x (A x B) ((r(aβ))ijl) are assumed to contribute to the variation such that rl �
N 0, σ2 r and r aβ ijl N 0, σ2 rab , respectively. 

Link function: log - log (πijkl) = ηijkl 

The following GLIMMIX code adjusts the binomial proportions with a comple-
mentary link function log - log in an RCBD manner. 

proc glimmix data=spp nobound method=laplace; 
class block A B C; 
model y/n = A|B|C/link=ccll; 
random block block(A*B); 
lsmeans A|B|C/lines ilink; 
run; 

The “link = ccll” option specifies that “proc GLIMMIX” will fit the model using 
the complementary (log - log) link function. The “lsmeans A|B|C/lines ilink” 
command calls for estimation of the linear predictors ηijk, whereas the “lines” and 
“ilink” options provide the comparison between the linear predictors and their 
inverse. Part of the output is shown below. Table 6.25 shows the variance compo-
nent estimates of blocks and blocks (A×B) using alternative link functions. Under
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the link “probit,” the variance components are smaller compared to those obtained 
with the link functions “log – log” and “logit.” 
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Table 6.25 Variance component estimates using the same distribution but a different link function 

Covariance parameter estimates 

Log – log Logit Probit 

Standard 
error 

Standard 
error 

Standard 
error 

Block 0.05808 0.07112 0.08144 0.1042 0.02676 0.03494 

Block 
(A*B) 

0.05065 0.03121 0.09203 0.05754 0.03374 0.02111 

Table 6.26 Type III tests of fixed effects using the same distribution but with a different link 
function 

Type III tests of fixed effects 

Log - log Logit Probit 

Effect Num DF Den DF F-value Pr > F-value Pr > F-value Pr > F 

A 2 5 6.27 0.0434 7.44 0.0318 8.17 0.0266 

B 1 5 4.85 0.0789 3.13 0.1370 2.81 0.1543 

A*B 2 5 0.65 0.5613 0.28 0.7693 0.24 0.7971 

C 1 6 68.84 0.0002 65.29 0.0002 66.70 0.0002 

A*C 2 6 11.94 0.0081 11.53 0.0088 12.12 0.0078 

B*C 1 6 27.51 0.0019 28.88 0.0017 28.77 0.0017 

A*B*C 2 6 32.44 0.0006 32.36 0.0006 33.93 0.0005 

Table 6.27 Fit statistics 
using the same distribution but 
a different link function 

Covariance parameter estimates 

Log - log Logit Probit

-2 Log likelihood 164.85 172.57 170.88 

AIC (smaller is better) 192.85 200.57 198.88 

AICC (smaller is better) 239.51 247.24 245.55 

BIC (smaller is better) 174.55 182.27 180.59 

CAIC (smaller is better) 188.55 196.27 194.59 

HQIC (smaller is better) 154.58 162.31 160.62 

The values of the hypothesis tests for the fixed effects, both main effects and 
interactions, are shown in Table 6.26. The three link functions behave similarly. 

One tool that might be useful in choosing which link function provides a better fit, 
or which best describes the variability of a dataset, is the model fit statistics. The fit 
statistics indicate that the model with the complementary “log - log” link function 
provides the best fit (Table 6.27). 

Table 6.28 shows the maximum likelihood estimators π̂ijk for each of the link 
functions and the combination of factor levels, and it can be verified that they 
provide very similar estimates. It is important to mention that the correct
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specification of the linear predictor as well as the distribution of the response variable 
are the most important elements for obtaining a good fit. 
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Table 6.28 Means and standard errors using the same distribution but with a different link function 

A*B*C least squares means 

Log - log Logit Probit 

Standard error 
mean 

Standard error 
mean 

Standard error 
mean 

1 1 1 0.1494 0.04259 0.1513 0.04732 0.1547 0.05030 

1 1 2 0.3776 0.08554 0.3727 0.08510 0.3696 0.08223 

1 2 1 0.2661 0.06257 0.2706 0.06744 0.2737 0.06718 

1 2 2 0.3001 0.07718 0.2993 0.07951 0.2980 0.07789 

2 1 1 0.1020 0.03079 0.1023 0.03451 0.1047 0.03829 

2 1 2 0.8389 0.08212 0.8188 0.06189 0.8196 0.06375 

2 2 1 0.5558 0.09578 0.5733 0.08633 0.5700 0.08251 

2 2 2 0.5578 0.09596 0.5560 0.08635 0.5546 0.08273 

3 1 1 0.2770 0.06780 0.2805 0.07192 0.2827 0.07131 

3 1 2 0.2782 0.06574 0.2779 0.06929 0.2778 0.06855 

3 2 1 0.2555 0.05987 0.2561 0.06416 0.2569 0.06410 

3 2 2 0.4599 0.08735 0.4610 0.08331 0.4609 0.07965 

6.7 Percentages 

In this section, we consider proportions that have been calculated from discrete 
counts, for example, the number of infected plants in treatment i of total Ni plants 
that are likely to have a binomial distribution. This class of models allows the 
response to arise from different distributions and probabilities. 

6.7.1 RCBD: Dead Aphid Rate 

An experiment was designed to study the effect of conidial density on the transmis-
sion of a fungus that attacks aphids. Aphid carcasses killed by the fungus, and from 
which the fungus released spores, were placed on bean plants at three densities 
(A = 1, B = 5, or C = 10 carcasses per plant) to provide different doses of fungal 
conidia. Densities were assigned to individual bean plants in a completely random-
ized design with six replicates. A total of 20 live uninfected (N ) aphids were placed 
on each plant with a ladybug that was allowed to forage (feed on the bean plants) to 
facilitate the transfer of conidia between the carcasses and the live aphids. For each 
plant, the number of aphids infected with the fungus was counted (nij) and the 
proportion of aphids infected with the fungus was calculated 7 days after the
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inoculum was placed. The results shown below correspond to the proportion of 
infected aphids calculated at each of the inoculum concentrations ( pij = nij/N; 
N = 20) to each of the conidial concentrations (density) tested (Table 6.29). 
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Table 6.29 Proportion of 
infested aphids 

Plant Density pij 
1 C 0.34299 

2 A 0.16659 

3 B 0.47004 

4 C 0.62481 

5 B 0.21926 

6 B 0.16659 

7 C 0.47502 

8 C 0.52747 

9 A 0.41581 

10 B 0.42556 

11 A 0.19466 

12 A 0.34299 

13 C 0.677 

14 C 0.76674 

15 A 0.13124 

16 B 0.58419 

17 B 0.38225 

18 A 0.28905 

Table 6.30 Sources of varia-
tion and degrees of freedom 

Sources of variation Degrees of freedom 

Trt t - 1 = 2 
Error t(r - 1) = 15 
Total t × r - 1 = 17 

The sources of variation and degrees of freedom for this experiment are shown in 
Table 6.30. 

The components of the GLMM having a beta response are listed below: 

Distributions: pij density(plant)i( j ) ~ Beta(πij,ϕ) 

density plant N 0, σ2 

Linear predictor: ηij = μ + densityi + density(plant)i( j ); i = 1, 2, 3; j = 1, ⋯, 6  

Link function: log πij = logit π = η 

The following GLIMMIX program fits a GLMM in a completely randomized 
design with a beta distribution. Here, density is conc_ino. 

proc glimmix data=thumbs nobound method=laplace; 
class plant conc_ino; 
model p = conc_ino /dist=beta link=logit; 
random conc_ino(plant);



Conc_Ino Estimate Standard error DF Pr > |t| Mean Standard error mean

lsmeans conc_ino/lines ilink; 
run; 
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Table 6.31 Results of the 
analysis of variance 

(a) Fit statistics for conditional distribution

-2 Log L (P | r. effects) -24.13 

Pearson’s chi-square 18.45 

Pearson’s chi-square/DF 1.02 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Conc_Ino (Planta) -0.1833 . 

Scale 12.9999 4.1954 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Conc_Ino 2 15 8.25 0.0038 

Table 6.32 Means and standard errors on the model scale and the data scale 

Conc_Ino least squares means 

t-
value 

A -1.0340 0.2438 15 -4.24 0.0007 0.2623 0.04717 

B -0.5282 0.2246 15 -2.35 0.0328 0.3709 0.05241 

C 0.2775 0.2197 15 1.26 0.2259 0.5689 0.05388 

Part of the results is shown in Table 6.31. The value of the conditional fit statistic 
in part (a), Pearson’ s chi - square/DF = 1.02, indicates that there is no 
overdispersion in the data and that the beta distribution is a good model for this 
dataset. The estimated variance of the plants’ nested inoculum density is 
σ̂2 density plantð Þ  = - 0:1833 and the estimated scale parameter is ϕ̂= 12:999; both are 

tabulated in part (b). In part (c) of the same table, the type III tests of fixed effects are 
shown, indicating that the density (concentration) of the inoculum has a significant 
effect (P = 0.0038) on the proportion of infected aphids with the fungus. 

The values under the column “Estimates” are estimated mean proportions on the 
model scale, whereas the column “Mean” shows the estimated mean proportions on 
the data scale with their respective standard errors (Table 6.32). These estimates 
where obtained with the “lsmeans” and “ilink” option. 

Figure 6.8 shows a linear trend in the proportion of aphids infested as conidial 
density increases. Conidia densities A and B showed statistically equal proportions 
of infested aphids compared to density C. Finally, the highest proportion of infested 
aphids was observed at density C.
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Fig. 6.8 Proportion of aphids infected at different conidia concentration densities 

6.7.2 RCBD: Percentage of Quality Malt 

An agro-industrial engineer is interested in studying the effect of germination time in 
minutes (48, 96, and 144) on the percentage of quality malt obtained from six 
sorghum varieties (sorghum bicolor): Gambella 1107, Macia, Meko, Red Swazi, 
Teshale, and 76T1#23 (Bekele et al. 2012). The percentage of quality malt (y) as a  
function of both factors is shown in Table 6.33. 

For this purpose, an RCBD was implemented with a treatment factorial structure 
(variety × germination time). The statistical model to analyze the dataset is the 
following: 

Distributions: yijk rk ~ Beta(πijk,ϕ); i = 1, ⋯, 6;  j, k = 1, 2, 3 
rk � N 0, σ2 block , where yijk is the kth percentage of malt quality observed at the ith 

variety with the jth fermentation time. 
Linear predictor: ηijk = μ + rk + αi + βj + (αβ)ij, where μ is the overall mean, αi is the 

fixed effect due to variety i, βj is the fixed effect due to germination time j, 
and (αβ)ij is the interaction effect between variety and germination time. 

Link function: logit(πijk) = ηijk 

Table 6.34 shows the sources of variation and degrees of freedom for this 
experiment. 

The following GLIMMIX commands adjust a GLMM with a beta response. 

proc glimmix data=malting nobound method=laplace; 
class var_sorghum ger_time block; 
model p = var_sorghum|ger_time/dist=beta link=logit; 
random block; 
lsmeans var_sorghum|ger_time/lines ilink; 
run;
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Table 6.33 Percentage of quality malt as a function of both factors (variety and germination time) 

Variety Time Block y Variety Time Block y 

Gambella T1 1 7.25 Red Swazi T2 1 21 

Gambella T1 2 11.16 Red Swazi T2 2 15.09 

Gambella T1 3 15.9 Red Swazi T2 3 24.84 

Macia T1 1 10.91 Teshale T2 1 25.42 

Macia T1 2 8.75 Teshale T2 2 26.86 

Macia T1 3 10.87 Teshale T2 3 26.64 

Meko T1 1 24.65 76 T1#23 T2 1 23.69 

Meko T1 2 23.63 76 T1#23 T2 2 20.71 

Meko T1 3 28.75 76 T1#23 T2 3 26.14 

Red Swazi T1 1 20.95 Gambella T3 1 12.45 

Red Swazi T1 2 15.82 Gambella T3 2 15.34 

Red Swazi T1 3 25.24 Gambella T3 3 17.32 

Teshale T1 1 25.92 Macia T3 1 8.51 

Teshale T1 2 27.64 Macia T3 2 8.15 

Teshale T1 3 28.03 Macia T3 3 13.07 

76T1#23 T1 1 23.39 Meko T3 1 22.09 

76T1#23 T1 2 19.43 Meko T3 2 24.11 

76T1#23 T1 3 25.55 Meko T3 3 24.47 

Gambella T2 1 10.03 Red Swazi T3 1 20.81 

Gambella T2 2 12.9 Red Swazi T3 2 16.05 

Gambella T2 3 17.84 Red Swazi T3 3 23.7 

Macia T2 1 7.88 Teshale T3 1 26.42 

Macia T2 2 9.14 Teshale T3 2 27.07 

Macia T2 3 11.99 Teshale T3 3 28.01 

Meko T2 1 22.97 76 T1#23 T3 1 24.18 

Meko T2 2 25.37 76 T1#23 T3 2 19.58 

Meko T2 3 25.71 76 T1#23 T3 3 25.74 

Table 6.34 Sources of varia-
tion and degrees of freedom 

Sources of variation Degrees of freedom 

Blocks r - 1 = 3 - 1 = 2 
Variety a - 1 = 6 - 1 = 5 
Time_Germination b - 1 = 3 - 1 = 2 
Variety*germ_time (a - 1)(b - 1) = 10 
Error (ab - 1)(r - 1) = 17 × 2 = 34 
Total r × a × b - 1 = 54 - 1 = 53 

Part of the results of the above program is shown in Table 6.35. In part (a), the 

value of Pearson’s chi-square/DF is tabulated χ2 

df = 0:92 , which indicates that the 

beta distribution is a good distribution for modeling malt percentage since the t-value 
of Pearson’s chi-square/DF is close to 1. The estimated variance due to blocks is



Effect Pr > F

Var_sorghum Estimate DF t-value Pr > |t| Mean

σ̂2 block = 0:012 and the estimated scale parameter is ϕ̂= 431 (part (b)), whereas the 
type III fixed effects hypothesis tests in part (c) show that sorghum variety has a 
significant effect on malt quality percentage (P = 0.0001). 
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Table 6.35 Results of the 
analysis of variance of the 
RCBD with a beta distribution 

(a) Fit statistics for conditional distribution

-2 Log L (p | r. effects) -280.89 

Pearson’s chi-square 49.66 

Pearson’s chi-square/DF 0.92 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Block 0.01210 0.01055 

Scale 431.54 85.4922 

(c) Type III tests of fixed effects 

Num 
DF 

Den 
DF 

F-
value 

Var_sorghum 5 34 106.51 <0.0001 

Ger_time 2 34 0.26 0.7722 

Var_sorghum*ger_time 10 34 1.08 0.4041 

Table 6.36 Means and standard errors on the model scale and the data scale for sorghum varieties 

Var_sorghum least squares means 

Standard 
error 

Standard error 
mean 

76 T1#23 -1.2011 0.07401 34 -16.23 <0.0001 0.2313 0.01316 

Gambella -1.8898 0.07929 34 -23.83 <0.0001 0.1313 0.009042 

Macia -2.2067 0.08295 34 -26.60 <0.0001 0.09915 0.007409 

Meko -1.1201 0.07364 34 -15.21 <0.0001 0.2460 0.01366 

Red Swazi -1.3685 0.07493 34 -18.26 <0.0001 0.2029 0.01212 

Teshale -1.0025 0.07314 34 -13.71 <0.0001 0.2685 0.01436 

The least squares means on the model scale and the data scale for the factor 
variety are listed under the columns “Estimate” and “Mean” with their respective 
standard errors “Standard error” in Table 6.36. 

Figure 6.9 shows that Teshale produced the highest average malt percentage 
(0.2685 ± 0.01436), followed by the varieties 76 T1#23 and Meco 
(0.2313 ± 0.01316,0.246 ± 0.01366), whereas the variety Macia produced the 
lowest malt percentage (0.09915 ± 0.0074). 

6.7.3 A Split Plot in an RCBD: Cockroach Mortality 
(Blattella germanica) 

An entomologist is interested in testing six isolates of insect pathogenic fungi: five 
obtained from different hosts and one already known isolate (Control) of a fungus



j
k � r ð Þk ið Þ � r αð Þ

with potential for biological control of a particular species of cockroaches. To do so, 
the entomologist decides to test these fungal isolates on three different insect ages 
(age1 = E1, age2 = E2, and age3 = E3). Each of the isolates was placed in a Petri 
dish with 10 insects of a specific age. Each set (isolate–age) was randomly assigned 
to two blocks (Appendix: Data: Cockroaches). 
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Fig. 6.9 Percentage of quality malt of bicolor sorghum varieties 

Table 6.37 Analysis of variance with sources of variation and degrees of freedom for this 
experiment 

Sources of variation Degrees of freedom 

Blocks r - s1 = 2 - 1 = 1 
Isolation a - 1 = 6 - 1 = 5 
Block (insulation) a(r - 1) = 6 
Age b - 1 = 3 - 1 = 2 
Isolation*age (a - 1)(b - 1) = 5 × 2 = 10 
Error (a - 1)(b - 1)(r - 1) = 2 × 5 × 1 = 10 
Total r × a × b - 1 = 2 × 6 × 3 - 1 = 35 

The analysis of variance table (Table 6.37) with the sources of variation and 
degrees of freedom for this experiment is presented below. The response variable 
(percentage mortality) for this experiment is assumed to have a beta distribution. 

The components that describe the model of this experiment are listed below: 

Distributions: yijk rk, r(α)k(i)~Beta(πijk,ϕ); i = 1, ⋯, 6;  j = 1, 2, 3; k = 1, 2. 

r N 0, σ2 , r α N 0, σ2 

Linear predictor: ηijk = μ + rk + αi + r(α)k(i) + βj + (αβ)ij 
Link function: logit(πijk) = ηijk
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Table 6.38 Results of the 
analysis of variance of the 
RCBD with a factorial struc-
ture in treatments 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) -74.53 

Pearson’s chi-square 34.02 

Pearson’s chi-square/DF 1.00 

(b) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Aislamiento Block -0.03125 . 

Scale 24.1882 5.7925 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Isolation 5 6 16.48 0.0019 

Age 2 10 30.01 <0.0001 

Isolation*age 10 10 4.83 0.0102 

The following GLIMMIX commands adjust a GLMM with a beta response. 

proc glimmix nobound method=laplace; 
class block Isolation Age; 
model y = Isolation|Age/dist=beta link=logit; 
random Isolation/subject=block; 
lsmeans Insulation|Age/slice=Insulation lines ilink; 
run; 

Some of the outputs are listed below (Table 6.38). The conditional statistic 
Pearson′s chi - square/DF = 1 indicates that the distribution used is appropriate 
for these datasets (part (a)). The variance component estimates are tabulated in part 
(b), and, for blocks, the estimate is σ̂2 r = - 0:03125 and the estimated scale param-
eter is ϕ̂= 24:1882. The hypothesis test is in part (c) with type III fixed effects of 
equality of means for type of isolation, age of the insect, and the interaction between 
both factors. These outputs indicate that they have a significant effect on insect 
mortality. 

We see the expected proportions with their respective standard errors of both 
factors on the data scale under the “Mean” column (Tables 6.39 and 6.40). These 
values arise by applying the inverse link to estimates under “Estimate” on the model 
scale. Table 6.39 shows the estimated average mortality probabilities for the isolates; 
for example, for isolate A1, applying the inverse link to the linear predictor estimate 
η̂1: = 0:1722 we get π̂1: = 1=1þ e- 0:1722 = 0:5429. In this manner, we see that the 
expected proportions for isolates 2 and 4 are π̂2: = 0:6555 and π̂4: = 0:5762, respec-
tively, whereas for the control π̂control: = 0:1157. 

Regarding the age of the insect (Table 6.40), the expected average probability of 
mortality was higher at age three (adults) with a higher mortality rate π̂:3 = 0:6435, 
whereas insects at age two (E2) had a higher resistance to the isolations, showing a 
mortality of π̂:2 = 0:2598. 

In general, fungal isolates A1, A2, A3, and A4 showed an average mortality of 
more than 75% for adult insects (E3), whereas isolates A1, A2, and A5 showed a
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mortality rate of around 65% for cockroaches of age E1 (juvenile insects). On the 
other hand, all isolates showed lower lethal effectiveness on insects of age E2 
(Fig. 6.10). 
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Table 6.39 Means and standard errors on the model scale and the data scale for isolation 

Isolate least squares means 

Isolate Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

A1 0.1722 0.1859 6 0.93 0.3900 0.5429 0.04614 

A2 0.6442 0.2100 6 3.07 0.0220 0.6557 0.04740 

A3 -0.1489 0.1952 6 -0.76 0.4746 0.4629 0.04853 

A4 0.3073 0.2088 6 1.47 0.1915 0.5762 0.05098 

A5 -0.2023 0.1806 6 -1.12 0.3053 0.4496 0.04468 

Control -2.0339 0.2418 6 -8.41 0.0002 0.1157 0.02473 

Table 6.40 Means and standard errors on the model scale and the data scale for insect age 

Age least squares means 

Age Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

E1 -0.1747 0.1310 -1.33 0.2120 0.4564 0.03251 

E2 -1.0468 0.1374 -7.62 <0.0001 0.2598 0.02643 

E3 0.5908 0.1634 3.61 0.0047 0.6435 0.03749 

6.7.4 A Split-Plot Design in an RCBD: Percentage Disease 
Inhibition 

A plant pathologist wishes to compare the response of two plant varieties to different 
doses/amounts of a pesticide formulated to protect plants against a disease. Five 
racks (blocks) were chosen to account for local variation within the greenhouse. 
Each rack was divided into four sections or rooms and were randomly assigned one 
of four pesticide levels to each rack. The four pesticide levels were 1, 2, 4, and 8 mg/ 
L. One plant of each variety was placed in each section of the rack. Of the two plant 
varieties, one variety was susceptible, labeled S, and the other variety was resistant, 
labeled R (Table 6.41). The response variable ( y) is the percentage of disease 
inhibition in the plant. 

The sources of variation and degrees of freedom for this experiment are shown in 
Table 6.42. 

Following the same reasoning used in the examples above, the components of the 
GLMM with a beta response that models the observed disease inhibition proportion 
(pijk) under dose i with variety j in block k are listed as follows:. 

Distributions: yijk rk, (rα)ik~Beta(πijk,ϕ); i = 1, ⋯, 4;  j = 1, 2; k = 1, ⋯, 5  
rk N 0, σ2 r , rα ik N 0, σ2 rA
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Fig. 6.10 Cockroach mortality percentage 

Table 6.41 Percentage of inhibition 

Block Variety Dose y Block Variety Dose y 

1 R 1 15.7 1 S 1 19.8 

2 R 1 23.1 2 S 1 17.8 

3 R 1 15.9 3 S 1 13.2 

4 R 1 20.8 4 S 1 14.8 

5 R 1 24.5 5 S 1 19.7 

1 R 2 25.1 1 S 2 21.2 

2 R 2 29.2 2 S 2 29.3 

3 R 2 29.7 3 S 2 26 

4 R 2 28.6 4 S 2 27.5 

5 R 2 26.6 5 S 2 22 

1 R 4 27.9 1 S 4 29.3 

2 R 4 29.7 2 S 4 27.2 

4 R 4 29.7 4 S 4 31.5 

5 R 4 29.6 5 S 4 27.9 

1 R 8 23.8 1 S 8 22.8 

2 R 8 31.2 2 S 8 33 

3 R 8 21.8 3 S 8 25.2 

4 R 8 23.3 4 S 8 27.2 

5 R 8 23.9 5 S 8 20.8



Linear predictor: η = μ + r + α + (rα) + β + (αβ) , where r is the random block
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Table 6.42 Sources of variation and degrees of freedom 

Sources of variation Degrees of freedom 

Blocks r - 1 = 5 - 1 = 4 
Dose a - 1 = 4 - 1 = 3 
Errora(Bloque*Dose) (r - 1)(a - 1) = 12 
Variety b - 1 = 2 - 1 = 1 
Dose*variety (a - 1)(b - 1) = 3 
Errorb a(b - 1)(r - 1) = 4 × 1 × 4 = 16 
Total r × a × b - 1 = 5 × 4 × 2 - 1 = 39 

ijk k i ik j ij k 

effect, αi is the fixed dose effect, βj is the fixed variety effect, (rα)ik is the random 
effect due to block by dose interaction, and (αβ)ij is the interaction of fixed effects 
due to dose variety. 

Link function: logit(πijk) = ηijk

The following GLIMMIX commands adjust a GLMM. 

proc glimmix nobound method=laplace; 
class Variety dose block; 
model y = dose variety dose*variety /dist=beta link=logit; 
random Block Block*dose; 
contrast 'Linear dose' dose -3 -1 1 3; 
contrast 'Quadratic dose' dose 1 -1 -1 -1 1; 
contrast 'dose Cubic' dose -1 3 -3 1; 
lsmeans variety|dose / slice=(variety dose) lines ilink; 
ods output lsmeans=dose_means; 
run; 

The “contrast” command in the program can perform a hypothesis testing to see 
what trend (linear, quadratic, or cubic) the “dose” factor has on the percentage of 
disease inhibition. Part of the output is shown in Table 6.43. The value of the 
conditional goodness-of-fit statistic Pearson’ s chi - square/DF= 0.59 indicates 
that we have no evidence of overdispersion, and, therefore, the beta distribution is 
adequate to model this dataset (part (a)). The variance component estimates in part 
(b) for block and block × dose are σ̂2 r = 0:004898 and σ̂2 r ∙ dose = 0:002372, respec-
tively. Finally, the F-value provides sufficient statistical evidence of the effect of 
dose on disease decline in plants (P = 0.0001), whereas the effect of variety and dose 
× variety do not provide sufficient evidence. 

Table 6.44 shows the polynomial contrasts for the effect of “dose,” which 
indicate that there is a significant quadratic effect on the percentage of disease 
inhibition. 

The inhibition percentage has almost a linear trend as the dose increases from 1 to 
4 ml/L in both varieties, but when the dose is higher than 4 ml/L, the inhibition of the 
disease decreases in both varieties (Fig. 6.11).
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Table 6.43 Results of the 
analysis of variance 

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) -184.32 

Pearson’s chi-square 23.63 

Pearson’s chi-square/DF 0.59 

(b) Covariance parameter estimates 

Cov Parm Estimate Standard error 

Block 0.004898 . 

Block*dose 0.002372 0.007513 

Scale 205.52 67.7447 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Dose 3 12 17.67 0.0001 

Variety 1 16 1.74 0.2057 

Dose*variety 3 16 1.22 0.3337 

Table 6.44 Polynomial 
contrasts 

Contrasts 

Label Num DF Den DF F-value Pr > F 

Linear dose 1 12 25.48 0.0003 

Quadratic dose 1 12 30.93 0.0001 

Cubic dose 1 12 0.30 0.5948 

6.7.5 Randomized Complete Block Design with a Binomial 
Response with Multiple Variance Components 

The dataset corresponds to an experiment implemented by Madden and Hughes 
(1995) on the incidence of the disease caused by the fungus Plasmopara viticola on 
grape plants (Vitis labrusca). Six different treatments in a randomized block design 
(b = 3) were tested, where treatment 1 was the control, to study the disease with 
three grape plants (v = 3). On a single date in autumn, five sprouts were (r = 5) 
randomly selected from each of the three grape plants and the number of leaves with 
at least one mildew lesion was counted (m) out of a total n leaves. The number of 
leaves per shoot ranged from 7 to 21. The data for this experiment can be found in 
the Appendix (Data: Disease incidence on grape plants). 

The statistical model that could describe the incidence of disease in this experi-
ment, if the response variable pijkl were treated as a normal variable, would be as 
described below: 

pijkl = ηþ τi þ bj þ bvð Þjk þ bvrð Þjkl þ εijkl 
i= 1, 2, . . . , 6; j= 1, 2, 3; k= 1, 2, ::, 3; l= 1, 2, . . . , 5



where p is the ijkl proportion of diseased leaves, η is the intercept, τ is the xed

block × plant × sprout

j
j � block ð Þjk � block × plant ð Þjkl � block × plant × sprout

8
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Fig. 6.11 Percentage of disease inhibition in both varieties 

ijkl i fi

treatment effect i, bj is the random effect of blocks assuming bj � N 0, σ2 block , (bv)jk 
is the block–plant random effect assuming bvð Þjk � N 0, σ2 block× plant , (bvr)jkl 

is the random effect due to block–plant–sprouts assuming bvrð Þjkl �
N 0, σ2 , and εijkl is the experimental error assuming εijkl~N(0, σ

2 ). 

For the disease incidence data, the assumption of a normal distribution for pijkl is 
not recommended. A good starting point for the analysis is to assume that the 
observed number of diseased leaves in the sprouts (yijkl) follows a binomial distri-
bution with parameter πijkl and nijkl, the total number of leaves on the sprout. 

Therefore, the components of the GLMM with a binomial distribution in the 
response variable are as follows: 

Distribution: pijkl bj, (bv)jk, (bvr)jkl ~ binomial(πijkl, nijkl) 

b N 0, σ2 , bv N 0, σ2 , bvr N 0, σ2 

Linear predictor: ηijkl = η + τi + bj + (bv)jk + (bvr)jkl. 
Link function: logit(πijkl) = ηijkl 

The following GLIMMIX syntax fits a GLMM with a binomial response. 

proc glimmix method=laplace nobound; 
class v r b t; 
model m/n = t /dist=bin; 
random intercept v v*r/subject=b; 
lsmeans t/lines ilink; 
run;
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j
j � block ð Þjk � block × plant ð Þjkl � block × plant × sprout
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Table 6.45 Results of the 
analysis of variance under the 
binomial distribution 

(a) Fit statistics

-2 Log likelihood 723.17 

AIC (smaller is better) 741.17 

AICC (smaller is better) 741.87 

BIC (smaller is better) 733.06 

CAIC (smaller is better) 742.06 

HQIC (smaller is better) 724.87 

(b) Fit statistics for conditional distribution

-2 Log L (m | r. effects) 665.02 

Pearson’s chi-square 398.21 

Pearson’s chi-square/DF 1.47 

(c) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Intercept b -0.00408 . 

V b 0.01917 . 

v*r b 0.1960 . 

(d) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

t 2 220 1837.99 <0.0001 

Part of the results based on the aforementioned model is shown in Table 6.45. By  
default, proc GLIMMIX provides the fit statistics useful for selecting the best model 
from a group of models (part (a)). 

In addition to accuracy considerations, the Laplace (or quadrature) analysis 
allows us to obtain the “conditional distribution fit statistics,” specifically 
Pearson’ s χ2 /df. Recall that this statistic helps assess the goodness of fit of th  
model. If the value of χ2 /df ≫ 1 is an indicator that there is overdispersion in the 
dataset, then this may be because the linear predictor is incomplete or the assumed 
distribution is not suitable (mis-specified) for this dataset. In part (b), we can see that 
the value of the conditional distribution statistic of Pearson’ s χ2 /df = 1.47. This value 
indicates that we have evidence of overdispersion. The variance component esti-
mates due to block, block × plant, and block × plant × sprout are tabulated in part (c), 
whereas the type III tests of fixed effects (part (d)) indicate that there is a significant 
difference (P < 0.0001) between treatments. 

Since there is overdispersion in the data in the binomial model, an alternative 
distribution is the beta distribution. The components of the GLMM are as follows: 

Distribution: pijkl bj, (bv)jk, (bvr)jkl~beta(πijkl,ϕ); 

b N 0, σ2 , bv N 0, σ2 , bvr N 0, σ2 

Linear predictor: ηijkl = η + τi + bj + (bv)jk + (bvr)jkl 
Link function: logit(πijkl) = ηijkl.
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Table 6.46 Results of the 
analysis of variance under the 
beta distribution 

(a) Fit statistics

-2 Log likelihood -231.10 

AIC (smaller is better) -211.10 

AICC (smaller is better) -209.30 

BIC (smaller is better) -220.11 

CAIC (smaller is better) -210.11 

HQIC (smaller is better) -229.22 

(b) Fit statistics for conditional distribution

-2 Log L (m | r. effects) -231.10 

Pearson’s chi-square 136.55 

Pearson’s chi-square/DF 1.07 

(c) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Intercept b -0.6308 .

-0.2215 . 

v*r b -0.1843 . 

Scale ϕ̂ 9.8397 1.1926 

(d) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

t 2 220 1837.99 <0.0001 

The following SAS commands adjust an GLMM under a beta distribution. 

proc GLIMMIX method=laplace nobound; 
class v r b t; 
model pct = t /dist=beta link=logit; 
random intercept v v*r/subject=b; 
lsmeans t/lines ilink; 
run; 

Some of the outputs are shown below. Table 6.46 shows that the values of the fit 
statistics, as well as the conditional distribution statistics (parts (a) and (b)), are much 
smaller than when the binomial distribution was used. 

This indicates that the beta distribution is more appropriate for the dataset, as 
the value of Pearson’ s statistic is χ2 /df = 1.03, indicating that the problem of 
overdispersion was almost totally controlled. The variance component estimates as 
well as the estimated scale parameter ϕ̂ are tabulated in part (c). Similar to the 
previous analysis, the type III tests of fixed effects indicate that there is a highly 
significant difference (part (d)) in treatments on the average proportion of leaves 
with fungal disease. 

The least mean squares (means) on the model scale (column “Estimate”) and on 
the data scale (column “Mean”) are tabulated in Table 6.47. The results indicate that



all proposed treatments in this study reduce the proportion of diseased leaves 
compared to the control treatment (t = 1). 
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Table 6.47 Estimated means (least squares means) on the model scale and on the data scale 

Least squares means 

t Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

1 0.7223 0.09989 83 7.23 <0.0001 0.6731 0.02198 

2 -1.7482 0.1543 83 -11.33 <0.0001 0.1483 0.01949 

3 -2.0178 0.2214 83 -9.11 <0.0001 0.1174 0.02294 

4 -1.9358 0.1873 83 -10.34 <0.0001 0.1261 0.02064 

5 -1.7887 0.2173 83 -8.23 <0.0001 0.1432 0.02667 

6 -1.5360 0.1665 83 -9.23 <0.0001 0.1771 0.02427 

Table 6.48 Mean compari-
son (LSD method) 

T grouping of t least squares means (α = 0.05) 
LS means with the same letter are not significantly different 

t Estimate 

1 0.7223 A 

6 -1.5360 B 

B 

2 -1.7482 B 

B 

5 -1.7887 B 

B 

4 -1.9358 B 

B 

3 -2.0178 B 

The mean comparison (LSD) obtained with the option “lines” indicates that the 
proportion of diseased leaves in treatment one is statistically different from the rest 
of the treatments (Table 6.48). 

6.8 Exercises 

Exercise 6.8.1 Seeds of a particular crop were stored at four different temperatures 
(T1,T2,T3, and T4) under four different chemical concentrations (0, 0.1, 1.0, and 10). 
To study the effects of temperature and chemical concentration, a completely 
randomized experiment was conducted with a factorial treatment structure 4 × 4 
and four replicates. For each of the 64 experimental units, 50 seeds were placed in a 
dish and the number of seeds that germinated under standard conditions was 
recorded. Germination data were obtained from Mead et al. (1993, p. 325) 
(Table 6.49).
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Table 6.49 Seed germination experiment results 

Chemical concentration 

Temperature 0 0.1 1.0 

T1 9, 9, 3, 7 13, 12, 14, 15 21, 23, 24, 27 40, 32, 43, 34 

T2 19, 30, 21, 29 33, 32, 30, 26 43, 40, 37, 41 48, 48, 49, 48 

T3 7, 7, 2, 5 1, 2, 4, 4 8, 10, 6, 7 3, 4, 8, 5 

T4 4, 9, 3, 7 13, 6, 15, 7 16, 13, 18, 19 13, 18, 11, 16 

Table 6.50 Results of the apple sprouts experiment 

Density of inoculum Cultivate Block 1 Block 2 Block 3 Block 4 

200 Jonagold 5/1 5/2 5/1 5/0 

200 Golden delicious 5/1 5/0 5/0 5/0 

200 Jonathan 5/2 5/2 5/2 5/0 

1000 Jonagold 5/0 5/2 5/2 5/4 

1000 Golden delicious 5/0 5/0 5/2 5/0 

1000 Jonathan 5/4 5/4 5/4 5/0 

5000 Jonagold 5/5 5/5 5/4 5/5 

5000 Golden delicious 5/5 5/4 5/3 5/5 

5000 Jonathan 5/5 5/0 5/3 5/5 

The first number refers to the number of inoculations (n) and the second to the number of 
inoculations that developed the gangrenous sore (Y) 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all the components of the GLMM in (a). 
(c) Analyze this dataset and summarize the relevant results. 

Exercise 6.8.2 Data were obtained from an experiment in which separate sprouts of 
apple trees were inoculated with macroconidia of the fungus Nectria galligena, 
which causes apple cancer (canker gangrene). The experimental factors were inoc-
ulum density (three levels: 200, 1000, and 5000 macroconidia per ml) and variety 
(three levels: Jonagold, Golden Delicious, and Jonathan). The experiment was 
carried out in 4 randomized blocks with 12 plots. Each plot consisted of one sprout 
on which five inoculations were made. The numbers of successful inoculations per 
plot on day 17 after inoculation are shown in the table below (Table 6.50). 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all the components of the GLMM from part (a). 
(c) Analyze this dataset and summarize the relevant results. 
(d) Is there is an extra-variation in the dataset? What alternative distribution do you 

propose? Reanalyze the data and compare the results. 

Exercise 6.8.3 This experiment concerns the germination efficiencies of protoplasts 
obtained from plants of seven species of the genera Lycopersicon (tomato) and



1 2 3 4 5 6 7 8 9 10

Solanum (potato). For each species, three or four protoplast isolates were used and, 
depending on the availability of the protoplasts, a variable number of plates was 
carried out. Per plate, approximately 105 protoplasts were placed in a Petri dish, and, 
after 4 weeks, the proportion of dividing protoplasts was recorded. The results in 
percentages are listed below (Table 6.51). 
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Table 6.51 Protoplast germination experiment results 

Species Isolation 

1 1 8.9 6.3 10.5 

1 2 3.1 2.7 4.1 

1 3 2.1 1.9 1.4 1.5 

1 4 2.5 2.9 2.6 2.6 2.6 2.6 2.8 2.7 2.8 2.7 

2 1 0.2 0.9 0.5 0.6 1.2 0.4 

2 2 1.8 1.6 1.6 

2 3 6.6 7.5 5.4 5.3 5 6.5 6.3 5.8 5.9 5.6 

3 1 1.8 1.5 1.9 1.7 1.3 1.5 

3 2 1.5 3.2 1.1 1.3 1.8 1.2 1.6 1.4 1.2 1.8 

3 3 2 2.3 2.8 2.6 3.2 2.2 2.5 2.4 2.8 2.4 

4 1 11.4 11.3 14.4 13.7 

4 2 2.9 3.8 4.7 5.1 2.7 3.2 

4 3 2.3 4.4 4.8 4.9 5.8 4.7 5.6 4.2 3.3 4.5 

5 1 21.5 25.5 18.1 22.2 

5 2 18.7 20 

5 3 11.5 13.1 11.5 16.2 10.1 17.2 16 10.5 

6 1 4.6 3.4 2.7 3 4.1 3.1 

6 2 2.4 2.4 2 2.5 3.6 3.2 2.6 1.4 2.5 2.7 

6 3 1.6 1.1 1.6 1.3 1.6 1 0.8 1.3 0.8 2.2 

7 1 3 4 4.1 4.4 2.8 3.3 4.5 3.3 3 3.2 

7 2 2.5 2.5 2.5 2.7 2.3 2.6 

7 3 2.6 2.7 2.9 2.7 2.7 2.6 

7 4 2.9 3 3 3.1 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for the 
experimental design of this study. 

(b) Write down a generalized linear mixed model base in (a), assuming a beta 
distribution on the response variable. 

(c) Implement an analysis of these data according to the linear predictor and model 
in part (b). Summarize the relevant results. 

Exercise 6.8.4 The data in this example are the results of a triangle test for 12 raters 
tasting 10 pairs of coffee varieties (Table 6.52). The triangle test consisted of each 
rater drinking three cups, one of one variety and two of the other. Each rater had 
12 triangles for each pair of varieties, 2 for each of the following sequences: AAB, 
ABA, BAA, ABB, BAB, and BBA. The answer is the correct variety identification 
number appearing once. The experiment was conducted in two groups of six



Y n Y n

1 2 12 2 4 12

1 11 12 2 12 12

1 9 12 2 7 12

1 6 12 2 9 12

1 8 12 2 10 12

1 9 12 2 5 12

1 6 12 2 9 12

1 8 12 2 9 12

1 11 12 2 7 12

1 5 12 2 2 12

1 8 12 2 10 12

1 8 12 2 8 12

1 9 12 2 9 12

1 10 12 2 8 12

1 11 12 2 9 12

1 8 12 2 4 12

1 9 12 2 6 12

1 8 12 2 10 12

1 4 12 2 3 12

1 9 12 2 11 12

1 9 12 2 11 12

1 11 12 2 8 12

1 8 12 2 8 12

1 10 12 2 11 12

1 3 12 2 5 12

1 7 12 2 4 12

1 10 12 2 11 12

1 7 12 2 0 7 12

1 10 12 2 0 9 12

1 7 12 2 0 5 12

1 7 12 2 0 5 12

1 7 12 2 0 7 12

1 6 12 2 0 8 12

1 10 12 2 0 6 12

1 6 12 2 1 7 12

1 10 12 2 1 9 12
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Table 6.52 Triangle test (G = group, Eval = panelist, PdV = variety pair, V_A = variety A; 
V_B = variety B; Y = number of correct discriminations, n = number of trials) 

G Eval PdV V_A V_B G Eval PdV V_A V_B 

1 1 8 9 7 1 8 9  

1 2 5 9 7 2 5 9  

1 3 9 6 7 3 9 6  

1 4 6 5 7 4 6 5  

1 5 6 8 7 5 6 8  

1 6 5 8 7 6 5 8  

1 7 7 8 7 7 7 8  

1 8 7 9 7 8 7 9  

1 9 7 5 7 9 7 5  

1 1 10 7 6 5 12 2 7 10 7 6 5 12 

2 1 8 9 8 1 8 9  

2 2 5 9 8 2 5 9  

2 3 9 6 8 3 9 6  

2 4 6 5 8 4 6 5  

2 5 6 8 8 5 6 8  

2 6 5 8 8 6 5 8  

2 7 7 8 8 7 7 8  

2 8 7 9 8 8 7 9  

2 9 7 5 8 9 7 5  

1 2 10 7 6 7 12 2 8 10 7 6 7 12 

3 1 8 9 9 1 8 9  

3 2 5 9 9 2 5 9  

3 3 9 6 9 3 9 6  

3 4 6 5 9 4 6 5  

3 5 6 8 9 5 6 8  

3 6 5 8 9 6 5 8  

3 7 7 8 9 7 7 8  

3 8 7 9 9 8 7 9  

3 9 7 5 9 9 7 5  

1 3 10 7 6 9 12 2 9 10 7 6 8 12 

4 1 8 9 1 1 8 9  

4 2 5 9 1 2 5 9  

4 3 9 6 1 3 9 6  

1 4 4 6 5 8 12 2 10 4 6 5 11 12 

4 5 6 8 1 5 6 8  

1 4 6 5 8 8 12 2 10 6 5 8 10 12 

4 7 7 8 1 7 7 8  

4 8 7 9 1 8 7 9  

4 9 7 5 1 9 7 5  

1 4 10 7 6 7 12 2 10 10 7 6 9 12 

5 1 8 9 1 1 8 9  

5 2 5 9 1 2 5 9



Y n Y n

1 4 12 2 1 6 12

1 6 12 2 1 5 12

1 8 12 2 1 8 12

1 9 12 2 1 6 12

1 9 12 2 1 9 12

1 3 12 2 2 6 12

1 9 12 2 2 7 12

1 6 12 2 2 7 12

1 9 12 2 2 7 12

1 7 12 2 2 8 12

1 10 12 2 2 11 12

1 7 12 2 2 9 12

1 7 12 2 2 9 12

evaluators, each with the aim of discriminating the abilities of the panelists for future 
evaluations. The data for this example are shown below:
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Table 6.52 (continued)

G Eval PdV V_A V_B G Eval PdV V_A V_B

5 3 9 6 1 3 9 6  

1 5 4 6 5 8 12 2 11 4 6 5 10 12 

5 5 6 8 1 5 6 8  

1 5 6 5 8 7 12 2 11 6 5 8 10 12 

5 7 7 8 1 7 7 8  

5 8 7 9 1 8 7 9  

5 9 7 5 1 9 7 5  

1 5 10 7 6 8 12 2 11 10 7 6 9 12 

6 1 8 9 1 1 8 9  

6 2 5 9 1 2 5 9  

6 3 9 6 1 3 9 6  

6 4 6 5 1 4 6 5  

6 5 6 8 1 5 6 8  

6 6 5 8 1 6 5 8  

6 7 7 8 1 7 7 8  

6 8 7 9 1 8 7 9  

1 6 9 7 5 8 12 2 12 9 7 5 10 12 

1 6 10 7 6 9 12 2 12 10 7 6 9 12 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all the components of the GLMM according to part (a). 
(c) Analyze this dataset and summarize the relevant results. 
(d) Is there an extra-variation in the dataset? If so, what alternative distribution do 

you propose? Reanalyze the data and compare the results. 

Exercise 6.8.5 Several brewing techniques are used in the production of espresso 
coffee. Among them, the most widespread are bar machines and single-dose pods, 
designed in large numbers due to their commercial popularity. This experiment tries 
to compare the foaming rate (Y, in percentage) effects of three different brewing 
techniques on espresso quality (method 1 = bar machine (BM), method 2 = hyper-
espresso method (HIP), and method 3 = I-espresso system (IT)). Nine replicates per 
method were carried out (Table 6.53). 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for the 
experimental design of this study. 

(b) Describe the generalized linear mixed model in (a), assuming a beta distribution. 
(c) Implement the analysis of these data according to the predictor and model in (b). 

Summarize the relevant results.



1 2 3 4 5 6 7  

A 10 11 8 9 7 6 9  

B 8 10 3 7 9 3 11  
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Table 6.53 Experimental 
results of espresso coffee 

Method Index Method Index Method Index 

1 36.64 2 70.84 3 56.19 

1 39.65 2 46.68 3 36.67 

1 37.74 2 73.19 3 35.35 

1 35.96 2 57.78 3 40.11 

1 38.52 2 48.61 3 33.52 

1 21.02 2 72.77 3 37.12 

1 24.81 2 65.04 3 37.33 

1 34.18 2 62.53 3 32.68 

1 23.08 2 54.26 3 48.33 

Table 6.54 Results of wheat 
germination experiment in 
pots. Number of seeds that did 
not germinate out of 50 

Treatments 

C 5 11 2 8 10 7 11 

D 1 6 4 13 7 10 10 

Exercise 6.8.6 The decision to adopt a particular scale for data involving small 
integers is not an easy one because any analysis must be – to some extent – as 
adequate as possible to obtain estimates with as little uncertainty as possible. As a 
simple example of this type of data, consider the following results from a potted 
wheat germination experiment (Table 6.54). 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all components of the GLMM in (a), assuming a binomial response variable. 
(c) Analyze this dataset and summarize the relevant results. 
(d) Is there an extra-variation in the dataset? If so, reanalyze the data with an 

alternative distribution. Summarize and compare your findings. 

Exercise 6.8.7 A greenhouse experiment was carried out to investigate how a 
disease spreads in two varieties of (agurkesyge) cucumber, which is supposed to 
depend on the climate and the amount of fertilizers used for the two varieties. The 
following data come from the Department of Plant Pathology. Two climates 
were used: (1) change to day temperature 3 hours before sunrise and (2) normal 
change to day temperature. Three amounts of fertilizer were applied, normal 
(2.0 units), high (3.5 units), and very high (4.0 units). The two varieties were 
Aminex and Dalibor. To have a better controlled experiment, the plants were 
“standardized” to equally have as many leaves, and, then (on day 0, for example), 
the plants were contaminated with the disease. Subsequently, 8 days after the plants 
were contaminated, the amount of infection (in percentage) was recorded. From the 
resulting infection curve, two measures were calculated (in a manner not specified 
here), namely, the rate of spread of the disease (%) and the level of infection at the



end of the disease period. The experiment was implemented in three blocks, each of 
which consisted of two sections. Each section consisted of three plots, which were 
divided into two subplots, each of which had six to eight plants. Thus, there were a 
total of 36 subplots. The results were recorded for each subplot. The experimental 
factors were randomly assigned to the different units as follows: two climates to the 
two sections within each block, three amounts of fertilizer to the three plots within 
each section, and, finally, the two varieties to the two subplots within each plot. The 
data are shown below (Table 6.55). 
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(a) Write down a statistical model of this experiment. 
(b) List all the components of the GLMM in (a). 
(c) Write down the null and alternative hypotheses associated with this experiment. 
(d) Construct an ANOVA table indicating the sources of variation and degrees of 

freedom. 
(e) Analyze the rate of disease spread to investigate the effect of different factors. 
(f) Comment on the results obtained. 

Exercise 6.8.8 This example is an experiment to identify damage to the uterus in 
laboratory rodents after exposure to boric acid, a compound widely used in pesti-
cides, pharmaceuticals, and other household products (Heindel et al. 1992). The 
study design included four doses of boric acid. The compound was administered to 
pregnant female mice during the first 17 days of gestation, and, then, the females 
were sacrificed and their litters examined. The table below presents the resulting 
trials for litters dying in utero (Y ) of the total number of trials conducted (N ) at each 
of the four doses tested: d1 = 0{control}, d2 = 0.1, d3 = 0.2, and d3 = 0.4 
(as percentage of boric acid in the diet) (Table 6.56). 

(a) Write down an ANOVA table (sources of variation, degrees of freedom) for this 
experiment. 

(b) List all the components of the GLMM in (a). 
(c) Analyze this dataset and summarize the relevant results. 
(d) Is there an extra-variation in the dataset? If so, what alternative distribution do 

you propose? Reanalyze the data and compare your findings.
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Table 6.55 Greenhouse experiment results of cucumber varieties 

Block Section Plot Weather Fertilizer Variety Proportion (%) Level 

1 1 1 2 2 Aminex 48.8981 0.06915 

1 1 1 2 2 Dalibor 42.2463 0.06595 

1 1 2 2 3.5 Aminex 48.2108 0.04679 

1 1 2 2 3.5 Dalibor 41.6767 0.04881 

1 1 3 2 4 Aminex 55.4369 0.04025 

1 1 3 2 4 Dalibor 40.9562 0.04859 

1 2 4 1 2 Aminex 51.5573 0.09353 

1 2 4 1 2 Dalibor 36.7739 0.10353 

1 2 5 1 3.5 Aminex 47.9937 0.05327 

1 2 5 1 3.5 Dalibor 47.8723 0.04397 

1 2 6 1 4 Aminex 57.9171 0.05225 

1 2 6 1 4 Dalibor 37.7185 0.09324 

1 3 7 2 2 Aminex 60.1747 0.04182 

2 3 7 2 2 Dalibor 45.6937 0.06983 

2 3 8 2 3.5 Aminex 51.0017 0.08863 

2 3 8 2 3.5 Dalibor 52.2796 0.03622 

2 3 9 2 4 Aminex 51.1251 0.05875 

2 3 9 2 4 Dalibor 48.7217 0.08169 

2 4 10 1 2 Aminex 51.6001 0.07001 

2 4 10 1 2 Dalibor 50.4463 0.09907 

2 4 11 1 3.5 Aminex 48.3387 0.05788 

2 4 11 1 3.5 Dalibor 38.6538 0.06834 

2 4 12 1 4 Aminex 51.3147 0.05695 

2 4 12 1 4 Dalibor 38.2488 0.07908 

3 5 13 1 2 Aminex 49.6958 0.07218 

3 5 13 1 2 Dalibor 29.6786 0.11351 

3 5 14 1 3.5 Aminex 46.6692 0.08825 

3 5 14 1 3.5 Dalibor 36.5892 0.09107 

3 5 15 1 4 Aminex 56.032 0.04532 

3 5 15 1 4 Dalibor 36.0955 0.08712 

3 6 16 2 2 Aminex 45.979 0.08882 

3 6 16 2 2 Dalibor 37.2489 0.12796 

3 6 17 2 3.5 Aminex 40.7277 0.06418 

3 6 17 2 3.5 Dalibor 38.4831 0.0854 

3 6 18 2 4 Aminex 44.5242 0.06215 

3 6 18 2 4 Dalibor 34.3907 0.09651
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Table 6.56 Rodent experiment results 

Dose Dose Dose Dose 

0 0 15 0.1 0 6 0.2 1 12 0.4 12 12 

0 0 3 0.1 1 14 0.2 0 12 0.4 1 12 

0 1 9 0.1 1 12 0.2 0 11 0.4 0 13 

0 1 12 0.1 0 10 0.2 0 13 0.4 2 8 

0 1 13 0.1 2 14 0.2 0 12 0.4 2 12 

0 2 13 0.1 0 12 0.2 0 14 0.4 4 13 

0 0 16 0.1 0 14 0.2 4 15 0.4 0 13 

0 0 11 0.1 3 14 0.2 0 14 0.4 1 13 

0 1 11 0.1 0 10 0.2 0 12 0.4 0 12 

0 2 8 0.1 2 12 0.2 1 6 0.4 1 9 

0 0 14 0.1 3 13 0.2 2 13 0.4 3 9 

0 0 13 0.1 1 11 0.2 0 10 0.4 0 11 

0 3 14 0.1 1 11 0.2 1 14 0.4 1 14 

0 1 13 0.1 0 11 0.2 1 12 0.4 0 10 

0 0 8 0.1 0 13 0.2 0 10 0.4 3 12 

0 0 13 0.1 0 10 0.2 0 9 0.4 2 21 

0 2 14 0.1 1 12 0.2 1 12 0.4 3 10 

0 3 14 0.1 0 11 0.2 0 13 0.4 3 11 

0 0 11 0.1 2 10 0.2 1 14 0.4 1 11 

0 2 12 0.1 2 12 0.2 0 13 0.4 1 11 

0 0 15 0.1 2 15 0.2 0 14 0.4 8 14 

0 0 15 0.1 3 12 0.2 1 13 0.4 0 15 

0 2 14 0.1 1 12 0.2 2 12 0.4 2 13 

0 1 11 0.1 0 12 0.2 1 14 0.4 8 11 

0 1 16 0.1 1 12 0.2 0 13 0.4 4 12 

0 0 12 0.1 1 13 0.2 0 12 0.4 2 12 

0 0 14 0.1 1 15 0.2 1 7 

Appendix 

Data: Fleas 

Bioen SP Treat Rep Overvi Dead 

B1 Daphnia T1 1 10 0 

B1 Daphnia T1 2 10 0 

B1 Daphnia T1 3 10 0 

B1 Daphnia T2 1 10 0 

B1 Daphnia T2 2 10 0 

B1 Daphnia T2 3 10 0 

B1 Daphnia T3 1 9 1 

B1 Daphnia T3 2 9 1 

B1 Daphnia T3 3 8 2
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Data: Fleas

Bioen SP Treat Rep Overvi Dead

B1 Daphnia T4 1 2 8 

B1 Daphnia T4 2 2 8 

B1 Daphnia T4 3 3 7 

B1 Daphnia T5 1 0 10 

B1 Daphnia T5 2 0 10 

B1 Daphnia T5 3 0 10 

B1 Daphnia T6 1 0 10 

B1 Daphnia T6 2 0 10 

B1 Daphnia T6 3 0 10 

B2 Daphnia T1 1 10 0 

B2 Daphnia T1 2 10 0 

B2 Daphnia T1 3 10 0 

B2 Daphnia T2 1 10 0 

B2 Daphnia T2 2 10 0 

B2 Daphnia T2 3 10 0 

B2 Daphnia T3 1 9 1 

B2 Daphnia T3 2 9 1 

B2 Daphnia T3 3 9 1 

B2 Daphnia T4 1 2 8 

B2 Daphnia T4 2 2 8 

B2 Daphnia T4 3 2 8 

B2 Daphnia T5 1 0 10 

B2 Daphnia T5 2 0 10 

B2 Daphnia T5 3 0 10 

B2 Daphnia T6 1 0 10 

B2 Daphnia T6 2 0 10 

B2 Daphnia T6 3 0 10 

B3 Daphnia T1 1 10 0 

B3 Daphnia T1 2 10 0 

B3 Daphnia T1 3 10 0 

B3 Daphnia T2 1 10 0 

B3 Daphnia T2 2 10 0 

B3 Daphnia T2 3 10 0 

B3 Daphnia T3 1 8 2 

B3 Daphnia T3 2 9 1 

B3 Daphnia T3 3 9 1 

B3 Daphnia T4 1 3 7 

B3 Daphnia T4 2 2 8 

B3 Daphnia T4 3 2 8 

B3 Daphnia T5 1 0 10 

B3 Daphnia T5 2 0 10 

B3 Daphnia T5 3 0 10
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Data: Fleas

Bioen SP Treat Rep Overvi Dead

B3 Daphnia T6 1 0 10 

B3 Daphnia T6 2 0 10 

B3 Daphnia T6 3 0 10 

B1 Dubia T1 1 10 0 

B1 Dubia T1 2 10 0 

B1 Dubia T1 3 10 0 

B1 Dubia T2 1 5 5 

B1 Dubia T2 2 6 4 

B1 Dubia T2 3 6 4 

B1 Dubia T3 1 5 5 

B1 Dubia T3 2 5 5 

B1 Dubia T3 3 5 5 

B1 Dubia T4 1 2 8 

B1 Dubia T4 2 3 7 

B1 Dubia T4 3 3 7 

B1 Dubia T5 1 2 8 

B1 Dubia T5 2 2 8 

B1 Dubia T5 3 2 8 

B1 Dubia T6 1 0 10 

B1 Dubia T6 2 0 10 

B1 Dubia T6 3 0 10 

B2 Dubia T1 1 10 0 

B2 Dubia T1 2 10 0 

B2 Dubia T1 3 10 0 

B2 Dubia T2 1 7 3 

B2 Dubia T2 2 5 5 

B2 Dubia T2 3 6 4 

B2 Dubia T3 1 5 5 

B2 Dubia T3 2 5 5 

B2 Dubia T3 3 5 5 

B2 Dubia T4 1 4 6 

B2 Dubia T4 2 4 6 

B2 Dubia T4 3 4 6 

B2 Dubia T5 1 2 8 

B2 Dubia T5 2 2 8 

B2 Dubia T5 3 2 8 

B2 Dubia T6 1 0 10 

B2 Dubia T6 2 0 10 

B2 Dubia T6 3 0 10 

B3 Dubia T1 1 10 0 

B3 Dubia T1 2 10 0 

B3 Dubia T1 3 10 0



1 1 1 1 15 73

2 1 1 1 10 86

1 1 1 2 17 69

2 1 1 2 19 32

1 1 2 1 26 125

2 1 2 1 21 62

1 1 2 2 14 81

2 1 2 2 12 21

1 2 1 1 10 92

2 2 1 1 12 108

1 2 1 2 30 44

2 2 1 2 32 33

1 2 2 1 37 91

2 2 2 1 30 42

1 2 2 2 32 98

2 2 2 2 37 44

1 3 1 1 18 52

2 3 1 1 18 73

1 3 1 2 23 108

2 3 1 2 21 55

1 3 2 1 24 106

2 3 2 1 27 92

1 3 2 2 37 64

2 3 2 2 37 97
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Data: Fleas

Bioen SP Treat Rep Overvi Dead

B3 Dubia T2 1 8 2 

B3 Dubia T2 2 8 2 

B3 Dubia T2 3 7 3 

B3 Dubia T3 1 5 5 

B3 Dubia T3 2 5 5 

B3 Dubia T3 3 6 4 

B3 Dubia T4 1 2 8 

B3 Dubia T4 2 3 7 

B3 Dubia T4 3 2 8 

B3 Dubia T5 1 3 7 

B3 Dubia T5 2 2 8 

B3 Dubia T5 3 2 8 

B3 Dubia T6 1 0 10 

B3 Dubia T6 2 0 10 

B3 Dubia T6 3 0 10 

Data: Commercial crop explant detachment 

Block A B C y N



Data: Cockroaches (E1 = np, E2 = ng, E3 = adult)

Bioassay Isolation Age Dead

1 Bb1 np 7

2 Bb1 np 6

1 Bb1 ng 2

2 Bb1 ng 2

1 Bb1 a 9

2 Bb1 a 6

1 Bb2 np 6

2 Bb2 np 7

1 Bb2 ng 7

2 Bb2 ng 3

1 Bb2 a 10

2 Bb2 a 8

1 Bb3 np 3

2 Bb3 np 2

1 Bb3 ng 2

2 Bb3 ng 3

1 Bb3 a 8

2 Bb3 a 9

1 Bb4 np 6

2 Bb4 np 4

1 Bb4 ng 5

2 Bb4 ng 3

1 Bb4 a 10

2 Bb4 a 8

1 Bb5 np 7

2 Bb5 np 7

1 Bb5 ng 3

2 Bb5 ng 1

1 Bb5 a 7

2 Bb5 a 3

1 Bb6 np 7

2 Bb6 np 9

1 Bb6 ng 6

2 Bb6 ng 2

1 Bb6 a 10

2 Bb6 a 7

1 Bb8 np 9

2 Bb8 np 9

1 Bb8 ng 4

2 Bb8 ng 2

1 Bb8 a 9

2 Bb8 a 10
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Data: Cockroaches (E1 = np, E2 = ng, E3 = adult)

Bioassay Isolation Age Dead

1 Bb9 np 5

2 Bb9 np 8

1 Bb9 ng 6

2 Bb9 ng 2

1 Bb9 a 7

2 Bb9 a 5

1 Bb10 np 8

2 Bb10 np 6

1 Bb10 ng 1

2 Bb10 ng 4

1 Bb10 a 3

2 Bb10 a 4

1 Bb11 np 8

2 Bb11 np 7

1 Bb11 ng 1

2 Bb11 ng 3

1 Bb11 a 6

2 Bb11 a 8

1 Bb12 np 8

2 Bb12 np 9

1 Bb12 ng 8

2 Bb12 ng 9

1 Bb12 a 7

2 Bb12 a 6

1 Bb13 np 6

2 Bb13 np 3

1 Bb13 ng 0

2 Bb13 ng 1

1 Bb13 a 5

2 Bb13 a 6

1 Bb14 np 10

2 Bb14 np 5

1 Bb14 ng 4

2 Bb14 ng 2

1 Bb14 a 6

2 Bb14 a 6

1 Bb15 np 5

2 Bb15 np 10

1 Bb15 ng 6

2 Bb15 ng 1

1 Bb15 a 4

2 Bb15 a 5

(continued)
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Data: Cockroaches (E1 = np, E2 = ng, E3 = adult)

Bioassay Isolation Age Dead

1 Bb16 np 5

2 Bb16 np 7

1 Bb16 ng 3

2 Bb16 ng 4

1 Bb16 a 8

2 Bb16 a 6

1 Control np 1

2 Control np 0

1 Control ng 0

2 Control ng 0

1 Control a 0

2 Control a 1

Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

1 1 1 1 1 14

1 1 1 2 2 12

1 1 1 3 0 12

1 1 1 4 0 13

1 1 1 5 3 8

1 1 1 6 0 9

1 1 2 1 7 8

1 1 2 2 0 10

1 1 2 3 1 14

1 1 2 4 0 10

1 1 2 5 0 17

1 1 2 6 0 10

1 1 3 1 9 14

1 1 3 2 1 11

1 1 3 3 0 10

1 1 3 4 1 14

1 1 3 5 0 10

1 1 3 6 0 21

1 1 4 1 10 17

1 1 4 2 0 9

1 1 4 3 1 12

1 1 4 4 0 11

1 1 4 5 0 12

1 1 4 6 0 10

1 1 5 1 8 11

1 1 5 2 1 10

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

1 1 5 3 0 9

1 1 5 4 2 12

1 1 5 5 0 10

1 1 5 6 1 11

1 2 1 1 7 9

1 2 1 2 2 10

1 2 1 3 0 10

1 2 1 4 0 14

1 2 1 5 1 12

1 2 1 6 0 13

1 2 2 1 6 12

1 2 2 2 0 11

1 2 2 3 1 13

1 2 2 4 0 9

1 2 2 5 2 11

1 2 2 6 0 10

1 2 3 1 6 7

1 2 3 2 1 12

1 2 3 3 0 9

1 2 3 4 1 10

1 2 3 5 0 14

1 2 3 6 2 12

1 2 4 1 7 13

1 2 4 2 0 10

1 2 4 3 0 10

1 2 4 4 1 12

1 2 4 5 0 9

1 2 4 6 1 8

1 2 5 1 11 15

1 2 5 2 1 13

1 2 5 3 0 14

1 2 5 4 1 14

1 2 5 5 0 11

1 2 5 6 0 11

1 3 1 1 5 11

1 3 1 2 5 11

1 3 1 3 0 15

1 3 1 4 1 15

1 3 1 5 0 8

1 3 1 6 1 10

1 3 2 1 4 9

1 3 2 2 1 15

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

1 3 2 3 0 11

1 3 2 4 0 13

1 3 2 5 1 12

1 3 2 6 0 12

1 3 3 1 9 12

1 3 3 2 2 14

1 3 3 3 0 12

1 3 3 4 0 12

1 3 3 5 0 10

1 3 3 6 0 13

1 3 4 1 10 10

1 3 4 2 0 10

1 3 4 3 0 8

1 3 4 4 0 10

1 3 4 5 1 14

1 3 4 6 3 11

1 3 5 1 9 11

1 3 5 2 0 11

1 3 5 3 1 11

1 3 5 4 1 14

1 3 5 5 0 9

1 3 5 6 0 9

2 1 1 1 0 12

2 1 1 2 0 12

2 1 1 3 0 14

2 1 1 4 0 12

2 1 1 5 0 10

2 1 1 6 1 13

2 1 2 1 8 9

2 1 2 2 1 9

2 1 2 3 0 12

2 1 2 4 0 10

2 1 2 5 0 12

2 1 2 6 1 10

2 1 3 1 11 14

2 1 3 2 1 12

2 1 3 3 1 11

2 1 3 4 0 10

2 1 3 5 0 9

2 1 3 6 3 11

2 1 4 1 12 15

2 1 4 2 0 15

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

2 1 4 3 0 10

2 1 4 4 1 9

2 1 4 5 1 10

2 1 4 6 0 16

2 1 5 1 10 14

2 1 5 2 1 9

2 1 5 3 0 11

2 1 5 4 0 11

2 1 5 5 0 11

2 1 5 6 0 11

2 2 1 1 1 9

2 2 1 2 0 9

2 2 1 3 0 12

2 2 1 4 1 10

2 2 1 5 1 12

2 2 1 6 0 17

2 2 2 1 9 12

2 2 2 2 0 12

2 2 2 3 0 11

2 2 2 4 2 14

2 2 2 5 0 11

2 2 2 6 0 10

2 2 3 1 7 13

2 2 3 2 0 16

2 2 3 3 1 12

2 2 3 4 0 10

2 2 3 5 0 10

2 2 3 6 0 11

2 2 4 1 7 13

2 2 4 2 1 18

2 2 4 3 0 10

2 2 4 4 0 11

2 2 4 5 0 11

2 2 4 6 3 13

2 2 5 1 5 10

2 2 5 2 0 10

2 2 5 3 0 10

2 2 5 4 0 10

2 2 5 5 0 9

2 2 5 6 1 12

2 3 1 1 6 13

2 3 1 2 0 10

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

2 3 1 3 1 11

2 3 1 4 3 11

2 3 1 5 0 12

2 3 1 6 1 19

2 3 2 1 12 13

2 3 2 2 0 11

2 3 2 3 0 8

2 3 2 4 0 9

2 3 2 5 0 17

2 3 2 6 0 12

2 3 3 1 8 11

2 3 3 2 4 12

2 3 3 3 0 11

2 3 3 4 0 10

2 3 3 5 0 15

2 3 3 6 3 13

2 3 4 1 5 14

2 3 4 2 1 9

2 3 4 3 0 12

2 3 4 4 1 12

2 3 4 5 0 10

2 3 4 6 2 14

2 3 5 1 10 14

2 3 5 2 0 14

2 3 5 3 1 10

2 3 5 4 1 13

2 3 5 5 1 15

2 3 5 6 4 10

3 1 1 1 8 12

3 1 1 2 1 14

3 1 1 3 0 12

3 1 1 4 0 20

3 1 1 5 1 18

3 1 1 6 7 15

3 1 2 1 9 16

3 1 2 2 1 12

3 1 2 3 0 13

3 1 2 4 0 15

3 1 2 5 0 17

3 1 2 6 1 18

3 1 3 1 7 12

3 1 3 2 0 14

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

3 1 3 3 1 13

3 1 3 4 0 18

3 1 3 5 0 14

3 1 3 6 0 14

3 1 4 1 10 14

3 1 4 2 2 17

3 1 4 3 0 10

3 1 4 4 1 19

3 1 4 5 0 17

3 1 4 6 0 16

3 1 5 1 9 10

3 1 5 2 1 14

3 1 5 3 1 11

3 1 5 4 0 18

3 1 5 5 0 15

3 1 5 6 1 11

3 2 1 1 10 10

3 2 1 2 1 11

3 2 1 3 0 12

3 2 1 4 1 15

3 2 1 5 4 20

3 2 1 6 0 14

3 2 2 1 9 12

3 2 2 2 1 10

3 2 2 3 1 12

3 2 2 4 3 18

3 2 2 5 0 16

3 2 2 6 0 12

3 2 3 1 10 11

3 2 3 2 1 16

3 2 3 3 1 14

3 2 3 4 1 17

3 2 3 5 2 15

3 2 3 6 1 16

3 2 4 1 9 11

3 2 4 2 2 14

3 2 4 3 0 10

3 2 4 4 0 18

3 2 4 5 0 17

3 2 4 6 0 12

3 2 5 1 11 12

3 2 5 2 2 12

(continued)
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Data: Disease incidence in grapevine plants (b = block, v = plant, r = shoot, t = treatment,
m = number of diseased leaves per shoot, and n = total number of leaves per shoot).

b v r t M n

3 2 5 3 0 11

3 2 5 4 0 13

3 2 5 5 0 18

3 2 5 6 0 12

3 3 1 1 7 9

3 3 1 2 0 13

3 3 1 3 0 9

3 3 1 4 0 18

3 3 1 5 0 18

3 3 1 6 0 13

3 3 2 1 6 14

3 3 2 2 3 16

3 3 2 3 1 15

3 3 2 4 0 17

3 3 2 5 1 17

3 3 2 6 3 14

3 3 3 1 10 11

3 3 3 2 0 10

3 3 3 3 1 16

3 3 3 4 1 18

3 3 3 5 0 16

3 3 3 6 0 11

3 3 4 1 10 10

3 3 4 2 1 14

3 3 4 3 0 10

3 3 4 4 1 19

3 3 4 5 2 19

3 3 4 6 2 14

3 3 5 1 8 10

3 3 5 2 0 12

3 3 5 3 0 12

3 3 5 4 0 18

3 3 5 5 0 14

3 3 5 6 0 12
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Chapter 7
Time of Occurrence of an Event of Interest

7.1 Introduction

In studies such as biological sciences, animal science, and agronomy, a common
outcome of interest is the time at which an event of interest occurs. The main
characteristic of these data is that the subjects/experimental units are usually
observed for different periods of time until the event of interest occurs. These events
of interest may be adverse events such as the death of an experimental unit and the
cessation of lactation, or positive events such as the conception of a female’s
offspring from a particular treatment and the onset of estrus in a female undergoing
hormone treatment, among others. Because of the characteristics of these response
variables, a “normal” distribution is often a poor choice for modeling the time at
which the event of interest occurs. Exponential, log-normal, gamma, Weibull, and
other more complex distributions that tend to be more common and are better
choices for modeling these phenomena.

Fitting a generalized linear mixed model (GLMM) is a good option for analyzing
these phenomena because the conditional response distribution of the random effects
of this model has desirable properties. In this vein, it is conventional to speak of
survival data and survival analysis, regardless of the nature of the event. Similar data
also arise when measuring the time to complete a task, such as walking 50 meters,
passing an agronomy exam, performing a sensory evaluation of coffee, and so
on. The purpose of this chapter is to provide the reader with the essential language
of linear models and the connection between GLMMs and survival analysis.
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where Γ αð Þ= 1tα- 1e- tdt0 is the gamma function (Casella and Berger 2002). The
mean and variance of a random gamma variable are E[Y] = αβ = μ and
Var½ �Y = αβ2 = μ2=α, respectively. This density function can be rewritten in terms
of the mean μ and the scale parameter ϕ = 1/α.
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7.2 Generalized Linear Mixed Models with a Gamma
Response

The gamma family of distributions encompasses continuous, nonnegative, right-skewed
values. A gamma distribution has two nonnegative parameters –α and β –the probability
density function of which is given by:

f y; α, βð Þ= 1
Γ αð Þβα y

α- 1e
- y=βf g, y≥ 0

f y; α, βð Þ= 1

Γ 1
ϕ μϕð Þ1=ϕy1

ϕ- 1e
- y=μϕf g, y≥ 0:

7.2.1 CRD: Estrus Induction in Pelibuey Ewes

Estrus induction in ewes is a very common practice carried out in livestock farms or
at research centers. For this, an animal researcher uses gonadotropin-releasing
hormone (GnRH), equine chorionic gonadotropin (eCG), and P4 in a controlled
internal drug-releasing (CIDR) intravaginal device in female Pelibuey ewes (n= 78)
with single, double, and triple lambing as treatments. In order to ensure that all
animals were in good condition during the experiment, ewes received the same
zootechnical management and feeding. For this experiment, the ewes were synchro-
nized on the same day under a synchronization protocol. Table 7.1 presents the
analysis of variance (ANOVA).

The variables evaluated in this experiment were the time of onset and duration of
estrus (yij) in hours according to the type of calving. The variability among
female sheep on weight, age, and body condition must be taken into account in the

Table 7.1 Sources of
variation and degrees
of freedom

Sources of variation Degrees of freedom

Treatment t - 1 = 3 - 1 = 2

Error 3
ri - t= 75

i=

Total 3
ri - 1= 78- 1= 77

i=



j τ animal

F

analysis. The data from this experiment can be found in the Appendix 1 of this book
(Data: Pelibuey Sheep). Thus, the components of a gamma GLMM are as follows:
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Table 7.2 Results of the analysis of variance

(a) Covariance parameter estimates

Start of estrus Duration of estrus

Cov Parm Estimate Standard error Estimate Standard error

Parto (animal) ðσ̂2birthtypeðanimalÞÞ -0.01572 . 0.08370 0.09692

Residual ϕ 0.06668 0.01232 0.2073 0.08938

(b) Type III tests of fixed effects

Inicio estro Duración estro

Effect Num DF Den DF F-value Pr > F-value Pr > F

Birth type 2 75 5.12 0.0082 22.61 <0.0001

Distributions: yij j τ rð Þij � Gamma μij,ϕ ; i= 1, 2, 3; j= 1,⋯, ri:

r τð Þij � N 0, σ2τ animalð Þ

Linear predictor: ηij = μþ τi þ τ rð Þij
Link function: log μij = ηij

where ηij is the ith link function for treatment i (type of birth angle, double or triple)
in ewes j, μ is the overall mean, τi is the fixed effect due to type of birth (treatment),
r(τ)ij is the random effect due to type of birth (treatment) in ewes j with

τ rð Þ � N 0, σ2 .ð Þ
The following GLIMMIX program fits the model

proc glimmix nobound method=laplace;
class animal birthtype;
model Inestro = birthtype/dist=gamma;
random birthtype (animal);
lsmeans birthtype/lines ilink;
run;

Part of the results is reported in Table 7.2.
Subsection (a) shows the estimated variance components due to the type of

parturition used in females σ2birthtype animalð Þ = - 0:0157 ± 0:0837ð Þ as well as the

scale parameter ϕ= 0:06668 .

Table 7.2 (b) shows the results of the hypothesis tests for type III fixed effects,
which indicate that there is a statistically significant effect of treatment (type of birth)
on the time of onset and duration of ewe estrus.



Birth_type Estimate DF t-value Pr > |t| Mean
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Table 7.3 Means and standard errors on the model scale (“Estimate” column) and the data scale
(“Mean” column) for the onset and duration of estrus in Pelibuey ewe lambs

Parto least squares means

Standard
error

Standard error
mean

Start of estrus
1 3.2913 0.06631 75 49.63 <0.0001 26.8787 1.7824

2 3.0622 0.04606 75 66.48 <0.0001 21.3735 0.9845

3 3.0496 0.04542 75 67.14 <0.0001 21.1059 0.9586

Duration of estrus
1 1.6826 0.1518 75 11.09 <0.0001 5.3795 0.8164

2 2.6716 0.1171 75 22.81 <0.0001 14.4637 1.6938

3 2.8075 0.09846 75 28.51 <0.0001 16.5684 1.6313

The last two columns of Table 7.3, labeled “Mean” and “Standard error,”
correspond to the means (μij) on the data scale for the ewes’mean onset and duration
of estrus with their respective standard errors. For example, the mean time to onset of
estrus in single-birth ewes was 26.87 ± 1.78 hours, whereas for double- and triple-
birth ewes, it was 21.37 ± 0.98 and 21.1 ± 0.95, respectively. On the other hand, the
average time (in hours) of estrus duration was longer in double- and triple-birth ewes
(14.46 ± 1.69 and 16.56 ± 1.63, respectively) compared to single-birth ewes
(5.38 ± 0.81).

7.2.2 Randomized Complete Block Design (RCBD): Itch
Relief Drugs

A total of 10 male volunteer patients between 20 and 30 years of age participated as a
study group to compare 7 treatments (Trts) (5 drugs, 1 placebo, and 1 no drug) to
relieve their itching. Since each subject responded differently to each drug, and, in
addition, each subject received a different treatment in the 7 days of study, each of
the subjects can be considered a block. Treatment assignment was randomized
across days. Except for the drug-free day, subjects were administered the treatment
intravenously, and, then, their forearms were induced to itch using an effective itch
stimulus called cowage. The duration of itching, in seconds, was recorded. The data
are shown in Table 7.4.

From left to right, the drugs used were papaverine = Papv, morphine = Morp,
aminophylline = Amino, pentobarbital = Pent, and tripelennamine pentobarbital = Tripel.

The analysis of variance table (Table 7.5) shows the sources of variation and
degrees of freedom for this experiment.
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Table 7.4 Time taken to get rid of the itch

Patient No drug Placebo Papv Morp Amino Pent Tripel

1 174 263 105 199 141 108 141

2 224 213 103 143 168 341 184

3 260 231 145 113 78 159 125

4 255 291 103 225 164 135 227

5 165 168 144 176 127 239 194

6 237 121 94 144 114 136 155

7 191 137 35 87 96 140 121

8 100 102 133 120 222 134 129

9 115 89 83 100 165 185 79

10 189 433 237 173 168 188 317

Table 7.5 Sources of
variation and degrees of
freedom

Sources of variation Degrees of freedom

Blocks r - 1 = 10 - 1 = 9

Treatment t - 1 = 7 - 1 = 6

Error (t - 1)(r - 1) = 6 × 9 = 54

Total r × t - 1 = 10 × 7 - 1 = 69

The components of the GLMM with a gamma response are as follows:

Distributions : yij j rðαβÞijk � Gammaðμij,ϕÞ; i= 1,⋯, 7; j= 1,⋯, 10:

rj � N 0, σ2patient

Linear predictor: ηij = μþ rj þ τi

Link function: log μijk = ηijk

where ηij is the predictor with treatment i and block j, μ is the overall mean, rj is the

random effect of the patient with rj � N 0, σ2patient , and τi is the fixed effect due to

treatment.
Note, although the exponential and gamma distributions have a canonical link

equal to the inverse of the mean, the gamma and exponential GLMMs most often use
a computationally more stable link (link = log), which was used in this and in the
previous analysis.

The following GLIMMIX syntax adjusts a GLMM into complete blocks.

proc glimmix nobound method=laplace;
class Patient Trt;
model y = Trt/dist=gamma;
random Patient;
lsmeans Trt/lines ilink;
run;
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Table 7.6 Results of the
analysis of variance

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 728.62

Pearson’s chi-square 5.69

Pearson’s chi-square/DF 0.08

(b) Covariance parameter estimates

Cov Parm Estimate Standard error

Patient 0.03964 0.02375

Residual ϕ 0.09132 0.01640

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 6 54 3.82 0.0030

The statistics of the conditional model (Pearson′s chi - squre/DF = 0.08) as well

as the variance components (Patient) and the scale parameter ϕ of the model

indicate that the gamma model adequately describes the dataset (Table 7.6 parts
(a) and (b)). The analysis of variance (Table 7.6 part (c)) indicates that there is
a highly significant difference of treatments in the mean time of itch duration
(P = 0.0030).

The dispersion observed in the following plot (top left) of the residuals versus the
linear predictor value suggests that the variance is constant and homogeneous
(Fig. 7.1). The histogram (upper right) shows a nearly symmetrical pattern with
little bias. Furthermore, the residuals versus quantile plot (bottom left) shows no
marked deviations, indicating that the fit is adequate. Finally, the bottom right plot
shows that the average residuals are zero and vary between -0.5 and 0.75.

The “lsmeans” on the data scale, for each of the five treatments, placebo, and the
control treatment, are shown under the “Mean” column with their respective “Stan-
dard error” in Table 7.7. Each of the five drugs appear to have a significant effect
compared to the placebo and control. Papaverine (Papv) is the most effective drug.
Both the placebo and control treatment have statistically similar means. The rela-
tively large difference in the placebo group suggests that some patients responded
negatively to the placebo compared to the control, whereas others responded
positively.

Figure 7.2 shows that the drug papaverine significantly reduced the itching time,
followed by the drugs aminophylline and morphine, whereas the efficacies of the
drugs pentobarbital and tripelennamine were highly similar to each other in elimi-
nating itching.

7.2.3 Factorial Design: Insect Survival Time

This experiment consisted of studying the effectiveness of four different types of
insecticides (Insec1, Insec2, Insec3, and Insec4) at three different concentration
levels (low,medium, and high) in the survival time (in hours) of a particular species



Trt Estimate DF t-value Pr > |t| Mean

of beetles (Appendix 1: Data: Beetles). The interaction between both factors (insec-
ticide * dose) yielded a total of 12 combinations (treatments). The objective of this
study was to compare the insecticides, dose, and interaction with beetle survival
time. Due to the intrinsic characteristics of each of the insects, these must be
considered as a source of variation in the experiment, since they respond differently
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Fig. 7.1 Conditional residuals

Table 7.7 Means and standard errors on the model scale (“Estimate” column) and the data scale
(“Mean” column) for the average duration time of the itch

Trt least squares means

Standard
error

Standard error
of mean

Amino 4.9795 0.1149 43.32 <0.0001 145.41 16.7129

Morp 4.9797 0.1146 43.44 <0.0001 145.43 16.6733

Papv 4.7356 0.1149 41.20 <0.0001 113.93 13.0956

Pento 5.1703 0.1149 44.99 <0.0001 175.97 20.2211

Placebo 5.2704 0.1151 45.79 <0.0001 194.49 22.3867

No drug 5.2542 0.1148 45.76 <0.0001 191.36 21.9723

Tripel 5.0802 0.1147 44.28 <0.0001 160.80 18.4487



to certain stimuli. Assuming that 48 beetles are available, they were randomly
assigned equally to 4 groups (blocks) with 12 treatment combinations. That is,
four beetles were randomly assigned to each treatment.
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Fig. 7.2 Average time taken to eliminate itching

Table 7.8 Sources of varia-
tion and degrees of freedom

Sources of variation Degrees of freedom

Blocks r - 1 = 4 - 1 = 3

Insecticide a - 1 = 4 - 1 = 3

Dose b - 1 = 3 - 1 = 2

Insecticide * dosage (a - 1)(b - 1) = 3 × 2 = 6

Error ab(r - 1) = 4 × 3 × 3 = 33

Total r × a × b - 1 = 4 × 4 × 3 - 1 = 47

The sources of variation and degrees of freedom for this experiment are shown in
the following analysis of variance table (Table 7.8).

The components of the gamma-response GLMM are as follows:

Distributions : yijk j rk � Gammaðμijk ,ϕÞ; i= 1,⋯, 4; j= 1, 2, 3; k= 1,⋯, 4:

rk � Nð0, σ2blockÞ
Linear predictor: ηijk = μþ rk þ αi þ βj þ αβð Þij

Link function: log μijk = ηijk

The following GLIMMIX command adjusts a GLMM with a gamma response.
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Table 7.9 Results of the
analysis of variance

(a) Fit statistics for conditional distribution

-2 Log L (tiempo | r. effects) 121.05

Pearson’s chi-square 1.91

Pearson’s chi-square/DF 0.04

(b) Covariance parameter estimates

Cov Parm Estimate Standard error

block -0.00173 .

Residual 0.04155 0.008818

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Dose 2 33 69.61 <0.0001

Insecticide 3 33 31.36 <0.0001

Dose*insecticide 6 33 2.05 0.0868

proc glimmix nobound method=laplace;
class dose insecticide insect;
model time = dose|insecticide/dist=gamma;
random insect;
lsmeans dose|insecticide/lines ilink;
run;

Part of the Statistical Analysis Software (SAS) output is shown in Table 7.9. The
value of the conditional model’s Pearson′s chi- square/DF= 0.04 indicates that the
gamma distribution adequately models the data. The estimated variance component
for blocks and the scaling parameter given by the “residual” value are shown below
(in part (b)) ðσ̂2block = - 0:00173, and σ̂2 = 0:04155, respectivelyÞ.

The analysis of variance in (c) of Table 7.9 indicates that the insecticides and dose
(P = 0.0001) have different significant effectiveness (toxicity) on beetle survival
time. However, the interaction between both factors is close to significance
(P = 0.0868). The “lsmeans” values on the data scale for dose μi:: (part (a)) and
insecticide μ:j: (part (b)) with their respective standard errors for both factors are
listed under the columns titled “Mean” and “Standard error mean” of Table 7.10,
respectively.

The combination of levels of both factors affected the average survival time of the
beetles (Table 7.11). For insecticides 1 and 3 at a high dose, the survival time was
lower with average times of 2.1 ± 0.209 and 2.35 ± 0.334 hours, respectively. In
general, low values of survival times were observed for insecticides 1 and 3 com-
pared to insecticides 2 and 4.

7.2.4 A Split Plot with a Factorial Structure on a Large Plot
in a Completely Randomized Design (CRD)

Four samples were obtained from each of two batches (Reps) of unprocessed gum
from Acacia sp. Trees, with eight samples in total. Within each batch, the four



Dose Estimate DF t-value Pr > |t| Mean

Insecticide Estimate DF t-value Pr > |t| Mean

Dose Insecticide Estimate DF t-value Pr > |t| Mean

samples were randomly assigned to combinations of two factors with two levels
each. The first factor refers to whether the gum was demineralized or not, and the
second factor refers to whether the gum was pasteurized or not. An emulsion made
from each gum sample was divided into three smaller parts, which were randomly
assigned to the levels of a third factor, the PH, and pH was adjusted to 2.5, 4.5, or 5.5
using citric acid (Appendix 1: Data: Gum Breakdown Times).
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Table 7.10 Means and standard errors on the model scale (“Estimate”) and the data scale (“Mean”)
for the factor dose and type of insecticide

(a) Dose least squares means

Standard
error

Standard error
mean

High 0.9960 0.04984 33 19.98 <0.0001 2.7075 0.1349

Low 1.7840 0.04984 33 35.79 <0.0001 5.9538 0.2967

Medium 1.6203 0.04984 33 32.51 <0.0001 5.0548 0.2519

(b) Insecticide least squares means

Standard
error

Standard error
mean

Insec1 1.1074 0.05755 33 19.24 <0.0001 3.0265 0.1742

Insec2 1.8272 0.05755 33 31.75 <0.0001 6.2166 0.3578

Insec3 1.3041 0.05755 33 22.66 <0.0001 3.6845 0.2121

Insec4 1.6284 0.05755 33 28.29 <0.0001 5.0960 0.2933

Table 7.11 Means and standard errors on the model scale and the data scale for the interaction
between dose and type of insecticide

Dose*insecticide least squares means

Standard
error

Standard
error mean

High Insec1 0.7419 0.09968 33 7.44 <0.0001 2.1000 0.2093

High Insec2 1.2089 0.09968 33 12.13 <0.0001 3.3499 0.3339

High Insec3 0.8545 0.09969 33 8.57 <0.0001 2.3501 0.2343

High Insec4 1.1788 0.09969 33 11.82 <0.0001 3.2503 0.3240

Low Insec1 1.4171 0.09968 33 14.22 <0.0001 4.1250 0.4112

Low Insec2 2.1747 0.09968 33 21.82 <0.0001 8.7998 0.8772

Low Insec3 1.7361 0.09969 33 17.42 <0.0001 5.6754 0.5658

Low Insec4 1.8082 0.09968 33 18.14 <0.0001 6.0994 0.6080

Medium Insec1 1.1632 0.09969 33 11.67 <0.0001 3.2000 0.3190

Medium Insec2 2.0980 0.09968 33 21.05 <0.0001 8.1499 0.8124

Medium Insec3 1.3218 0.09969 33 13.26 <0.0001 3.7501 0.3738

Medium Insec4 1.8984 0.09969 33 19.04 <0.0001 6.6753 0.6654

This is a split-plot design, with whole plots and rubber samples in a block
arrangement. The combined levels of demineralization and pasteurization of the
paste are large (whole) plot factors. The split plots are the smaller parts, with a
specific pH, which is the only split-plot factor. The response measured ( y) was the
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time to break, i.e., the time (in hours) until the emulsion failed. The sources of
variation and degrees of freedom for this experiment are shown in Table 7.12.
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Table 7.12 Sources of variation and degrees of freedom

Sources of variation Degrees of freedom

Demineralization (Des) a - 1 = 2 - 1 = 1

Pasteurization (Pasteu) b - 1 = 2 - 1 = 1

Demineralization*pasteurization (a - 1)(b - 1) = 1

Des*Pasteu (rep) ab(r - 1) = 2 × 2 × 1 = 4

pH (c - 1) = 3 - 1 = 2

Demineralization*pH (a - 1)(c - 1) = 2

Pasteurization*pH (b - 1)(c - 1) = 2

Des*Pasteu*pH (a - 1)(b - 1)(c - 1) = 2

Error ab(c - 1)(r - 1) = 2 × 2 × 2 × 1 = 8

Total r × a × b × c - 1 = 2 × 2 × 2 × 3 - 1 = 23

The components of the GLMM with a Gamma response are as follows:

Distributions: yijkl j rl, αβ rð Þijl � Gamma μijkl,ϕ ; i= 1, 2; j= 1, 2; k= 1, 2, 3; l= 1,

rl � N 0, σ2r , αβ rð Þijl � N 0, σ2rαβ

Linear predictor: ηijkl = μþ αi þ βj þ αβð Þij þ r αβð Þijl þ γk þ αγð Þik þ βγð Þjk
þ αβγð Þijk;

where αi, βj, and γk are the fixed effects due to the factors demineralization,
pasteurization, and pH, respectively; the effects (αβ)ij, (αγ)ik, (βγ)jk, and (αβγ)ijk
are the two- and three-way interactions of the factors under study; and αβ(r)ijl are
random effects due to the demineralization x pasteurization x rep interaction,

assuming that αβ rð Þ � N 0, σ2 .

Link function: log μijk = ηijk

The GLIMMIX commands for setting this GLMM are as follows:

proc glimmix nobound method=laplace;
class Batch Demineralization Pasteurization pH;
model y = Demineralization|Pasteurization|pH/dist=gamma;
random batch(Demineralization*Pasteurization);
lsmeans Demineralization|Pasteurization|pH/lines ilink;
run;
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Table 7.13 Results of the analysis of variance

(a) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 192.24

Pearson’s chi-square 0.12

Pearson’s chi-square/DF 0.01

(b) Covariance parameter estimates

Cov Parm Estimate Standard error

Rep (Desmin*Pasteur) 0.001428 0.001864

Residual ϕ 0.006011 0.002126

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Demineralization (Des) 1 4 35.48 0.0040

Pasteurization (Pasteu) 1 4 19.49 0.0116

Demineralization*pasteurization 1 4 35.67 0.0039

pH 2 8 5.27 0.0346

Demineralization*pH 2 8 3.84 0.0676

Pasteurization*pH 2 8 0.57 0.5889

Des*Pasteu*pH 2 8 4.32 0.0535

The relevant results from the SAS output are shown in Table 7.13. The value of
the conditional model χ2

DF = 0:01 indicates that the gamma distribution does not
cause overdispersion. The variance component due to blocks × demineralization ×
pasteurization σ2r αβð Þ and the scale parameter ϕ are shown in (b).

The hypothesis tests for type III fixed effects are presented in part (c) of
Table 7.13, where a significant effect of the factors demineralization, pasteurization,
and pH as well as the interaction between demineralization with pasteurization are
observed on the gum. However, the interactions demineralization*pH (P = 0.0676)
and demineralization*pasteurization*pH are close to significance (P = 0.0535). The
emulsion breaking time is strongly affected by no demineralization (demineraliza-
tion = 1) and no pasteurization (pasteurization = 1) of the gum and, to a lesser
extent, by the pH adjusted to the gum (Table 7.14).

Analyzing the simple effects of the factors, we can observe that when the gum has
not been pasteurized (B = 1), the average emulsion break time is very similar in the
demineralized paste than in the non-demineralized paste at the three pH levels.
However, when the gum has been pasteurized, demineralization has a significant
impact on the emulsion breakup time; for example, for a paste that is not
demineralized and pasteurized (A1B2), the emulsion breakup time is much lower
than when the gum has been demineralized and pasteurized (A2B2) at all three pH
levels. Finally, with a demineralized, pasteurized gum at pH = 4.5, a gum with
higher breaking stability is obtained (Table 7.15).
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Table 7.14 Means and standard errors of the main effects on the model scale (Estimate) and the
data scale (Mean)

(a) Demineralization least squares means

Standard
error

Standard error
mean

1 5.0911 0.02930 4 173.77 <0.0001 162.57 4.7628

2 5.3379 0.02930 4 182.18 <0.0001 208.07 6.0964

(b) Pasteurization least squares means

Standard
error

Standard error
mean

1 5.1230 0.02930 4 174.87 <0.0001 167.84 4.9171

2 5.3059 0.02930 4 181.08 <0.0001 201.53 5.9051

(c) pH least squares means

pH Estimate Standard error DF t-value Pr > |t| Mean Standard error mean

1 5.1610 0.03050 8 169.22 <0.0001 174.33 5.3171

2 5.2839 0.03050 8 173.24 <0.0001 197.13 6.0124

3 5.1986 0.03052 8 170.32 <0.0001 181.02 5.5255

Table 7.15 Means and standard errors of the simple effects on the model scale (Estimate) and the
data scale (Mean)

Demineralization*pasteurization*pH least squares means

Standard
error

Standard error
mean

1 1 1 5.0696 0.06099 8 83.13 <0.0001 159.11 9.7035

1 1 2 5.1695 0.06105 8 84.68 <0.0001 175.83 10.7339

1 1 3 5.1311 0.06100 8 84.12 <0.0001 169.20 10.3204

1 2 1 5.1137 0.06099 8 83.84 <0.0001 166.28 10.1419

1 2 2 5.0445 0.06098 8 82.72 <0.0001 155.17 9.4623

1 2 3 5.0183 0.06098 8 82.29 <0.0001 151.15 9.2170

2 1 1 5.0811 0.06103 8 83.26 <0.0001 160.95 9.8225

2 1 2 5.1694 0.06099 8 84.76 <0.0001 175.81 10.7225

2 1 3 5.1175 0.06110 8 83.76 <0.0001 166.91 10.1978

2 2 1 5.3796 0.06100 8 88.19 <0.0001 216.93 13.2320

2 2 2 5.7520 0.06100 8 94.30 <0.0001 314.81 19.2031

2 2 3 5.5277 0.06106 8 90.53 <0.0001 251.57 15.3607

A= demineralization (1= no, 2= yes), B= pasteurization (1= no, 2= yes), and C= pH (1= 2.5,
2 = 4.5, and 3 = 5.5)

7.3 Survival Analysis

When a research focuses on the time of occurrence of a specific event, we usually
refer to survival times, and, hence, the statistical analysis of these times, as men-
tioned above, is known as survival analysis. A very characteristic feature of survival



times is the presence of censored times, that is, when there are individuals whose
actual survival time is not known.

292 7 Time of Occurrence of an Event of Interest

For a set of survival times (including censored ones) of a sample of individuals, it
is possible to estimate the proportion of the population that will survive a time
interval under the same circumstances. The methods used to make this estimate are
based on the proposal of Kaplan and Meier (1958). This method allows – through
different statistical tests (log rank, Breslow, Tarone–Ware, etc.) – the comparison of
the survival of two or more groups of individuals who differ with respect to certain
factors.

Survival analysis focuses its interest on a group or several groups of individuals
for whom an event is defined, which occurs after a time interval. To determine the
time of interest, there are three requirements: an initial time, a scale to measure the
passage of time (minutes, hours, days, etc.), and clarity about what is meant by the
event of interest.

Survival of an individual is conceptually the probability of being alive in a given
time "t" from diagnosis, i.e., initiation of treatment or complete remission for a group
of individuals. In clinical studies, survival times often refer to time till death,
development of a particular symptom, or relapse after complete remission of a
disease. Failure is defined as death, relapse, or the occurrence of a new disease. In
many survival analyses, when the end of the observation period previously set by the
investigator is reached, there are individuals to whom the event has not occurred and
we do not know when it will occur. Therefore, the actual survival time for them is
unknown, and only the survival time to the end of the study is known. Such survival
times are called censored times. It also happens, in some cases, that some individuals
do not continue the study until the end of the analysis period for reasons unrelated to
the research, e.g., death from other causes; these times are also censored. These
censored data contribute valuable information and, therefore, should not be omitted
from the analysis.

The pharmaceutical and food industries are legally required to label the shelf life
of their product on the packaging. For pharmaceuticals, the requirements for how to
determine shelf life are highly regulated. However, the regulatory standards do not
specifically define shelf life. Instead, the definition is implicit through the estimation
procedure. The interest is in the situation where multiple batches are used to
determine a shelf life of a product that applies to all future batches. Consequently,
both shelf life and label life are of great importance because of the variability within
and between batches. Product development must be very well thought out before a
company can have confidence in shelf life estimates. The company must be able to
reliably produce a homogeneous product from batch to batch of ingredients, as
physical and chemical factors impact the ability of bacteria to grow, such as pH,
water activity, and uniformity of the mix (moisture distribution, salt, preservative or
food acid) and, consequently, the shelf life of the product. Therefore, products
should be inspected at appropriate times and samples should be tested for critical
stability of physical and chemical characteristics. These tests also provide an oppor-
tunity to begin microbiological testing for spoilage organisms. Testing should
continue beyond the intended shelf life unless the product fails earlier. Testing



Þ

Þ
Þ

should lead to an understanding of target levels and ranges of ingredients for
evaluation of the critical physical and chemical characteristics of the product over
the intended shelf life.
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Survival analysis is the name for a collection of statistical techniques used to
describe and quantify the time in which the event of interest occurs. The term
“survival time” specifies the amount of time taken to occur. Situations in which
survival analyses have been used in epidemiology include:

(a) Survival of insects after having received an insecticide.
(b) The time taken by cows or ewes to conceive after calving.
(c) The time taken for a farm to experience its first case of an exotic disease.

7.3.1 Concepts and Definitions

To clearly understand and interpret a rate of change calculated from the event data of
interest, a more extensive approach is needed. The definition of a rate of change
begins with the mathematical description of a changing pattern over time,
represented by the symbol S(t). A version of a ratio is created by dividing the change
in function S(t)[S(t) to S(t + Δt)] by the corresponding change over time t(t to t + Δt)
producing the rate of change

rate of change=
change on S tð Þ
change on time

=
S tð Þ- S t þ Δtð Þ

t þ Δtð Þ- t
=

S tð Þ- S t þ Δtð
Δt

Rates of change, with respect to time, apply to a variety of situations, but one
specific function, traditionally denoted by S(t), is fundamental to the analysis of
survival data. This is called the survival function and is defined as the probability of
surviving (probability of survival) beyond a specific point in time (denoted by t).
That is;

S tð Þ=P survival time= 0 at time= tð
=P survival in the interval 0, t½ �ð

Equivalent to

S tð Þ=P surviving beyond time tð Þ=P T ≥ tð Þ= 1-F tð Þ

where F(t) is the cumulative distribution function with F(t) = P(T ≤ t). Another
important concept in survival analysis is the hazard function h(t). The hazard
function that depends on T is defined as
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h tð Þ= lim
Δt→ 0

P t≤ T < t þ ΔtjT ≥ tð Þ
Δt

such that the following expression can be expressed as

h tð Þ= lim
Δt→ 0

F t þ Δtð Þ-F tð Þ
Δt ×

1
P T ≥ tð Þ

h tð Þ= f tð Þ
S tð Þ

where f(t) is the probability density function. Any distribution defined by t 2 [0, t)
can serve as a survival distribution. Consequently,

h tð Þ= -
∂
t

log S tð Þf g:

It then follows that

S tð Þ= exp -H tð Þf g

where H(t) the cumulative hazard function

H tð Þ=
t

0

h uð Þdu

Another useful relationship is

H tð Þ= - log S tð Þ:

For the simplest model, the exponential model with h(t) = λ (λ is a constant), the
survival function is given by

S tð Þ= exp -

t

0

h uð Þdu = exp -

t

0

λdu= e- λt

with the probability density function given by

f tð Þ= ∂
t
S tð Þ= λe- λt:

Thus, the survival function, hazard function, and cumulative risk for the
exponential model is given by:
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Survival function: S tð Þ= e- λt

Risk function: h tð Þ= f tð Þ
S tð Þ =

λe- λt

e- λt = λ

Cumulative risk function: H tð Þ=
t

t

h uð Þdu=
t

0

λdu= λt:

7.3.2 CRD: Aedes aegypti

The objective of this experiment was to test the vulnerability of Aedes aegypti
mosquitoes to different fungal treatments (four treatments). A bioassay was
conducted to determine the survival time of each of the mosquitoes. Three-day-old
mosquitoes were maintained after hatching in 45-cm rearing cages with access to
water but not food. The mosquitoes were kept in rearing cages with water and fed
warm pig blood (37 °C) through a natural membrane (sausage casing) approximately
every 3 days and allowed to oviposit freely during the waiting period. A total of
10 mosquitoes were placed in a chamber to which one of the treatments (four) plus a
control was applied. Here, we present part of the data from a bioassay with four
replicates. The complete data from this trial can be found in the Appendix 1 (Data:
Aedes aegypti).

Treatment Rep Y

Mam 1 2

Mam 1 2

MaS 1 3

MaS 1 3

MaC 1 2

MaC 1 2

MaC 1 2

Ma1 1 2

Ma1 1 2

Ma1 4 11



rep

Table 7.16 Results of the
analysis of variance

(a) Fit statistics for conditional distribution

-2 Log L (T | r. effects) 716.70

Pearson’s chi-square 35.33

Pearson’s chi-square/DF 0.18

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 4 192 186.42 <0.0001
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The components of this GLMM are as follows:

Distributions: yij j repj � Gamma μij,ϕ

repj � N 0, σ2rep

Linear predictor: ηij = ηþ τi þ repj

Link function: ηij = log μij

where η is the intercept, τi is the treatment effect, and repj is the random effect due to

the mosquito chamber assuming repj � N 0, σ2 :

The following GLIMMIX commands adjust a GLMM with a gamma response:

proc glimmix data=mosquitos method=laplace;
class bio trt rep;
model y = trt/dist=gamma;
random rep;
lsmeans trt/lines ilink;
run;

Part of the output is shown in Table 7.16. The statistic in (a) above indicates that
there is no over-dispersion in the fit of the data, as indicated by Pearson′s chi -
square/DF = 0.18. The analysis of variance (type III tests of fixed effects) indicates
that there is a highly significant effect (P = 0.0001) of the fungal treatments on the
mean mosquito survival time.

The relevant information in Table 7.17 “lsmeans” comes from the columns
labeled “Estimate” and “Mean”: these are the estimates on the model scale and the
data scale, and the average survival time in each of the treatments is represented by
μi ± standard errorð Þ.

The estimated risk function for each treatment combination is λ̂i = 1=μ̂i: For exam-

ple, for treatment Ma1, the estimated hazard function is λMa1 = 1=3:4223= 0:2922: We
can manually calculate these values from the Mean column or we can automate the
process by adding the command “ods output lsmeans = mu” in the GLIMMIX
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program above. Once we have saved the treatment means, we can ask SAS to estimate
the estimated hazard function for the treatments. The commands are as follows:
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Table 7.17 Means and standard errors of the main effects on the model scale (Estimate) and the
data scale (Mean)

Trt least squares means

Standard
error

t-
value

Standard error
mean

Ma1 1.2303 0.06354 192 19.36 <0.0001 3.4223 0.2174

MaC 0.9562 0.06350 192 15.06 <0.0001 2.6017 0.1652

MaS 1.5798 0.06357 192 24.85 <0.0001 4.8542 0.3086

Mam 0.6946 0.06350 192 10.94 <0.0001 2.0029 0.1272

Control 2.7155 0.06362 192 42.68 <0.0001 15.1126 0.9615

data hazard;
set mu;
hazard=1/mu;
proc print data=hazard;
run;

The results are listed below in Table 7.18. The hazard column contains the
estimated hazard functions for each treatment hi tð Þ= λi.

From the values λi, we can calculate the estimated survival function Si tð Þ= e- λi t

for each of the treatments. Figure 7.3 shows the probability of survival over time
obtained with Si tð Þ= e- λ̂i t of each of the proposed treatments and the control.
Clearly, the treatments MaS, Ma1, MaC, and Mam showed a greater efficacy in
the biological control of these mosquitoes.

7.3.3 RCBD: Aedes aegypti

Similar to the previous example, this experiment consisted of testing the vulnerabil-
ity of Aedes aegypti mosquitoes to different fungal treatments (four treatments). For
this, two bioassays were conducted to determine the survival time of each of the
mosquitoes. Three-day-old mosquitoes were maintained after hatching in 45-cm
rearing cages with access to water but not food. Mosquitoes were maintained in
rearing cages with water and were fed warm pig blood (37 °C) through a natural
membrane (sausage casing) approximately every 3 days. They were allowed to
freely oviposit during the waiting period. A total of 10 mosquitoes were placed in
a chamber to which one of the treatments (four) plus a control was applied. The data
can be found in the Appendix 1 (Data: Aedes aegypti).
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Fig. 7.3 Estimated survival probability for each treatment

The components of this GLMM are as follows:

Distributions: yijk j bioj, rep bioð Þk jð Þ � Gamma μijk,ϕ

bioj � N 0, σ2bio , rep bioð Þk jð Þ � N 0, σ2rep bioð Þ

Linear predictor: ηij = ηþ τi þ bioj þ rep bioð Þk jð Þ

where η is the intercept, τi is the treatment effect, bioj and rep(bio)k( j ) are the random
effects of the bioassay and the mosquito chamber within the bioassay, respectively,

assuming bioj � N 0, σ2 and rep bioð Þ � N 0, σ2 :

Link function: ηij = log μij

The following GLIMMIX program fits a block GLMM with a gamma response.

proc glimmix method=laplace nobound;
class bio trt ind rep;
model y = trt/dist=gamma;
random bio rep(bio);
ods output lsmeans=mu;
lsmeans trt/lines ilink;
run;quit;

The results obtained are shown below. Part of the statistics and variance
components are listed in Table 7.19. In part (a), the value of the statistic of



TRT Estimate DF Pr > |t| Mean

TRT Estimate DF Probt Mean

Pearson′s chi - square/DF = 0.34 and in part (b), the estimated variance compo-
nents due to blocks, within-block replicates, and experimental error are
σ̂2bio = 0:1859, σ̂2repðbioÞ = 0:02562, and σ̂2 = 0:2822, respectively. The type III effect

hypothesis tests (part (c)) indicate that there is a highly significant difference
between treatments on the mean survival time, as indicated by P = 0.0001.
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Table 7.19 Results of the
analysis of variance

(a) Fit statistics for conditional distribution

-2 log L (Y | r. effects) 3303.50

Pearson’s chi-square 202.30

Pearson’s chi-square/DF 0.34

(b) Cov Parm Estimate Standard error

BIO 0.1859 0.1936

REP(BIO) 0.02562 0.01673

Residual 0.2822 0.01568

(c) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

TRAT 4 588 115.36 <0.0001

Table 7.20 Means and standard errors of the main effects on the model scale (Estimate) and the
data scale (Mean)

TRT least squares means

Standard
error

t-
value

Standard error
mean

Ma1 1.6344 0.3140 588 5.21 <0.0001 5.1266 1.6097

MaC 1.4903 0.3140 588 4.75 <0.0001 4.4386 1.3939

MaS 1.8788 0.3140 588 5.98 <0.0001 6.5455 2.0550

Mam 1.8053 0.3143 588 5.74 <0.0001 6.0820 1.9115

Control 2.8293 0.3139 588 9.01 <0.0001 16.9329 5.3153

Table 7.21 Means and standard errors of the main effects on the model scale (Estimate), the data

scale (Mean), and the hazard function λi

Standard
error

t-
value

Standard error
mean

Hazard

λi
Ma1 1.6344 0.3140 588 5.21 <0.0001 5.1266 1.6097 0.19506

MaC 1.4903 0.3140 588 4.75 <0.0001 4.4386 1.3939 0.22529

MaS 1.8788 0.3140 588 5.98 <0.0001 6.5455 2.0550 0.15278

Mam 1.8053 0.3143 588 5.74 <0.0001 6.0820 1.9115 0.16442

Control 2.8293 0.3139 588 9.01 <0.0001 16.9329 5.3153 0.05906

Tables 7.20 and 7.21 show the estimates on the model scale and the data scale,
linear predictors ηið Þ, means μið Þ with their respective standard errors, and the
estimated hazard function. The results indicate that the MaC treatment has a greater
lethal effect than A. aegypti mosquito control.



curves were obtained with Sið Þt = e - λi�t .
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Fig. 7.4 Estimated survival probability for each treatment

Figure 7.4 shows the survival times for the different treatments tested. These

7.4 Exercises

Exercise 7.4.1 The investigation of this experiment focused on studying the times
of animal incapacitation experienced after being exposed to the burning of eight
types of aircraft interior materials (M1–M9) and performances in milligram/gram
combustion of seven gases (CO, HCN, H2S, HCl, HBr, NO2, SO2) (Spurgeon 1978).
The recorded incapacitation time of the animal when exposed to different combus-
tion materials (under the column “Material”) is found under the column “Time in
minutes” and in the third column the value of (1000/Time); these data are shown
below (Table 7.22):

(a) Write down a statistical model of this experiment.
(b) List all the components of the GLMM in (a).
(c) Write down the null and alternative hypotheses associated with this experiment.
(d) Construct an ANOVA table indicating the sources of variation and degrees of

freedom.
(e) Analyze the time of inability of the animal to be exposed to the gases of the

different types of materials.
(f) Comment on the results obtained.
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Table 7.22 Time of incapacity of the animal when exposed to different combustion gases

Material Time 1000/Time CO HCN H2S HCl HBr NO2 SO2

M1 2.36 423.7 164 6.4 0 0 0 0.26 0

M1 2.38 420.2 174 7.5 0 0 5 1.07 0

M1 2.61 383.1 96 4.7 0 33 5 0.08 0

M1 3.07 325.7 101 7.5 0 0 7.1 0.43 0

M1 3.07 325.7 142 6.8 0 27.6 0 0.25 0

M1 3.19 313.5 143 8.2 0 0 5.5 0.33 0

M1 3.7 270.3 147 5.2 0 11.3 0 0.37 0

M1 3.9 256.4 156 4.7 0 12 2.6 0.39 0

M1 4.18 239.2 124 3.2 0 23.3 0 0.2 0

M1 4.7 212.8 101 8.9 0.9 5.4 8 0.63 0

M1 4.86 205.8 142 4.6 0 19.4 4.1 0.19 0

M1 5.58 179.2 104 3.4 0 80 0 0.15 0.4

M1 5.85 170.9 90 2.3 0 34.4 0 0.09 1.2

M2 3.22 310.6 159 16.4 0 0 5.3 2 0

M2 3.89 257.1 153 2.9 0 0 6.6 0.15 0

M2 4.79 208.8 161 0.6 0 0 0 0.62 0

M2 5.07 197.2 159 0 0 4.6 1.7 0.04 0

M2 5.22 191.6 162 0 0 22 0 0.04 0

M2 5.82 171.8 106 3.2 0 45.2 15.6 0.08 0

M2 6.09 164.2 124 1.5 0 0 0 0.85 0

M2 8.36 119.6 89 0.7 0 0 5.3 0.29 0

M2 13.02 76.8 88 0 0 0 0 0.02 0

M3 4.29 233.1 129 6 0 4.2 0 0.02 0.7

M3 4.8 208.3 105 5.8 0 0 0 0.03 0

M3 5.04 198.4 108 7.8 0 7.3 0 0.04 0

M3 5.06 197.6 120 11.6 0 23 0 0.02 0

M3 5.25 190.5 149 0 0 8.6 0 0 0

M3 5.5 181.8 28 9.1 0.4 56.2 0 0 2.2

M3 5.55 180.2 83 5 0 0 0 0.02 0

M3 7.55 132.5 68 5.5 0 27.3 0 0.01 0.9

M3 9.58 104.4 28 2.4 2 137 0 0 16.6

M4 1.15 869.6 88 62.4 0 182 0 0.52 2.1

M4 2 500 89 41.7 13.4 0 0 0 0.3

M4 2.15 465.1 63 14.9 0 0 9.6 1.6 8.5

M4 2.22 450.5 112 37.2 14.2 0 20.5 0 1.5

M4 2.23 448.4 96 7 0 43.1 0 0.53 11.2

M4 2.72 367.6 78 33.8 13.9 0 0 0 0

M4 2.93 341.3 348 1.9 0 28 7.1 1 1.8

M4 3.07 325.7 255 1.9 0 0 0 0.57 0

M4 3.47 288.2 112 19.5 10.7 88 0 0.03 4.8

M4 4.18 239.2 144 3.8 0 14.5 5.1 0.39 0.9

M4 4.64 215.5 70 11.2 6.2 205 0 0.04 4.9
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Table 7.22 (continued)

Material Time 1000/Time CO HCN H2S HCl HBr NO2 SO2

M4 7.57 132.1 92 0 0.3 536 0 0.01 3

M5 6.97 143.5 114 0 0 114 0 0 0

M5 7.47 133.9 103 0 0 221 0 0 0

M5 10.7 93.5 70 0 0 259 0 0.02 1.4

M5 13.71 72.9 56 0 0 220 0 0.01 0.9

M6 4.94 202.4 94 6.7 0 0 0 0.32 0

M6 5.26 190.1 55 14.9 5.3 21.9 0 0 2.2

M6 5.53 180.8 46 13.5 6.1 24.9 0 0 2.5

M6 7.46 134 77 3.1 0 158 0 0.04 0

M6 9.84 101.6 52 4.1 0.7 19 0 0.01 1.4

M6 10.9 91.7 41 2.4 0 82 0 0 0

M7 3.7 270.3 398 0 0 0 21 0 0

M7 3.8 263.2 345 0 0 0 15.5 0.01 0

M7 3.83 261.1 406 0 0 0 47 0 0

M7 4.04 247.5 342 0 0 23 10.3 0.04 0

M7 5.19 192.7 196 0 0 0 0 0 0

M7 6.01 166.4 148 0 0.2 387 0 0.01 1.9

M7 7.56 132.3 86 0 0 0 47 0 0

M7 9.41 106.3 54 2.2 0 197 0 0 2.6

M7 9.59 104.3 55 1.7 0 321 0 0 1.1

M7 10.79 92.7 55 4.1 0 162 0 0.02 2.9

M8 3.7 270.3 0 15 0 0 0 0.34 0

M8 3.99 250.6 90 8.6 0 88 0 0.59 0

M8 6.56 152.4 37 3.1 0 27.7 0 0.01 0

M8 7.68 130.2 66 0 0 105 0 0 0

M8 9.16 109.2 45 0 0 0 0 0.01 0

M8 10.33 96.8 62 0 0 61 0 0.01 0

M8 12.26 81.6 31 2.7 0 0 0 0.22 0

M8 14.96 66.8 9 0 0 0 0 0.01 0

Exercise 7.4.2 Cockroaches are responsible for 80% of infestations in spaces used
by humans. They associate with humans and have the ability to contaminate food
with their feces and secretions, having both medical and economic implications.
Different insecticides have been formulated, mainly synthetic, and, in some cases,
have led to the development of cockroaches’ resistance. This example deals with the
study of survival in days ( y) of this insect when exposed to two promising fungi in
the biological control of this insect plus an already known control. The data for this
example are shown below (Table 7.23):
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Table 7.23 Results of the cockroach biological control experiment

Insect Strain Age Time Insect Strain Age Time Insect Strain Age Time

1 Bb1 1 2 1 Bb2 1 2 1 Test 1 2

2 Bb1 1 3 2 Bb2 1 2 2 Test 1 20

3 Bb1 1 3 3 Bb2 1 2 3 Test 1 20

4 Bb1 1 3 4 Bb2 1 3 4 Test 1 20

5 Bb1 1 4 5 Bb2 1 3 5 Test 1 20

6 Bb1 1 7 6 Bb2 1 3 6 Test 1 20

7 Bb1 1 8 7 Bb2 1 3 7 Test 1 20

8 Bb1 1 9 8 Bb2 1 4 8 Test 1 20

9 Bb1 1 10 9 Bb2 1 5 9 Test 1 20

10 Bb1 1 10 10 Bb2 1 8 10 Test 1 20

11 Bb1 1 17 11 Bb2 1 9 11 Test 1 20

12 Bb1 1 19 12 Bb2 1 10 12 Test 1 20

13 Bb1 1 19 13 Bb2 1 11 13 Test 1 20

14 Bb1 1 20 14 Bb2 1 20 14 Test 1 20

15 Bb1 1 20 15 Bb2 1 20 15 Test 1 20

16 Bb1 1 20 16 Bb2 1 20 16 Test 1 20

17 Bb1 1 20 17 Bb2 1 20 17 Test 1 20

18 Bb1 1 20 18 Bb2 1 20 18 Test 1 20

19 Bb1 1 20 19 Bb2 1 20 19 Test 1 20

20 Bb1 1 20 20 Bb2 1 20 20 Test 1 20

21 Bb1 2 4 21 Bb2 2 3 21 Test 2 20

22 Bb1 2 13 22 Bb2 2 3 22 Test 2 20

23 Bb1 2 13 23 Bb2 2 4 23 Test 2 20

24 Bb1 2 13 24 Bb2 2 6 24 Test 2 20

25 Bb1 2 20 25 Bb2 2 8 25 Test 2 20

26 Bb1 2 20 26 Bb2 2 13 26 Test 2 20

27 Bb1 2 20 27 Bb2 2 17 27 Test 2 20

28 Bb1 2 20 28 Bb2 2 17 28 Test 2 20

29 Bb1 2 20 29 Bb2 2 19 29 Test 2 20

30 Bb1 2 20 30 Bb2 2 19 30 Test 2 20

31 Bb1 2 20 31 Bb2 2 20 31 Test 2 20

32 Bb1 2 20 32 Bb2 2 20 32 Test 2 20

33 Bb1 2 20 33 Bb2 2 20 33 Test 2 20

34 Bb1 2 20 34 Bb2 2 20 34 Test 2 20

35 Bb1 2 20 35 Bb2 2 20 35 Test 2 20

36 Bb1 2 20 36 Bb2 2 20 36 Test 2 20

37 Bb1 2 20 37 Bb2 2 20 37 Test 2 20

38 Bb1 2 20 38 Bb2 2 20 38 Test 2 20

39 Bb1 2 20 39 Bb2 2 20 39 Test 2 20

40 Bb1 2 20 40 Bb2 2 20 40 Test 2 20

41 Bb1 3 3 41 Bb2 3 2 41 Test 3 11

42 Bb1 3 3 42 Bb2 3 3 42 Test 3 20
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Table 7.23 (continued)

Insect Strain Age Time Insect Strain Age Time Insect Strain Age Time

43 Bb1 3 4 43 Bb2 3 4 43 Test 3 20

44 Bb1 3 4 44 Bb2 3 5 44 Test 3 20

45 Bb1 3 6 45 Bb2 3 5 45 Test 3 20

46 Bb1 3 7 46 Bb2 3 10 46 Test 3 20

47 Bb1 3 8 47 Bb2 3 10 47 Test 3 20

48 Bb1 3 8 48 Bb2 3 10 48 Test 3 20

49 Bb1 3 9 49 Bb2 3 11 49 Test 3 20

50 Bb1 3 10 50 Bb2 3 13 50 Test 3 20

51 Bb1 3 13 51 Bb2 3 13 51 Test 3 20

52 Bb1 3 14 52 Bb2 3 13 52 Test 3 20

53 Bb1 3 16 53 Bb2 3 14 53 Test 3 20

54 Bb1 3 17 54 Bb2 3 15 54 Test 3 20

55 Bb1 3 17 55 Bb2 3 15 55 Test 3 20

56 Bb1 3 20 56 Bb2 3 15 56 Test 3 20

57 Bb1 3 20 57 Bb2 3 15 57 Test 3 20

58 Bb1 3 20 58 Bb2 3 19 58 Test 3 20

59 Bb1 3 20 59 Bb2 3 20 59 Test 3 20

60 Bb1 3 20 60 Bb2 3 20 60 Test 3 20

Write down a statistical model of this experiment.(a)
(b) List all components of the GLMM from (a).
(c) Write down the null and alternative hypotheses associated with this experiment.
(d) Analyze the survival time of the insect when infected with the different types of

fungi.
(e) Comment on the results obtained.

Exercise 7.4.3 Consider a study on the effect of analgesic treatments (Trt) in elderly
patients with neuralgia. Two test treatments (A and B) and a placebo (P) are
compared. The response variable is whether the patient reported pain or not
(yes = 1, n = 0). The investigators recorded the age (E) and sex (S) of 60 patients
and the duration (time = T ) in which the pain disappeared after starting the
treatment. The data are presented in the Table 7.24 below.

(a) List all components of the GLMM for this exercise.
(b) Write down the null and alternative hypotheses associated with this experiment.
(c) Construct an ANOVA table indicating the sources of variation and degrees of

freedom.
(d) Analyze the average time during which the patient experiences pain after starting

the treatment. Are there any significant differences?
(e) Comment on the results obtained.



Data: Onset and duration of estrus in Pelibuey ewes (age in weeks, weight in kilograms,
Inestro = number of days from the onset of estrus, Durestro = number of days in the duration of
estrus)
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Table 7.24 Results with neuralgia patients (Trt = Treatment, S = Sex, E = Age, T = Time,
D = Pain with yes = 1 and no = 0)

Trt Tr Tr

P F 68 1 0 B M 74 16 0 P F 67 30 0

P M 66 26 1 B F 67 28 0 B F 77 16 0

A F 71 12 0 B F 72 50 0 B F 76 9 1

A M 71 17 1 A F 63 27 0 A F 69 18 1

B F 66 12 0 A M 62 42 0 P F 64 1 1

A F 64 17 0 P M 74 4 0 A F 72 25 0

P M 70 1 1 B M 66 19 0 B M 59 29 0

A F 64 30 0 A M 70 28 0 A M 69 1 0

B F 78 1 0 P M 83 1 1 B F 69 42 0

B M 75 30 1 P M 77 29 1 P F 79 20 1

A M 70 12 0 A F 69 12 0 B F 65 14 0

B M 70 1 0 B M 67 23 0 A M 76 25 1

P M 78 12 1 B M 77 1 1 B F 69 24 0

P M 66 4 1 P F 65 29 0 P M 60 26 1

A M 78 15 1 B M 75 21 1 A F 67 11 0

P F 72 27 0 P F 70 13 1 A M 75 6 1

B F 65 7 0 P F 68 27 1 P M 68 11 1

P M 67 17 1 B M 70 22 0 A M 65 15 0

P F 67 1 1 A M 67 10 0 P F 72 11 1

A F 74 1 0 B M 80 21 1 A F 69 3 0

Exercise 7.4.4 Refer to the previous exercise and perform an analysis of
covariance.

(a) List the linear predictor of this experiment.
(b) Analyze the average time during which the patient experiences pain after starting

the treatment using an analysis of covariance. Are there any significant
differences?

(c) Comment on the results obtained. Your results differ from those obtained in the
previous year.

Appendix 1

Animal Birth type Age Weight CC Inestro Durestro

1 1 18.5096 52.5 4 28 4

2 1 18.4438 47.4 4 28 4

3 1 19.3973 50.2 4 16 20

4 1 19.3973 53.6 4 28 16
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Animal Birth type Age Weight CC Inestro Durestro

5 1 9.4356 47.5 4 28 4

6 1 18.674 41.3 3 28 4

7 1 20.0877 60.5 5 28 4

8 1 19.5616 49.4 4 28 4

9 1 19.5288 53.4 4 28 4

10 1 19.7589 52.6 5 28 4

11 1 29.9507 35.5 3 28 4

12 1 19.3644 50.5 4 28 4

13 1 19.0027 62.2 5 28 4

14 1 18.3452 54.7 4 28 4

15 1 20.0877 48.7 4 28 4

1 2 40.7671 40.5 3 28 4

2 2 51.189 49.3 4 12 8

3 2 40.0767 38.1 3 20 20

4 2 54.3123 41.9 3 24 8

5 2 52.274 58 4 28 4

6 2 53.6219 34.8 3 28 4

7 2 40.2082 40.3 2 24 8

8 2 36.4932 34.6 2 28 4

9 2 50.6301 42.1 2 28 4

10 2 51.0247 52.6 4 28 4

11 2 46.389 32.1 2 20 12

12 2 50.7945 40 2 16 16

13 2 30.411 37.9 2 24 8

14 2 30.5096 42.2 3 20 20

15 2 50.6959 33.2 2 24 16

16 2 36.6247 34.2 3 20 20

17 2 30.5425 39 2 12 32

18 2 36.6247 33.7 2 24 16

19 2 29.9507 32.9 2 24 16

20 2 47.211 39.5 2 32 12

21 2 40.2082 57.5 5 12 32

22 2 52.2411 53.3 4 12 28

23 2 53.4247 43.4 3 12 32

24 2 55.5616 46 3 24 16

25 2 30.5425 31.6 2 24 16

26 2 29.0959 47.8 3 20 20

27 2 40.1425 36 2 20 20

28 2 50.7945 42.2 3 24 16

29 2 37.6767 44.3 3 24 16

30 2 36.4274 43.1 2 20 20

31 2 30.5425 38 2 20 20
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Animal Birth type Age Weight CC Inestro Durestro

1 3 68.9753 42.9 2 24 8

2 3 63.1233 44 4 24 8

3 3 68.7781 38.5 3 20 12

4 3 64.3068 48 4 24 8

5 3 68.6795 40.1 2 20 12

6 3 62.6301 46.3 3 32 4

7 3 69.8959 32.5 2 20 12

8 3 69.6 42.8 3 20 12

9 3 63.4849 51.3 4 24 8

10 3 64.274 47.7 3 24 16

11 3 63.5178 44.5 3 12 28

12 3 78.7397 38 2 12 28

13 3 64.537 52.5 4 12 28

14 3 62.4329 41.2 2 12 28

15 3 67.6603 50.8 4 20 20

16 3 63.7151 48.2 3 20 24

17 3 74.4986 33.3 2 32 8

18 3 63.6493 45.1 3 24 16

19 3 72.9205 33 3 24 20

20 3 69.4027 40.4 3 24 16

21 3 69.9616 43.3 3 12 28

22 3 69.6 43.2 2 24 16

23 3 63.4849 51 4 24 16

24 3 63.6164 57.4 4 24 16

25 3 67.8575 43 3 24 16

26 3 63.6822 49.7 4 24 16

27 3 65.7534 40.1 3 24 16

28 3 67.989 33.4 1 20 20

29 3 61.1836 51.6 4 20 20

30 3 63.3534 43.3 3 20 20

31 3 79.8904 44.7 3 24 16

32 3 63.7151 37.9 3 20 20

Dose Insecticide Rep Frac Time

Low Insec1 1 0.31 3.1

Low Insec2 1 0.82 8.2

Low Insec3 1 0.43 4.3

Low Insec4 1 0.45 4.5

Medium Insec1 1 0.36 3.6

Medium Insec2 1 0.92 9.2

Medium Insec3 1 0.44 4.4

Medium Insec4 1 0.56 5.6

High Insec1 1 0.22 2.2
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Dose Insecticide Rep Frac Time

High Insec2 1 0.3 3

High Insec3 1 0.23 2.3

High Insec4 1 0.3 3

Low Insec1 2 0.45 4.5

Low Insec2 2 1.1 11

Low Insec3 2 0.45 4.5

Low Insec4 2 0.71 7.1

Medium Insec1 2 0.29 2.9

Medium Insec2 2 0.61 6.1

Medium Insec3 2 0.35 3.5

Medium Insec4 2 1.02 10.2

High Insec1 2 0.21 2.1

High Insec2 2 0.37 3.7

High Insec3 2 0.25 2.5

High Insec4 2 0.36 3.6

Low Insec1 3 0.46 4.6

Low Insec2 3 0.88 8.8

Low Insec3 3 0.63 6.3

Low Insec4 3 0.66 6.6

Medium Insec1 3 0.4 4

Medium Insec2 3 0.49 4.9

Medium Insec3 3 0.31 3.1

Medium Insec4 3 0.71 7.1

High Insec1 3 0.18 1.8

High Insec2 3 0.38 3.8

High Insec3 3 0.24 2.4

High Insec4 3 0.31 3.1

Low Insec1 4 0.43 4.3

Low Insec2 4 0.72 7.2

Low Insec3 4 0.76 7.6

Low Insec4 4 0.62 6.2

Medium Insec1 4 0.23 2.3

Medium Insec2 4 1.24 12.4

Medium Insec3 4 0.4 4

Medium Insec4 4 0.38 3.8

High Insec1 4 0.23 2.3

High Insec2 4 0.29 2.9

High Insec3 4 0.22 2.2

High Insec4 4 0.33 3.3
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Data: Aedes aegypti (Trt = treatment, Rep = repetition, Y = survival time)
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Block Demineralization Pasteurization pH y

1 2 2 1 198.5

1 2 2 2 299

1 2 2 3 223.1

1 1 1 1 166.6

1 1 1 2 196.5

1 1 1 3 178.9

1 1 2 1 160.7

1 1 2 2 151.1

1 1 2 3 146.5

1 2 1 1 146.3

1 2 1 2 169.3

1 2 1 3 198.1

2 2 2 1 236.3

2 2 2 2 330.7

2 2 2 3 281.2

2 1 1 1 151.8

2 1 1 2 156

2 1 1 3 159.7

2 1 2 1 171.8

2 1 2 2 159.3

2 1 2 3 155.9

2 2 1 1 175.2

2 2 1 2 182.2

2 2 1 3 136.2

Trt Rep Y Trt Rep Y Trt Rep Y Trt Rep Y Trt Rep Y

Control 1 8 Mam 1 2 MaS 1 3 MaC 1 2 Ma1 1 2

Control 1 11 Mam 1 2 MaS 1 3 MaC 1 2 Ma1 1 2

Control 1 11 Mam 1 2 MaS 1 3 MaC 1 2 Ma1 1 2

Control 1 11 Mam 1 2 MaS 1 3 MaC 1 2 Ma1 1 2

Control 1 11 Mam 1 2 MaS 1 4 MaC 1 3 Ma1 1 3

Control 1 11 Mam 1 2 MaS 1 5 MaC 1 3 Ma1 1 3

Control 1 13 Mam 1 2 MaS 1 6 MaC 1 3 Ma1 1 3

Control 1 13 Mam 1 2 MaS 1 6 MaC 1 3 Ma1 1 3

Control 1 14 Mam 1 2 MaS 1 9 MaC 1 3 Ma1 1 6

Control 1 20 Mam 1 2 MaS 1 12 MaC 1 4 Ma1 1 12

Control 2 8 Mam 2 2 MaS 2 3 MaC 2 2 Ma1 2 2

Control 2 11 Mam 2 2 MaS 2 3 MaC 2 2 Ma1 2 2

Control 2 11 Mam 2 2 MaS 2 3 MaC 2 2 Ma1 2 2

Control 2 11 Mam 2 2 MaS 2 3 MaC 2 2 Ma1 2 3



Data: Aedes aegypti (Bio = bioassay, Trt = treatment, Rep = repetition, Y = survival time)
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Trt Rep Y Trt Rep Y Trt Rep Y Trt Rep Y Trt Rep Y

Control 2 11 Mam 2 2 MaS 2 3 MaC 2 2 Ma1 2 3

Control 2 11 Mam 2 2 MaS 2 3 MaC 2 2 Ma1 2 3

Control 2 15 Mam 2 2 MaS 2 3 MaC 2 3 Ma1 2 3

Control 2 15 Mam 2 2 MaS 2 4 MaC 2 3 Ma1 2 4

Control 2 15 Mam 2 2 MaS 2 5 MaC 2 3 Ma1 2 4

Control 2 16 Mam 2 2 MaS 2 6 MaC 2 4 Ma1 2 4

Control 3 11 Mam 3 2 MaS 3 3 MaC 3 2 Ma1 3 2

Control 3 11 Mam 3 2 MaS 3 3 MaC 3 2 Ma1 3 2

Control 3 11 Mam 3 2 MaS 3 3 MaC 3 2 Ma1 3 2

Control 3 11 Mam 3 2 MaS 3 2 MaC 3 2 Ma1 3 2

Control 3 23 Mam 3 2 MaS 3 2 MaC 3 3 Ma1 3 3

Control 3 25 Mam 3 2 MaS 3 5 MaC 3 3 Ma1 3 3

Control 3 26 Mam 3 2 MaS 3 5 MaC 3 3 Ma1 3 3

Control 3 27 Mam 3 2 MaS 3 6 MaC 3 3 Ma1 3 3

Control 3 30 Mam 3 2 MaS 3 10 MaC 3 4 Ma1 3 4

Control 3 30 Mam 3 2 MaS 3 12 MaC 3 4 Ma1 3 4

Control 4 8 Mam 4 2 MaS 4 3 MaC 4 2 Ma1 4 2

Control 4 8 Mam 4 2 MaS 4 3 MaC 4 2 Ma1 4 2

Control 4 11 Mam 4 2 MaS 4 3 MaC 4 2 Ma1 4 2

Control 4 13 Mam 4 2 MaS 4 4 MaC 4 2 Ma1 4 3

Control 4 14 Mam 4 2 MaS 4 4 MaC 4 2 Ma1 4 3

Control 4 19 Mam 4 2 MaS 4 5 MaC 4 2 Ma1 4 3

Control 4 20 Mam 4 2 MaS 4 5 MaC 4 3 Ma1 4 4

Control 4 20 Mam 4 2 MaS 4 6 MaC 4 3 Ma1 4 5

Control 4 20 Mam 4 2 MaS 4 9 MaC 4 3 Ma1 4 6

Control 4 22 Mam 4 2 MaS 4 12 MaC 4 3 Ma1 4 11

Bio Trt Rep Y Bio Trt Rep Y Bio Trt Rep Y

B1 C 1 8 B1 MaS 3 3 B2 C 1 5

B1 C 1 11 B1 MaS 3 3 B2 C 1 7

B1 C 1 11 B1 MaS 3 3 B2 C 1 8

B1 C 1 11 B1 MaS 3 2 B2 C 1 8

B1 C 1 11 B1 MaS 3 2 B2 C 1 10

B1 C 1 11 B1 MaS 3 5 B2 C 1 13

B1 C 1 13 B1 MaS 3 5 B2 C 1 14

B1 C 1 13 B1 MaS 3 6 B2 C 1 16

B1 C 1 14 B1 MaS 3 10 B2 C 1 20

B1 C 1 20 B1 MaS 3 12 B2 C 1 22

B1 C 2 8 B1 MaS 4 3 B2 C 1 22

B1 C 2 11 B1 MaS 4 3 B2 C 1 23

B1 C 2 11 B1 MaS 4 3 B2 C 1 23

B1 C 2 11 B1 MaS 4 4 B2 C 1 23



(continued)

312 7 Time of Occurrence of an Event of Interest

Bio Trt Rep Y Bio Trt Rep Y Bio Trt Rep Y

B1 C 2 11 B1 MaS 4 4 B2 C 1 24

B1 C 2 11 B1 MaS 4 5 B2 C 1 24

B1 C 2 15 B1 MaS 4 5 B2 C 1 24

B1 C 2 15 B1 MaS 4 6 B2 C 1 24

B1 C 2 15 B1 MaS 4 9 B2 C 1 28

B1 C 2 16 B1 MaS 4 12 B2 C 1 28

B1 C 3 11 B1 MaC 1 2 B2 C 2 10

B1 C 3 11 B1 MaC 1 2 B2 C 2 11

B1 C 3 11 B1 MaC 1 2 B2 C 2 11

B1 C 3 11 B1 MaC 1 2 B2 C 2 12

B1 C 3 23 B1 MaC 1 3 B2 C 2 12

B1 C 3 25 B1 MaC 1 3 B2 C 2 15

B1 C 3 26 B1 MaC 1 3 B2 C 2 15

B1 C 3 27 B1 MaC 1 3 B2 C 2 16

B1 C 3 30 B1 MaC 1 3 B2 C 2 16

B1 C 3 30 B1 MaC 1 4 B2 C 2 16

B1 C 4 8 B1 MaC 2 2 B2 C 2 16

B1 C 4 8 B1 MaC 2 2 B2 C 2 18

B1 C 4 11 B1 MaC 2 2 B2 C 2 19

B1 C 4 13 B1 MaC 2 2 B2 C 2 27

B1 C 4 14 B1 MaC 2 2 B2 C 2 27

B1 C 4 19 B1 MaC 2 2 B2 C 2 27

B1 C 4 20 B1 MaC 2 3 B2 C 2 27

B1 C 4 20 B1 MaC 2 3 B2 C 2 27

B1 C 4 20 B1 MaC 2 3 B2 C 2 28

B1 C 4 22 B1 MaC 2 4 B2 C 2 28

B1 Mam 1 2 B1 MaC 3 2 B2 C 3 16

B1 Mam 1 2 B1 MaC 3 2 B2 C 3 19

B1 Mam 1 2 B1 MaC 3 2 B2 C 3 19

B1 Mam 1 2 B1 MaC 3 2 B2 C 3 19

B1 Mam 1 2 B1 MaC 3 3 B2 C 3 19

B1 Mam 1 2 B1 MaC 3 3 B2 C 3 19

B1 Mam 1 2 B1 MaC 3 3 B2 C 3 25

B1 Mam 1 2 B1 MaC 3 3 B2 C 3 25

B1 Mam 1 2 B1 MaC 3 4 B2 C 3 26

B1 Mam 1 2 B1 MaC 3 4 B2 C 3 28

B1 Mam 2 2 B1 MaC 4 2 B2 C 3 28

B1 Mam 2 2 B1 MaC 4 2 B2 C 3 28

B1 Mam 2 2 B1 MaC 4 2 B2 C 3 28

B1 Mam 2 2 B1 MaC 4 2 B2 C 3 28

B1 Mam 2 2 B1 MaC 4 2 B2 C 3 28

B1 Mam 2 2 B1 MaC 4 2 B2 C 3 28

B1 Mam 2 2 B1 MaC 4 3 B2 C 3 28
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Bio Trt Rep Y Bio Trt Rep Y Bio Trt Rep Y

B1 Mam 2 2 B1 MaC 4 3 B2 C 3 28

B1 Mam 2 2 B1 MaC 4 3 B2 C 3 28

B1 Mam 2 2 B1 MaC 4 3 B2 C 3 28

B1 Mam 3 2 B1 Ma1 1 2 B2 C 4 16

B1 Mam 3 2 B1 Ma1 1 2 B2 C 4 17

B1 Mam 3 2 B1 Ma1 1 2 B2 C 4 17

B1 Mam 3 2 B1 Ma1 1 2 B2 C 4 17

B1 Mam 3 2 B1 Ma1 1 3 B2 C 4 17

B1 Mam 3 2 B1 Ma1 1 3 B2 C 4 17

B1 Mam 3 2 B1 Ma1 1 3 B2 C 4 17

B1 Mam 3 2 B1 Ma1 1 3 B2 C 4 19

B1 Mam 3 2 B1 Ma1 1 6 B2 C 4 28

B1 Mam 3 2 B1 Ma1 1 12 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 2 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 2 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 2 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 3 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 3 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 3 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 3 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 4 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 4 B2 C 4 28

B1 Mam 4 2 B1 Ma1 2 4 B2 C 4 28

B1 MaS 1 3 B1 Ma1 3 2 B2 Mam 1 2

B1 MaS 1 3 B1 Ma1 3 2 B2 Mam 1 3

B1 MaS 1 3 B1 Ma1 3 2 B2 Mam 1 3

B1 MaS 1 3 B1 Ma1 3 2 B2 Mam 1 4

B1 MaS 1 4 B1 Ma1 3 3 B2 Mam 1 4

B1 MaS 1 5 B1 Ma1 3 3 B2 Mam 1 4

B1 MaS 1 6 B1 Ma1 3 3 B2 Mam 1 5

B1 MaS 1 6 B1 Ma1 3 3 B2 Mam 1 5

B1 MaS 1 9 B1 Ma1 3 4 B2 Mam 1 5

B1 MaS 1 12 B1 Ma1 3 4 B2 Mam 1 6

B1 MaS 2 3 B1 Ma1 4 2 B2 Mam 1 6

B1 MaS 2 3 B1 Ma1 4 2 B2 Mam 1 6

B1 MaS 2 3 B1 Ma1 4 2 B2 Mam 1 7

B1 MaS 2 3 B1 Ma1 4 3 B2 Mam 1 15

B1 MaS 2 3 B1 Ma1 4 3 B2 Mam 1 17

B1 MaS 2 3 B1 Ma1 4 3 B2 Mam 1 21

B1 MaS 2 3 B1 Ma1 4 4 B2 Mam 1 25

B1 MaS 2 4 B1 Ma1 4 5 B2 Mam 1 28

B1 MaS 2 5 B1 Ma1 4 6 B2 Mam 1 28

B1 MaS 2 6 B1 Ma1 4 11 B2 Mam 1 28
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Bio Trt Rep Y Bio Trt Rep Y Bio Trt Rep Y

B2 Mam 2 2 B2 MaS 2 18 B2 MaC 3 13

B2 Mam 2 2 B2 MaS 3 5 B2 MaC 3 23

B2 Mam 2 2 B2 MaS 3 5 B2 MaC 4 2

B2 Mam 2 3 B2 MaS 3 5 B2 MaC 4 2

B2 Mam 2 3 B2 MaS 3 9 B2 MaC 4 3

B2 Mam 2 3 B2 MaS 3 10 B2 MaC 4 6

B2 Mam 2 4 B2 MaS 3 10 B2 MaC 4 6

B2 Mam 2 7 B2 MaS 3 10 B2 MaC 4 6

B2 Mam 2 11 B2 MaS 3 12 B2 MaC 4 8

B2 Mam 2 11 B2 MaS 3 12 B2 MaC 4 8

B2 Mam 2 11 B2 MaS 3 12 B2 MaC 4 8

B2 Mam 2 13 B2 MaS 3 12 B2 MaC 4 8

B2 Mam 2 13 B2 MaS 3 12 B2 MaC 4 9

B2 Mam 2 14 B2 MaS 3 14 B2 MaC 4 9

B2 Mam 2 14 B2 MaS 3 15 B2 MaC 4 9

B2 Mam 2 14 B2 MaS 3 18 B2 MaC 4 9

B2 Mam 2 15 B2 MaS 3 18 B2 MaC 4 10

B2 Mam 2 16 B2 MaS 3 23 B2 MaC 4 10

B2 Mam 2 16 B2 MaS 3 25 B2 MaC 4 12

B2 Mam 2 23 B2 MaS 3 25 B2 MaC 4 19

B2 Mam 3 3 B2 MaS 3 25 B2 MaC 4 20

B2 Mam 3 3 B2 MaS 4 5 B2 MaC 4 24

B2 Mam 3 5 B2 MaS 4 5 B2 Ma1 1 2

B2 Mam 3 6 B2 MaS 4 6 B2 Ma1 1 2

B2 Mam 3 8 B2 MaS 4 6 B2 Ma1 1 3

B2 Mam 3 8 B2 MaS 4 6 B2 Ma1 1 3

B2 Mam 3 10 B2 MaS 4 6 B2 Ma1 1 3

B2 Mam 3 10 B2 MaS 4 7 B2 Ma1 1 4

B2 Mam 3 11 B2 MaS 4 8 B2 Ma1 1 4

B2 Mam 3 11 B2 MaS 4 8 B2 Ma1 1 5

B2 Mam 3 11 B2 MaS 4 9 B2 Ma1 1 5

B2 Mam 3 12 B2 MaS 4 10 B2 Ma1 1 5

B2 Mam 3 17 B2 MaS 4 10 B2 Ma1 1 6

B2 Mam 3 17 B2 MaS 4 10 B2 Ma1 1 6

B2 Mam 3 17 B2 MaS 4 11 B2 Ma1 1 6

B2 Mam 3 17 B2 MaS 4 11 B2 Ma1 1 7

B2 Mam 3 17 B2 MaS 4 11 B2 Ma1 1 8

B2 Mam 3 17 B2 MaS 4 11 B2 Ma1 1 8

B2 Mam 3 18 B2 MaS 4 11 B2 Ma1 1 8

B2 Mam 3 25 B2 MaS 4 11 B2 Ma1 1 10

B2 Mam 4 4 B2 MaS 4 24 B2 Ma1 1 17

B2 Mam 4 4 B2 MaC 1 2 B2 Ma1 1 21

B2 Mam 4 5 B2 MaC 1 2 B2 Ma1 2 2
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Bio Trt Rep Y Bio Trt Rep Y Bio Trt Rep Y

B2 Mam 4 7 B2 MaC 1 2 B2 Ma1 2 2

B2 Mam 4 9 B2 MaC 1 2 B2 Ma1 2 2

B2 Mam 4 10 B2 MaC 1 2 B2 Ma1 2 3

B2 Mam 4 12 B2 MaC 1 2 B2 Ma1 2 3

B2 Mam 4 12 B2 MaC 1 3 B2 Ma1 2 3

B2 Mam 4 12 B2 MaC 1 3 B2 Ma1 2 4

B2 Mam 4 12 B2 MaC 1 3 B2 Ma1 2 5

B2 Mam 4 12 B2 MaC 1 3 B2 Ma1 2 6

B2 Mam 4 12 B2 MaC 1 3 B2 Ma1 2 7

B2 Mam 4 13 B2 MaC 1 4 B2 Ma1 2 7

B2 Mam 4 13 B2 MaC 1 4 B2 Ma1 2 7

B2 Mam 4 13 B2 MaC 1 5 B2 Ma1 2 8

B2 Mam 4 18 B2 MaC 1 5 B2 Ma1 2 9

B2 Mam 4 27 B2 MaC 1 7 B2 Ma1 2 9

B2 Mam 4 27 B2 MaC 1 7 B2 Ma1 2 10

B2 Mam 4 27 B2 MaC 1 9 B2 Ma1 2 10

B2 Mam 4 27 B2 MaC 1 9 B2 Ma1 2 10

B2 MaS 1 2 B2 MaC 1 10 B2 Ma1 2 10

B2 MaS 1 2 B2 MaC 2 2 B2 Ma1 2 10

B2 MaS 1 2 B2 MaC 2 2 B2 Ma1 3 2

B2 MaS 1 2 B2 MaC 2 2 B2 Ma1 3 3

B2 MaS 1 3 B2 MaC 2 3 B2 Ma1 3 3

B2 MaS 1 3 B2 MaC 2 3 B2 Ma1 3 3

B2 MaS 1 3 B2 MaC 2 3 B2 Ma1 3 5

B2 MaS 1 3 B2 MaC 2 3 B2 Ma1 3 7

B2 MaS 1 4 B2 MaC 2 3 B2 Ma1 3 7

B2 MaS 1 5 B2 MaC 2 5 B2 Ma1 3 7

B2 MaS 1 5 B2 MaC 2 6 B2 Ma1 3 8

B2 MaS 1 5 B2 MaC 2 6 B2 Ma1 3 8

B2 MaS 1 6 B2 MaC 2 6 B2 Ma1 3 8

B2 MaS 1 6 B2 MaC 2 7 B2 Ma1 3 9

B2 MaS 1 8 B2 MaC 2 7 B2 Ma1 3 10

B2 MaS 1 8 B2 MaC 2 7 B2 Ma1 3 10

B2 MaS 1 9 B2 MaC 2 9 B2 Ma1 3 10

B2 MaS 1 11 B2 MaC 2 10 B2 Ma1 3 10

B2 MaS 1 13 B2 MaC 2 10 B2 Ma1 3 10

B2 MaS 1 21 B2 MaC 2 18 B2 Ma1 3 10

B2 MaS 2 3 B2 MaC 2 19 B2 Ma1 3 11

B2 MaS 2 3 B2 MaC 3 2 B2 Ma1 3 17

B2 MaS 2 4 B2 MaC 3 3 B2 Ma1 4 4

B2 MaS 2 6 B2 MaC 3 6 B2 Ma1 4 5

B2 MaS 2 6 B2 MaC 3 6 B2 Ma1 4 8

B2 MaS 2 8 B2 MaC 3 8 B2 Ma1 4 8
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Bio Trt Rep Y Bio Trt Rep Y Bio Trt Rep Y

B2 MaS 2 8 B2 MaC 3 8 B2 Ma1 4 8

B2 MaS 2 9 B2 MaC 3 9 B2 Ma1 4 9

B2 MaS 2 9 B2 MaC 3 9 B2 Ma1 4 9

B2 MaS 2 10 B2 MaC 3 9 B2 Ma1 4 11

B2 MaS 2 10 B2 MaC 3 9 B2 Ma1 4 11

B2 MaS 2 11 B2 MaC 3 9 B2 Ma1 4 11

B2 MaS 2 11 B2 MaC 3 10 B2 Ma1 4 11

B2 MaS 2 11 B2 MaC 3 10 B2 Ma1 4 11

B2 MaS 2 11 B2 MaC 3 10 B2 Ma1 4 12

B2 MaS 2 11 B2 MaC 3 10 B2 Ma1 4 12

B2 MaS 2 12 B2 MaC 3 10 B2 Ma1 4 13

B2 MaS 2 12 B2 MaC 3 11 B2 Ma1 4 13

B2 MaS 2 12 B2 MaC 3 13 B2 Ma1 4 13

B2 Ma1 4 13

B2 Ma1 4 14

B2 Ma1 4 18

Animal Birthtype Age Weight Inestro Durestro

1 1 18.509589 52.5 28 4

2 1 18.4438356 47.4 28 4

3 1 19.3972603 50.2 16 20

4 1 19.3972603 53.6 28 16

5 1 9.43561644 47.5 28 4

6 1 18.6739726 41.3 28 4

7 1 20.0876712 60.5 28 4

8 1 19.5616438 49.4 28 4

9 1 19.5287671 53.4 28 4

10 1 19.7589041 52.6 28 4

11 1 29.9506849 35.5 28 4

12 1 19.3643836 50.5 28 4

13 1 19.0027397 62.2 28 4

14 1 18.3452055 54.7 28 4

15 1 20.0876712 48.7 28 4

1 2 40.7671233 40.5 28 4

2 2 51.1890411 49.3 12 8

3 2 40.0767123 38.1 20 20

4 2 54.3123288 41.9 24 8

5 2 52.2739726 58 28 4

6 2 53.6219178 34.8 28 4

7 2 40.2082192 40.3 24 8

8 2 36.4931507 34.6 28 4

9 2 50.630137 42.1 28 4
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Animal Birthtype Age Weight Inestro Durestro

10 2 51.0246575 52.6 28 4

11 2 46.3890411 32.1 20 12

12 2 50.7945206 40 16 16

13 2 30.4109589 37.9 24 8

14 2 30.509589 42.2 20 20

15 2 50.6958904 33.2 24 16

16 2 36.6246575 34.2 20 20

17 2 30.5424658 39 12 32

18 2 36.6246575 33.7 24 16

19 2 29.9506849 32.9 24 16

20 2 47.2109589 39.5 32 12

21 2 40.2082192 57.5 12 32

22 2 52.2410959 53.3 12 28

23 2 53.4246575 43.4 12 32

24 2 55.5616438 46 24 16

25 2 30.5424658 31.6 24 16

26 2 29.0958904 47.8 20 20

27 2 40.1424658 36 20 20

28 2 50.7945206 42.2 24 16

29 2 37.6767123 44.3 24 16

30 2 36.4273973 43.1 20 20

31 2 30.5424658 38 20 20

1 3 68.9753425 42.9 24 8

2 3 63.1232877 44 24 8

3 3 68.7780822 38.5 20 12

4 3 64.3068493 48 24 8

5 3 68.6794521 40.1 20 12

6 3 62.630137 46.3 32 4

7 3 69.8958904 32.5 20 12

8 3 69.6 42.8 20 12

9 3 63.4849315 51.3 24 8

10 3 64.2739726 47.7 24 16

11 3 63.5178082 44.5 12 28

12 3 78.739726 38 12 28

13 3 64.5369863 52.5 12 28

14 3 62.4328767 41.2 12 28

15 3 67.660274 50.8 20 20

16 3 63.7150685 48.2 20 24

17 3 74.4986301 33.3 32 8

18 3 63.6493151 45.1 24 16

19 3 72.920548 33 24 20

20 3 69.4027397 40.4 24 16

21 3 69.9616438 43.3 12 28
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Animal Birthtype Age Weight Inestro Durestro

22 3 69.6 43.2 24 16

23 3 63.4849315 51 24 16

24 3 63.6164384 57.4 24 16

25 3 67.8575343 43 24 16

26 3 63.6821918 49.7 24 16

27 3 65.7534247 40.1 24 16

28 3 67.9890411 33.4 20 20

29 3 61.1835616 51.6 20 20

30 3 63.3534247 43.3 20 20

31 3 79.890411 44.7 24 16

32 3 63.7150685 37.9 20 20

Batch Demineralization Pasteurization pH Time

1 2 2 1 198.5

1 2 2 2 299

1 2 2 3 223.1

1 1 1 1 166.6

1 1 1 2 196.5

1 1 1 3 178.9

1 1 2 1 160.7

1 1 2 2 151.1

1 1 2 3 146.5

1 2 1 1 146.3

1 2 1 2 169.3

1 2 1 3 198.1

2 2 2 1 236.3

2 2 2 2 330.7

2 2 2 3 281.2

2 1 1 1 151.8

2 1 1 2 156

2 1 1 3 159.7

2 1 2 1 171.8

2 1 2 2 159.3

2 1 2 3 155.9

2 2 1 1 175.2

2 2 1 2 182.2

2 2 1 3 136.2
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Chapter 8
Generalized Linear Mixed Models
for Categorical and Ordinal Responses

8.1 Introduction

According to Agresti (2013), a multinomial distribution is a generalization of a
binomial distribution in cases with more than two possible ordered (ordinal) or
unordered (nominal) outcomes. Given a response with more than two possible
outcomes and independent trials with probabilities of similar category for each
trial, the distribution of counts across categories follows a multinomial distribution.
Quinn and Keough (2002) believe that several methods exist for multinomial data
analysis. The most common form of categorical data analysis in biological sciences,
which results in frequency counts, is creating cross-tabulations or contingency tables
and chi-squared tests to examine associations between two or more categorical
variables. However, such an approach is ill suited for a study aimed at estimating
the response when there is a change in the explanatory variable(s), as contingency
tables are used to analyze the association between variables without considering a
predictor or response variable. In this analysis, the results are valid as long as less
than 20% of the cells have an expected count less than five and none are less than one
(Logan 2010). Fisher’s exact test extends the chi-squared test in studies involving
small sample sizes.

There are several methods for modeling multinomial data; traditional methods of
multinomial data analysis include frequency analysis (counts), which uses the
chi-squared test and the log-linear model for contingency tables. This chapter
focuses on describing multinomial logit and probit models in detail.
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8.2 Concepts and Definitions

For the multinomial distribution each observation drawn from a total of
N observations belongs to exactly one of the mutually and exclusive c = 1, ⋯,
C categories and each category has a probability πc (c= 1,⋯,C) of belonging to the
category c. A multinomial distribution refers to the probability that exactly one
randomly sampled observation from the population belongs to category y1, that is, it
belongs to category 1, y2 observations belong to category 2, and so forth up to

category C,where
C

c= 1
yc =N and

C

c= 1
πc = 1. The density function of this distribution

is equal to

f y1, y2, . . . , yCð Þ= N!
y1!y2! . . . yC!

πy11 π
y2
2 . . . πycC

Multinomial models are applied in data analysis where the categorical response
variable has more than two possible outcomes while the independent variables can
be continuous, categorical, or both (Hosmer and Lemeshow 2000). The categorical
response variable can be either ordinal (ordered) or nominal (unordered). Ordinal
response variables are single values that represent a rank order on some dimension,
but there are not enough values to be treated as a continuous variable. Nominal
(unordered) response variables are those whose values provide a rank but do not
provide an indication of order. Models for multinomial data are constructed in a
similar way as for binomial data. The link functions used in these types of models are
similar to the logit and probit functions used for binomial data. Cumulative logit and
cumulative probit models define the link function such that when properly fitted to
the data, they allow for parsimonious modeling of ordinal or multinomial data.
Generalized logit and probit models do not require ordered categories and are
therefore suitable for multinomial nominal data.

In terms of generalized linear models (GLMs) and generalized linear mixed
models (GLMMs), a multinomial distribution with C categories requires C - 1
link functions to fully specify a model that relates the response probabilities
(π1, π2, . . ., πC) to the linear predictor. The commonly used models are the cumula-
tive logit model, also known as the proportional odds model proposed byMcCullagh
(1980), and the cumulative probit model, also known as the threshold model.
Throughout this chapter, we will use either of these two link functions
interchangeably.

The link functions for a cumulative logit model with C categories are
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η1 = log
π1

1- π1
= η1 þ Xβþ Zb

η2 = log
π1 þ π2

1- π1 þ π2ð Þ = η2 þ Xβþ Zb

⋮

ηC- 1 = log
π1 þ π2 þ⋯þ πC- 1

1- π1 þ π2 þ⋯þ πC- 1ð Þ = ηC- 1 þ Xβþ Zb

where X and Z are the design matrices, whereas β and b are the vectors of fixed and
random effects parameters, respectively. The inverse links of each of the functions
are as follows:

π1 =
1

1þ e- η1
= h η1ð Þ

π1 þ π2 =
1

1þ e- η2
= h η2ð Þ

⋮

π1 þ π2 þ⋯þ πC- 1 =
1

1þ e- ηc- 1
= h ηC- 1ð Þ:

Once h(η1), h(η2), ... h(ηc - 1) have been estimated, we can then estimate the
probabilities π̂1, π̂2, ..., π̂c.

8.3 Cumulative Logit Models (Proportional Odds Models)

Multinomial logit models are used to model the relationships between a polytomous
response variable and a set of predictor variables. These polytomous response
models can be classified – as mentioned above – into two different types, depending
on whether the response variable has an ordered or an unordered structure.

In a proportional odds model, the covariates (linear predictor η) have the same
effect on the probabilities that the response variable has in any category when
considering different values of the covariates, thus shifting the response distribution
to the right (or left) without changing the shape of the distribution. In a proportional
odds model, the cumulative logits model the effect of the covariates on the response
probabilities below or equal to the category cutoff.

A multinomial logit model assumes independence of categories, which implies
that the probabilities of choosing a category c relative to a category c′ are indepen-
dent of the category characteristics of c and c′ for c ≠ c′. The assumption requires that
if a new category is available, then the prior probabilities are precisely adjusted to
preserve the original probabilities between all pairs of outcomes. The proportional
odds model employs a strict assumption that the odds ratio does not depend on the
category, and, therefore, we need to test the proportional odds assumption, which is
also called the “parallel regression assumption.”
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8.3.1 Complete Randomize Design (CRD) with a Multinomial
Response: Ordinal

Data are obtained from an experiment related to red core disease in strawberries,
which is caused by the fungus Phytophthora fragariae. In this example, 12 straw-
berry populations were evaluated in a completely randomized experiment with
4 replications (Table 8.1). Plots generally consisted of 10 plants; in some cases,
only 9 plants were observed. At the end of the experiment, each plant was assigned
to one of three ordered categories representing fungal damage (1 = no damage,
2 = moderate damage, and 3 = severe damage).

A total of 12 populations were obtained by crossing 3 genotypes of male parents
with 4 genotypes of female parents. The variation between and within plots is
considered minimal, whereas the genetic and nongenetic effects are more significant,
as plants from the same cross are not genetically identical.

The model that fits these data for the cumulative probabilities is a GLMM, which
exhibit a classification effect on the treatment variable (population resulting from
crossing genotypes). Thus, the GLMM for multinomial ordered outcomes with
C categories requires C - 1 link function equations to fully specify the model that
relates the response probabilities (π1, π2, . . ., πC) to the linear predictor ηij (Stroup
2013). The C - 1 multinomial logit equations are tested against each of the
remaining categories 1, 2, . . , C - 1.

Table 8.1 Evaluation of red core disease in strawberry plants

Repetition

1 2 3

Disease category

4

Parent plant male/female 1 2 3 1 2 3 1 2 3 1 2 3

0 3 6 2 2 6 2 3 5 2 5 3

2 3 5 0 3 7 4 6 0 2 3 5

3 4 3 7 2 1 1 1 7 2 3 5

0 5 5 5 4 1 2 8 0 1 4 5

1 4 4 2 2 6 1 2 7 1 5 4

1 4 5 3 4 2 1 6 3 4 2 4

4 3 3 5 1 4 3 3 4 4 2 4

1 4 5 1 2 6 8 5 0 2 5 3

0 0 9 3 5 2 2 5 3 0 0 10

5 3 2 3 2 5 3 6 1 2 1 7

0 3 6 2 5 3 1 3 6 0 3 7

3 0 7 5 2 3 7 3 0 3 4 3

1 1

1 2

1 3

1 4

2 1

2 2

2 3

2 4

3 1

3 2

3 3

3 4
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The components of the GLMM with an ordinal multinomial response are as
follows:

Distributions: y1ij, y2ij, y3ij|rj~Multinomial(Nij, π1ij, π2ij, π3ij), where y1ij, y2ij, and y3ij
are the observed frequencies of responses (damage level) in each category
C (1 = no damage, 2 = moderate damage, and 3 = severe damage) and rj is
the random effect due to repetition, assuming rj � N 0, σ2r .

Linear predictor: ηcij = ηc + τi + rj, where ηcij is the cth link (c = 1, 2, 3) that relates
the mean and the linear predictor for the treatment i (i = 1, 2, . . ., 12) and the jth
block ( j= 1, 2, 3, 4); ηc is the intercept for the cth link; τi is the fixed effect due to
the ith treatment (cross); and rj is the random effect due to the jth repetition
rj � N 0, σ2r . The link functions for each category are as follows:

log
π1ij

1- π1ij
= η1ij

log
π1ij þ π2ij

1- π1ij þ π2ij
= η2ij

The following GLIMMIX program fits a cumulative logit model with an ordinal
multinomial response in a CRD.

proc glimmix data=FRESA;
class rep trt cat;
model cat(order=data)= trt/dist=Multinomial link=clogit solution
oddsratio;
random intercept/subject=rep solution ;
estimate 'c=1, t=1' intercept 1 0 trt 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
'c=2, t=1' intercept 0 1 trt 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
'c=1, t=2' intercept 1 0 trt 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
'c=2, t=2' intercept 0 1 trt 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
'c=1, t=3' intercept 1 0 trt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
'c=2, t=3' intercept 0 1 trt 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
'c=1, t=4' intercept 1 0 trt 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0,
'c=2, t=4' intercept 0 1 trt 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0,
'c=1, t=5' intercept 1 0 trt 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0,
'c=2, t=5' intercept 0 1 trt 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0,
'c=1, t=6' intercept 1 0 trt 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0,
'c=2, t=6' intercept 0 1 trt 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0,
'c=1, t=7' intercept 1 0 trt 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0,
'c=2, t=7' intercept 0 1 trt 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0,
'c=1, t=8' intercept 1 0 trt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0,
'c=2, t=8' intercept 0 1 trt 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0,
'c=1, t=9' intercept 1 0 trt 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0,
'c=2, t=9' intercept 0 1 trt 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0,
'c=1, t=10' intercept 1 0 trt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0,
'c=2, t=10' intercept 0 1 trt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0,



'c=1, t=11' intercept 1 0 trt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0,
'c=2, t=11' intercept 0 1 trt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0,
'c=1, t=12' intercept 1 0 trt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,
'c=2, t=12' intercept 0 1 trt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/ilink;
freq freq;
run;
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Table 8.2 Data ordered Rep Cross Cat Freq

rep1 M1H1 Without 0

rep1 M1H2 Without 2

rep1 M1H3 Without 3

rep1 M1H4 Without 0

rep1 M1H1 Moderate 3

rep1 M1H2 Moderate 3

rep1 M1H3 Moderate 4

rep1 M1H4 Moderate 5

rep1 M1H1 Severe 6

rep1 M1H2 Severe 5

rep1 M1H3 Severe 3

Although most of the GLIMMIX commands have already been described in
previous examples, it is important to emphasize that the data should be structured
in a logical way as follows: one line for repetition, treatment, lesion category, and the
frequency or number of observations (Y ), which, in this case, is referenced by the
variables rep, trt (trt = cross), cat (category), and freq, respectively. Part of the data
arrangement can be seen in Table 8.2, whereas the rest of the dataset can be found in
the Appendix (Data: CRD with multinomial response: ordinal).

In the program commands of this example, “order= data” indicates that the order
in which the categories are arranged in the dataset is under an order (ordinal)
category. Consider that the observations in each line always have order categories
such as no injury (Without), moderate injury (Moderate), and severe injury (Severe).
If there is no congruent order in the arrangement of the dataset to be analyzed, then
GLIMMIX will reorder the categories in an alphabetical or numerical order
depending on the initial coding of the data. The “estimate” command specifies the
estimable functions that form the boundaries between the categories for each of the
populations (trt). Finally, the “freq command” instructs GLIMMIX to use “freq” as
the number of observations (frequency) under the corresponding categorization. In
this way, the first estimate “c = 1, t = 1” defines the predictor η1 + τ1, that is, the
boundary between the “Without” and “Moderate” categories for treatment 1 with its

corresponding logit log π11
1- π11

, whereas the second estimate “c = 2, t = 1” defines

the boundary between the categories of “Moderate” and “Severe” damage with the

logit log π11þπ21
1- π11þπ21ð Þ , which estimates the probability of observing a plant from



population1 (M1H1 = trt) “Without” damage and “Moderate” damage when
exposed to the fungus (Phytophthora fragariae). Part of the output is presented in
Table 8.3.
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Table 8.3 Results of the multinomial analysis of variance for injury level in strawberry plants

(a) Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Intercept Rep 0.1453 0.1437

(b) Type III tests of fixed effects

Effect Num degree of freedom (DF) Den DF F-value Pr > F

Trt 11 457 2.60 0.0032

Table 8.4 Fixed effects solution for injury categories

Solutions for fixed effects

Effect Cat Trt Estimate Standard error DF t-value Pr > |t|

Intercept Without η1ð Þ -0.4571 0.3526 3 -1.30 0.2855

Intercept Moderate η2ð Þ 1.0631 0.3558 3 2.99 0.0582

Trt τ1ð Þ M1H1 -1.1456 0.4264 457 -2.69 0.0075

Trt τ2ð Þ M1H2 -0.8355 0.4179 457 -2.00 0.0462

Trt τ3ð Þ M1H3 -0.4621 0.4171 457 -1.11 0.2685

Trt τ4ð Þ M1H4 -0.4716 0.4145 457 -1.14 0.2558

Trt τ5ð Þ M2H1 -1.2644 0.4295 457 -2.94 0.0034

Trt τ6ð Þ M2H2 -0.6060 0.4181 457 -1.45 0.1479

Trt τ7ð Þ M2H3 -0.2332 0.4140 457 -0.56 0.5735

Trt τ8ð Þ M2H4 -0.3912 0.4168 457 -0.94 0.3484

Trt τ9ð Þ M3H1 -1.5563 0.4393 457 -3.54 0.0004

Trt τ10ð Þ M3H2 -0.4508 0.4144 457 -1.09 0.2772

Trt τ11ð Þ M3H3 -1.4426 0.4350 457 -3.32 0.0010

Trt τ12ð Þ M3H4 0 . . . .

The estimated variance component (part (a)) due to plants is σ2r = 0:1453,
whereas the hypothesis tests for type III effects (part (b)) (“Type III tests of fixed
effects”) indicate that the crosses have different significant tolerance levels to fungal
attacks (Pr > F = P = 0.0032). The results of the fixed effects solution, obtained by
specifying the “solution” option in the model, are shown in Table 8.4.

From the fixed effects solution, we can estimate the linear predictors for the two
categories of each treatment, which are in terms of the model scale. For example,
for treatment 1, the first category of injury η11 = η1 þ τ1 = - 0:4571þ
- 1:1456ð Þ= - 1:6027, where η1 defines the boundary between the categories
“Without” damage and “Moderate” damage and η2 defines the boundary between
the categories “Moderate” damage and “Severe” damage, and the linear predictor is
η11 = η2 þ τ1 = 1:0631þ - 1:1456ð Þ= - 0:0825. Note that for the proportional
odds, the τi values are not category-specific; treatment effects move the boundaries
as a group.



328 8 Generalized Linear Mixed Models for Categorical and Ordinal Responses

Table 8.5 Estimated odds
ratio

Odds ratio estimates

Trt _Trt Estimate DF 95% Confidence limits

M1H1 M3H4 0.318 457 0.138 0.735

M1H2 M3H4 0.434 457 0.191 0.986

M1H3 M3H4 0.630 457 0.278 1.430

M1H4 M3H4 0.624 457 0.276 1.409

M2H1 M3H4 0.282 457 0.121 0.657

M2H2 M3H4 0.546 457 0.240 1.241

M2H3 M3H4 0.792 457 0.351 1.787

M2H4 M3H4 0.676 457 0.298 1.534

M3H1 M3H4 0.211 457 0.089 0.500

M3H2 M3H4 0.637 457 0.282 1.438

M3H3 M3H4 0.236 457 0.101 0.556

The odds ratio (Table 8.5) is the result of taking eτi for crosses 1–12. Since odds
ratios are not specific to a particular category, this value is the same for all three
categories and hence the name odds ratio.

In Table 8.6, we show the maximum likelihood estimates of the linear predictors
η̂ci = η̂C þ τ̂i in the “Estimate” column, in terms of the model scale, as well as the
means on the data scale for each of the categories of the treatments tested (“Mean”).

Thus, for c= 1, t= 1 (response category “Without” damage and treatment 1), the
estimator is η11 = - 1:6027 and for c = 2, t = 1 (“Moderate” damage and treatment
1), the linear predictor is η21 = - 0:0825. Taking the inverse of the link function
yields the probability of π11 = 1=1þe1:6027 = 0:1676. This is the estimated probability
for which the cross (treatment) M1H1 has a response score of “Without damage.”
This inverse value is presented under the “Mean” column (Table 8.6).

Now, for c = 2, t = 1, the inverse of the link yields the following probability:
π11 þ π21 = 1=1þe0:0825 = 0:4794 (cumulative probability). From this value, we deduce
the probability of observing a “Moderate” damage and a “Severe” damage in
the plant of the cross M1H1. For “Moderate” damage,
the probability is π21 = 0:4794- π11 = 0:4794- 0:1676= 0:3118, and, for
“Severe” damage, it is π31 = 1- π11 þ π21 = 1- 0:4794= 0:5206. Similarly, the
rest of the probabilities in the different crosses are estimated.

8.3.2 Randomized Complete Block Design (RCBD)
with a Multinomial Response: Ordinal

In recent years, poultry production has become conscious of animal welfare, which
is associated with bird mortality, behavior, and health, among others (Stanley 1981;
Martrenchar et al. 2002). One of the diseases related to animal welfare is footpad
dermatitis, and, among many repercussions, it affects a bird’s ability to walk (Bilgili
et al. 2009). Pododermatitis is known as contact dermatitis or footpad dermatitis and



is characterized by inflammation and necrotic lesions from the plantar surface to
deep within the footpads of chicken. Deep ulcers may result in abscesses and in the
thickening of the underlying tissues and structures (Greene et al. 1985).
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Table 8.6 Estimates on the model scale (Estimate) and on the data scale (Mean) for the damage
categories in strawberry plants

Estimates

Label Estimate
Standard
error DF t-value Pr > |t| Mean

Standard error
mean

c= 1, t= 1 -1.6027 0.3706 457 -4.33 <0.0001 0.1676 0.05170

c= 2, t= 1 -0.08254 0.3625 457 -0.23 0.8200 0.4794 0.09047

c= 1, t= 2 -1.2926 0.3597 457 -3.59 0.0004 0.2154 0.06080

c= 2, t= 2 0.2276 0.3542 457 0.64 0.5208 0.5567 0.08741

c= 1, t= 3 -0.9191 0.3572 457 -2.57 0.0104 0.2851 0.07281

c= 2, t= 3 0.6010 0.3555 457 1.69 0.0916 0.6459 0.08131

c= 1, t= 4 -0.9286 0.3542 457 -2.62 0.0090 0.2832 0.07190

c= 2, t= 4 0.5915 0.3524 457 1.68 0.0939 0.6437 0.08081

c= 1, t= 5 -1.7214 0.3744 457 -4.60 <0.0001 0.1517 0.04818

c= 2, t= 5 -0.2013 0.3656 457 -0.55 0.5822 0.4499 0.09047

c= 1, t= 6 -1.0631 0.3590 457 -2.96 0.0032 0.2567 0.06850

c= 2, t= 6 0.4571 0.3557 457 1.28 0.1995 0.6123 0.08444

c= 1, t= 7 -0.6903 0.3526 457 -1.96 0.0509 0.3340 0.07842

c= 2, t= 7 0.8299 0.3533 457 2.35 0.0193 0.6963 0.07471

c= 1, t= 8 -0.8483 0.3566 457 -2.38 0.0178 0.2998 0.07485

c= 2, t= 8 0.6719 0.3556 457 1.89 0.0595 0.6619 0.07958

c= 1, t= 9 -2.0133 0.3864 457 -5.21 <0.0001 0.1178 0.04016

c= 2, t= 9 -0.4932 0.3759 457 -1.31 0.1902 0.3791 0.08849

c = 1,
t = 10

-0.9079 0.3540 457 -2.56 0.0106 0.2874 0.07250

c = 2,
t = 10

0.6123 0.3524 457 1.74 0.0830 0.6485 0.08033

c = 1,
t = 11

-1.8997 0.3813 457 -4.98 <0.0001 0.1301 0.04317

c = 2,
t = 11

-0.3795 0.3714 457 -1.02 0.3074 0.4062 0.08958

c = 1,
t = 12

-0.4571 0.3526 457 -1.30 0.1955 0.3877 0.08369

c = 2,
t = 12

1.0631 0.3558 457 2.99 0.0030 0.7433 0.06789

Chicken feet have great economic importance because they are in high demand in
the foreign market, mainly in Southeast Asia and China; however, due to diseases or
alterations such as pododermatitis, there are significant economic losses since
diseased feet are not suitable for human consumption and this, subsequently, reflects
in market prices (Taira et al. 2014). Due to the economic importance of this product,
Garcia et al. (2010) have focused on studying the factors that cause this disease and



on finding strategies to reduce leg and carcass lesions in poultry. Important factors in
broiler fattening are the type of litter, litter height, nutrition and feeding programs,
and bird health, among others.
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Table 8.7 Treatment design

Treatment Features

Trt1 Traditional program +1 kg m-2 of rice husks

Trt2 Traditional program +2 kg m-2 of rice husks

Trt3 Traditional program + podal health program +1 kg m-2 of rice husks

Trt4 Traditional program + podal health program +2 kg m-2 of rice husks

The objective of this study was to evaluate the effect of litter density and organic
minerals (Availa Zn and Availa Mn), with an extract of Yucca schidigera (Micro-
Aid) as a supplement to a traditional fattening program, on the development of
footpad dermatitis in broilers. The genetic material used in this experiment was
mainly male Ross line chickens. The traditional broiler fattening program by the
poultry farm consists of three phases: a starter diet (1–18 days), a grower diet
(19–35 days), and a finisher diet (36–50 days), applied for a period of 50 days,
where rice husk is used as bedding material at a density of 1 kg m-2. In this research,
a foot health program was implemented in addition to the traditional fattening
program, which included the addition of 125 ppm of Micro-Aid (Yucca schidigera
extract), 40 ppm of Availa Zn, and 40 ppm of Availa Mn to the fattening diet.

Based on the above information, four treatments were evaluated at two poultry
farms, as described below:

• Treatment 1 involved the application of the company’s traditional fattening
program (Trt1).

• Treatment 2 was the company’s traditional fattening program plus an increase in
litter density from 1 to 2 kg m-2 (Trt2).

• Treatment 3 was the traditional fattening program plus the implementation of the
foot health program during the fattening period until completion (Trt3).

• Treatment 4 consisted of the traditional fattening program plus the implementa-
tion of the foot health program and an increase in litter density from 1 to 2 kg m-2

(Trt4). The following table lists the treatments studied (Table 8.7):

The response variable evaluated was the degree of foot lesion (pododermatitis) at
the end of the fattening period (50 days). The response variable was evaluated on
1250 chickens per treatment. The degree of a footpad lesion was determined
according to a visual guide for lesions in chickens based on the method of De
Jong and Guémené (2012). This method entails defining three grades: grade 0 is
attributed to legs with no lesions, grade one is if lesions exist in some areas of the
footpad (<50%), and grade two is if the leg has extensive lesions in areas of the
footpad (50–100%). Table 8.8 shows the dataset indicating the block, treatment,
level of lesion, and the number of birds observed with a given lesion (frequency).
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Table 8.8 Pododermatitis in broilers

Block Trt Category Frequency Block Trt Category Frequency

1 1 Without 26 1 3 Without 54

1 1 Slight 58 1 3 Slight 43

1 1 Severe 17 1 3 Severe 3

2 1 Without 37 2 3 Without 25

2 1 Slight 56 2 3 Slight 69

2 1 Severe 6 2 3 Severe 7

1 2 Without 40 1 4 Without 65

1 2 Slight 57 1 4 Slight 34

1 2 Severe 3 1 4 Severe 1

2 2 Without 77 2 4 Without 63

2 2 Slight 23 2 4 Slight 36

2 2 Severe 0 2 4 Severe 0

Note: Without stands for no lesion, slight stands for moderate lesion, and severe stands for severe
lesion

The GLMM for multinomial ordered results with C categories requires C- 1 link
function equations instead of one to fully specify a model that relates the response
probabilities (π1, π2, . . ., πC) to the linear predictor ηij (Stroup 2013). The C - 1
multinomial logit equations are tested against each of the categories 1, 2, . . ., C - 1.

The link functions for the cumulative logit model to describe the response
variable with C categories are as follows:

η 1ð Þij = log
π1ij

1- π1ij
= η1 þ τi þ bj

η 2ð Þij = log
π1ij þ π2ij

1- π1ij þ π2ij
= η2 þ τi þ bj

⋮

η C- 1ð Þij = log
π1ij þ π2ij þ⋯þ π C- 1ð Þij

1- π1ij þ π2ij þ⋯þ π C- 1ð Þij
= ηC- 1 þ τi þ bj

The components of the GLMMwith an ordinal multinomial response variable are
as follows:

Distributions: yoij, y1ij, y2ij|bj ~Multinomial(Nij, π0ij, π1ij, π2ij), where yoij, y1ij, and y2ij
are the observed frequencies of the responses (paw injury) in each category (none,
mild, and severe) and bj is the random effect due to block assuming
bj � N 0, σ2b .

Linear predictor: η(c)ij = ηc + τi + bj, where η(c)ij is cth link (c = 0, 1) for processing
i and block j, ηc is the intercept for the cth link, τi is the fixed effect due to the ith
treatment, and bj is the random effect due to the jth block bj � N 0, σ2b . The
link functions for each category are as follows:
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log
π0ij

1- π0ij
= η 0ð Þij

log
π0ij þ π1ij

1- π0ij þ π1ij
= η 1ð Þij

The following GLIMMIX commands fit a cumulative logit model with an ordinal
multinomial response.

proc glimmix data=multinomial_ord;
class block trt;
model categoria (order=data)= trt/dist=Multinomial link=clogit
solution oddsratio(DIFF=LAST LABEL);
random intercept/subject=block;
estimate 'c=0, t=1' intercept 1 0 trt 1 0,
'c=1, t=1' intercept 0 1 trt 1 0,
'c=0, t=2' intercept 1 0 trt 0 1 0,
'c=1, t=2' intercept 0 1 trt 0 1 0,
'c=0, t=3' intercept 1 0 trt 0 0 0 1 0,
'c=1, t=3' intercept 0 1 trt 0 0 0 1 0,
'c=0, t=4' intercept 0 1 trt 0 0 0 0 1,
'c=1, t=4' intercept 1 0 trt 0 0 0 0 1/ilink;
freq y;
run;

The data should have one column for block, treatment, lesion category, and
frequency or number of observations (Y ), which, in this case, is referenced by the
variables block, trt, category, and frequency, respectively.

Most of the options in the above syntax have already been explained previously;
the “order = data” option specifies that the order in which the categories appear in
the dataset will be treated as ordinal categories from the lowest to the highest for the
analysis. If this option is not used with the response variable in the model specifi-
cation, “proc GLIMMIX” will rearrange its categories in an alphabetical or numer-
ical order, but this will depend on whether the categories are entered as a number or a
name. The “freq y” option orders GLIMMIX to use y as the number of observations
in the corresponding category. The “estimate” command specifies the estimable
functions that form the boundaries between categories of each of the four treatments.
For example, the first estimate “c = 0, t = 1” defines η0 + τ1, that is, the boundary
between the categories “Without” (no lesion) and “Moderate” (slight lesion) for

treatment 1. This first estimate corresponds to logit log π01
1- π01

, which is the

probability that a chicken that received treatment 1 will respond to a degree of lesion
classified under category 0 (no lesion). The second estimation “c = 1, t = 1” defines
η1 + τ1, that is, the boundary between the categories “Moderate” (slight lesion) and



4 0

“Severe” (severe lesion) for treatment 1 and corresponds to logit log π11
1- π11

, and so

on. By taking the inverse of these links values, we can obtain the estimated
probabilities of π01 and π11. Part of the Statistical Analysis Software (SAS) glimmix
output is presented below:
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Table 8.9 Results of the analysis of variance in the multinomial cumulative logit model

(a) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 3 794 22.45 <0.0001

(b) Solutions for fixed effects

Effect Categoría Trt Estimate Standard error

Intercept η1ð Þ Without 0.6144 0.1799

Intercept η2ð Þ Moderate 3.8787 0.2465

Trt τ1ð Þ 1 -1.5034 0.2086

Trt τ2ð Þ 2 -0.2509 0.2055

Trt τ3ð Þ 3 -1.0365 0.2036

Trt τ4ð Þ .

The results of the analysis of variance in part (a) of Table 8.9 indicate that the
degree of lesion in the chicken footpad (pododermatitis) in the treatments tested were
significantly different (P < 0.0001). Therefore, the hypothesis of proportional odds
of treatments is rejected (H0 : τi = 0 for all i, that is, oddsratio = 1).

In part (b) of Table 8.9, we can see that the estimated intercepts η1 = 0:6144 and
η2 = 3:8787 define the boundary between the categories “Without” lesion
and “Moderate” lesion and the boundary between the categories “Moderate” lesion
and “Severe” lesion, respectively. The estimated effect of the treatments τið Þ shows
that the boundaries move either upward or downward when a certain treatment is
applied. In this sense, all estimated treatment coefficients have a negative effect with
respect to treatment 4. This means that chickens under treatments 1–3 have a low
probability of developing a moderate lesion and a higher probability of developing a
severe lesion than when treatment 4 is applied.

To calculate the probability that a chicken will not develop footpad dermatitis
(c = 0) when receiving treatment 1, that is, “c = 0, Trt = 1,” we first estimate the
linear predictor η01 = η0 þ τ1 = 0:6144þ - 1:5034ð Þ= - 0:889, and, taking the
inverse, we obtain π01 = 1=1þe-- 0:889ð Þ = 0:29. This value is the estimated probability
that a chicken will not develop footpad dermatitis when receiving treatment 1. How-
ever, now, for “c = 1, Trt = 1,” η11 = η1 þ τ1 = 3:8787þ - 1:5034ð Þ= 2:3753,
whose inverse value is 0.915. This value is an estimate of the probability π01 þ π11.

From this value, we obtain the probability that a chicken will develop a moderate
lesion and a severe lesion. For a moderate lesion, the probability is π11 =
0:915- π01 = 0:915- 0:29= 0:624, and, for a severe lesion, the probability is
π21 = 1- 0:915= 0:085. In a similar way the probabilities for the categories
(c = 0, 1, 2) of the rest of the treatments are computed.
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Table 8.10 Estimated odds ratio

Odds ratio estimates

Comparison Estimate DF 95% Confidence limits

trt 1 vs. 4 0.222 794 0.148 0.335

trt 2 vs. 4 0.778 794 0.520 1.165

trt 3 vs. 4 0.355 794 0.238 0.529

Table 8.11 Estimates on the model scale (Estimate) and on the data scale (Mean) for footpad
dermatitis categories in the multinomial cumulative logit model

Estimates

Label Estimate
Standard
error DF t-value Pr > |t| Mean

Standard error
mean

c = 0,
t = 1

-0.8893 0.2428 794 -4.93 <0.0001 0.2914 0.001174

c = 1,
t = 1

2.3753 0.2214 794 10.73 <0.0001 0.9149 0.01724

c = 0,
t = 2

0.3634 0.1757 794 2.07 0.0390 0.5899 0.04252

c = 1,
t = 2

3.6277 0.2420 794 14.99 <0.0001 0.9741 0.006103

c = 0,
t = 3

-0.4222 0.1740 794 -2.43 0.0155 0.3960 0.04162

c = 1,
t = 3

2.8422 0.2304 794 12.34 <0.0001 0.9449 0.01199

c = 0,
t = 4

3.8787 0.2465 794 15.73 <0.0001 0.9797 0.004893

c = 1,
t = 4

0.6144 0.1799 794 3.41 0.0007 0.6489 0.04098

The odds ratios tabulated in Table 8.10 are the odds ratios for treatments 1 through

4, i.e., eτi for treatments 1–4. These are the estimated odds ratios of adjacent
categories of treatments i (i = 1, 2, 3) relative to treatment 4. Values of τi are not
category-specific; the odds ratios for “Without” lesion versus “Moderate” lesion and
those for “Moderate” lesion versus “Severe” lesion are listed below (hence the name
“proportional odds”).

From the above odds ratio results, it should be obvious why the F- and P-values
in the fixed effects tests are what they are. Adding the “ilink” option to the end of the
“estimate” command prompts GLIMMIX to estimate the inverse of the linear pre-

dictors ηcið Þ, i.e., the probabilities per category πci = 1=1þe- ηci (Table 8.11).
In the above table, several estimates are shown for ηc þ τi. For example, the

probability that a chicken will not develop a lesion under treatment 1 can be
represented by “c = 0, t = 1,” that is, ηc þ τ1 = -0.8893. This result matches
the one obtained from the fixed effects table “Solutions for fixed effects”
previously shown. Taking the inverse of the link yields the probability



π01 = 1= 1þ e0:8893ð Þ= 0:2914. This probability is the maximum likelihood estimate
that a chicken will have no footpad lesion with treatment 1. The inverse of the link
function is under the “Mean” column of Table 8.11. Now, for the category “c = 1,
t = 1,” the inverse of the linear predictor is 0.9149, this is the estimate of π01 þ π11.
From this value, we can obtain the probability of a chicken showing a “Moderate”
lesion when receiving treatment 1, that is, π01 þ π11 = 0:9149, and, substituting the
value of π01, we obtain the value π11 = 0:9141- 0:2914= 0:6227. Finally, for a
“Severe” lesion (category“c = 2, t = 1”), the probability that a chicken will present a
severe lesion is π21 = 1- 0:9141= 0:0859. Following the same procedure, we can
obtain the probabilities for each of the following categories (c= 0, 1, 2) of the rest of
the treatments (2–4).
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Fig. 8.1 Estimated probabilities for the footpad lesion categories in the treatments tested, using the
cumulative logit model

Figure 8.1 shows that under the traditional feeding program with a litter density
of 1 kg m-2 of rice husks (Trt1), there is a high probability that broilers will
develop moderate and severe footpad lesions, as shown by π11= 0:624 and
π21= 0:085, respectively. When the litter density was increased from 1 to 2 kg m-2

of rice husks under the traditional broiler program (Trt2), the probability of the risk of
developing moderate and severe footpad lesions in broilers decreased significantly to
π12= 0:384 and π22= 0:026, respectively, compared to Trt1, whereas the probability
of not developing a footpad lesion increased to π02= 0:590 Trt2ð Þ compared to
π01= 0:291 Trt1ð Þ. Regarding the implementation of the two foot care programs
plus the litter density of 2 kg husk m-2 of rice husks, the probability of chickens of
not developing a footpad lesion is π04= 0:649 (Trt4) compared to π03 = 0:396 in
Trt3, whereas the probability of chickens developing moderate and severe lesions
decreased from π14= 0:331 and π24= 0:025 in Trt4 compared to π13= 0:549 and
π23= 0:055 in Trt3.
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8.4 Cumulative Probit Models

An ordinal cumulative probit model, first considered by Aitchison and Silvey
(1957), generalizes a binary probit model to ordinal responses. This model results
from the probit modeling of the cumulative probabilities as a linear function of the
covariates. The link functions for the cumulative probit model with C categories are
listed below:

η1 =Φ- 1 π1ð Þ= η1 þ Xβþ Zb

η2 =Φ- 1 π1 þ π2ð Þ= η2 þ Xβþ Zb

⋮
ηC- 1 =Φ- 1 π1 þ π2 þ⋯þ πC- 1ð Þ= ηC- 1 þ Xβþ Zb

where X and Z are the design matrices, β and b are the vectors of fixed and random
effects parameters, respectively, and Φ-1() is the inverse function of the standard
normal cumulative distribution. The inverse link of each of the link functions is as
follows:

π1 =Φ η1ð Þ= h η1ð Þ
π1 þ π2 =Φ η2ð Þ= h η2ð Þ

⋮
π1 þ π2 þ⋯þ πC- 1 =Φ ηc- 1ð Þ= h ηc- 1ð Þ:

Once h(η1), h(η2), ... h(ηc - 1) are estimated, we can estimate π1, ... , πC. The
quality of the estimates of the ordinal cumulative probit model are usually very
similar to those of an ordinal cumulative logit model for some datasets but not all.
Both involve stochastic ordering at different levels of the response variable and are
designed to detect the location of changes in the response variable.

Returning to Example 8.3.1, for the cumulative probit model, we change the
“LINK = CPROBIT” option in the model’s definition of the above program syntax.
The output will contain all the same elements, except the odds ratios. The analysis
for the cumulative probit is exactly the same as that one we performed in the
cumulative logit model. Part of the output is shown in parts (a)–(c) of Table 8.12.

The estimated variance component due to blocks is σ2block = 0:0092. The results of
the analysis of variance showed that the degrees of lesion in the chickens’ footpad
(pododermatitis) in the tested treatments differ significantly (P < 0.0001).

In part (b) of Table 8.12, it is possible to observe that the estimated intercepts
η1 = 0:3880 and η2 = 2:2407 define the boundary between the “Without” lesion and
“Moderate” lesion categories and the boundary between the “Moderate” lesion and
“Severe” lesion categories, respectively. The estimated effect of the treatments τið Þ
moves the boundaries either upward or downward, when a certain treatment is
applied. In this sense, all estimated treatment coefficients have a negative effect



with respect to treatment 4. This means that chickens under treatments 1–3 have a
low probability of developing a footpad lesion and a higher probability of develop-
ing a severe lesion with respect to treatment 4.
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Table 8.12 Results of the analysis of variance in the multinomial cumulative probit model

(a) Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Intercept Blk 0.009262 0.01817

(b) Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 3 794 24.57 <0.0001

(c) Solutions for fixed effects

Effect Categoría Trt Estimate Standard error

4 0

Intercept η1ð Þ Without 0.3880 0.1124

Intercept η2ð Þ Moderate 2.2407 0.1375

Trt τ1ð Þ 1 -0.9278 0.1227

Trt τ2ð Þ 2 -0.1595 0.1242

Trt τ3ð Þ 3 -0.6459 0.1219

Trt τ4ð Þ .

From “Type III tests of fixed effects” (Table 8.12, part (b)), the probabilities for
each of the categories can be obtained. For the probability that a chicken will not
develop a footpad lesion (c= 0) under treatment 1, i.e., “c= 0, Trt= 1, ” the estimated
linear predictor is obtained as η01= η0 þ τ1 = 0:3880þ - 0:9278ð Þ= - 0:5398 and,
taking the inverse, gives π01=Φ - 0:5398ð Þ= 0:2946, that is, the estimated probabil-
ity that a chicken will not develop a footpad lesion when receiving treatment 1. For
“c = 1, Trt = 1, ” η11= η1 þ τ1 = 2:2407þ - 0:9278ð Þ= 1:3129, whose inverse
value is 0.9054. This value is an estimator of π01 þ π11. From this value, we can
obtain the probability that a chicken will develop a moderate lesion and a severe
lesion. For a moderate lesion, π11= 0:9054- π01= 0:9054- 0:2946= 0:6108, and,
for a severe lesion, π21= 1- 0:9054= 0:0946. Similarly, we can obtain the proba-
bilities of the categories for the other treatments (c = 0, 1, 2) for the rest of the
treatments.

Similar to the previous example, adding the “ILINK” option to the end of the
“ESTIMATE” command prompts GLIMMIX to estimate the values of the linear
predictors ηcið Þ and the inverse of the linear predictors, which are the probabilities
per category πci =Φ ηcið Þð Þ. Table 8.13 shows the estimates of the linear predictors as
well as their inverse values (probabilities in this case).

From the above table, we show the estimates of ηc þ τi. For example, the estimated
linear predictor that a chicken will not develop a footpad lesion under treatment 1, i.e.,
“c = 0, t = 1, ” is calculated as ηc þ τ1 = - 0:5398. This result matches the values
obtained from the fixed effects table (“Solutions for fixed effects”) previously shown.
Taking the inverse of the link function, π01=Φ 0:5398ð Þ= 0:2947. This is the



probability that a chicken will not develop a footpad lesion when receiving treatment
1. This probability is under the “Mean” column.
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Table 8.13 Estimates on the model scale (Estimate) and on the data scale (Mean) for footpad
lesion categories in the multinomial cumulative probit model

Estimates

Label Estimate
Standard
error DF

t-
value Pr > |t| Mean

Standard error
mean

c = 0,
t = 1

-0.5398 0.1100 794 -4.91 <0.0001 0.2947 0.03793

c = 1,
t = 1

1.3129 0.1208 794 10.87 <0.0001 0.9054 0.02035

c = 0,
t = 2

0.2285 0.1105 794 2.07 0.0389 0.5904 0.04293

c = 1,
t = 2

2.0812 0.1345 794 15.47 <0.0001 0.9813 0.006153

c = 0,
t = 3

-0.2578 0.1085 794 -2.38 0.0178 0.3983 0.04189

c = 1,
t = 3

1.5949 0.1258 794 12.68 <0.0001 0.9446 0.01407

c = 0,
t = 4

2.2407 0.1375 794 16.29 <0.0001 0.9875 0.004457

c = 1,
t = 4

0.3880 0.1124 794 3.45 0.0006 0.6510 0.04158

Now, for the category “c= 1, t= 1, ” the inverse of the link function is a probability
of 0.9054, which results from the inverse value of the linear predictor η1 þ τ1 = 1:3129.
This value is the estimate in terms of probability π01 þ π11. From this value, we can
obtain the probability that a chicken presents a “Moderate” lesion when receiving
treatment 1, that is, π01 þ π11 = 0:9054, and, using the value of π01, we obtain the
values π11 = 0:9054- 0:2947= 0:6107 and π21 = 1- 0:9054= 0:0946. Following
the same procedure, we can obtain the rest of the probabilities for each one of the
categories (c = 0, 1, 2) and for the rest of the treatments (2–4).

8.5 Effect of Judges’ Experience on Canned Bean Quality
Ratings

Canning quality is one of the most essential traits required in all new dry bean
(Phaseolus vulgaris L.) varieties, and the selection for this trait is a critical part of
bean breeding programs. Advanced lines that are candidates for release as varieties
must be evaluated for canning quality for at least 3 years from samples grown at
different locations. Quality is evaluated by a panel of judges with varying levels of
experience in evaluating breeding lines for visual quality traits. A total of 264 bean
breeding lines from 4 commercial classes were retained according to the procedures
described by Walters et al. (1997). These included 62 white (navy), 65 black,



Calif

2 91 78 32 31 56 51 29 17

5 24 31 47 71 51 52 60 09

7 0 0 1 0 1 5 1 12

55 kidney, and 82 pinto bean lines plus control or “check” lines. The visual
appearance of the processed beans was determined subjectively by a panel of
13 judges on a 7-point hedonic scale (1 = very undesirable, ..., 4 = neither desirable
nor undesirable,..., 7 = very desirable). Beans were presented to the panel of judges
in random order at the same time. Before evaluating the samples, all judges were
shown examples of samples rated as satisfactory.
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Table 8.14 Frequency of ratings of different types of beans as a function of the bean-rating
experience

Black Kidney Navy Pinto

<
5 Years

>
5 Years

<
5 Years

>
5 Years

<
5 Years

>
5 Years

<
5 Years

>
5 Years

1 13 32 7 10 10 22 13 2

3 123 124 136 96 84 107 91 68

4 72 122 101 104 84 98 109 124

1

6 2 3 6 18 24 37 25 78

There is concern that certain judges, due to lack of experience, may not be able to
correctly score the canned samples. From attribute-based product evaluations, infer-
ences about the effects of experience can be drawn from the psychology literature
(Wallsten and Budescu 1981). Prior to the bean canning quality rating experiment, it
was postulated that not only do less experienced judges have a more severe rating
than do more experienced judges but also that experience should have little or no
effect on white beans, for which the canning procedure was developed. Judges are
stratified for the purpose of analysis by experience (less than 5 years, greater than
5 years). Counts by canning quality, judge experience, and bean breeding lines are
listed in the following table (Table 8.14).

The link functions for the cumulative logit model for describing a variable with
C categories are as follows:

η 1ð Þij = log
π1ij

1- π1ij
= η1 þ αi þ βj þ αβð Þij

η 2ð Þij = log
π1ij þ π2ij

1- π1ij þ π2ij
= η2 þ αi þ βj þ αβð Þij

⋮

ηC- 1 = log
π1ij þ π2ij þ⋯þ π C- 1ð Þij

1- π1ij þ π2ij þ⋯þ π C- 1ð Þij
= ηC- 1 þ αi þ βj þ αβð Þij

The components of the GLMM with an ordinal multinomial response are as
follows:
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Distributions: y1ij, y2ij, y3ij, y4ij, y5ij, y6ij,y7ij~Multinomial
(Nij, π1ij, π2ij, π3ij, π4ij, π5ij, π6ij, π7ij), where y1ij, y2ij, y3ij, y4ij, y5ij, y6ij, and y7ij are
the observed frequencies of the responses in each category c of the hedonic scale
(1 = very undesirable, ..., 4 = neither desirable nor undesirable, ..., 7 = very
desirable).

Linear predictor: η(c)ij = ηc + αi + βj + (αβ)ij, where η(c)ij is the cth link (c= 1, 2,...,6)
for bean type i and judge’s experience j; ηc is the intercept for the cth link; αi is the
fixed effect due to the bean type for ith bean class; βj is the fixed effect due to the
jth experience of the judge; and (αβ)ij is the fixed effect due to the interaction
between bean class and judge experience. The link functions for each category are
as follows:

log
π1ij

1- π1ij
= η1ij

log
π1ij þ π2ij

1- π1ij þ π2ij
= η2ij

log
π1ij þ π2ij þ π3ij

1- π1ij þ π2ij þ π3ij
= η3ij

log
π1ij þ π2ij þ π3ij þ π4ij

1- π1ij þ π2ij þ π3ij þ π4ij
= η4ij

log
π1ij þ π2ij þ π3ij þ π4ij þ π5ij

1- π1ij þ π2ij þ π3ij þ π4ij þ π5ij
= η5ij

log
π1ij þ π2ij þ π3ij þ π4ij þ π5ij þ π6ij

1- π1ij þ π2ij þ π3ij þ π4ij þ π5ij þ π6ij
= η6ij

The following GLIMMIX commands fit a cumulative logit model with an ordinal
multinomial response.

proc glimmix data=beans ;
class Exper;
model cal(order=data)= Exper|Class/dist=Multinomial link=clogit



solution oddsratio;
Contrast 'Effect of Experience on Black bean' exper 1 -1 class*exper 1 -1
0 0 0 0 0 0 0 0 0 0;
Contrast 'Effect of Experience on Kidney Bean' exper 1 -1 class*exper 0 0
1 -1 0 0 0 0 0 0 0 0;
Contrast 'Effect of Experience on Navies bean' exper 1 -1 class*exper 0 0
0 0 0 0 0 1 -1 0 0 0;
Contrast 'Effect of Experience on Pinto beans' exper 1 -1 class*exper 0 0
0 0 0 0 0 0 0 0 0 1 -1;
estimate 'Black, < 5 year, Rating = 1' Intercept 1 0 0 0 0 0 0 0 0 class 1 0
0 0 0 0 0 exper 1 0 class*exper 1 0 0 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, < 5 year, Rating <= 2' Intercept 0 1 0 0 0 0 0 0 0 class 1 0
0 0 0 0 0 exper 1 0 0 class*exper 1 0 0 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, < 5 year, Rating <= 3' Intercept 0 0 0 1 0 0 0 0 0 class 1 0
0 0 0 0 0 exper 1 0 0 class*exper 1 0 0 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, < 5 year, Rating <= 4' Intercept 0 0 0 0 1 0 0 0 class 1 0 0 0
0 0 0 exper 1 0 0 class*exper 1 0 0 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, < 5 year, Rating <= 5' Intercept 0 0 0 0 0 0 1 0 0 class 1 0
0 0 0 0 0 exper 1 0 0 class*exper 1 0 0 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, > 5 year, Rating <= 6' Intercept 0 0 0 0 0 0 0 0 1 class 1 0
0 0 0 0 exper 1 0 class*exper 1 0 0 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, > 5 year, Rating = 1' Intercept 1 0 0 0 0 0 0 0 0 class 1 0
0 0 0 0 exper 0 1 class*exper 0 1 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, > 5 year, Rating <= 2' Intercept 0 1 0 0 0 0 0 0 0 class 1 0
0 0 0 0 0 exper 0 1 class*exper 0 1 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, > 5 year, Rating <= 3' Intercept 0 0 0 1 0 0 0 0 0 class 1 0
0 0 0 0 0 exper 0 1 class*exper 0 1 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, > 5 year, Rating <= 4' Intercept 0 0 0 0 1 0 0 0 class 1 0 0 0
0 0 exper 0 1 class*exper 0 1 0 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, > 5 year, Rating <= 5' Intercept 0 0 0 0 0 0 1 0 0 class 1 0
0 0 0 0 0 exper 0 1 class*exper 0 1 0 0 0 0 0 0 0 0 0/ilink;
estimate 'Black, > 5 year, Rating <= 6' Intercept 0 0 0 0 0 0 0 0 1 class 1 0
0 0 0 0 exper 0 1 class*exper 0 1 0 0 0 0 0 0 0 0 0/ilink;
estimate 'Kidney, < 5 year, Rating = 1' Intercept 1 0 0 0 0 0 0 0 0 class 0 1
0 0 0 0 exper 1 0 0 class*exper 0 0 0 1 0 0 0 0 0 0 0/ilink;
estimate 'Kidney, < 5 year, Rating <= 2' Intercept 0 1 0 0 0 0 0 0 0 class 0 1
0 0 0 0 exper 1 0 0 class*exper 0 0 0 1 0 0 0 0 0 0 0/ilink;
estimate 'Kidney, < 5 yr, Rating <= 3' Intercept 0 0 0 1 0 0 0 0 0 class 0 1
0 0 0 exper 1 0 0 class*exper 0 0 0 1 0 0 0 0 0 0 0/ilink;
estimate 'Kidney, < 5 year, Rating <= 4' Intercept 0 0 0 0 0 1 0 0 0 class 0 1
0 0 0 exper 1 0 0 class*exper 0 0 0 1 0 0 0 0 0 0 0/ilink;
estimate 'Kidney, < 5 year, Rating <= 5' Intercept 0 0 0 0 0 0 1 0 0 class 0 1
0 0 0 exper 1 0 0 class*exper 0 0 0 1 0 0 0 0 0 0 0/ilink;
estimate 'Kidney, < 5 year, Rating <= 6' Intercept 0 0 0 0 0 0 0 0 1 class 0 1
0 0 0 0 exper 1 0 0 class*exper 0 0 0 1 0 0 0 0 0 0 0/ilink;
estimate 'Kidney, > 5 year, Rating = 1' Intercept 1 0 0 0 0 0 0 0 0 class 0 1
0 0 0 0 exper 0 1 class*exper 0 0 0 0 1 0 0 0 0 0 0/ilink;
estimate 'Kidney, > 5 year, Rating <= 2' Intercept 0 1 0 0 0 0 0 0 0 class 0 1
0 0 0 0 exper 0 1 class*exper 0 0 0 0 1 0 0 0 0 0 0/ilink;
estimate 'Kidney, > 5 year, Rating <= 3' Intercept 0 0 0 1 0 0 0 0 0 class 0 1
0 0 0 0 exper 0 1 class*exper 0 0 0 0 1 0 0 0 0 0 0/ilink;
estimate 'Kidney, > 5 year, Rating <= 4' Intercept 0 0 0 0 0 1 0 0 0 class 0 1
0 0 0 0 exper 0 1 class*exper 0 0 0 0 1 0 0 0 0 0 0/ilink;
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estimate 'Kidney, > 5 year, Rating <= 5' Intercept 0 0 0 0 0 0 1 0 0 class 0 1
0 0 0 0 exper 0 1 class*exper 0 0 0 0 1 0 0 0 0 0 0/ilink;
estimate 'Kidney, > 5 year, Rating <= 6' Intercept 0 0 0 0 0 0 0 0 1 class 0 1
0 0 0 0 exper 0 1 class*exper 0 0 0 0 1 0 0 0 0 0 0/ilink;
estimate 'Navies, < 5 year, Rating = 1' Intercept 1 0 0 0 0 0 0 0 0 class 0 0
0 1 0 0 exper 1 0 0 class*exper 0 0 0 0 0 1 0 0 0 0 0/ilink;
estimate 'Navies, < 5 year, Qualification <= 2' Intercept 0 1 0 0 0 0 0 0
0 class 0 0 0 1 0 0 exper 1 0 0 class*exper 0 0 0 0 0 1 0 0 0 0 0/ilink;
estimate 'Navies, < 5 year, Qualification <= 3' Intercept 0 0 0 0 1 0 0 0 0 0
class 0 0 0 1 0 0 exper 1 0 0 class*exper 0 0 0 0 0 1 0 0 0 0 0/ilink;
estimate 'Navies, < 5 year, Rating <= 4' Intercept 0 0 0 0 0 1 0 0 0 class 0 0
0 1 0 0 exper 1 0 0 class*exper 0 0 0 0 0 1 0 0 0 0 0/ilink;
estimate 'Navies, < 5 year, Rating <= 5' Intercept 0 0 0 0 0 0 0 1 0 0 class
0 0 0 1 0 0 exper 1 0 0 class*exper 0 0 0 0 0 1 0 0 0 0 0/ilink;
estimate 'Navies, <5 year, Qualification <= 6' Intercept 0 0 0 0 0 0 0 0 0 1
class 0 0 0 1 0 0 exper 1 0 0 class*exper 0 0 0 0 0 1 0 0 0 0 0/ilink;
estimate 'Navies, > 5 year, Qualification = 1' Intercept 1 0 0 0 0 0 0 0
0 class 0 0 0 1 0 0 exper 0 1 class*exper 0 0 0 0 0 0 0 1 0 0 0/ilink;
estimate 'Navies, > 5 year, Qualification <= 2' Intercept 0 1 0 0 0 0 0 0
0 class 0 0 0 1 0 0 exper 0 1 class*exper 0 0 0 0 0 0 0 1 0 0 0/ilink;
estimate 'Navies, > 5 year, Rating <= 3' Intercept 0 0 0 1 0 0 0 0 0 class 0 0
0 1 0 0 exper 0 1 class*exper 0 0 0 0 0 0 0 1 0 0 0/ilink;
estimate 'Navies, > 5 year, Rating <= 4' Intercept 0 0 0 0 0 1 0 0 0 class 0 0
0 1 0 0 exper 0 1 class*exper 0 0 0 0 0 0 0 1 0 0 0/ilink;
estimate 'Navies, > 5 year, Rating <= 5' Intercept 0 0 0 0 0 0 0 1 0 0 class
0 0 0 1 0 0 exper 0 1 class*exper 0 0 0 0 0 0 0 1 0 0 0/ilink;
estimate 'Navies, > 5 year, Rating <= 6' Intercept 0 0 0 0 0 0 0 0 0 1 class
0 0 0 1 0 0 exper 0 1 class*exper 0 0 0 0 0 0 0 1 0 0 0/ilink;
estimate 'Pinto, < 5 year, Qualification = 1' Intercept 1 0 0 0 0 0 0 0
0 class 0 0 0 0 0 0 1 exper 1 0 class*exper 0 0 0 0 0 0 0 0 1 0 0/ilink;
estimate 'Pinto, < 5 year, Qualification <= 2' Intercept 0 1 0 0 0 0 0 0
0 class 0 0 0 0 0 0 1 exper 1 0 0 class*exper 0 0 0 0 0 0 0 0 1 0 0/ilink;
estimate 'Pinto, < 5 year, Qualification <= 3' Intercept 0 0 0 0 1 0 0 0 0 0
class 0 0 0 0 0 1 exper 1 0 0 class*exper 0 0 0 0 0 0 0 0 1 0 0/ilink;
estimate 'Pinto, < 5 year, Rating <= 4' Intercept 0 0 0 0 0 1 0 0 0 class 0 0
0 0 0 1 exper 1 0 0 class*exper 0 0 0 0 0 0 0 0 1 0 0/ilink;
estimate 'Pinto, < 5 year, Rating <= 5' Intercept 0 0 0 0 0 0 0 1 0 0 class 0 0
0 0 0 1 exper 1 0 class*exper 0 0 0 0 0 0 0 0 1 0 0/ilink;
estimate 'Pinto, < 5 year, Rating <= 6' Intercept 0 0 0 0 0 0 0 0 0 1 class 0 0
0 0 0 1 exper 1 0 class*exper 0 0 0 0 0 0 0 0 1 0 0/ilink;
estimate 'Pinto, > 5 years, Qualification = 1' Intercept 1 0 0 0 0 0 0 0
0 class 0 0 0 0 0 1 exper 0 1 class*exper 0 0 0 0 0 0 0 0 0 1/ilink;
estimate 'Pinto, > 5 year, Qualification <= 2' Intercept 0 1 0 0 0 0 0 0
0 class 0 0 0 0 0 1 exper 0 1 class*exper 0 0 0 0 0 0 0 0 0 0 1/ilink;
estimate 'Pinto, > 5 year, Qualification <= 3' Intercept 0 0 0 1 0 0 0 0
0 class 0 0 0 0 0 1 exper 0 1 class*exper 0 0 0 0 0 0 0 0 0 0 1/ilink;
estimate 'Pinto, > 5 year, Rating <= 4' Intercept 0 0 0 0 0 1 0 0 0 class 0 0
0 0 0 1 exper 0 1 class*exper 0 0 0 0 0 0 0 0 0 0 1/ilink;
estimate 'Pinto, > 5 year, Rating <= 5' Intercept 0 0 0 0 0 0 0 1 0 0 class 0 0
0 0 0 1 exper 0 1 class*exper 0 0 0 0 0 0 0 0 0 0 1/ilink;
estimate 'Pinto, > 5 year, Qualification <= 6' Intercept 0 0 0 0 0 0 0 0 0 1
class 0 0 0 0 0 1 exper 0 1 class*exper 0 0 0 0 0 0 0 0 0 1/ilink;
freq y;
run;
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Table 8.15 Fixed effects
hypothesis testing in the mul-
tinomial cumulative logit
model

Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Class 1 2779 36.19 <0.0001

Exper 3 2779 85.20 <0.0001

Class*Exper 3 2779 10.13 <0.0001

Table 8.16 Hypothesis testing in quality assessment

Contrasts

Label Num DF Den DF F-value Pr > F

Effect of experience on black beans 1 2779 2.77 0.0961

Effect of experience on kidney beans 1 2779 7.86 0.0051

Effect of experience on navy beans 1 2779 0.02 0.8822

Effect of experience on pinto beans 1 2779 58.06 <0.0001

Part of the results is shown below. The results of the analysis of variance show
that the class of bean (Class), experience of the evaluator (Exper), and the interaction
between class and experience (Class×Exper) on bean canning scores differ signifi-
cantly (P = 0.0001). That is, the results of comparing judges with more and less
years of experience will depend on the line (variety) of beans (Table 8.15).

The contrasts address this interaction (Table 8.16). Hypothesis testing is as
follows: πclass of bean, < 5 years of experience = πclass of bean, > 5 years of experience.

The results show that judges with more than 5 years of experience differ from
those with less than 5 years of experience in evaluating the quality of canned kidney
and pinto beans (Table 8.16). With the “solution” option in the model specification,
the fixed parameter estimates table shows the solution of the fixed effects parameters
under maximum likelihood. In this table, we can observe the values of the estimated
intercepts: η1 = - 4:6421 defines the boundary between the categories, “1 = highly
undesirable” and “2 = moderately undesirable”, whereas η2 = - 2:9316 defines the
boundary between the categories “2 = moderately undesirable” and “3 = slightly
undesirable.” The third intercept defines the boundary between the categories
“3=moderately undesirable” and “3= slightly undesirable,” η3 = - 1:3995defines
the boundary between the categories “3 = slightly undesirable” and “4 = neither
undesirable nor desirable,” and so on.

The estimated effects of bean type αið Þ, evaluator βi , and their interaction αβij are

shown below. From these values, we can estimate the linear predictors for each of the
categories. For example, the linear predictor for canned black beans evaluated by an inexpe-
rienced judge who assigns the category “1 = very undesirable” is η111 = η1 þ α1 þ β1 þ
αβ11 = - 4:6421þ 1:9670þ 1:0284- 0:8066= - 2:4533, for category “2 = moder-
ately undesirable,” it is η211 = η2 þ α1 þ β1 þ αβ11 = - 2:9316þ 1:9670þ
1:0284- 0:8066= - 0:7428, for category “3 = slightly undesirable,” it is
η311 = η3 þ α1 þ β1 þ αβ11 = - 1:3995þ 1:9670þ 1:0284- 0:8066= 0:7893, and,



0 . . . .

0 . . . .

for category “4 = neither undesirable nor desirable,” it is
η411 = η4 þ α1 þ β1 þ αβ11 = 0:004287þ 1:9670þ 1:0284- 0:8066= 2:1931. This
is how the other categories are calculated for each type of bean and assessor (Table 8.17).
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Table 8.17 Maximum likelihood estimation of the estimated parameters in the fixed effects
solution of canned bean quality ratings in the multinomial cumulative logit model

Fixed parameter estimates

Effect
Cal
ηi

Class
αi

Expert

β1 Estimate
Standard
error DF t-value Pr > |t|

Intercept η1 1 -4.6421 0.1363 2779 -34.05 <0.0001

Intercept η2 2 -2.9316 0.1057 2779 -27.74 <0.0001

Intercept η3 3 -1.3995 0.09643 2779 -14.51 <0.0001

Intercept η4 4 0.004287 0.09230 2779 0.05 0.9630

Intercept η5 5 1.4191 0.1026 2779 13.84 <0.0001

Intercept η6 6 3.8925 0.2346 2779 16.59 <0.0001

Class Black
α1

1.9670 0.1318 2779 14.93 <0.0001

Class Kidney
α2

1.0472 0.1342 2779 7.80 <0.0001

Class Navy
α3

1.3076 0.1345 2779 9.72 <0.0001

Class Pinto
α4

Exper 1 β1 1.0284 0.1350 2779 7.62 <0.0001

Exper 2 0 . . . .

Class*Exper Black 1 αβ11 -0.8066 0.1894 2779 -4.26 <0.0001

Class*Exper Black 2 0 . . . .

Class*Exper Kidney 1 αβ21 -0.6457 0.1912 2779 -3.38 0.0007

Class*Exper Kidney 2 0 . . . .

Class*Exper Navy 1 αβ31 -1.0072 0.1969 2779 -5.12 <0.0001

Class*Exper Navy 2 0 . . . .

Class*Exper Pinto 1 αβ41
Class*Exper Pinto 2 0 . . . .

The results of Table 8.18 were obtained with the “estimate” command in con-
junction with the “ilink” option that prompts GLIMMIX to compute the values of the
linear predictors, η̂cij, tabulated under the “Estimate” column, and the estimated
probabilities π̂cij for all categories of each treatment are tabulated under the “Mean”
column πcij , except the reference category.

From Table 8.18 (“Estimates”), we can obtain the probabilities reported under the
“Mean” column in which an inexperienced (<5 years) panelist (judge) would rate
canned black beans as category 1 (1 = highly undesirable) with a probability of
π̂111 = 0:08 compared to an experienced panelist (>5 years) who would give a
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Table 8.18 Estimates on the model scale (Estimate) and on the data scale (Mean) based on judges’
experience in canned bean quality ratings in the multinomial cumulative logit model

Estimates

Label Estimate
Standard
error DF t-value Pr > |t| Mean

Standard
error
mean

Black
<5 years,
score = 1

-2.4533 0.1292 2779 -18.99 <0.0001 0.07920 0.009419

Black
<5 years,
score ≤ 2

-0.7428 0.1004 2779 -7.40 <0.0001 0.3224 0.02194

Black
<5 years,
score ≤ 3

0.7893 0.1008 2779 7.83 <0.0001 0.6877 0.02164

Black
<5 years,
score ≤ 4

2.1931 0.1076 2779 20.38 <0.0001 0.8996 0.009716

Black
<5 years,
score ≤ 5

3.6079 0.1238 2779 29.15 <0.0001 0.9736 0.003180

Black
>5 years,
score ≤ 6

6.0814 0.2467 2779 24.65 <0.0001 0.9977 0.000561

Black
>5 years,
score = 1

-2.6751 0.1264 2779 -21.17 <0.0001 0.06446 0.007621

Black
>5 years,
score ≤ 2

-0.9646 0.09577 2779 -10.07 <0.0001 0.2760 0.01913

Black
>5 years,
score ≤ 3

0.5675 0.09314 2779 6.09 <0.0001 0.6382 0.02151

Black
>5 years,
score ≤ 4

1.9713 0.09967 2779 19.78 <0.0001 0.8778 0.01069

Black
>5 years,
score ≤ 5

3.3861 0.1170 2779 28.95 <0.0001 0.9673 0.003704

Black
>5 years,
score ≤ 6

5.8595 0.2434 2779 24.07 <0.0001 0.9972 0.000690

Kidney
<5 years,
score = 1

-3.2122 0.1333 2779 -24.11 <0.0001 0.03871 0.004958

Kidney
<5 years,
score ≤ 2

-1.5017 0.1018 2779 -14.74 <0.0001 0.1822 0.01517
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Table 8.18 (continued)

Estimates

Label Estimate
Standard
error DF t-value Pr > |t| Mean

Standard
error
mean

Kidney
<5 years,
score ≤ 3

0.03040 0.09608 2779 0.32 0.7517 0.5076 0.02401

Kidney
<5 years,
score ≤ 4

1.4342 0.1011 2779 14.19 <0.0001 0.8076 0.01571

Kidney
<5 years,
score ≤ 5

2.8490 0.1178 2779 24.18 <0.0001 0.9453 0.006096

Kidney
>5 years,
score ≤ 6

5.3225 0.2438 2779 21.83 <0.0001 0.9951 0.001179

Kidney
>5 years,
score = 1

-3.5949 0.1372 2779 -26.20 <0.0001 0.02673 0.003569

Kidney
>5 years,
score ≤ 2

-1.8844 0.1071 2779 -17.60 <0.0001 0.1319 0.01226

Kidney
>5 years,
score ≤ 3

-0.3523 0.09988 2779 -3.53 0.0004 0.4128 0.02421

Kidney
>5 years,
score ≤ 4

1.0515 0.1020 2779 10.31 <0.0001 0.7411 0.01957

Kidney
>5 years,
score ≤ 5

2.4663 0.1176 2779 20.98 <0.0001 0.9217 0.008480

Kidney
>5 years,
score ≤ 6

4.9397 0.2436 2779 20.27 <0.0001 0.9929 0.001719

Navies
<5 years,
score = 1

-3.3133 0.1404 2779 -23.60 <0.0001 0.03512 0.004757

Navies
<5 years,
score ≤ 2

-1.6027 0.1119 2779 -14.33 <0.0001 0.1676 0.01561

Navies
<5 years,
score ≤ 3

-0.07066 0.1068 2779 -0.66 0.5084 0.4823 0.02667

Navies
<5 years,
score ≤ 4

1.3332 0.1102 2779 12.10 <0.0001 0.7914 0.01820

Navies
<5 years,
score ≤ 5

2.7479 0.1251 2779 21.97 <0.0001 0.9398 0.007077



(continued)

8.5 Effect of Judges’ Experience on Canned Bean Quality Ratings 347

Table 8.18 (continued)

Estimates

Label Estimate
Standard
error DF t-value Pr > |t| Mean

Standard
error
mean

Navies
>5 years,
score ≤ 6

5.2214 0.2473 2779 21.12 <0.0001 0.9946 0.001321

Navies
>5 years,
score = 1

-3.3345 0.1348 2779 -24.74 <0.0001 0.03441 0.004479

Navies
>5 years,
score ≤ 2

-1.6240 0.1047 2779 -15.51 <0.0001 0.1647 0.01440

Navies
>5 years,
score ≤ 3

-0.09190 0.09897 2779 -0.93 0.3532 0.4770 0.02469

Navies
>5 years,
score ≤ 4

1.3119 0.1028 2779 12.76 <0.0001 0.7878 0.01719

Navies
>5 years,
score ≤ 5

2.7267 0.1186 2779 22.99 <0.0001 0.9386 0.006836

Navies
>5 years,
score ≤ 6

5.2002 0.2439 2779 21.32 <0.0001 0.9945 0.001331

Pinto
<5 years,
score = 1

-3.6137 0.1380 2779 -26.19 <0.0001 0.02624 0.003527

Pinto
<5 years,
score ≤ 2

-1.9032 0.1081 2779 -17.61 <0.0001 0.1297 0.01221

Pinto
<5 years,
score ≤ 3

-0.3711 0.1008 2779 -3.68 0.0002 0.4083 0.02436

Pinto
<5 years,
score ≤ 4

1.0327 0.1030 2779 10.03 <0.0001 0.7374 0.01994

Pinto
<5 years,
score ≤ 5

2.4475 0.1184 2779 20.67 <0.0001 0.9204 0.008678

Pinto
>5 years,
score ≤ 6

4.9210 0.2439 2779 20.17 <0.0001 0.9928 0.001753

Pinto
>5 years,
score = 1

-4.6421 0.1363 2779 -34.05 <0.0001 0.009545 0.001289

Pinto
>5 years,
score ≤ 2

-2.9316 0.1057 2779 -27.74 <0.0001 0.05061 0.005078



probability of π̂112 = 0:0646. To calculate the probability that a judge with less than
5 years experience would assign a rating of 2 (2=moderately undesirable) to canned
black beans, we derive this probability from the cumulative probability of 0.3224,
which corresponds to π211 þ π111, from which we get
π211 = 0:3224- π111 = 0:3224- 0:08= 0:24. On the other hand, for a judge with
experience (>5 years), the probability of assigning a score of 2 to canned black
beans is π212 = 0:2760- π112 = 0:2760- 0:06446= 0:2115.
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Table 8.18 (continued)

Estimates

Label Estimate
Standard
error DF t-value Pr > |t| Mean

Standard
error
mean

Pinto
>5 years,
score ≤ 3

-1.3995 0.09643 2779 -14.51 <0.0001 0.1979 0.01531

Pinto
>5 years,
score ≤ 4

0.004287 0.09230 2779 0.05 0.9630 0.5011 0.02307

Pinto
>5 years,
score ≤ 5

1.4191 0.1026 2779 13.84 <0.0001 0.8052 0.01609

Pinto
>5 years,
score ≤ 6

3.8925 0.2346 2779 16.59 <0.0001 0.9800 0.004595

Following the same procedure, the other probabilities for the rest of the categories
are obtained. The probabilities calculated for each of the categories are shown in
Table 8.19 and can be seen in Fig. 8.2.

8.6 Generalized Logit Models: Nominal Response Variables

In a model with unordered data, the polytomous response variable does not have an
ordered structure. Two classes of models, generalized logit models and conditional
logit models, can be used with nominal response data. A generalized logit model
consists of a combination of several binary logits estimated simultaneously. A logit
model is the simplest and best-known probabilistic choice model. However, there are
problems in making use of a multinomial logit model because of its inflexibility. A
generalized logit model is essentially more flexible than the traditional multinomial
cumulative logit model.

A generalized logit model shows the same flexibility as a probit model but is
much more tractable. Like cumulative logit and probit models, a generalized logit
model has C – 1 link functions, where C denotes the number of response categories.



Moreover, in this class of models, a category is first defined as the reference
category. This may be arbitrary or it may make compelling logical sense in the
study to designate a particular response category as the reference. In practice and
throughout the analysis, the category used as the reference is irrelevant, as long as we
are consistent about it. For example, if C is used as the reference category, then the
generalized logits are defined as shown below:
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Table 8.19 Probabilities calculated for each of the canned bean grades

Cal1 Cal2 Cal3 Cal4 Cal5 Cal6 Cal7

Black J1 0.08 0.24 0.37 0.21 0.07 0.02 0.00

J2 0.06 0.21 0.36 0.24 0.09 0.03 0.00

Kidney J1 0.04 0.14 0.33 0.30 0.14 0.05 0.00

J2 0.03 0.11 0.28 0.33 0.18 0.07 0.01

Navy J1 0.04 0.13 0.31 0.31 0.15 0.05 0.01

J2 0.03 0.13 0.31 0.31 0.15 0.06 0.01

Pinto J1 0.03 0.10 0.28 0.33 0.18 0.07 0.01

J2 0.01 0.04 0.15 0.30 0.30 0.17 0.02

Cal1 = qualification 1, Cal2 = qualification 2,...., Cal7 = qualification 7; J1 = panelist with less
than 5 years’ experience, and J2 = panelist with more than 5 years’ experience
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Fig. 8.2 Estimated probabilities for each category of the acceptability of canned beans, according
to the experience of the panelist (judge)
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η1 = log
π1ij
πcij

= α1 þ Xβ1 þ Zb1

η2 = log
π2ij
πCij

= α2 þ Xβ2 þ Zb2

⋮

ηC- 1 = log
π C- 1ð Þij
πCij

= αc- 1 þ XβC- 1 þ ZbC- 1

Given the different effects in the models, the intercepts (α´s), β´s, and b´s vary
across the pairs of response variable categories for each link function. Using algebra,
it can be shown that the general form of the inverse of the link functions is given by

πc =
eηc

1þ
C- 1

c= 1
eηc

, c= 1, 2, . . . ,C- 1

Once π1, π1, . . . . πC - 1 are estimated, the reference category is estimated as

πC = 1-
C- 1

c= 1
πc.

8.6.1 CRDs with a Nominal Multinomial Response

In practice, cumulative models are used for analyzing ordinal data and generalized
logit models for nominal data. Returning to Example 8.3.1, we will now implement
the analysis of a generalized logit model. This model relaxes the assumptions of
proportionality; but it is less parsimonious than the “odds ratio” model since they fit
C - 1 binary logit models, where C is the number of categories of the response
variable. The linear predictor and distribution are the same as in the previous
example.

The following GLIMMIX syntax implements the analysis of the generalized logit
model:

proc glimmix data=chickens ;
class trt block category;
model category(reference='severe')= trt/dist=Multinomial
link=glogit oddsratio;
random intercept/subject=block solution group=category;
estimate 't=1' intercept 1 trt 1 0,
t=2' intercept 1 trt 0 1 0,
't=3' intercept 1 trt 0 0 0 1 0,
't=4' intercept 1 trt 0 0 0 0 1/ilink bycat;
freq y;
run;
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Table 8.20 Analysis of
variance in the generalized
multinomial logit model

Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Trt 6 790 10.78 <0.0001

Table 8.21 Maximum likelihood estimates on the model scale (Estimate) for footpad lesion level
in the multinomial generalized logit model

Solutions for fixed effects

Effect Category Trt Estimate Standard error DF t-value Pr > |t|

Intercept Without lesion 4.8525 1.0059 2 4.82 0.0404

Intercept Moderate lesion 4.2485 1.0071 2 4.22 0.0519

trt Without lesion 1 -3.8447 1.0330 790 -3.72 0.0002

trt Moderate lesion 1 -2.6478 1.0327 790 -2.56 0.0105

trt Without lesion 2 -1.1888 1.1618 790 -1.02 0.3065

trt Moderate lesion 2 -0.9651 1.1662 790 -0.83 0.4082

trt Without lesion 3 -2.7860 1.0585 790 -2.63 0.0087

trt Moderate lesion 3 -1.8326 1.0598 790 -1.73 0.0842

trt Without lesion 4 0 . . . .

trt Moderate lesion 4 0 . . . .

Most of the syntax of the program has already been explained. The “reference=”

option is new to this program in the command, where the model is defined and is
used to designate the reference category. By not specifying the “reference=” option,
GLIMMIX by default uses the last category in the dataset. Moreover, the
“link = glogit” option prompts GLIMMIX to fit a generalized logit model. The
“bycat” option in the “estimate” command is unique to the generalized logit model.
Finally, the “ilink” option asks GLIMMIX to estimate all category probabilities for
each treatment, except those for the reference category. Part of the output is shown in
Table 8.20. The fixed effects test shows that there are highly significant differences
(P = 0.0001) on the average percentage of footpad lesion level between treatments.

Unlike the cumulative logit model, in the generalized logit model, the estimates
of the fixed effects (treatments), as well as the intercepts, are separated for each
link function. For the estimation of linear predictors, we use the estimated values
of Table 8.21 (“Solutions for fixed effects”). The estimated intercepts α1 = 4:8525 and
α2 = 4:2485 define the boundary between the categories “Without” lesion and “Mod-
erate” lesion and the boundary between the categories “Moderate” lesion and “Severe”
lesion, respectively. For treatment 1, the treatment effects (τ̂iÞ estimated for the
“Without” lesion category is τ1 = - 3:8447 and for the “Moderate” lesion category,
it is τ1 = - 2:6478. With these values, the linear predictors for the “Without” lesion
and “Moderate” lesion categories under treatment 1 are η01= 4:8525- 3:8447=
1:0077 and η11= 4:2485- 2:6478= 1:6007, respectively.

The estimated probabilities for each of the categories (“Without” lesion
and “Moderate” lesion) in each treatment, except for the reference category, are found



under the “Mean” column of Table 8.22. The probability that a chick has no footpad
lesion when receiving treatment 1 is π01 = 0:315, whereas the value 0.57 corresponds to
the cumulative probability π01 þ π11. From this value, we can calculate the probability
of observing a moderate lesion, which is π11 = 0:57- π01 = 0:57- 0:315= 0:255.
From these probabilities, we can estimate the probability of observing a severe footpad
lesion under treatment 1 as π21 = 1- 0:57ð Þ= 0:43. Following the same logic, we can
estimate the reference probabilities for the rest of the other treatments.
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Table 8.22 Estimates on the model scale (“Estimate”) and on the data scale (“Mean”) for footpad
lesion level observed in treatments in the multinomial generalized logit model

Estimates

Label Category Estimate
Standard
error DF t-value Pr > |t| Mean

Standard
error mean

t = 1 Without
lesion

1.0077 0.2515 790 4.01 <0.0001 0.3150 0.03552

t = 1 Moderate
lesion

1.6007 0.2286 790 7.00 <0.0001 0.5700 0.03677

t = 2 Without
lesion

3.6637 0.5881 790 6.23 <0.0001 0.5850 0.03801

t = 2 Moderate
lesion

3.2834 0.5881 790 5.58 <0.0001 0.4000 0.03761

t = 3 Without
lesion

2.0665 0.3414 790 6.05 <0.0001 0.3929 0.03755

t = 3 Moderate
lesion

2.4159 0.3300 790 7.32 <0.0001 0.5573 0.03762

t = 4 Without
lesion

4.8525 1.0059 790 4.82 <0.0001 0.6433 0.03687

t = 4 Moderate
lesion

4.2485 1.0071 790 4.22 <0.0001 0.3517 0.03669

Another important result is the odds ratio estimates. These estimates are shown in
Table 8.23.

These odds ratios compare the odds for the labeled category to those for the
reference category for treatments 1–3 relative to treatment 4. These odds ratio values
are derived from the estimated probabilities in each of the categories. For example,
the probabilities that a chicken does not present a lesion and a moderate lesion
are π04 = 0:6433 and π14 = 0:3517, respectively. From these probabilities, we
can estimate the probability of observing a severe lesion as follows:
π24 = 1- 0:6433þ 0:3517ð Þ= 0:005. The estimated odds ratio of not observing a
lesion (“Without” lesion) between treatments 1 and 4 is

Odds ratioTrt1,Trt4 =
π01
π21

=
π04
π24

=
0:315
0:115

=
0:6433
0:005

= 0:0213

the value provided in the odds ratio estimates table. If we compare the analysis using
the cumulative logit link and the generalized logit link, we observe insignificant



changes in the estimated category probabilities by treatment as well as in the
significance level in the test of treatment effects.
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Table 8.23 Estimated odds ratio

Odds ratio estimates

Category Trt _trt Estimate DF 95% Confidence limits

Without lesion 1 4 0.021 790 0.003 0.163

Moderate lesion 1 4 0.071 790 0.009 0.538

Without lesion 2 4 0.305 790 0.031 2.979

Moderate lesion 2 4 0.381 790 0.039 3.759

Without lesion 3 4 0.062 790 0.008 0.493

Moderate lesion 3 4 0.160 790 0.020 1.281

8.6.2 CRD: Cheese Tasting

Consider a study in which you want to know the effects of various additives on the
flavor of cheese. Researchers tested 4 cheese additives and obtained 52 response
ratings for each additive. Each response was measured on a scale of 9 categories
ranging from: I dislike it very much (1) to I like it very much or excellent flavor (9).
Data are obtained from the study by McCullagh and Nelder (1989) (Table 8.24).

The components of the GLMM with an ordinal multinomial response are as
follows:

Distributions: y1i, y2i, y3i, y4i, y5i, y6i,y7i, y8i, y9i~Multinomial
(Ni, π1i, π2i, π3i, π4i, π5i, π6i, π7i,π8i, π9i), where y1i, y2i, y3i, y4i, y5i, y6i,y7i, y8i,
and y9i are the observed frequencies of the responses in each category c of the
hedonic scale (1= very undesirable, ..., 5= neither desirable nor undesirable, ... ,
9 = very desirable).

Linear predictor: η(c)i= ηc + αi, where η(c)ij is cth link (c= 1, 2, . . ., 8) for the additive
type i, ηc is the intercept for the cth link, and αi is the fixed effect due to the ith
additive. The link functions for each category are as follows:

log
π1i

1- π1i
= η1i

log
π1i þ π2i

1- π1i þ π2i
= η2ið Þ

log
π1i þ π2i þ π3i

1- π1i þ π2i þ π3i
= η3ið Þ
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Table 8.24 Effect of addi-
tives on cheese flavor

id Additive Y Freq Id Additive Y Freq

1 1 1 0 19 3 1 1

2 1 2 0 20 3 2 1

3 1 3 1 21 3 3 6

4 1 4 7 22 3 4 8

5 1 5 8 23 3 5 23

6 1 6 8 24 3 6 7

7 1 7 19 25 3 7 5

8 1 8 8 26 3 8 1

9 1 9 1 27 3 9 0

10 2 1 6 28 4 1 0

11 2 2 9 29 4 2 0

12 2 3 12 30 4 3 0

13 2 4 11 31 4 4 1

14 2 5 7 32 4 5 3

15 2 6 6 33 4 6 7

16 2 7 1 34 4 7 14

17 2 8 0 35 4 8 16

18 2 9 0 36 4 9 11

log
π1i þ π2i þ π3i þ π4i

1- π1i þ π2i þ π3i þ π4i
= η4ið Þ

log
π1i þ π2i þ π3i þ π4i þ π5i

1- π1i þ π2i þ π3i þ π4i þ π5i
= η5ið Þ

log
π1i þ π2i þ π3i þ π4i þ π5i þ π6i

1- π1i þ þπ2i þ π3i π4iþ π5i þ π6i
= η6ið Þ

log
π1i þ π2i þ π3i þ π4i þ π5i þ π6i þ π7i

1- π1i þ π2i þ π3i þ π4i þ π5i þ π6i þ π7i
= η7ið Þ

log
π1i þ π2i þ π3i þ π4i þ π5i þ π6i þ π7i þ π8i

1- π1i þ π2i þ π3i þ π4i þ π5i þ π6i þ π7i þ π8i
= η8ið Þ

The following GLIMMIX commands fit a cumulative logit model with an ordinal
multinomial response.

proc glimmix ;
class id additive scale;
model scale(order=data)= additive/dist=Multinomial link=clogit
solution oddsratio;
estimate 'c=1, a=1' intercept 1 0 0 0 0 0 0 0 additive 1 0 0 0,
'c=2, a=1' intercept 0 1 0 0 0 0 0 0 additive 1 0 0 0,
'c=3, a=1' intercept 0 0 1 0 0 0 0 0 additive 1 0 0 0,
'c=4, a=1' intercept 0 0 0 1 0 0 0 0 additive 1 0 0 0,
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Table 8.25 Fixed effects
tests in the multinomial
cumulative logit model

Type III tests of fixed effects

Effect Num DF Den DF F-value Pr > F

Additive 3 197 38.11 <0.0001

'c=5, a=1' intercept 0 0 0 0 1 0 0 0 additive 1 0 0 0,
'c=6, a=1' intercept 0 0 0 0 0 1 0 0 additive 1 0 0 0,
'c=7, a=1' intercept 0 0 0 0 0 0 1 0 additive 1 0 0 0,
'c=8, a=1' intercept 0 0 0 0 0 0 0 1 additive 1 0 0 0,
'c=1, a=2' intercept 1 0 0 0 0 0 0 0 additive 0 1 0 0,
'c=2, a=2' intercept 0 1 0 0 0 0 0 0 additive 0 1 0 0,
'c=3, a=2' intercept 0 0 1 0 0 0 0 0 additive 0 1 0 0,
'c=4, a=2' intercept 0 0 0 1 0 0 0 0 additive 0 1 0 0,
'c=5, a=2' intercept 0 0 0 0 1 0 0 0 additive 0 1 0 0,
'c=6, a=2' intercept 0 0 0 0 0 1 0 0 additive 0 1 0 0,
'c=7, a=2' intercept 0 0 0 0 0 0 1 0 additive 0 1 0 0,
'c=8, a=2' intercept 0 0 0 0 0 0 0 1 additive 0 1 0 0,
'c=1, a=3' intercept 1 0 0 0 0 0 0 0 additive 0 0 1 0,
'c=2, a=3' intercept 0 1 0 0 0 0 0 0 additive 0 0 1 0,
'c=3, a=3' intercept 0 0 1 0 0 0 0 0 additive 0 0 1 0,
'c=4, a=3' intercept 0 0 0 1 0 0 0 0 additive 0 0 1 0,
'c=5, a=3' intercept 0 0 0 0 1 0 0 0 additive 0 0 1 0,
'c=6, a=3' intercept 0 0 0 0 0 1 0 0 additive 0 0 1 0,
'c=7, a=3' intercept 0 0 0 0 0 0 1 0 additive 0 0 1 0,
'c=8, a=3' intercept 0 0 0 0 0 0 0 1 additive 0 0 1 0,
'c=1, a=4' intercept 1 0 0 0 0 0 0 0 additive 0 0 0 1,
'c=2, a=4' intercept 0 1 0 0 0 0 0 0 additive 0 0 0 1,
'c=3, a=4' intercept 0 0 1 0 0 0 0 0 additive 0 0 0 1,
'c=4, a=4' intercept 0 0 0 1 0 0 0 0 additive 0 0 0 1,
'c=5, a=4' intercept 0 0 0 0 1 0 0 0 additive 0 0 0 1,
'c=6, a=4' intercept 0 0 0 0 0 1 0 0 additive 0 0 0 1,
'c=7, a=4' intercept 0 0 0 0 0 0 1 0 additive 0 0 0 1,
'c=8, a=4' intercept 0 0 0 0 0 0 0 1 additive 0 0 0 1/ilink;
freq freq;
run;

Part of the results is shown in Table 8.25. The results of the analysis of variance
show that the type of additive used in the manufacture of cheese significantly affects
the degree of consumer acceptance (P= 0.0001). That is, the type of additive affects
the sensory characteristics of the cheese.

The contrast of hypothesis are presented in Table 8.26. The hypothesis tests are as
follows:

πadditivei = πadditivej ; 8i≠ j

The results show that the additives provide different sensory characteristics that
are reflected in the evaluation of preference.

With the “solution” option in the model specification, Table 8.27 (fixed parameter
estimates) shows the solution of the maximum likelihood estimates for the fixed



4 0 . . .

effects parameters. In this table, we observe the values of the estimated intercepts:
η1 = - 7:0802 defines the boundary between categories “1” and “2,” whereas
η2 = - 6:0250 defines the boundary between categories “2” and “3.” The third
intercept, η̂3 = - 4:9254, defines the boundary between categories “3” and “4”
and so forth. The estimated effects of the additive type αi, i= 1, 2, 3, and 4ð Þ are
1.628, 4.9646, 3.3227, and 0, respectively. From these values, linear predictors are
estimated for each of the categories.
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Table 8.26 Contrast of hypothesis in the acceptance of cheese made with four additives

Contrasts

Label Num DF Den DF F-value Pr > F

Additive effect 1 vs. 2 1 197 61.13 <0.0001

Additive effect 1 vs. 3 1 197 21.19 <0.0001

Additive effect 2 vs. 3 1 197 19.14 <0.0001

Additive effect 2 vs. 4 1 197 108.45 <0.0001

Additive effect 3 vs. 4 1 197 62.04 <0.0001

Table 8.27 Maximum likelihood estimates of the fixed effects in the preference ratings of cheese
made with different types of additives in the multinomial cumulative logit model

Fixed parameter estimates

Effect escala Additive Estimate Standard error DF t-value Pr > |t|

Intercept η1 1 -7.0802 0.5640 197 -12.55 <0.0001

Intercept η2 2 -6.0250 0.4764 197 -12.65 <0.0001

Intercept η3 3 -4.9254 0.4257 197 -11.57 <0.0001

Intercept η4 4 -3.8568 0.3880 197 -9.94 <0.0001

Intercept η5 5 -2.5206 0.3453 197 -7.30 <0.0001

Intercept η6 6 -1.5685 0.3122 197 -5.02 <0.0001

Intercept η7 7 -0.06688 0.2738 197 -0.24 0.8073

Intercept η8 8 1.4930 0.3357 197 4.45 <0.0001

Aditivo α1 1 1.6128 0.3805 197 4.24 <0.0001

Aditivo α2 2 4.9646 0.4767 197 10.41 <0.0001

Aditivo α3 3 3.3227 0.4218 197 7.88 <0.0001

Aditivo α4 .

For example, the estimated linear predictor for a cheese made with additive 1, where
the evaluator (consumer) assigns it category “1= highly undesirable,” is represented as
η11 = η1 þ α1 = - 7:0802þ 1:6128= - 5:4674; for the category “2 = moderately
undesirable,” it is η21 = η2 þ α1 = - 6:0250þ 1:6128= - 4:4122; for the category
“3 = slightly undesirable,” it is η31 = η3 þ α1 = - 4:9254þ 1:6128= - 3:3126; and
for the category “4 = neither undesirable nor desirable,” it is
η41 = η4 þ α1 = - 3:8568þ 1:6128= - 2:2440. These values are shown in the “Esti-
mate” column of Table 8.28; other categories are similarly calculated for each type of
additive.

The estimated values in Table 8.27 obtained with the “estimate” command in
conjunction with the “ilink” option prompts GLIMMIX to calculate the values of the



linear predictors ηCi tabulated in the “Estimate” column and estimated probabilities
πCiof all categories of each treatment, tabulated in the “Mean” column πcij , except
for the reference category.
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From Table 8.28 (Estimates), we obtain the probabilities for each category that is
reported under the “Mean” column. In this case, the probability for π11 = 0:004205.
This value is obtained by taking the inverse value of the linear predictor η11 = - 5:4674
π11 = 1= 1þ exp 5:4674ð Þ = 0:004205 . To calculate the probability that a panelist
would assign a rating of 2 (2 = moderately undesirable) to cheese made with additive
1, we use the cumulative probability of 0.01198, which corresponds to π̂21 þ π̂11. From
this value, we obtain π21 = 0:01198- π11 = 0:01198- 0:004205= 0:007775 and for
the probability of assigning a rating of 3 to cheese made with additive
1, π31 = 0:03514- π21 þ π11ð Þ= 0:03514- 0:001198= 0:033942: Following the
same procedure, we obtain the other probabilities for the rest of the categories of each
of the additives used in the manufacturing of cheese, which are tabulated in Table 8.29
and can be seen in Fig. 8.3.

Figure 8.3 shows the probability results of each flavor rating for each of the
additives (it should be noted that some probability values were suppressed to avoid
overwriting). It can be seen that additive 1 primarily receives ratings of 5–7; additive
2 primarily receives ratings of 2–5; additive 3 primarily receives ratings of 4–6; and
additive 4 primarily receives ratings of 7–9.

The odds ratio results (Table 8.30) show the preferences more clearly. For
example, the odds ratio additive 1 vs. 4 states that the first additive is 5.017 times
more likely to receive a lower score than the fourth additive.

8.7 Exercises

Exercise 8.7.1 The dataset for this exercise corresponds to the results of 9 judges
who rated 2 classes of wine, namely, white wine (WW= 1) and red wine (RW = 2),
and, within each wine class, they rated 10 wines on a scale of 1–20 points. The
minimum rating for a particular wine was 7, and the maximum rating was 19.5. For
didactic purposes, ratings between 7 and 11 were assigned low quality, a rating
between 12 and 15 as medium quality, and anything above 15 was considered
excellent quality. The data are shown in Table 8.31 of the wine evaluation experi-
ment under columns “Judge” (wine evaluator panelist), “Wine_type” (white wine:
1, red wine: 2), “Quality” (low, medium, and excellent), and the frequency of the
observed qualities (“y”).

(a) Fit the cumulative logit proportional odds model to these data. Perform a
complete and appropriate analysis of the data, focusing on:

(i) An evaluation of the effects of the combination of treatments
(ii) Interpretation of the odds ratios
(iii) The expected probability per category for each treatment
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Table 8.28 Estimates on the model scale (Estimate) and on the data scale (Mean) based on judges’
preference ratings of cheese made with different types of additives in the multinomial cumulative
logit model

Estimates

Label Estimate
Standard
error DF t-value Pr > |t| Mean

Standard error
mean

c = 1,
a = 1

-5.4674 0.5236 197 -10.44 <0.0001 0.004205 0.002192

c = 2,
a = 1

-4.4122 0.4278 197 -10.31 <0.0001 0.01198 0.005064

c = 3,
a = 1

-3.3126 0.3700 197 -8.95 <0.0001 0.03514 0.01255

c = 4,
a = 1

-2.2440 0.3267 197 -6.87 <0.0001 0.09587 0.02832

c = 5,
a = 1

-0.9078 0.2833 197 -3.20 0.0016 0.2875 0.05804

c = 6,
a = 1

0.04425 0.2646 197 0.17 0.8673 0.5111 0.06611

c = 7,
a = 1

1.5459 0.3017 197 5.12 <0.0001 0.8243 0.04369

c = 8,
a = 1

3.1058 0.4057 197 7.65 <0.0001 0.9571 0.01665

c = 1,
a = 2

-2.1155 0.4106 197 -5.15 <0.0001 0.1076 0.03942

c = 2,
a = 2

-1.0603 0.3009 197 -3.52 0.0005 0.2572 0.05749

c = 3,
a = 2

0.03922 0.2735 197 0.14 0.8861 0.5098 0.06836

c = 4,
a = 2

1.1078 0.2969 197 3.73 0.0002 0.7517 0.05542

c = 5,
a = 2

2.4441 0.3397 197 7.19 <0.0001 0.9201 0.02497

c = 6,
a = 2

3.3961 0.3724 197 9.12 <0.0001 0.9676 0.01168

c = 7,
a = 2

4.8978 0.4249 197 11.53 <0.0001 0.9926 0.003124

c = 8,
a = 2

6.4576 0.5045 197 12.80 <0.0001 0.9984 0.000789

c = 1,
a = 3

-3.7575 0.4761 197 -7.89 <0.0001 0.02281 0.01061

c = 2,
a = 3

-2.7023 0.3677 197 -7.35 <0.0001 0.06284 0.02165

c = 3,
a = 3

-1.6027 0.3001 197 -5.34 <0.0001 0.1676 0.04186

c = 4,
a = 3

-0.5341 0.2556 197 -2.09 0.0379 0.3696 0.05955

c = 5,
a = 3

0.8021 0.2610 197 3.07 0.0024 0.6904 0.05579
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Table 8.28 (continued)

Estimates

Label Estimate
Standard
error DF t-value Pr > |t| Mean

Standard error
mean

c = 6,
a = 3

1.7541 0.2984 197 5.88 <0.0001 0.8525 0.03752

c = 7,
a = 3

3.2558 0.3618 197 9.00 <0.0001 0.9629 0.01293

c = 8,
a = 3

4.8157 0.4528 197 10.63 <0.0001 0.9920 0.003610

c = 1,
a = 4

-7.0802 0.5640 197 -12.55 <0.0001 0.000841 0.000474

c = 2,
a = 4

-6.0250 0.4764 197 -12.65 <0.0001 0.002412 0.001146

c = 3,
a = 4

-4.9254 0.4257 197 -11.57 <0.0001 0.007207 0.003046

c = 4,
a = 4

-3.8568 0.3880 197 -9.94 <0.0001 0.02070 0.007865

c = 5,
a = 4

-2.5206 0.3453 197 -7.30 <0.0001 0.07443 0.02379

c = 6,
a = 4

-1.5685 0.3122 197 -5.02 <0.0001 0.1724 0.04455

c = 7,
a = 4

-0.06688 0.2738 197 -0.24 0.8073 0.4833 0.06838

c = 8,
a = 4

1.4930 0.3357 197 4.45 <0.0001 0.8165 0.05029

Exercise 8.7.2 Data were obtained from a series of experiments conducted to
reduce damage to potato tubers due to a potato lifter. The experiments were
conducted at the Institute of Agricultural Engineering (IMAG-DLO) inWageningen,
the Netherlands. One source of damage was the type of rod used in the lifter. In the
experiment – under consideration – eight types of rods were compared. It is an
empirical fact that the degree of damage varies considerably between potato varieties
with the type of rope used in the lifting of full potato sacks. Three blocks of
observations were obtained for the combinations of varieties and rope types. Most
of the combinations involved about 20 potatoes. For some combinations, there are
no data due to an insufficient number of large potatoes. Tubers were dropped from a
given height. To determine the damage, all tubers were peeled and the degree of blue
coloration was classified into one of four classes (class 1: no damage; class 2: slight
damage; class 3: moderate damage; and class 4: severe damage). The observations,
in the form of counts per class and combination, are shown in Table 8.32 of the tuber
experiment whose columns are “Variety” (1, 2, 3, 4, 4, 5, 6), “String” (1, 2, 3, 4, 5, 6,
7, 8), “Block” (1, 2, 3), Type of damage (sd = no damage, dl = light damage,
dm = moderate damage, ds = severe damage), and the observed frequency (Y ).
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Fig. 8.3 Estimated probabilities for the categories of acceptability for the cheese according to the
type of additive

Table 8.30 Odds ratio

Odds ratio estimates

Aditivo _Aditivo Estimate DF 95% Confidence limits

1 4 5.017 197 2.369 10.625

2 4 143.257 197 55.953 366.783

3 4 27.735 197 12.071 63.724

(a) List the components of the multinomial GLMM.
(b) Fit the cumulative logit proportional odds model to these data. Perform a

complete and appropriate analysis of the data, focusing on:

(i) An evaluation of the effects of the combination of treatments
(ii) Interpretation of the odds ratios
(iii) The expected probability per category for each treatment

(c) Test whether the proportional odds assumption is viable. Cite relevant evidence
to support your conclusion regarding the adequacy of the assumption.

(d) If as a result of b), you consider that an alternative cumulative logit model is
better, then revise your analysis in a) accordingly.

Exercise 8.7.3 Fit a generalized multinomial logit model using the dataset from
Exercise 8.7.2 of this section, following the instructions:
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Table 8.31 Results of the wine evaluation experiment

Judge Wine_type Quality y

1 1 Low 4

1 1 Medium 6

1 1 Excellent 0

1 2 Low 3

1 2 Medium 6

1 2 Excellent 1

2 1 Low 3

2 1 Medium 5

2 1 Excellent 2

2 2 Low 2

2 2 Medium 7

2 2 Excellent 1

3 1 Low 0

3 1 Medium 4

3 1 Excellent 6

3 2 Low 0

3 2 Medium 1

3 2 Excellent 9

4 1 Low 1

4 1 Medium 3

4 1 Excellent 6

4 2 Low 4

4 2 Medium 3

4 2 Excellent 3

5 1 Low 6

5 1 Medium 3

5 1 Excellent 1

5 2 Low 3

5 2 Medium 5

5 2 Excellent 2

6 1 Low 0

6 1 Medium 4

6 1 Excellent 6

6 2 Low 0

6 2 Medium 6

6 2 Excellent 4

7 1 Low 1

7 1 Medium 9

7 1 Excellent 0

7 2 Low 3

7 2 Medium 5

7 2 Excellent 2
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Table 8.31 (continued)

Judge Wine_type Quality y

8 1 Low 0

8 1 Medium 7

8 1 Excellent 3

8 2 Low 0

8 2 Medium 6

8 2 Excellent 4

9 1 Low 0

9 1 Medium 5

9 1 Excellent 5

9 2 Low 2

9 2 Medium 4

9 2 Excellent 4

(a) List the components of this model.
(b) Perform a thorough and appropriate analysis of the data, focusing on:

(i) An evaluation of the main effects and treatment interaction
(ii) Odds ratio interpretation
(iii) The expected probability per category for each treatment

(c) Comment on and discuss your results. Cite relevant evidence to support your
conclusion regarding the adequacy of the assumption.

Exercise 8.7.4 In this exercise, the effects of judges’ experience on quality ratings
of canned beans are assessed. Canning quality is one of the most essential traits
required in all new dry bean (Phaseolus vulgaris L.) varieties, and selection for this
trait is a critical part of bean breeding programs. Advanced lines, which are candi-
dates for release as varieties, must be evaluated for canning quality for at least
3 years from samples grown at different locations. Quality is evaluated by a panel of
judges with varying levels of experience in evaluating breeding lines for visual
quality traits. In all, 264 bean breeding lines from 4 commercial classes were
conserved according to the procedures described by Walters et al. (1997).

These included 62 white (navy), 65 black, 55 kidney, and 82 pinto bean lines plus
control lines and “checks.” The visual appearance of the processed beans was
determined subjectively by a panel of 13 judges on a 7-point hedonic scale
(1 = very undesirable, 4 = neither desirable nor undesirable, 7 = very desirable).
The beans were presented to the panel of judges in random order at the same time.
Prior to evaluating the samples, all judges were shown examples of samples rated as
satisfactory (4). There is concern that certain judges, due to lack of experience, may
not be able to score canned samples correctly.

From attribute-based product evaluations, inferences about the effects of experi-
ence can be drawn from the psychology literature (Wallsten and Budescu (1981).
Prior to the bean canning quality rating experiment, it was postulated that not only do
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Table 8.32 Results of the tuber experiment. V = variety, C = string, B = block, D = damage
(sd = no damage, dl = slight damage, dm = moderate damage, ds = severe damage), and
Y = observed frequency

V C B D Y V C B D Y V C B D Y

1 1 1 sd 5 2 1 1 sd 4 3 1 1 sd 3

1 1 1 dl 14 2 1 1 dl 5 3 1 1 dl 2

1 1 1 dm 1 2 1 1 dm 4 3 1 1 dm 8

1 1 1 ds 0 2 1 1 ds 7 3 1 1 ds 7

1 2 1 sd 6 2 2 1 sd 8 3 2 1 sd 18

1 2 1 dl 11 2 2 1 dl 3 3 2 1 dl 1

1 2 1 dm 1 2 2 1 dm 0 3 2 1 dm 0

1 2 1 ds 0 2 2 1 ds 0 3 2 1 ds 0

1 3 1 sd 6 2 3 1 sd 3 3 3 1 sd 5

1 3 1 dl 13 2 3 1 dl 10 3 3 1 dl 7

1 3 1 dm 0 2 3 1 dm 6 3 3 1 dm 4

1 3 1 ds 0 2 3 1 ds 1 3 3 1 ds 4

1 4 1 sd 2 2 4 1 sd 1 3 4 1 sd 1

1 4 1 dl 9 2 4 1 dl 3 3 4 1 dl 4

1 4 1 dm 6 2 4 1 dm 11 3 4 1 dm 6

1 4 1 ds 3 2 4 1 ds 5 3 4 1 ds 9

1 5 1 sd 11 2 5 1 sd 16 3 5 1 sd 12

1 5 1 dl 8 2 5 1 dl 3 3 5 1 dl 7

1 5 1 dm 0 2 5 1 dm 1 3 5 1 dm 1

1 5 1 ds 0 2 5 1 ds 0 3 5 1 ds 0

1 6 1 sd 12 2 6 1 sd 16 3 6 1 sd 16

1 6 1 dl 5 2 6 1 dl 3 3 6 1 dl 3

1 6 1 dm 2 2 6 1 dm 0 3 6 1 dm 0

1 6 1 ds 0 2 6 1 ds 0 3 6 1 ds 1

1 7 1 sd 8 2 7 1 sd 11 3 7 1 sd 20

1 7 1 dl 12 2 7 1 dl 9 3 7 1 dl 0

1 7 1 dm 0 2 7 1 dm 0 3 7 1 dm 0

1 7 1 ds 0 2 7 1 ds 0 3 7 1 ds 0

1 8 1 sd 12 2 8 1 sd 10 3 8 1 sd 18

1 8 1 dl 4 2 8 1 dl 10 3 8 1 dl 2

1 8 1 dm 0 2 8 1 dm 0 3 8 1 dm 0

1 8 1 ds 0 2 8 1 ds 0 3 8 1 ds 0

1 1 2 sd 5 2 1 2 sd 5 3 1 2 sd 6

1 1 2 dl 31 2 1 2 dl 7 3 1 2 dl 8

1 1 2 dm 2 2 1 2 dm 5 3 1 2 dm 5

1 1 2 ds 1 2 1 2 ds 1 3 1 2 ds 1

1 2 2 sd 6 2 2 2 sd 13 3 2 2 sd 12

1 2 2 dl 11 2 2 2 dl 6 3 2 2 dl 6

1 2 2 dm 1 2 2 2 dm 1 3 2 2 dm 1

1 2 2 ds 0 2 2 2 ds 0 3 2 2 ds 1

1 3 2 sd 5 2 3 2 sd 5 3 3 2 sd 10

(continued)



V C B D Y V C B D Y V C B D Y

1 3 2 dl 13 2 3 2 dl 12 3 3 2 dl 8

1 3 2 dm 0 2 3 2 dm 3 3 3 2 dm 0

1 3 2 ds 0 2 3 2 ds 0 3 3 2 ds 2

1 4 2 sd 2 2 4 2 sd 0 3 4 2 sd 2

1 4 2 dl 11 2 4 2 dl 8 3 4 2 dl 6

1 4 2 dm 9 2 4 2 dm 11 3 4 2 dm 10

1 4 2 ds 0 2 4 2 ds 1 3 4 2 ds 2

1 5 2 sd 16 2 5 2 sd 10 3 5 2 sd 16

1 5 2 dl 4 2 5 2 dl 9 3 5 2 dl 4

1 5 2 dm 0 2 5 2 dm 1 3 5 2 dm 0

1 5 2 ds 0 2 5 2 ds 0 3 5 2 ds 0

1 6 2 sd 15 2 6 2 sd 10 3 6 2 sd 14

1 6 2 dl 5 2 6 2 dl 7 3 6 2 dl 5

1 6 2 dm 0 2 6 2 dm 1 3 6 2 dm 0

1 6 2 ds 0 2 6 2 ds 1 3 6 2 ds 0

1 7 2 sd 9 2 7 2 sd 11 3 7 2 sd 16

1 7 2 dl 7 2 7 2 dl 6 3 7 2 dl 3

1 7 2 dm 3 2 7 2 dm 1 3 7 2 dm 0

1 7 2 ds 0 2 7 2 ds 0 3 7 2 ds 0

1 8 2 sd 0 2 8 2 sd 13 3 8 2 sd 16

1 8 2 dl 0 2 8 2 dl 6 3 8 2 dl 3

1 8 2 dm 0 2 8 2 dm 0 3 8 2 dm 0

1 8 2 ds 0 2 8 2 ds 0 3 8 2 ds 1

1 1 3 sd 0 2 1 3 sd 9 3 1 3 sd 3

1 1 3 dl 0 2 1 3 dl 7 3 1 3 dl 15

1 1 3 dm 0 2 1 3 dm 2 3 1 3 dm 2

1 1 3 ds 1 2 1 3 ds 0 3 1 3 ds 0

1 2 3 sd 7 2 2 3 sd 18 3 2 3 sd 16

1 2 3 dl 10 2 2 3 dl 2 3 2 3 dl 6

1 2 3 dm 2 2 2 3 dm 0 3 2 3 dm 2

1 2 3 ds 0 2 2 3 ds 0 3 2 3 ds 2

1 3 3 sd 1 2 3 3 sd 13 3 3 3 sd 8

1 3 3 dl 19 2 3 3 dl 6 3 3 3 dl 9

1 3 3 dm 0 2 3 3 dm 0 3 3 3 dm 2

1 3 3 ds 0 2 3 3 ds 0 3 3 3 ds 1

1 4 3 sd 4 2 4 3 sd 0 3 4 3 sd 3

1 4 3 dl 13 2 4 3 dl 9 3 4 3 dl 5

1 4 3 dm 3 2 4 3 dm 9 3 4 3 dm 10

1 4 3 ds 0 2 4 3 ds 2 3 4 3 ds 1

1 5 3 sd 15 2 5 3 sd 16 3 5 3 sd 16

1 5 3 dl 4 2 5 3 dl 2 3 5 3 dl 3

1 5 3 dm 0 2 5 3 dm 1 3 5 3 dm 0

(continued)
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Table 8.32 (continued)



V C B D Y V C B D Y V C B D Y

1 5 3 ds 1 2 5 3 ds 0 3 5 3 ds 1

1 6 3 sd 11 2 6 3 sd 15 3 6 3 sd 15

1 6 3 dl 4 2 6 3 dl 3 3 6 3 dl 5

1 6 3 dm 0 2 6 3 dm 2 3 6 3 dm 0

1 6 3 ds 5 2 6 3 ds 0 3 6 3 ds 0

1 7 3 sd 11 2 7 3 sd 14 3 7 3 sd 15

1 7 3 dl 9 2 7 3 dl 5 3 7 3 dl 5

1 7 3 dm 0 2 7 3 dm 1 3 7 3 dm 0

1 7 3 ds 0 2 7 3 ds 0 3 7 3 ds 0

1 8 3 sd 17 2 8 3 sd 12 3 8 3 sd 16

1 8 3 dl 2 2 8 3 dl 3 3 8 3 dl 4

1 8 3 dm 1 2 8 3 dm 2 3 8 3 dm 0

1 8 3 ds 0 2 8 3 ds 1 3 8 3 ds 0

4 1 1 sd 4 5 1 1 sd 9 6 1 1 sd 5

4 1 1 dl 9 5 1 1 dl 10 6 1 1 dl 14

4 1 1 dm 7 5 1 1 dm 1 6 1 1 dm 1

4 1 1 ds 0 5 1 1 ds 0 6 1 1 ds 0

4 2 1 sd 12 5 2 1 sd 17 6 2 1 sd 18

4 2 1 dl 8 5 2 1 dl 2 6 2 1 dl 2

4 2 1 dm 0 5 2 1 dm 0 6 2 1 dm 0

4 2 1 ds 0 5 2 1 ds 0 6 2 1 ds 0

4 3 1 sd 10 5 3 1 sd 15 6 3 1 sd 5

4 3 1 dl 10 5 3 1 dl 5 6 3 1 dl 14

4 3 1 dm 0 5 3 1 dm 0 6 3 1 dm 0

4 3 1 ds 0 5 3 1 ds 0 6 3 1 ds 0

4 4 1 sd 2 5 4 1 sd 12 6 4 1 sd 5

4 4 1 dl 8 5 4 1 dl 7 6 4 1 dl 14

4 4 1 dm 4 5 4 1 dm 0 6 4 1 dm 1

4 4 1 ds 6 5 4 1 ds 0 6 4 1 ds 0

4 5 1 sd 17 5 5 1 sd 16 6 5 1 sd 15

4 5 1 dl 2 5 5 1 dl 4 6 5 1 dl 5

4 5 1 dm 0 5 5 1 dm 0 6 5 1 dm 0

4 5 1 ds 0 5 5 1 ds 0 6 5 1 ds 0

4 6 1 sd 18 5 6 1 sd 20 6 6 1 sd 19

4 6 1 dl 2 5 6 1 dl 0 6 6 1 dl 1

4 6 1 dm 0 5 6 1 dm 0 6 6 1 dm 0

4 6 1 ds 0 5 6 1 ds 0 6 6 1 ds 0

4 7 1 sd 19 5 7 1 sd 20 6 7 1 sd 18

4 7 1 dl 1 5 7 1 dl 0 6 7 1 dl 2

4 7 1 dm 0 5 7 1 dm 0 6 7 1 dm 0

4 7 1 ds 0 5 7 1 ds 0 6 7 1 ds 0

4 8 1 sd 15 5 8 1 sd 20 6 8 1 sd 18

(continued)
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Table 8.32 (continued)



V C B D Y V C B D Y V C B D Y

4 8 1 dl 3 5 8 1 dl 0 6 8 1 dl 2

4 8 1 dm 0 5 8 1 dm 0 6 8 1 dm 0

4 8 1 ds 1 5 8 1 ds 0 6 8 1 ds 0

4 1 2 sd 4 5 1 2 sd 10 6 1 2 sd 6

4 1 2 dl 11 5 1 2 dl 10 6 1 2 dl 13

4 1 2 dm 3 5 1 2 dm 0 6 1 2 dm 0

4 1 2 ds 1 5 1 2 ds 0 6 1 2 ds 0

4 2 2 sd 17 5 2 2 sd 19 6 2 2 sd 18

4 2 2 dl 2 5 2 2 dl 1 6 2 2 dl 2

4 2 2 dm 0 5 2 2 dm 0 6 2 2 dm 0

4 2 2 ds 1 5 2 2 ds 0 6 2 2 ds 0

4 3 2 sd 10 5 3 2 sd 14 6 3 2 sd 13

4 3 2 dl 9 5 3 2 dl 6 6 3 2 dl 7

4 3 2 dm 0 5 3 2 dm 0 6 3 2 dm 0

4 3 2 ds 0 5 3 2 ds 0 6 3 2 ds 0

4 4 2 sd 4 5 4 2 sd 7 6 4 2 sd 0

4 4 2 dl 8 5 4 2 dl 11 6 4 2 dl 15

4 4 2 dm 6 5 4 2 dm 1 6 4 2 dm 5

4 4 2 ds 1 5 4 2 ds 0 6 4 2 ds 0

4 5 2 sd 18 5 5 2 sd 15 6 5 2 sd 16

4 5 2 dl 2 5 5 2 dl 4 6 5 2 dl 3

4 5 2 dm 0 5 5 2 dm 1 6 5 2 dm 0

4 5 2 ds 0 5 5 2 ds 0 6 5 2 ds 0

4 6 2 sd 19 5 6 2 sd 19 6 6 2 sd 19

4 6 2 dl 1 5 6 2 dl 1 6 6 2 dl 1

4 6 2 dm 0 5 6 2 dm 0 6 6 2 dm 0

4 6 2 ds 0 5 6 2 ds 0 6 6 2 ds 0

4 7 2 sd 20 5 7 2 sd 17 6 7 2 sd 17

4 7 2 dl 0 5 7 2 dl 2 6 7 2 dl 3

4 7 2 dm 0 5 7 2 dm 0 6 7 2 dm 0

4 7 2 ds 0 5 7 2 ds 0 6 7 2 ds 0

4 8 2 sd 20 5 8 2 sd 18 6 8 2 sd 15

4 8 2 dl 0 5 8 2 dl 2 6 8 2 dl 4

4 8 2 dm 0 5 8 2 dm 0 6 8 2 dm 0

4 8 2 ds 0 5 8 2 ds 0 6 8 2 ds 0

4 1 3 sd 10 5 1 3 sd 5 6 1 3 sd 3

4 1 3 dl 9 5 1 3 dl 11 6 1 3 dl 15

4 1 3 dm 1 5 1 3 dm 4 6 1 3 dm 2

4 1 3 ds 0 5 1 3 ds 0 6 1 3 ds 0

4 2 3 sd 16 5 2 3 sd 12 6 2 3 sd 13

4 2 3 dl 3 5 2 3 dl 8 6 2 3 dl 7

4 2 3 dm 1 5 2 3 dm 0 6 2 3 dm 0

(continued)
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Table 8.32 (continued)



V C B D V C B D V C B D

4 2 3 ds 0 5 2 3 ds 0 6 2 3 ds

4 3 3 sd 15 5 3 3 sd 7 6 3 3 sd

4 3 3 dl 4 5 3 3 dl 12 6 3 3 dl

4 3 3 dm 0 5 3 3 dm 1 6 3 3 dm

4 3 3 ds 0 5 3 3 ds 0 6 3 3 ds

4 4 3 sd 5 5 4 3 sd 6 6 4 3 sd

4 4 3 dl 11 5 4 3 dl 6 6 4 3 dl

4 4 3 dm 4 5 4 3 dm 6 6 4 3 dm

4 4 3 ds 0 5 4 3 ds 2 6 4 3 ds

4 5 3 sd 17 5 5 3 sd 16 6 5 3 sd

4 5 3 dl 2 5 5 3 dl 4 6 5 3 dl

4 5 3 dm 0 5 5 3 dm 0 6 5 3 dm

4 5 3 ds 0 5 5 3 ds 0 6 5 3 ds

4 6 3 sd 16 5 6 3 sd 17 6 6 3 sd

4 6 3 dl 2 5 6 3 dl 3 6 6 3 dl

4 6 3 dm 0 5 6 3 dm 0 6 6 3 dm

4 6 3 ds 0 5 6 3 ds 0 6 6 3 ds

4 7 3 sd 17 5 7 3 sd 18 6 7 3 sd

4 7 3 dl 2 5 7 3 dl 2 6 7 3 dl

4 7 3 dm 1 5 7 3 dm 0 6 7 3 dm

4 7 3 ds 0 5 7 3 ds 0 6 7 3 ds

4 8 3 sd 17 5 8 3 sd 17 6 8 3 sd

4 8 3 dl 2 5 8 3 dl 2 6 8 3 dl

4 8 3 dm 0 5 8 3 dm 0 6 8 3 dm

4 8 3 ds 0 5 8 3 ds 0 6 8 3 ds

Y Y Y

1

1

1

1

1

1

0

2

8

0

0

4

0

6

0

6

3

1

0

8

2

0

0

5

5

0

0

9

1

0

0

less experienced judges have a more severe rating than do more experienced judges
but also that experience should have little or no effect on the white beans for which
the canning procedure was developed. Judges are stratified for the purpose of
analysis by experience (less than 5 years, greater than 5 years).
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Table 8.32 (continued)

Counts by canning quality, judge experience, and bean breeding lines are listed in
the following table (Table 8.33).



Cal

2 91 78 32 31 56 51 29 17

5 24 31 47 71 51 52 60 09

7 0 0 1 0 1 5 1 12
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Table 8.33 Bean experiment results

Black Kidney Navies Pinto

<
5 Years

>
5 Years

<
5 Years

>
5 Years

<
5 Years

>
5 Years

<
5 Years

>
5 Years

1 13 32 7 10 10 22 13 2

3 123 124 136 96 84 107 91 68

4 72 122 101 104 84 98 109 124

1

6 2 3 6 18 24 37 25 78

(a) Fit the generalized logit model to these data. Perform a complete and appropriate
analysis of the data, focusing on:

(i) An evaluation of the effects of the combination of treatments
(ii) Interpretation of the odds ratios
(iii) The expected probability per category for each treatment

(b) Test whether the proportional odds assumption is viable. Cite relevant evidence
to support your conclusion regarding the adequacy of the assumption.

Exercise 8.7.5 An experiment was conducted to look at the damage levels (ordinal
categories 0–4) of Picea sitchensis shoots in two time periods (10 November and
8 December), at four temperatures (different on each date), and at four ozone levels
(Table 8.34).

(a) Fit the cumulative logit proportional odds model to these data. Perform a
complete and appropriate analysis of the data, focusing on:

(i) An evaluation of the effects of the combination of treatments
(ii) Interpretation of the odds ratios
(iii) The expected probability per category for each treatment

(b) Test whether the proportional odds assumption is viable. Cite relevant evidence
to support your conclusion regarding the adequacy of the assumption.
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Table 8.34 Experimental results of Picea sitchensis sprouts

Weather Temperature (°C) Ozone Category Frequency

1 -9 170 0 1

1 -9 170 1 10

1 -9 170 2 2

1 -9 170 3 2

1 -9 170 4 0

1 -12 170 0 0

1 -12 170 1 8

1 -12 170 2 3

1 -12 170 3 1

1 -12 170 4 3

1 -15 170 0 0

1 -15 170 1 3

1 -15 170 2 2

1 -15 170 3 4

1 -15 170 4 6

1 -18 170 0 0

1 -18 170 1 1

1 -18 170 2 1

1 -18 170 3 4

1 -18 170 4 9

1 -9 120 0 1

1 -9 120 1 9

1 -9 120 2 4

1 -9 120 3 1

1 -9 120 4 0

1 -12 120 0 0

1 -12 120 1 7

1 -12 120 2 7

1 -12 120 3 1

1 -12 120 4 0

1 -15 120 0 0

1 -15 120 1 1

1 -15 120 2 5

1 -15 120 3 6

1 -15 120 4 3

1 -18 120 0 0

1 -18 120 1 0

1 -18 120 2 4

1 -18 120 3 5

1 -18 120 4 6

1 -9 70 0 4

1 -9 70 1 6



9 70 2 3

9 70 3 2

9 70 4 0

9 0 0 2

9 0 1 11

9 0 2 2

9 0 3 0

9 0 4 0

(continued)
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Table 8.34 (continued)

Weather Temperature (°C) Ozone Category Frequency

1 -
1 -
1 -
1 -12 70 0 1

1 -12 70 1 6

1 -12 70 2 6

1 -12 70 3 2

1 -12 70 4 0

1 -15 70 0 0

1 -15 70 1 3

1 -15 70 2 6

1 -15 70 3 4

1 -15 70 4 2

1 -18 70 0 0

1 -18 70 1 1

1 -18 70 2 0

1 -18 70 3 5

1 -18 70 4 9

1 -
1 -
1 -
1 -
1 -
1 -12 0 0 1

1 -12 0 1 6

1 -12 0 2 6

1 -12 0 3 2

1 -12 0 4 0

1 -15 0 0 2

1 -15 0 1 4

1 -15 0 2 4

1 -15 0 3 3

1 -15 0 4 2

1 -18 0 0 0

1 -18 0 1 4

1 -18 0 2 3

1 -18 0 3 5

1 -18 0 4 3

2 -15 170 0 3

2 -15 170 1 8

2 -15 170 2 4

2 -15 170 3 1
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Table 8.34 (continued)

Weather Temperature (°C) Ozone Category Frequency

2 -15 170 4 3

2 -19 170 0 0

2 -19 170 1 10

2 -19 170 2 5

2 -19 170 3 0

2 -19 170 4 4

2 -23 170 0 0

2 -23 170 1 1

2 -23 170 2 8

2 -23 170 3 4

2 -23 170 4 6

2 -27 170 0 0

2 -27 170 1 0

2 -27 170 2 2

2 -27 170 3 3

2 -27 170 4 14

2 -15 120 0 6

2 -15 120 1 6

2 -15 120 2 8

2 -15 120 3 0

2 -15 120 4 0

2 -19 120 0 1

2 -19 120 1 12

2 -19 120 2 7

2 -19 120 3 0

2 -19 120 4 0

2 -23 120 0 0

2 -23 120 1 0

2 -23 120 2 7

2 -23 120 3 7

2 -23 120 4 6

2 -27 120 0 0

2 -27 120 1 0

2 -27 120 2 1

2 -27 120 3 2

2 -27 120 4 17

2 -15 70 0 9

2 -15 70 1 4

2 -15 70 2 5

2 -15 70 3 2

2 -15 70 4 0

2 -19 70 0 2
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Table 8.34 (continued)

Weather Temperature (°C) Ozone Category Frequency

2 -19 70 1 10

2 -19 70 2 6

2 -19 70 3 0

2 -19 70 4 2

2 -23 70 0 0

2 -23 70 1 3

2 -23 70 2 5

2 -23 70 3 4

2 -23 70 4 8

2 -27 70 0 0

2 -27 70 1 0

2 -27 70 2 0

2 -27 70 3 3

2 -27 70 4 17

2 -15 0 0 5

2 -15 0 1 6

2 -15 0 2 3

2 -15 0 3 1

2 -15 0 4 2

2 -19 0 0 6

2 -19 0 1 5

2 -19 0 2 3

2 -19 0 3 1

2 -19 0 4 2

2 -23 0 0 0

2 -23 0 1 4

2 -23 0 2 2

2 -23 0 3 1

2 -23 0 4 3

2 -27 0 0 0

2 -27 0 1 1

2 -27 0 2 0

2 -27 0 3 5

2 -27 0 4 11
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Appendix

Data: CRD with a multinomial response: ordinal

Rep Trt Cat Freq Rep Trt Cat Freq

rep1 M1H1 Without 0 rep1 M2H3 Moderate 3

rep2 M1H1 Without 2 rep2 M2H3 Moderate 1

rep3 M1H1 Without 2 rep3 M2H3 Moderate 3

rep4 M1H1 Without 2 rep4 M2H3 Moderate 2

rep1 M1H2 Without 2 rep1 M2H4 Moderate 4

rep2 M1H2 Without 0 rep2 M2H4 Moderate 2

rep3 M1H2 Without 4 rep3 M2H4 Moderate 2

rep4 M1H2 Without 2 rep4 M2H4 Moderate 5

rep1 M1H3 Without 3 rep1 M2H1 Severe 4

rep2 M1H3 Without 7 rep2 M2H1 Severe 6

rep3 M1H3 Without 1 rep3 M2H1 Severe 7

rep4 M1H3 Without 2 rep4 M2H1 Severe 4

rep1 M1H4 Without 0 rep1 M2H2 Severe 5

rep2 M1H4 Without 5 rep2 M2H2 Severe 2

rep3 M1H4 Without 2 rep3 M2H2 Severe 3

rep4 M1H4 Without 1 rep4 M2H2 Severe 4

rep1 M1H1 Moderate 3 rep1 M2H3 Severe 3

rep2 M1H1 Moderate 2 rep2 M2H3 Severe 4

rep3 M1H1 Moderate 3 rep3 M2H3 Severe 4

rep4 M1H1 Moderate 5 rep4 M2H3 Severe 4

rep1 M1H2 Moderate 3 rep1 M2H4 Severe 5

rep2 M1H2 Moderate 3 rep2 M2H4 Severe 6

rep3 M1H2 Moderate 6 rep3 M2H4 Severe 0

rep4 M1H2 Moderate 3 rep4 M2H4 Severe 3

rep1 M1H3 Moderate 4 rep1 M3H1 Without 0

rep2 M1H3 Moderate 2 rep2 M3H1 Without 3

rep3 M1H3 Moderate 1 rep3 M3H1 Without 2

rep4 M1H3 Moderate 3 rep4 M3H1 Without 0

rep1 M1H4 Moderate 5 rep1 M3H2 Without 5

rep2 M1H4 Moderate 4 rep2 M3H2 Without 3

rep3 M1H4 Moderate 8 rep3 M3H2 Without 3

rep4 M1H4 Moderate 4 rep4 M3H2 Without 2

rep1 M1H1 Severe 6 rep1 M3H3 Without 0

rep2 M1H1 Severe 6 rep2 M3H3 Without 2

rep3 M1H1 Severe 5 rep3 M3H3 Without 1

rep4 M1H1 Severe 3 rep4 M3H3 Without 0

rep1 M1H2 Severe 5 rep1 M3H4 Without 3

rep2 M1H2 Severe 7 rep2 M3H4 Without 5

rep3 M1H2 Severe 0 rep3 M3H4 Without 7

rep4 M1H2 Severe 5 rep4 M3H4 Without 3
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Data: CRD with a multinomial response: ordinal

Rep Trt Cat Freq Rep Trt Cat Freq

rep1 M1H3 Severe 3 rep1 M3H1 Moderate 0

rep2 M1H3 Severe 1 rep2 M3H1 Moderate 5

rep3 M1H3 Severe 7 rep3 M3H1 Moderate 5

rep4 M1H3 Severe 5 rep4 M3H1 Moderate 0

rep1 M1H4 Severe 5 rep1 M3H2 Moderate 3

rep2 M1H4 Severe 1 rep2 M3H2 Moderate 2

rep3 M1H4 Severe 0 rep3 M3H2 Moderate 6

rep4 M1H4 Severe 5 rep4 M3H2 Moderate 1

rep1 M2H1 Without 1 rep1 M3H3 Moderate 3

rep2 M2H1 Without 2 rep2 M3H3 Moderate 5

rep3 M2H1 Without 1 rep3 M3H3 Moderate 3

rep4 M2H1 Without 1 rep4 M3H3 Moderate 3

rep1 M2H2 Without 1 rep1 M3H4 Moderate 0

rep2 M2H2 Without 3 rep2 M3H4 Moderate 2

rep3 M2H2 Without 1 rep3 M3H4 Moderate 3

rep4 M2H2 Without 4 rep4 M3H4 Moderate 4

rep1 M2H3 Without 4 rep1 M3H1 Severe 9

rep2 M2H3 Without 5 rep2 M3H1 Severe 2

rep3 M2H3 Without 3 rep3 M3H1 Severe 3

rep4 M2H3 Without 4 rep4 M3H1 Severe 10

rep1 M2H4 Without 1 rep1 M3H2 Severe 2

rep2 M2H4 Without 1 rep2 M3H2 Severe 5

rep3 M2H4 Without 8 rep3 M3H2 Severe 1

rep4 M2H4 Without 2 rep4 M3H2 Severe 7

rep1 M2H1 Moderate 4 rep1 M3H3 Severe 6

rep2 M2H1 Moderate 2 rep2 M3H3 Severe 3

rep3 M2H1 Moderate 2 rep3 M3H3 Severe 6

rep4 M2H1 Moderate 5 rep4 M3H3 Severe 7

rep1 M2H2 Moderate 4 rep1 M3H4 Severe 7

rep2 M2H2 Moderate 4 rep2 M3H4 Severe 3

rep3 M2H2 Moderate 6 rep3 M3H4 Severe 0

rep4 M2H2 Moderate 2 rep4 M3H4 Severe 3
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Chapter 9 
Generalized Linear Mixed Models 
for Repeated Measurements 

9.1 Introduction 

Repeated measures data, also known as longitudinal data, are those derived from 
experiments in which observations are made on the same experimental units at 
various planned times. These experiments can be of the regression or analysis of 
variance (ANOVA) type, can contain two or more treatments, and are set up using 
familiar designs, such as completely randomized design (CRD), randomized com-
plete block design (RCBD), or randomized incomplete blocks, if blocking is appro-
priate, or using row and column designs such as Latin squares when appropriate. 
Repeated measures designs are widely used in the biological sciences and are fairly 
well understood for normally distributed data but less so with binary, ordinal, count 
data, and so on. Nevertheless, recent developments in statistical computing meth-
odology and software have greatly increased the number of tools available for 
analyzing categorical data. 

A generalized linear mixed model (GLMM) is one of the most useful and 
sophisticated structures in modern statistics, as it allows complex structures to be 
incorporated into the framework of a general linear model. Fitting such models has 
been the subject of much research over the last three decades. GLMMs, for repeated 
measures, combine both generalized linear model (GLM) theory (e.g., a binomial, 
multinomial, or Poisson response variable) and linear mixed effects models. 

Experimentation is sometimes not well understood since researchers believe that 
it involves only the manipulation of the levels of independent variables and the 
observation of subsequent responses in dependent variables. Independent variables, 
whose levels are determined or set by the experimenter, are said to have fixed effects, 
although random effects are also very common, where the levels of the effects are 
assumed to be randomly selected from an infinite population of possible levels. 
Many variables of interest in research are not fully amenable to experimental 
manipulation but can nevertheless be studied by considering them to have random 
effects. For example, the genetic composition of individuals of a species cannot be
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manipulated experimentally, but it is of great interest to geneticists aiming to assess 
the genetic contribution to individual variation of some specific behaviors.

378 9 Generalized Linear Mixed Models for Repeated Measurements

A GLMM with repeated measures is a generalization of the standard linear 
model, and this generalization is due to (1) the presence of more than one response 
variable that can be binary, ordinal, count, and so on and (2) the nonconstant 
correlation and/or variability exhibited by the data. The linear mixed model, there-
fore, gives you the flexibility to model not only the means of your data (as in the 
standard linear model) but also their variances and covariances. Usually, a normal 
distribution is assumed for random effects. Since normally distributed data can be 
modeled entirely in terms of their means and variances/covariances, the two sets of 
parameters in a linear mixed model actually specify the full probability distribution 
of the data. The parameters of the mean structure in the model are called (known as) 
fixed effects parameters, which can be qualitative (as in traditional analysis of 
variance) or quantitative (as in standard regression), and the parameters of the 
variance–covariance of the model are known as covariance parameters, which help 
distinguish a linear mixed model from the standard linear model. Covariance 
parameters come up quite frequently in the following applications, with two more 
typical scenarios: 

(a) Experimental units on which data are measured can be grouped into clusters, and 
data from a common cluster are correlated. 

(b) Repeated measurements of the same experimental unit are taken, and these 
repeated measurements correlate or show some variability. 

The first scenario can be generalized to include a set of clusters nested within one 
another. For example, if students are the experimental unit, they can be grouped into 
classes (clusters), which, in turn, can be grouped into schools. Each level of this 
hierarchy may present an additional source of variability and correlation. The second 
scenario occurs in longitudinal studies, in which repeated measurements of the same 
experimental unit over time are taken. Alternatively, these repeated measures could 
be spatial or multivariate. 

9.2 Example of Turf Quality 

The proportional odds model, introduced by McCullagh (1980), was proposed as an 
extension of the generalized linear model used for ordinal responses. One can recall 
that the proportional odds model is a special case of a GLM with a cumulative link 
function in which the probability of an observation falling into a category or below is 
modeled. In the case of a logit link, with only two categories (a binary response), the 
proportional odds model reduces to a standard logistic regression or a classification 
model. As with any other type of response variable, repeated measurements are 
common in agronomic research. They result in clustered data structures with corre-
lations between repeated observations in the same experimental unit that must be 
taken into account in the analysis.



1 4 10 4 1 9 8 0 12 6  

2 2 11 4 0 7 10 0 9 8  

3 2 11 4 2 8 7 2 11 4  

5 1 11 6 3 4 11 3 6 9  
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Table 9.1 Turf quality of five grass varieties (low, Med = medium, Excel = Excellent, 
Sept = September) 

May July Sept 

Variety No. of plots Low Med Excel Low Med Excel Low Med Excel 

18

17

17

4 18 8 7 3 4 8 6 4 13 1 

18

The data were obtained from an experiment studying the turf quality of five grass 
varieties. The varieties were sown independently in 17 or 18 plots. The evaluations 
of the plots (experimental units) were carried out in the months of May, July, and 
September of the growing season, and turf quality was classified on an ordinal scale 
into three categories: low quality, medium quality, and excellent quality, as demon-
strated in Table 9.1. 

The components of the GLMM, with repeated measures with an ordinal multi-
nomial response, are as follows: 

Distributions: y1ij, y2ij, y3ij|ρij~Multinomial(Nij, π1ij, π2ij, π3ij), where y1ij, y2ij, and  y3ij 
are the observed frequencies of the responses (turf quality) in each c category 
(low, medium, and excellent), and ρij is the random effect due to the combination 

variety × month (measurement time), assuming ρij � N 0, σ2 ρ . 

Linear predictor: η(c)ij = ηc + τi + ρij, where η(c)ij is the cth link (c = 1, 2) in the ijth 
combination variety × month, ηc is the intercept for the cth link, τi is the fixed 
effect due to the ith treatment, and ρij is the random effect due to the ijth 

measurement of variety × month ρij � N 0, σ2 variety ×month . The link functions 

for each category are as follows: 

log 
π0ij 

1- π0ij 
= η0ij 

log 
π0ij þ π1ij 

1- π0ij þ π1ij 
= η1ij 

The following Statistical Analysis Software (SAS) program fits a repeated mea-
sures GLMM with an ordinal response. 

proc glimmix data=turfgrass method=laplace; 
class Variety time; 
model cat(order=data)=variety|time/dist=Multinomial link=clogit 
solution oddsratio; 
random intercept/subject=variety type=cs solution ;



Fit statistics CS AR(1) UN

estimate 'c=1, var=1' intercept 1 0 variedad 1 0 0 0 0, 
'c=2, var=1' intercept 0 1 variedad 1 0 0 0 0, 
'c=1, var=2' intercept 1 0 variedad 0 1 0 0 0, 
'c=2, var=2' intercept 0 1 variedad 0 1 0 0 0, 
'c=1, var=3' intercept 1 0 variedad 0 0 1 0 0, 
'c=2, var=3' intercept 0 1 variedad 0 0 1 0 0, 
'c=1, var=4' intercept 1 0 variedad 0 0 0 1 0, 
'c=2, var=4' intercept 0 1 variedad 0 0 0 1 0, 
'c=1, var=5' intercept 1 0 variedad 0 0 0 0 1, 
'c=2, var=5' intercept 0 1 variedad 0 0 0 0 1/ilink; 
freq y; 
run; 
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Table 9.2 Fit statistics under 
different correlation structures 

Covariance structure 

Toep 
(1)

-2 Log likelihood 497.38 497.46 497.37 n 
o 
c 
o 
n 
v 
e 
r 
g 
e 

AIC (smaller is better) 513.38 513.46 511.37 

AICC (smaller is better) 513.94 514.02 511.81 

BIC (smaller is better) 510.26 510.34 508.64 

CAIC (Consistent Akaike's 
information criterion) 
(smaller is better) 

518.26 518.34 515.64 

HQIC (Hannan Quinn 
information crite-
rion) (smaller is better) 

504.99 505.07 504.03 

Mixed models have advantages over fixed linear models (Littell et al. 1996) 
because they have the ability to incorporate fixed (Xβ) and random effects (Zb) 
that allow us to select different variance–covariance structures for repeated measures 
experiments (with or without missing data) to see which covariance structure best fits 
the model (Henderson 1984; Smith et al. 2005). Selecting or building a good enough 
model involves selecting a covariance structure that best fits the dataset. The 
information criteria minus two Restricted Log Likelihood (-2RLL), Akaike infor-
mation criterion (AIC), Corrected Akaike’s information criterion (AICC), Bayesian 
information criterion (BIC), etc.) provided by proc GLIMMIX are used as statistical 
fit measures to select the variance structure (compound symmetry (“CS”), first-order 
autoregressive (“AR(1)”), Toeplitz (“Toep(1)”), unstructured (“UN)”) that best 
models the dataset. 

Most of the commands have already been explained. To provide the correlation 
structure that you want to model, with the above program, you vary the “TYPE” 
option = (CS, AR(1), Toep(1), and UN) separately to specify each of the covariance 
structures in the parentheses. Part of the results is shown below. 

According to the fit statistics (Table 9.2), the covariance structure that best fits the 
dataset is Toeplitz of order 1 (Toep(1)). The type III tests of fixed effects, shown in 
Table 9.3 part (a), indicate that grass variety provides different turfgrass qualities



(P = 0.0202). The “solution” option in the model specification “Model” provides the 
solution of fixed effects of the model (intercepts and treatments), which we use to 
estimate the linear predictors η̂ci = η̂c þ ^Varietyi (part (b)). 
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Table 9.3 Results of the analysis of variance 

fi(a) Type III tests of xed effects 

Effect Num degree of freedom (DF) Den DF F-value Pr > F 

Variety 4 10 4.80 0.0202 

(b) Solutions for fixed effects 

Effect Cat Variety Estimate Standard error DF t-value Pr > |t| 

Intercept Low -2.4509 0.3219 10 -7.61 <0.0001 

Intercept Medium 0.1961 0.2721 10 0.72 0.4875 

Variety Var1 0.4261 0.3753 10 1.14 0.2827 

Variety Var2 -0.01502 0.3785 10 -0.04 0.9691 

Variety Var3 0.6125 0.3825 10 1.60 0.1404 

Variety Var4 1.4904 0.3943 10 3.78 0.0036 

Variety Var5 0 . . . . 

Table 9.4 Estimated linear predictors and means on the model scale (Estimate) and on the data 
scale (Mean) for observed turfgrass quality in grass varieties in the multinomial generalized logit 
model 

Estimates 

Label Estimate 
Standard 
error DF t-value Pr > |t| Mean 

Standard error 
mean 

c = 1, 
var = 1

-2.0248 0.3018 10 -6.71 <0.0001 0.1166 0.03110 

c = 2, 
var = 1 

0.6222 0.2646 10 2.35 0.0405 0.6507 0.06013 

c = 1, 
var = 2

-2.4659 0.3177 10 -7.76 <0.0001 0.07828 0.02292 

c = 2, 
var = 2 

0.1811 0.2667 10 0.68 0.5125 0.5452 0.06613 

c = 1, 
var = 3

-1.8384 0.3040 10 -6.05 0.0001 0.1372 0.03599 

c = 2, 
var = 3 

0.8086 0.2760 10 2.93 0.0150 0.6918 0.05884 

c = 1, 
var = 4

-0.9605 0.2791 10 -3.44 0.0063 0.2768 0.05588 

c = 2, 
var = 4 

1.6865 0.2992 10 5.64 0.0002 0.8438 0.03944 

c = 1, 
var = 5

-2.4509 0.3219 10 -7.61 <0.0001 0.07937 0.02352 

c = 2, 
var = 5 

0.1961 0.2721 10 0.72 0.4875 0.5489 0.06737 

The probabilities πci obtained using the “Estimate” information are tabulated 
under the “Mean” column of Table 9.4.
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From these values, we can observe that for the category " c = 1, var = 1, " the 
value of the linear predictor is η11 = η1 þ variety1 = - 2:0248. Taking the inverse of 
η̂11 corresponds to the probability of π11 = 0:1166 of observing “Low”-quality grass 
of variety 1. Now, for the category " c = 2, var = 1, " the inverse of the linear 
predictor is 0.6507, which is the estimate of the probability π11 þ π21. From this 
value, we can obtain the probability that variety 1 provides grass of “Medium” 

quality, that is, π11 þ π21 = 0:6504, and, substituting the value of π11, we obtain the 
probability value π21 = 0:6507- 0:1166= 0:5341. With these two probability esti-
mates π11 and π21, it is possible to estimate the probability that variety 1 will yield an 
“Excellent” quality turf, which is equal to π31 = 1- 0:6504= 0:3496. Likewise, we 
obtain the values of the remaining probabilities πci for the rest of the grass varieties. 

9.3 Effect of Insecticides on Aphid Growth 

A cage experiment was used to investigate the effect of three insecticides on aphid 
colonies with partial resistance to a common active compound. There were eight 
treatments: all combinations of the three insecticides and a control (no insecticide) 
with two types of colonies (susceptible or partially resistant). The experiment was 
organized as an RCBD with six blocks of eight cages, and each cage was assigned a 
treatment combination in each block. A colony of aphids was reared in each cage, 
and the number of live aphids was recorded before insecticide treatment was applied 
and then 2 and 6 days after application. Both hatches and deaths could occur within 
each cage between evaluations. The dataset from this experiment is shown below 
(Table 9.5). 

Following the same reasoning as in previous examples, the components of the 
GLMM with a Poisson response and repeated measures, which models the number 
of aphids (yijkl), is described in the following lines. 

Distributions: yijkl j bl, insecticide× clone blockð Þij lð Þ � Poisson λijkl 

bl � N 0, σ2 block , insecticide × clone blockð Þij lð Þ � N 0, σ2 insecticide × clone × block : 

Linear predictor: ηijkl= θ + Ii +Cj + (IC)ij + bl + IC(b)ij(l ) + τl + (Iτ)il + (Cτ)il + (ICτ)ijkl, 
Cj +  (IC)ij + bl + IC(b)ij(l ) + τl +  (Iτ)il +  (Cτ)il +  (ICτ)ijkl, where ηijkl is the linear 
predictor, θ is the intercept, Ii (i = 1, 2, 3) is the fixed effect due to the insecticide, 
Cj ( j = 1, 2) is the fixed effect due to the aphid clone, (IC)ij is the fixed effect due 
to the interaction between the type of insecticide and clone, bl (k = 1, 2, 3) is the 
random block effect, assuming bl � N 0, σ2 block , IC(b)ij(l ) is the random effect of 
the interaction between the insecticide and clone within blocks, assuming 
insecticide × clone blockð  Þij kð  Þ � N 0, σ2 insecticide × clone × block , τl (l = 1, 2, 3) is the 
fixed effect due to measurement time, and (Cτ)il and (ICτ)ijkl are the fixed effects 
due to interaction.
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Table 9.5 Effect of insecticides (C = control, R = resistant, S = susceptible) on aphid growth 

Block Cage Insecticide Clone Dia1 Dia2 Dia6 

1 1 Control R 60 111 220 

1 2 Control S 127 131 220 

1 3 D R 64 30 27 

1 4 D S 110 27 35 

1 5 H R 118 75 121 

1 6 H S 71 10 111 

1 7 P R 66 69 62 

1 8 P S 40 25 19 

2 1 Control R 54 152 156 

2 2 Control S 58 130 362 

2 3 D R 76 60 110 

2 4 D S 48 22 110 

2 5 H R 130 113 101 

2 6 H S 76 76 85 

2 7 P R 93 77 185 

2 8 P S 49 0 8  

3 1 Control R 94 175 292 

3 2 Control S 26 33 52 

3 3 D R 121 73 60 

3 4 D S 78 23 1 

3 5 H R 73 74 56 

3 6 H S 54 27 49 

3 7 P R 25 10 32 

3 8 P S 36 22 1 

4 1 Control R 75 134 238 

4 2 Control S 86 57 194 

4 3 D R 69 32 12 

4 4 D S 122 66 20 

4 5 H R 185 88 251 

4 6 H S 47 23 116 

Link function: log(λijkl) = ηijk is the link function that relates the linear predictor to 
the mean (λijkl). 

The following SAS program adjusts the GLMM with a Poisson distribution on 
repeated measures. 

proc glimmix nobound method=laplace; 
class ID Block Insecticide Cage Clone time; 
model y = Insecticide|clone|time/dist=poi; 
random intercept Insecticide*Clon/subject=block; 
lsmeans Insecticide|Clon|time/lines ilink; 
run;quit;
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Table 9.6 Results of the analysis of variance in the Poisson GLMM 

(a) Fit statistics 

Fit statistics CS AR(1) Toep(1) UN

-2 Log likelihood 1125.54 1113.19 1127.25 No converge 

AIC (smaller is better) 1177.54 1165.19 1177.25 

AICC (smaller is better) 1202.17 1189.82 1199.67 

BIC (smaller is better) 1161.58 1149.24 1161.91 

CAIC (smaller is better) 1187.58 1175.24 1186.91 

HQIC (smaller is better) 1142.52 1130.18 1143.59 

(b) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 1006.38 

Pearson’s chi-square 484.48 

Pearson’s chi-square/DF 5.77 

Before fitting the GLMM, we compare the estimates of covariance structures with 
a Poisson distribution assumed in the response variable. According to the fit statis-
tics, the covariance structure that best models the data is the autoregressive type of 
order 1 (AR(1)). The value of the fit statistic of the conditional distribution 
Pearson′s chi - square/DF = 5.77 indicates that there is an extra variation (aka 
overdispersion) and that the Poisson distribution does not adequately fit the data 
(Table 9.6). 

Since there is overdispersion in the data, a highly recommended alternative is to 
find another suitable (or more appropriate) distribution for this dataset. In this case, 
the linear predictor will be the same, although now, a negative binomial distribution 
will be assumed in the response variable. That is, 

yijkljbl, insecticide × clone blockð Þij lð Þ � Negative Binomial λijkl,ϕ 

This negative binomial model arises by assuming that the conditional distribution 
of observations given random blocks and Insecticide*clone(block)ij(l )) is as follows: 

yijkljbl, insecticide*clone(block)ij(l ) ~ Poisson(λijkl), where λijkl � Gamma 1 
ϕ ,ϕ . 

The result of the new distribution of yijkljbl, insecticide × clone(Block)ij(l ) is a 
negative binomial (Negative binomial (λijkl,ϕ)). The link function is log(λijkl) = ηijkl. 

The following SAS code fits the GLMM with a negative binomial distribution. 

proc glimmix nobound method=laplace; 
class ID Block Insecticide Cage Clone time; 
model y = Insecticide|clone|time/dist=negbi; 
random intercept Insecticide*Clone/subject=block; 
lsmeans Insecticide|Clone|time/lines ilink; 
run;
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Table 9.7 Fit statistics 

(a) Fit statistics

-2 Log likelihood 878.02 

AIC (smaller is better) 932.02 

AICC (smaller is better) 956.41 

BIC (smaller is better) 915.45 

CAIC (smaller is better) 942.45 

HQIC (smaller is better) 895.66 

(b) Fit statistics for conditional distribution

-2 Log L (y | r. effects) 841.84 

Pearson’s chi-square 72.47 

Pearson’s chi-square/DF 0.81 

Table 9.8 Estimated vari-
ance components and tests of 
fixed effects 

(a) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Variance Block 0.06138 0.03429 

AR(1) Block -0.7143 0.1710 

Scale 0.1654 0.03575 

(b) Type III tests of fixed effects 

Num 
DF 

Den 
DF 

F-
value 

Insecticide 3 19 23.04 <0.0001 

Clone 1 19 8.60 0.0086 

Insecticide*clone 3 19 2.25 0.1161 

Time 2 44 6.08 0.0047 

Insecticide*time 6 44 7.93 <0.0001 

Clone*time 2 44 3.90 0.0275 

Insecticide*clone*time 6 44 2.15 0.0663 

Part of the results is shown in Table 9.7. The values of the fit statistics, assuming a 
negative binomial distribution of the data, are shown in part (a), and the value of the 
conditional statistic is observed in part (b) (Pearson′s chi - square/DF = 0.81). This 
indicates that overdispersion has been eliminated from the data, and, so, the negative 
binomial distribution adequately models the response variable. 

The estimated variance components are shown in part (a) of Table 9.8, under an 
AR(1) covariance structure. The estimates of the variance components of blocks, the 
interaction between the insecticide and clone within blocks, and the scale parameter 
are σ2 block = 0:06613, σ2 insecticide × clone blockð Þ  = - 0:7575, and ϕ= 0:1584, respectively. 

The fixed III type effects tests (part (b)) indicate that there is a significant effect of 
insecticide type (P < 0.0001), clone (P = 0.0387), measurement time (P = 0.0137), 
and interactions insecticide x measurement time (P < 0.0001) and clone x measure-
ment time (P = 0.0259) on the average number of aphids. The interaction insecticide 
x clone x measurement time is close to significance (P < 0.0663).
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Table 9.9 Estimates of insecticide least squares (LS) means on the model scale (Estimate) and the 
data scale (Mean) 

Insecticide Estimate 
Standard 
error DF 

t-
value Pr > |t| Mean 

Standard error 
mean 

C 4.7344 0.1478 19 32.03 <0.0001 113.79 16.8211 

D 3.9647 0.1547 19 25.62 <0.0001 52.7043 8.1553 

H 4.3733 0.1561 19 28.02 <0.0001 79.3010 12.3753 

P 3.4892 0.1753 19 19.90 <0.0001 32.7588 5.7432 

Table 9.10 Clone least squares means on the model scale (Estimate) and the data scale (Mean) 

Clone Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

R 4.4332 0.1320 19 33.58 <0.0001 84.1990 11.1158 

S 3.8476 0.1890 19 20.36 <0.0001 46.8785 8.8586 

Table 9.11 Insecticide*clone least squares means on the model scale (Estimate) and the data scale 
(Mean) 

Insecticide Clone Estimate 
Standard 
error DF 

t-
value Pr > |t| Mean 

Standard 
error mean 

C R 4.8836 0.1529 19 31.93 <0.0001 132.10 20.2032 

C S 4.5852 0.2479 19 18.49 <0.0001 98.0186 24.3008 

D R 4.0521 0.1886 19 21.49 <0.0001 57.5153 10.8459 

D S 3.8773 0.2337 19 16.59 <0.0001 48.2958 11.2858 

H R 4.7106 0.1997 19 23.59 <0.0001 111.11 22.1870 

H S 4.0359 0.2244 19 17.98 <0.0001 56.5964 12.7026 

P R 4.0866 0.2322 19 17.60 <0.0001 59.5346 13.8263 

P S 2.8918 0.2534 19 11.41 <0.0001 18.0255 4.5675 

Table 9.12 Time least squares means on the model scale (Estimate) and the data scale (Mean) 

Time Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

1 4.2730 0.1434 44 29.79 <0.0001 71.7375 10.2905 

2 3.9108 0.1454 44 26.90 <0.0001 49.9372 7.2603 

3 4.2373 0.1457 44 29.09 <0.0001 69.2231 10.0830 

The linear predictors and estimated means of the factors and interaction are under 
the “Estimate” and “Mean” columns, respectively. Average number of aphids for 
insecticide, clone and time are given below: 

For insecticide type (Table 9.9): 
For clone (Table 9.10): 
For the interaction insecticide*clone (Table 9.11): 
For measurement time (Table 9.12): 
For the interaction insecticide*time (Table 9.13): 
For the interaction clone*time (Table 9.14): 
For the interaction insecticide*clone*time (Table 9.15):



9.4 Manufacture of Livestock Feed 387

Table 9.13 Insecticide*time least squares means on the model scale (Estimate) and the data scale 
(Mean) 

Time Estimate 
Standard 
error DF 

t-
value Pr > |t| Mean 

Standard 
error mean 

C 1 4.2381 0.1930 44 21.95 <0.0001 69.2781 13.3733 

C 2 4.6631 0.1913 44 24.38 <0.0001 105.96 20.2696 

C 3 5.3019 0.1898 44 27.94 <0.0001 200.71 38.0898 

D 1 4.4854 0.1965 44 22.83 <0.0001 88.7111 17.4275 

D 2 3.7061 0.2014 44 18.40 <0.0001 40.6940 8.1959 

D 3 3.7026 0.2035 44 18.20 <0.0001 40.5537 8.2517 

H 1 4.4718 0.1978 44 22.60 <0.0001 87.5164 17.3133 

H 2 3.9790 0.2016 44 19.73 <0.0001 53.4625 10.7804 

H 3 4.6689 0.1977 44 23.62 <0.0001 106.59 21.0694 

P 1 3.8967 0.2241 44 17.39 <0.0001 49.2403 11.0358 

P 2 3.2949 0.2357 44 13.98 <0.0001 26.9755 6.3583 

P 3 3.2759 0.2399 44 13.65 <0.0001 26.4664 6.3502 

Table 9.14 Clone*time least squares means on the model scale (Estimate) and the data scale 
(Mean) 

Clone Time Estimate 
Standard 
error DF 

t-
value Pr > |t| Mean 

Standard error 
mean 

R 1 4.3839 0.1595 44 27.49 <0.0001 80.1482 12.7828 

R 2 4.2826 0.1605 44 26.68 <0.0001 72.4270 11.6256 

R 3 4.6331 0.1601 44 28.94 <0.0001 102.83 16.4644 

S 1 4.1621 0.2092 44 19.90 <0.0001 64.2093 13.4323 

S 2 3.5390 0.2131 44 16.60 <0.0001 34.4308 7.3387 

S 3 3.8416 0.2144 44 17.91 <0.0001 46.5989 9.9931 

9.4 Manufacture of Livestock Feed 

In this experiment, two types of pelleted feed were manufactured using different 
amounts of whole sorghum. Using the whole grain resulted in one feed with a high 
pellet durability index (PDI) and one with a low PDI. The researcher was interested 
in how much impact this difference in PDI would have on the amount of intact and 
pelleted feed distributed to the different positions along the feeding line. The line 
was fed four times with the high PDI feed and four times with the low PDI feed. 
After each run, the total weight of the feed in each of the 12 identified trays was 
measured. The feed was then sieved into each tray, and the crushed fine granules 
were weighed in the feed line. The response of interest was the ratio (proportion) 
between the weight of fine granules and the total weight of the feed for each tray. The 
data for this experiment are in the Appendix (Data: Feeding line experiment). 

The experimental design used in this study was a split plot in a randomized 
completely design. There were 2 fixed factors, feed with 2 levels (high PDI feed 
(H) and low PDI feed (L)), and a tray with 12 levels (1, 2, 3, ..., 12 locations along
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the feed line). Different run levels (1, 2, 3, 4 runs in the feed line) may influence the 
inference of this experiment, so it is advisable to analyze which variance structure is 
suitable for this analysis.
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Table 9.16 Results of the 
analysis of variance of the 
experiment 

Sources of variation Degrees of freedom 

Feeding (2 - 1) = 1 
Feeding (running) 2(4 - 1) = 6 
Tray (12 - 1) = 11 
Feeding*tray (2 - 1)(12 - 1) = 11 
Feeding (tray*tray) 2(12 - 1)(4 - 1) = 66 
Total a × b × r - 1 = 95 

The ANOVA table (Table 9.16) with degrees of freedom for this experiment is 
shown below. 

The researcher aims to draw conclusions about the destructiveness in the feed line 
with two types of feed, high PDI and low PDI. The following GLMM is used to 
describe the experiment: 

yijk = μþ αi þ α rð Þik þ βj þ αβð Þij þ εijk 

where yijk is the proportion observed in the run k (k = 1, 2, 3, 4), tray 
j ( j = 1, 2, . . ., 12), and in feed i (i = 1, 2); μ is the overall mean; αi is the fixed 
effect of feed i; α(r)ik is the random effect of the ith feed within the kth run, assuming 
α rð Þik � N 0, σ2 αr ; βj is the fixed effect due to the jth tray; (αβ)ij is the effect of the 
interaction between the ith feed and the jth tray; and εijk is the experimental error. 
The components of the conditional GLMM assuming that the response variable 
follows a beta distribution are listed below: 

The distribution of the response variable is given by yikj j α(r)ik~Beta(μ + αi + 
α(r)ik + βj + (αβ)ij,ϕ) whose linear predictor is ηijk = μ + αi + α(r)ik + βj + (αβ)ij with 

link function logit πijk 
1- πijk 

= ηijk. The following GLIMMIX syntax fits a GLMM 

with a beta distribution. 

proc glimmix method=laplace; 
class tray feed run; 
model ratio = feed|tray/dist=beta; 
random intercept/subject=feed(run) type=toep(1); 
lsmeans feed|tray/lines ilink; 
run; 

Part of the output is shown below. Four covariance structures (“CS,” “AR(1),” 
“Toep(1),” and “UN”) were tested to see which one best fits the response variable. 
Of these covariance structures, “Toep(1)” produced the best fit statistics (part (a), 
Table 9.17). 

Another important result that gives the guideline to continue with the analysis is 
the conditional distribution statistic (Pearson′s  chi - square/DF = 0.96), whose



value indicates that the beta model adequately fits the data, whereas the fixed effects 
tests (part (c)) indicate that there is a statistically significant effect of feeding type 
(P = 0.0001) and tray (P = 0.0001). 
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Table 9.17 Results of the 
analysis of variance 

(a) Fit statistics

-2 Log likelihood -429.84 

AIC (smaller is better) -377.84 

AICC (smaller is better) -357.19 

BIC (smaller is better) -375.78 

CAIC (smaller is better) -349.78 

HQIC (smaller is better) -391.77 

(b) Fit statistics for conditional distribution

-2 Log L (ratio | r. effects) -453.24 

Pearson’s chi-square 91.40 

Pearson’s chi-square/DF 0.96 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 
Feed 1 6 1071.19 <0.0001 

Tray 11 65 18.03 <0.0001 

Tray*feed 11 65 1.83 0.0660 

Table 9.18 Feed least squares means on the model scale (Estimate) and the data scale (Mean) 

Feed Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

H -2.0009 0.07409 6 -27.01 <0.0001 0.1191 0.007773 

L 1.3832 0.07208 6 19.19 <0.0001 0.7995 0.01155 

The linear predictors and estimated probabilities of the factors and interaction are 
listed under the “Estimate” and “Mean” columns of the following tables, 
respectively. 

For the feeding line (Table 9.18): 
For the tray (Table 9.19): 
For the interaction feeding*tray (Table 9.20): 

9.5 Characterization of Spatial and Temporal Variations 
in Fecal Coliform Density 

During a 1-month period (June 1981), 30 river water samples were collected from 
the channel at 3 stations, A, B, and C (downstream to upstream) on 5 randomly 
selected days at 9:00 a.m. and 3:00 p.m. (1 sample per station per hour per day). Each 
sample was analyzed for fecal coliform by method FC-96. The data from this 
experiment are shown in Table 9.21.
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Table 9.19 Tray least squares means on the model scale (Estimate) and the data scale (Mean) 

Tray Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

01 -0.5652 0.08182 65 -6.91 <0.0001 0.3623 0.01891 

02 -0.6607 0.08531 65 -7.74 <0.0001 0.3406 0.01916 

03 -0.6950 0.08822 65 -7.88 <0.0001 0.3329 0.01959 

04 -0.2958 0.08100 65 -3.65 0.0005 0.4266 0.01981 

05 -0.3773 0.08212 65 -4.59 <0.0001 0.4068 0.01982 

06 -0.2947 0.08057 65 -3.66 0.0005 0.4268 0.01971 

07 -0.3520 0.08165 65 -4.31 <0.0001 0.4129 0.01979 

08 -0.2992 0.07939 65 -3.77 0.0004 0.4258 0.01941 

09 -0.1314 0.07670 65 -1.71 0.0916 0.4672 0.01909 

10 -0.3935 0.08096 65 -4.86 <0.0001 0.4029 0.01948 

11 0.1571 0.07860 65 2.00 0.0499 0.5392 0.01953 

12 0.2014 0.07949 65 2.53 0.0137 0.5502 0.01967 

Table 9.20 Tray*feed least squares means on the model scale (Estimate) and the data scale (Mean) 

Tray Feed Estimate 
Standard 
error DF t-value Pr > |t| Mean 

Standard error 
mean 

01 H -2.2408 0.1284 65 -17.46 <0.0001 0.09614 0.01116 

01 L 1.1104 0.1015 65 10.94 <0.0001 0.7522 0.01892 

02 H -2.4581 0.1369 65 -17.95 <0.0001 0.07885 0.009946 

02 L 1.1367 0.1018 65 11.17 <0.0001 0.7571 0.01872 

03 H -2.4724 0.1375 65 -17.98 <0.0001 0.07782 0.009869 

03 L 1.0823 0.1105 65 9.79 <0.0001 0.7469 0.02089 

04 H -2.0307 0.1217 65 -16.69 <0.0001 0.1160 0.01248 

04 L 1.4391 0.1070 65 13.45 <0.0001 0.8083 0.01658 

05 H -2.1481 0.1254 65 -17.13 <0.0001 0.1045 0.01174 

05 L 1.3935 0.1061 65 13.13 <0.0001 0.8011 0.01690 

06 H -2.0087 0.1208 65 -16.62 <0.0001 0.1183 0.01260 

06 L 1.4192 0.1066 65 13.31 <0.0001 0.8052 0.01673 

07 H -2.1026 0.1242 65 -16.93 <0.0001 0.1088 0.01204 

07 L 1.3987 0.1061 65 13.18 <0.0001 0.8020 0.01685 

08 H -1.9310 0.1192 65 -16.20 <0.0001 0.1266 0.01318 

08 L 1.3325 0.1050 65 12.69 <0.0001 0.7913 0.01734 

09 H -1.6240 0.1113 65 -14.59 <0.0001 0.1647 0.01531 

09 L 1.3613 0.1056 65 12.89 <0.0001 0.7960 0.01715 

10 H -2.0863 0.1238 65 -16.85 <0.0001 0.1104 0.01216 

10 L 1.2994 0.1044 65 12.45 <0.0001 0.7857 0.01757 

11 H -1.4559 0.1075 65 -13.55 <0.0001 0.1891 0.01648 

11 L 1.7701 0.1148 65 15.42 <0.0001 0.8545 0.01427 

12 H -1.4519 0.1076 65 -13.50 <0.0001 0.1897 0.01653 

12 L 1.8548 0.1171 65 15.83 <0.0001 0.8647 0.01371
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Table 9.21 Variation in fecal coliform densities of the river water samples from three sampling 
stations on five sampling days at 9:00 a.m. (TM = 1) and 3:00 p.m. (TM = 2) 

Sampling date TM Site No. of coliforms per milliliter 

18 May 9:00 a.m. A 648 

18 May 3:00 p.m. A 798 

18 May 9:00 a.m. B 517 

18 May 3:00 p.m. B 702 

18 May 9:00 a.m. C 532 

18 May 3:00 p.m. C 55 

26 May 9:00 a.m. A 1421 

26 May 3:00 p.m. A 1388 

26 May 9:00 a.m. B 1883 

26 May 3:00 p.m. B 1855 

26 May 9:00 a.m. C 1724 

26 May 3:00 p.m. C 1769 

29 May 9:00 a.m. A 1523 

29 May 3:00 p.m. A 759 

29 May 9:00 a.m. B 1361 

29 May 3:00 p.m. B 603 

29 May 9:00 a.m. C 2004 

29 May 3:00 p.m. C 541 

1 June 9:00 a.m. A 1987 

1 June 3:00 p.m. A 1056 

1 June 9:00 a.m. B 1796 

1 June 3:00 p.m. B 1579 

1 June 9:00 a.m. C 1221 

1 June 3:00 p.m. C 1223 

5 June 9:00 a.m. A 870 

5 June 3:00 p.m. A 1099 

5 June 9:00 a.m. B 920 

5 June 3:00 p.m. B 951 

5 June 9:00 a.m. C 926 

5 June 3:00 p.m. C 887 

To assess the relative magnitudes of sources of variation due to time, site, and 
subsampling on the number of coliforms per milliliter (yijk), an analysis of variance 
using a GLMM with a Poisson response was performed, as described below: 

We denote yijk as the number of colonies per milliliter, whose conditional 
distribution is given by yijkjsampling(site)ik ~ Poisson (λijk) with the linear predictor 
ηijk defined by 

ηijk = θ þ sitei þ sampling siteð  Þik þ timej þ site × timeð Þij
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Table 9.22 Results of the analysis of variance 

(a) Estructuras de covarianza 

Fit statistics Toep(1) CS AR(1) UN

-2 Log likelihood 2022.64 2022.64 2022.64 2022.64 

AIC (smaller is better) 2054.64 2056.64 2056.64 2054.64 

AICC (smaller is better) 2096.49 2107.64 2107.64 2096.49 

BIC (smaller is better) 2051.31 2053.10 2053.10 2051.31 

CAIC (smaller is better) 2067.31 2070.10 2070.10 2067.31 

HQIC (smaller is better) 2041.31 2042.47 2042.47 2041.31 

(b) Fit statistics for conditional distribution

-2 Log L (ufc | r. effects) 1989.36 

Pearson’s chi-square 1632.28 

Pearson’s chi-square/DF 54.41 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Site 2 3 1.41 0.3700 

T 4 12 956.04 <0.0001 

T*site 8 12 82.44 <0.0001 

i= 1, 2, 3; j= 1, 2, 3, 4, 5; k = 1, 2ð Þ  

where ηijk is the linear predictor that relates the linear function to the mean, θ is the 
intercept, sitei is the fixed effect due to the sampling site i, sampling(site)ik is the 
random effect due to the sampling time nested within the site, assuming 

sampling siteð Þik � N 0, σ2 sampling siteð Þ  , timej is the fixed effect due to sampling 

date, and (site × time)ij is the effect of the interaction between the site and sampling 
date. The link function for this model is log(λijk) = ηijk. 

The following GLIMMIX syntax fits a GLMM with a Poisson response. 

proc glimmix data=ufc nobound method=laplace; 
class T TM Site ; 
model ufc = Site|T/dist=Poisson link=log; 
random intercept/subject=TM(Site) type=toep(1); 
lsmeans Site|T/lines ilink; 
run; 

Part of the results is summarized in Table 9.22. To determine which covariance 
structure best models the response variable, four types were tested (part (a)), all of 
which produced very similar results. Because of these results, the “Toep(1)” covari-
ance structure was chosen. From this, the fit statistics were obtained, and the value of 
the conditional distribution statistic is Pearson′s chi - square/DF = 54.41. This 
value indicates that there is a strong overdispersion in the dataset. Therefore, it is 
important to look for an alternative distribution that solves this problem. 

The hypothesis tests in part (c) indicate that there is a significant difference in the 
date of sampling (P = 0.0001) as well as in the interaction between the site and date



of sampling (P = 0.0001). That is, the concentration of fecal coliform units per 
milliliter is affected by the date of data collection. However, we observed that there 
is an excessive dispersion in the data. One way to check for and deal with 
overdispersion is to run a quasi-Poisson model, which, during the fitting process, 
adds an additional dispersion parameter to account for that additional variance. 
Another option is to look for a distribution that adequately fits the data; in this 
case, the negative binomial distribution is a good alternative. 
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Table 9.23 Fit statistics 
under the negative binomial 
distribution 

(a) Fit statistics

-2 Log likelihood 436.98 

AIC (smaller is better) 470.98 

AICC (smaller is better) 521.98 

BIC (smaller is better) 467.44 

CAIC (smaller is better) 484.44 

HQIC (smaller is better) 456.81 

(b) Fit statistics for conditional distribution

-2 Log L(ufc | r. effects) 432.83 

Pearson’s chi-square 22.66 

Pearson’s chi-square/DF 0.76 

Next, we will implement the analysis assuming that the response variable is 
distributed under a negative binomial distribution. This means that the distribution 
of yijk (number of colonies per militro) is given by yijk j smapling(site)ik~Negative 
Binomial (λijk,ϕ), where ϕ is the scale parameter. However, the linear predictor ηijk 
and the link function remain unchanged. 

The following GLIMMIX commands fit a GLMM with a negative binomial 
distribution. 

proc glimmix data=ufc nobound method=laplace; 
class T TM Site; 
model ufc = Site|T/dist=negbin; 
random intercept/subject=TM(Site)/type=Toep(1); 
lsmeans Site|T/lines ilink; 
run; 

Part of the output of the above program is shown below. The values of the fit 
statistics under the negative binomial distribution (part (a) of Table 9.23) are much 
smaller compared to those obtained assuming the Poisson model, indicating that the 
negative binomial distribution adequately fits the response variable. Furthermore, 
the value of the conditional distribution statistic indicates that the negative binomial 
distribution is a good distribution for these data (Pearson′s chi- square/DF = 0.76). 

This parameter Pearson0s chi- square 
DF = 0:76 refers to how many times the 

variance is larger than the mean. Since this value is less than 1 (part (b)), the 
conditional variance is actually smaller than the conditional mean, indicating that 
overdispersion has been removed in the fitting of the data. Another direct effect



observed when there is no overdispersion is the F-values of the fixed effects tests 
(Table 9.24). In this case, the date on which the samples were collected was 
significant but not the interaction between the two factors, as the case when the 
data were fitted using the Poisson GLMM. 
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Table 9.24 Type III fixed 
effects tests 

Effect Num DF Den DF F-value Pr > F 

Site 2 3 0.78 0.5346 

T 4 12 11.57 0.0004 

T*site 8 12 1.13 0.4096 

Table 9.25 Means and standard errors on the model scale (Estimate) and on the data scale (Mean) 
of the sampling site data 

Site Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

A 7.0195 0.1270 3 55.25 <0.0001 1118.25 142.06 

B 7.0243 0.1271 3 55.28 <0.0001 1123.57 142.78 

C 6.8237 0.1305 3 52.30 <0.0001 919.40 119.95 

Table 9.26 Means and standard errors of measurement time on the model scale (Estimate) and the 
data scale (Mean) 

T Estimate Standard error DF t-value Pr > |t| Mean Standard error mean 

1 6.2084 0.1467 12 42.32 <0.0001 496.91 72.8990 

2 7.4212 0.1420 12 52.27 <0.0001 1670.97 237.23 

3 7.0074 0.1455 12 48.16 <0.0001 1104.74 160.75 

4 7.2910 0.1418 12 51.42 <0.0001 1466.97 208.00 

5 6.8513 0.1422 12 48.19 <0.0001 945.09 134.35 

The linear predictors and estimated probabilities of the main effects and the 
interaction between both factors are under the columns “Estimate” and “Mean,” 
respectively. The sampling site averages are presented below (Table 9.25). 

The averages by sampling date are listed below (Table 9.26). 
The means of the interaction site × sampling date are shown below (Table 9.27). 

9.6 Log-Normal Distribution 

Positively skewed distributions are highly common, especially when modeling 
biological data. Data often have a lower bound, usually 0 or the detection limit, 
but have no restriction on the upper bound. Therefore, when the data are below the 
median, no observation can be further away than the lower bound; however, when 
the data are above the median, there may be values that are many times further away, 
giving a positively skewed distribution. These skewed distributions can often be 
approximated by a log-normal distribution (Limpert et al. 2001).



Site T Estimate DF Pr > |t| Mean 
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Table 9.27 Means and standard errors for the interaction T*site on the model scale (Estimate) and 
the data scale (Mean) 

Standard 
error

t-
value 

Standard error 
mean 

A 1 6.5905 0.2463 26.76 <0.0001 728.17 179.35 

B 1 6.4197 0.2466 26.03 <0.0001 613.79 151.38 

C 1 5.6151 0.2772 20.26 <0.0001 274.53 76.1038 

A 2 7.2508 0.2452 29.57 <0.0001 1409.17 345.59 

B 2 7.5367 0.2451 30.75 <0.0001 1875.54 459.64 

C 2 7.4761 0.2463 30.36 <0.0001 1765.30 434.71 

A 3 7.0336 0.2461 28.58 <0.0001 1134.09 279.14 

B 3 6.8855 0.2465 27.94 <0.0001 978.01 241.05 

C 3 7.1030 0.2586 27.47 <0.0001 1215.59 314.37 

A 4 7.3224 0.2458 29.79 <0.0001 1513.87 372.07 

B 4 7.4329 0.2450 30.33 <0.0001 1690.62 414.28 

C 4 7.1176 0.2463 28.90 <0.0001 1233.47 303.81 

A 5 6.9003 0.2460 28.04 <0.0001 992.56 244.21 

B 5 6.8467 0.2458 27.85 <0.0001 940.73 231.25 

C 5 6.8069 0.2453 27.75 <0.0001 904.07 221.80 

Fig. 9.1 Density function of the log-normal distribution with parameters 1 and 0.6 

A log-normal distribution is characterized by having only positive nonzero 
values, positive skewness, a nonconstant variance that is proportional to the square 
of the mean value, and a normally distributed natural logarithm. The probability 
density function for a log-normal distribution has an asymmetric appearance, with a 
larger amount of data below the expected value and a thinner right tail with higher 
values. Figure 9.1 shows the positive skewness of a log-normal distribution with 
mean 1 and standard deviation 0.6.
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9.6.1 Emission of Nitrous Oxide (N2O) in Beef Cattle Manure 
with Different Percentages of Crude Protein in the Diet 

The experiment was conducted between January and February 2017 at the Colegio 
de Postgraduados Campus Córdoba located in Amatlán de los Reyes, Veracruz, 
México. The genetic material used were four 5–6-month-old males of the Criollo 
lechero tropical (CLT) breed, randomly distributed in individual pens of 
4.8 × 2.1 m2 , each one with 75% shade, a cup drinker, and a drawer-type feeder. 
To ensure the required crude protein percentages for each treatment, the following 
diets (treatments 1–4) were developed: Trt1 (12% crude protein), Trt2 (14% crude 
protein), Trt3 (16% crude protein), and Trt4 (commercial feed with 16% crude 
protein). Each animal randomly received the four treatments in different periods. 
Each treatment was applied for 11 days, of which the first 7 were considered 
adaptation days and the following 4 days were used for the measurement of gases 
in the daily accumulated excreta. The experiment had a total duration of 44 days. The 
data from this experiment are tabulated in the Appendix (Data: Nitrous oxide 
emission). The N2O gas fluxes in ppm were calculated from a linear or nonlinear 
increase of the concentrations inside the static chambers over time, and these fluxes 
were converted to micrograms of N2O–N per m

2 per hour ( y); for more details, see 
the study by Nadia Hernández-Tapia et al., (2019). The statistical model used in this 
study was an analysis of covariance model in a randomized complete block design 
with repeated measures, as described below. 

yijk = μþ τi þ animalj þ timek þ τ × timeð Þik þ βi xij - x þ εijk 

where yijk is the flux of N2O–N (μg m-2 h-1 ); μ is the overall mean; τi is the fixed 
effect due to treatment i (i = 1, 2, 3, 4); animalj is the random effect due to animal 
j ( j = 1, 2, 3, 4), assuming animalj~N(0, σ

2 
animal); timek is the fixed effect of time 

k (k = 1, 2, 3, 4, 5) at the time of measurement; (τ × time)ik is the effect of the 
interaction between τi and timek, βi is the coefficient of linear regression of the 
covariate xij in treatment i and time j, where xij can be the pH, humidity (HE), 
temperature (TE) in the manure, maximum temperature (TMaxA), minimum tem-
perature (TMinA), maximum humidity (HMaxA), minimum humidity (HMinA), or 
initial weight (kilograms) at the start of a treatment; x is the mean of the covariate in 
question; and εijk is the non-normal experimental error. 

The linear predictor ηijk for N2O–N  is  ηijk = μþ τi þ animalj þ timekþ 
τ � timeð Þik þ βi xij -�x . The response variable yijk has a conditional log-normal 

distribution with a mean μijk and variance eσ
2
- 1 :e2μþσ2 , that is, yijkjanimalj ~ Log 

normal (μijk, eσ
2
- 1 :e2μþσ2 ); the rest of the parameters have already been 

described above.
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The following GLIMMIX syntax adjusts a GLMM with a log-normal response: 

proc glimmix data=co2 nobound method=laplace; 
class animal trt time; 
model flox =trt|time xbar/dist=lognormal; 
random intercept /subject=animal type=cs; 
lsmeans trt|time/lines ilink; 
run; 

Although most of the commands have already been described in previous 
chapters, in this chapter, we average the TMinA covariate “xbar.” Part of the output 
is shown below. 

The gas emissions from cattle manure, regardless of the treatment applied, are 
influenced by several factors (covariates) that the researcher cannot control, which 
have a significant effect on the estimation of means and experimental error. Both are 
linearly related to the response variable. Covariates such as pH, humidity, and 
temperature of the excreta, as well as the temperature and humidity (maximum 
and minimum) of the environment, influence the dynamics of gas emission. These 
covariates were considered and analyzed in the covariance model to adjust the 
estimated means of the N2O–N flux. Based on the fit statistics obtained from the 
proposed models (Table 9.28), the model that best explains the variability of the 
N2O–N flux is model 5 because this model provides the lowest values in AIC, AICC, 
BIC, and MSE (Mean Square Error). Therefore, the model that provides the best fit 
or explains the most variability in the N2O–N flux is the one that includes the 
minimum environment temperature. 

The conditional fit statistics (part (a)) and the estimated variance components 
(part (b)) are shown in Table 9.29. The type III fixed effects tests (part (c)) indicate 
that there is a significant effect of Trt (P = 0.0008), time (P = 0.0288), the 
interaction Trt × time (P = 0.0140), the covariate Tmin (P = 0.0079), and the 
interaction Tmin × Trt (P = 0.038). 

The average N2O–N emissions between Trt1 (12% CP: Crude Protein) and Trt2 
(14% CP) were statistically different from each other. Treatment 1 emitted the 
highest N2O–N flux despite being the treatment with the lowest percentage of CP 
(Table 9.30). 

9.7 Effect of a Chemical Salt on the Percentage Inhibition 
of the Fusarium sp. 

In order to observe the tolerance of the fungus Fusarium sp. to different concentra-
tions of a chemical salt, a bioassay was implemented to evaluate the percentage of 
inhibition of the fungus. This bioassay consisted of placing a nutritive culture 
medium in Petri dishes for the fungal development in which different concentrations 
of the salt in ppm were added (0, 500, 1000, and 2000, ). Mycelium growth was 
measured during 6 days, and the percentage of inhibition of Fusarium sp. growth 
was calculated. Part of the data is shown below, and the complete base is in the 
Appendix (Data: Percentage inhibition).
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Table 9.29 Conditional fit 
statistics, variance compo-
nents, and type III fixed effect 
tests 

(a) Fit statistics for conditional distribution

-2 Log L (F | r. effects) 333.62 

Pearson’s chi-square 99.06 

Pearson’s chi-square/DF 0.76 

(b) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Variance A -0.01561 . 

CS A 0.000767 . 

Residual 0.7776 0.09845 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Trt 3 88 6.13 0.0008 

Time 4 88 2.84 0.0288 

Trt*time 11 88 2.34 0.0140 

Tmin 1 88 7.40 0.0079 

Tmin*Trt 3 88 4.81 0.0038 

Tmin*time 4 88 1.80 0.1351 

Tmin*Trt*time 11 88 1.23 0.2814 

Table 9.30 Mean and stan-
dard error of N flux2 O (μg of  
N2O-N m

-2 h-1 ) of the dif-
ferent treatments under study 

Treatment N2O(μ) ± standard error 
Trt1 (12% PC) 3.6442 ± 0.2213a 
Trt2 (14% PC) 3.0714 ± 0.3119b 
Trt3 (16% PC) 3.5706 ± 0.2974ab 
Trt4 (16% CP, commercial feed) 3.1205 ± 0.2130ab 

400 9 Generalized Linear Mixed Models for Repeated Measurements

Bio Day Conc Rep Y Bio Day Conc Rep Y 

1 1 0 3 5.263 2 1 0 2 0.0016 

1 1 0 4 5.263 2 1 0 3 14.285 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  
1 2 0 2 1.935 2 2 500 2 31.506 

1 2 0 3 4.516 2 2 500 3 42.465 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  
1 3 0 2 1.234 2 3 500 3 35.042 

1 3 0 3 3.703 2 3 500 4 24.786 

1 4 0 3 4.672 2 4 500 2 23.123 

1 4 500 1 19.626 2 4 500 3 27.927 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  
1 5 0 3 4.065 2 5 500 1 13.253 

1 5 0 4 4.065 2 5 500 2 21.285 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  
1 6 1000 3 15.862 2 6 2000 1 31.197 

1 6 1000 4 18.62 2 6 2000 2 29.173 

1 6 2000 1 32.413 2 6 2000 3 29.848 

(continued)
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Bio Day Conc Rep Y Bio Day Conc Rep Y 

1 6 2000 2 29.655 2 6 2000 4 30.522 

1 6 2000 3 31.724 

1 6 2000 4 35.172 

Following the same reasoning as in previous examples, the components of the 
GLMM with beta response distribution repeated-measures for the percentage inhi-
bition of Fusarium sp. (yijkl) are listed below: 

Distributions: yijkl j ωkl, conc(ω)i(kl)~Beta(πijkl,ϕ); i = 1,⋯, 4;  j = 1, . . ., 6;  k = 1, 2; 

l = 1, . . ., ri. ωkl � N 0, σ2 ω , conc ω i klð Þð Þ � N 0, σ2 conc ωð Þ  . 

Linear predictor: ηijk = θ þ conci þ ωkl þ conc ωð Þi klð Þ þ timej þ conc× timeð ij:Þ  

where ηijk is the linear predictor, θ is the intercept, conci is the fixed effect of salt 
concentration, ωkl is the random effect of the Petri dish within the bioassay, 
assuming ωkl � N 0, σ2 ω , conc(ω)i(kl) is the random effect of salt concentration– 

Petri dish–bioassay, assuming conc ωð Þi klð Þ � N 0, σ2 conc ωð Þ  , timej is the fixed effect 

due to the day of measurement, and (conc × time)ij is the interaction effect of 
chemical salt concentration with the day of measurement. 

Link function: logit(πijkl) = ηijkl is the link function that relates the linear predictor to 
the mean (πijkl). 

The following SAS program adjusts the beta GLMM with repeated measures. 

proc glimmix data=inhibition method=laplace nobound; 
class Bio Day Conc Rep; 
model pct = Con|Day/dist=beta link=logit; 
random intercept/subject=con(bio) type=cs; 
lsmeans Con|Day/lines ilink; 
run; 

Before fitting the generalized linear mixed model, we compare the estimates of 
the covariance structures with the beta distribution in the response variable 
(Table 9.31 part (a)). According to the fit statistics, the covariance structures that 
best fit the data are the Toeplitz type (Toep(1)) and unstructured (UN). 

Having defined the covariance structure, in this case, Toeplitz of order 1, we 
present part of the results of the data fit (Table 9.31 part (b)). The fit statistic 
Pearson′s chi - square/DF = 1.07 indicates that there is no overdispersion and 
that the beta distribution fits the data adequately. The estimated variance component, 
under Toeplitz (1), of the concentration–repetition bioassay is σ2 con ωð Þ  = 0:00285 and 

the scale parameter ϕ= 52:281 (c).



402 9 Generalized Linear Mixed Models for Repeated Measurements

Table 9.31 Fit statistics for the conditional distribution and variance components 

(a) Fit statistics CS AR(1) Toep(1) UN

-2 Log likelihood -523.69 -523.69 -523.69 -523.69 

AIC (smaller is better) -469.69 -469.69 -471.69 -471.69 

AICC (smaller is better) -458.73 -458.73 -461.59 -461.59 

BIC (smaller is better) -467.54 -467.54 -469.62 -469.62 

CAIC (smaller is better) -440.54 -440.54 -443.62 -443.62 

HQIC (smaller is better) -484.16 -484.16 -485.62 -485.62 

(b) Fit statistics for conditional distribution

-2 Log L (pct | r. effects) -529.79 

Pearson’s chi-square 177.68 

Pearson’s chi-square/DF 1.07 

(c) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Variance Con(Bio) 0.002849 0.004147 

Scale 52.2809 5.8849 

Table 9.32 Type III fixed 
effects tests 

Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Con 3 4 125.40 0.0002 

Day 5 138 10.99 <0.0001 

Day*Con 15 138 2.25 0.0074 

The fixed effects indicate that there is a highly significant effect of salt concen-
tration (P = 0.0002), time (P = 0.0001), and the interaction concentration x time 
(P = 0.0074) on the growth inhibition of Fusarium sp. (Table 9.32). 

The linear predictors and estimated probabilities of the factors (Table 9.33 parts 
(a) and (b)) and interaction (Table 9.34) are found under the columns “Estimate” and 
“Mean,” respectively. 

9.8 Carbon Dioxide (CO2) Emission as a Function of Soil 
Moisture and Microbial Activity 

Productive agricultural soil requires a certain level of ventilation to maintain active 
plant root growth and soil microbial activity. One scientist found that soil oxygen-
ation levels had been affected in soils fertilized with nutrient-rich sludge from a 
sewage treatment plant. The level of soil aeration can be reduced by (1) the high 
water content of the sludge added, through compaction with heavy machinery used 
to add the sludge and, ironically, (2) the increased microbial activity that occurs 
when sludge with high organic matter content is added. The objective of the research 
was to determine the moisture levels at which aeration becomes a limiting factor for



microbial activity in the soil. The study included a control treatment (no sludge) and 
three treatments using sludge as a fertilizer with different moisture contents, whose 
moisture levels for the fertilized soil were 0.24, 0.26, and 0.28 kg water/kg soil. 
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Table 9.33 Concentration and measurement time least square means on the model scale (Estimate) 
and the data scale (Mean) 

(a) Conc least squares means 

Con 
Estimate 
ηi: 

Standard 
error DF t-value Pr > |t| 

Mean 
πi: 

Standard error 
mean 

0 -3.5438 0.1499 4 -23.64 <0.0001 0.02809 0.004093 

500 -1.0650 0.05941 4 -17.93 <0.0001 0.2563 0.01133 

1000 -0.9847 0.05895 4 -16.70 <0.0001 0.2720 0.01167 

2000 -0.4487 0.05891 4 -7.62 0.0016 0.3897 0.01401 

(b) Day least squares means 

Day 
Estimate 
η:j 

Standard 
error DF t-value Pr > |t| 

Mean 
π:j 

Standard error 
mean 

1 -1.6017 0.1161 138 -13.79 <0.0001 0.1677 0.01621 

2 -1.0446 0.08689 138 -12.02 <0.0001 0.2603 0.01673 

3 -1.2475 0.08794 138 -14.19 <0.0001 0.2231 0.01524 

4 -1.5668 0.1020 138 -15.36 <0.0001 0.1727 0.01457 

5 -1.7606 0.1039 138 -16.94 <0.0001 0.1467 0.01301 

6 -1.8422 0.1067 138 -17.26 <0.0001 0.1368 0.01260 

Soil samples were randomly assigned to the four treatments in a randomized 
completely design. Soil samples were placed in sealed containers and incubated 
under favorable conditions for microbial activity. The soil was compacted in the 
containers simulating a degree of compaction experienced in the field. Microbial 
activity, measured as an increase in CO2, was used as a measure of the level of soil 
oxygenation. The CO2 evolution/kilogram soil/day in each container was measured 
on 2, 4, 6, and 8 days after starting of the incubation period. Microbial activity in 
each soil sample was recorded as the percentage increase in CO2 produced above the 
atmospheric level. The data are shown in Table 9.35. 

The analysis of variance table for this experiment is shown below (Table 9.36). 
Let pctijk be the percentage of CO2 emission, assuming that pctijk has a beta 

distribution with a mean πijk and scale parameter ϕ, i.e., pctijk~Beta(πijk,ϕ). The 
linear predictor ηijk that relates the mean to the link function is given by 

ηijk = θ þ αi þ α rð Þi kð Þ þ τj þ ατð Þij; i= 1, . . . , 4, j= 1, . . . , 4, k= 1, 2, 3 

where θ is the intercept, αi is the fixed effect of the treatment i, α(r)i(k) is the random 

effect of treatment nested in the repetition k, assuming that α rð Þi kð Þ � N 0, σ2 α rð Þ  , τj 
is the fixed effect of measurement time j, and (ατ)ij is the interaction effect of 
treatment with measurement time. The link function is defined by logit(πijk) = ηijk. 

The following SAS syntax fits a GLMM on repeated measures with a beta 
distribution.



proc glimmix data=co2 method=laplace; 
class trt container time; 
model pct = trt|time/dist=beta link=logit; 
random trt/subject=container; 
lsmeans trt|time /lines ilink; 
run; 
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Table 9.34 Measuring time*salt concentration interaction on the model scale (Estimate) and the 
data scale (Mean) 

Day*con least squares means 

Day Con 
Estimate 
ηij 

Standard 
error DF t-value Pr > |t| 

Mean 
πij 

Standard error 
mean 

1 0 -4.0127 0.4083 138 -9.83 <0.0001 0.01776 0.007124 

1 500 -0.8709 0.1123 138 -7.76 <0.0001 0.2951 0.02335 

1 1000 -0.6848 0.1092 138 -6.27 <0.0001 0.3352 0.02434 

1 2000 -0.8382 0.1579 138 -5.31 <0.0001 0.3019 0.03328 

2 0 -3.5743 0.2957 138 -12.09 <0.0001 0.02727 0.007844 

2 500 -0.4140 0.1061 138 -3.90 0.0001 0.3980 0.02543 

2 1000 -0.3519 0.1053 138 -3.34 0.0011 0.4129 0.02554 

2 2000 0.1616 0.1043 138 1.55 0.1235 0.5403 0.02590 

3 0 -2.9511 0.2944 138 -10.02 <0.0001 0.04969 0.01390 

3 500 -0.9923 0.1149 138 -8.64 <0.0001 0.2705 0.02266 

3 1000 -0.9044 0.1131 138 -8.00 <0.0001 0.2881 0.02319 

3 2000 -0.1423 0.1041 138 -1.37 0.1739 0.4645 0.02590 

4 0 -3.5167 0.3558 138 -9.88 <0.0001 0.02884 0.009967 

4 500 -1.2429 0.1213 138 -10.25 <0.0001 0.2239 0.02108 

4 1000 -1.0361 0.1159 138 -8.94 <0.0001 0.2619 0.02241 

4 2000 -0.4716 0.1065 138 -4.43 <0.0001 0.3842 0.02520 

5 0 -3.5503 0.3579 138 -9.92 <0.0001 0.02791 0.009710 

5 500 -1.4180 0.1269 138 -11.17 <0.0001 0.1950 0.01992 

5 1000 -1.4489 0.1277 138 -11.34 <0.0001 0.1902 0.01967 

5 2000 -0.6251 0.1083 138 -5.77 <0.0001 0.3486 0.02458 

6 0 -3.6579 0.3691 138 -9.91 <0.0001 0.02514 0.009046 

6 500 -1.4522 0.1277 138 -11.37 <0.0001 0.1897 0.01963 

6 1000 -1.4823 0.1289 138 -11.50 <0.0001 0.1851 0.01944 

6 2000 -0.7765 0.1106 138 -7.02 <0.0001 0.3151 0.02388 

Part of the results is shown below. The fit statistics under different covariance 
structures (Table 9.37 part (a)), such as AIC and AICC indicate that a Toeplitz-type 
covariance structure of order 1 provides the best fit to the dataset of this experiment. 

Table 9.38 part (a) shows the estimated variance component due to treatment x 
repetition, i.e.,- σ2 a rð Þ  = 0:03363, and the estimated scale parameter ϕ= 790:82, and 

the hypothesis test (part (b)) indicates that the treatments yielded statistically differ-
ent means (P = 0.0011).
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Table 9.35 Repeated measurements of emissions of CO2 by bacterial activity in soil under 
different moisture conditions 

%CO2 evolution/kilogram soil/day 

Moisture (kg water/kg soil) Container Day 2 Day 4 Day 6 Day 8 

Control 1 0.22 0.56 0.66 0.89 

2 0.68 0.91 1.06 0.8 

3 0.68 0.45 0.72 0.89 

0.24 1 2.53 2.7 2.1 1.5 

2 2.59 1.43 1.35 0.74 

3 0.56 1.37 1.87 1.21 

0.26 1 0.22 0.22 0.2 0.11 

2 0.45 0.28 1.24 0.86 

3 0.22 0.33 0.34 0.2 

0.28 1 0.22 0.8 0.8 0.37 

2 0.22 0.62 0.89 0.95 

3 0.22 0.56 0.69 0.63 

Table 9.36 Analysis of vari-
ance of an RCD with repeated 
measures 

Sources of variation Degrees of freedom 

Treatment (a - 1) = 4 - 1 = 3 
Error1 a(r - 1) = 8 
Measurement time (t - 1) = 4 - 1 = 3 
Treatment x time (a - 1)(t - 1) = 9 
Error2 a(t - 1)(r - 1) = 4 × 3 × 2 = 24 
Total a × t × r - 1 = 4 × 4 × 3 - 1 = 47 

Table 9.37 Fit statistics of the beta GLMM under different covariance structures 

(a) Fit statistics CS AR(1) Toep(1) UN

-2 Log likelihood -433.28 -433.94 -433.28 No converge 

AIC (smaller is better) -395.28 -395.94 -397.28 

AICC (smaller is better) -368.14 -368.80 -373.69 

BIC (smaller is better) -412.41 -413.07 -413.50 

CAIC (smaller is better) -393.41 -394.07 -395.50 

HQIC (smaller is better) -429.71 -430.37 -429.89 

(b) Fit statistics for conditional distribution CS AR(1) Toep(1) UN

-2 Log L (y | r. effects) -446.54 -444.41 -446.58 No converge 

Pearson’s chi-square 30.46 33.98 30.38 

Pearson’s chi-square/DF 0.63 0.71 0.63 

Table 9.39 shows the estimated average emissions of CO2 in tested treatments, 
which showed that the treatment with moisture 0.24 kg water/kg soil favored a 
higher microbial activity, whereas treatments with moisture levels 0.26 and 0.28 kg 
water/kg soil showed similar microbial activity between them.
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Table 9.38 Variance compo-
nents and fixed effects test 

(a) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Variance Contenedor 0.03363 0.03153 

Scale (ϕ) 790.82 190.89 

(b) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Trt 3 8 15.52 0.0011 

Time 3 24 2.94 0.0537 

Trt*time 9 24 1.29 0.2914 

Table 9.39 Means and standard errors on the model scale (Estimate) and the data scale (Mean) 

(a) Trt least squares means 

Trt Estimate 
Standard 
error DF t-value Pr > |t| Mean 

Standard error 
mean 

C -4.9242 0.1595 8 -30.87 <0.0001 0.007216 0.001143 

T0.24 -4.1331 0.1343 8 -30.79 <0.0001 0.01578 0.002085 

T0.26 -5.5728 0.1898 8 -29.36 <0.0001 0.003786 0.000716 

T0.28 -5.1588 0.1728 8 -29.86 <0.0001 0.005716 0.000982 
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Fig. 9.2 CO2 emission as a measure of microbial activity 

Figure 9.2 clearly shows that the treatment with moisture 0.24 kg water/kg soil 
provides the best conditions for soil microbial activity, whereas the rest of the 
treatments significantly affect the activity of microorganisms.
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9.9 Effect of Soil Compaction and Soil Moisture 
on Microbial Activity 

A soil scientist conducted an experiment to evaluate the effects of soil compaction 
and soil moisture on microbial activity. Ventilation levels may be restricted in highly 
saturated or compacted soils, thus reducing microbial activity. The experiment 
consisted of three levels of soil compaction (1.1, 1.4, and 1.6 mg soil/m3 ) and 
three levels of soil moisture (0.1, 0.2, and 0.24 kg water/kg soil). The treated soil 
samples were placed in sealed containers and incubated under conditions to micro-
bial activity. The percentage increase in CO2 produced above atmospheric levels was 
measured in each soil sample. The experimental design was a completely random-
ized design (CRD) with a 3 X 3 factorial structure of treatments. Two replicates of 
the soil container units were prepared for each treatment. The evolution of CO2/kg 
soil/day was measured for three successive days. The data from this experiment are 
shown below in Table 9.40. 

The analysis of variance table for this experiment is shown below (Table 9.41). 
Let pctijk be the percentage of CO2 emission and assume that pctijk has a beta 

distribution with a mean πijk and scale parameter ϕ, i.e., pctijk~Beta(πijk,ϕ). The 
linear predictor ηijk that relates the mean to the link function is given by 

ηijkl = θ þ αi þ βj þ αβð Þij þ αβ rð Þij lð Þ þ τk þ ατð Þik þ βτð Þjk þ αβτð Þijk 

Table 9.40 Percentage of 
CO2 by bacterial activity as a 
function of soil density 
(mg soil/m3 ) and soil humidity 
(kg water/kg soil) 

Density Humidity Replication Day 1 Day 2 Day 3 

1.1 0.1 1 2.7 0.34 0.11 

2 2.9 1.57 1.25 

0.2 1 5.2 5.04 3.7 

2 3.6 3.92 2.69 

0.24 1 4 3.47 3.47 

2 4.1 3.47 2.46 

1.4 0.1 1 2.6 1.12 0.9 

2 2.2 0.78 0.34 

0.2 1 4.3 3.36 3.02 

2 3.9 2.91 2.35 

0.24 1 1.9 3.02 2.58 

2 3 3.81 2.69 

1.6 0.1 1 2 0.67 0.22 

2 3 0.78 0.22 

0.2 1 3.8 2.8 2.02 

2 2.6 3.14 2.46 

0.24 1 1.3 2.69 2.46 

2 0.5 0.34 .
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Table 9.41 Analysis of variance of an CRD with factorial structure of treatments in repeated 
measures 

Sources of variation Degrees of freedom 

Treatment (a - 1) = 3 - 1 = 2 
Humidity (b - 1) = 3 - 1 = 2 
Treatment*humidity (a - 1)(b - 1) = 4 
Error1 ab(r - 1) = 3 × 3 × 1 = 9 
Time (c - 1) = 3 - 1 = 2 
Treatment time (a - 1)(c - 1) = 4 
Humidity*time (b - 1)(c - 1) = 4 
Treat*hum*time (a - 1)(b - 1)(c - 1) = 8 
Error2 /diferencia/17 

Total a × b × c × r - 1 = 3 × 3 × 3 × 2 - 1 - 1 = 52 

Note: Here, 1 degree of freedom was subtracted from the total observations of the experiment since 
there is a missing observation 

i= 1, 2, 3, j= 1, 2, 3, k= 1, 2, 3, l= 1, 2 

where θ is the intercept, αi is the fixed effect of the density factor, βj is the fixed effect 
of the humidity factor, (αβ)ij is the effect of the interaction between density and 
humidity, αβ(r)ij(l ) is the random effect of the interaction density × humidity × 

repetition αβ rð Þij lð Þ � N 0, σ2 αβ rð Þ  , τl is the fixed effect of measurement time, 

(ατ)ij is the fixed effect of the interaction between density and measurement time, 
(βτ)jk is the fixed effect of the interaction between moisture and measurement time, 
and (αβτ)ijk is the fixed effect of the interaction of density × humidity × time. The 
link function is defined by logit(πijkl) = ηijkl. 

The following SAS GLIMMIX syntax fits a repeated measures GLMM with a 
beta distribution. 

proc glimmix data=co2_fact nobound method=laplace; 
class density moisture rep time; 
model pct = density|humidity|time/dist=beta link=logit; 
random density*humidity/subject=rep type=toep(1); 
lsmeans density|humidity|time/lines ilink; 
run; 

Part of the results is listed below. The fit statistics (AIC and AICC) in Table 9.42 
part (a) indicate that a Toeplitz covariance structure of order 1 provides the best fit to  
of the data. 

The type III tests of fixed effects in Table 9.43 indicate that soil density 
(P = 0.0021), humidity (P = 0.0001), the evolution of emission over time 
(P = 0.0001), and the interaction between moisture and time of measurement 
(P = 0.0001) are statistically significant.



9.10 Joint Model for Binary and Poisson Data 409

Table 9.42 Fit statistics of a beta GLMM with a factorial structure of treatments under different 
covariance structures 

(a) Fit statistics CS AR(1) Toep(1) UN

-2 Log likelihood -413.74 -413.72 -413.72 No converge 

AIC (smaller is better) -353.74 -353.72 -355.72 

AICC (smaller is better) -269.19 -269.18 -280.07 

BIC (smaller is better) -392.94 -392.93 -393.62 

CAIC (smaller is better) -362.94 -362.93 -364.62 

HQIC (smaller is better) -435.73 -435.71 -434.98 

(b) Fit statistics for conditional distribution CS AR(1) Toep(1) UN

-2 Log L (y | r. effects) -413.74 -413.72 -413.72 No converge 

Pearson’s chi-square 64.60 64.65 64.65 

Pearson’s chi-square/DF 1.22 1.22 1.22 

Table 9.43 Hypothesis testing of the factors under study 

fiType III tests of xed effects 

Effect Num DF Den DF F-value Pr > F 

Density 2 9 13.14 0.0021 

Humidity 2 9 69.66 <0.0001 

Density*humidity 4 9 3.57 0.0524 

Time 2 17 21.97 <0.0001 

Density*time 4 17 0.72 0.5904 

Humidity*time 4 17 17.85 <0.0001 

Density*humidity*time 8 17 2.12 0.0923 

The least mean squares obtained with the “lsmeans” command on the model scale 
are shown under the “Estimate” column and the data scale under the “Mean” column 
of Table 9.44. 

9.10 Joint Model for Binary and Poisson Data 

Another advantage of the GLIMMIX procedure is the ability to fit models to data 
where the distribution and/or link function varies with response variables. This is 
accomplished through the specification of DIST = BYOBS or LINK=BYOBS in 
the model definition. The dataset created below provides an example of a variable 
with a bivariate outcome. This reflects the condition and length of hospital stay for 
32 patients with herniorrhaphy. These data are taken from data provided by 
Mosteller and Tukey (1977) and reproduced in the study by Hand et al. (1994) 
(Table 9.45). 

For each patient, two responses were recorded. A binary response takes the value 
one if a patient experienced a routine recovery and the value zero if postoperative 
intensive care was required. The second response variable is a count variable that



measures the length of hospital stay after the surgery (in days). The binary variable 
“OKstatus” is a regressor variable that distinguishes patients according to their 
postoperative physical status (“1” implies better status), and the variable age is the 
age of the patient. 
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Table 9.44 Means and standard errors and comparison of means (least significance difference 
(LSD)) on the model scale (Estimate) and data scale (Mean) 

(a) Density*humidity least squares means 

Density Humidity Estimate 
Standard 
error DF t-value Pr > |t| Mean 

Standard 
error 
mean 

1.1 0.1 -4.5961 0.1614 9 -28.48 <0.0001 0.009990 0.001596 

1.1 0.2 -3.1829 0.07606 9 -41.85 <0.0001 0.03981 0.002908 

1.1 0.24 -3.3152 0.08060 9 -41.13 <0.0001 0.03505 0.002726 

1.4 0.1 -4.4567 0.1450 9 -30.74 <0.0001 0.01147 0.001643 

1.4 0.2 -3.3798 0.08333 9 -40.56 <0.0001 0.03293 0.002654 

1.4 0.24 -3.5363 0.08932 9 -39.59 <0.0001 0.02830 0.002456 

1.6 0.1 -4.7890 0.1809 9 -26.47 <0.0001 0.008252 0.001481 

1.6 0.2 -3.5453 0.08972 9 -39.52 <0.0001 0.02805 0.002446 

1.6 0.24 -4.3213 0.1440 9 -30.00 <0.0001 0.01311 0.001863 

(b) T grouping of density*humidity least squares means (α = 0.05) 
LS means with the same letter are not significantly different 

Density Humidity Estimate 

1.1 0.20 -3.1829 A 

1.1 0.24 -3.3152 B A 

1.4 0.20 -3.3798 B A 

1.4 0.24 -3.5363 B 

1.6 0.20 -3.5453 B 

1.6 0.24 -4.3213 C 

1.4 0.10 -4.4567 C 

1.1 0.10 -4.5961 C 

1.6 0.10 -4.7890 C 

These data can be modeled with a separate logistic model for the binary outcome 
and with a Poisson model for the count outcome. Such separate analyses would not 
take into account the correlation between the two response variables. It is reasonable 
to assume that the duration of post-surgery hospitalization is correlated and will 
depend on whether the patient requires intensive care. 

In the following analysis, the correlation between the two types of response 
variables for a patient is modeled with shared random effects (G-side). The dataset 
variable “dist” identifies the distribution for each observation. For those observations 
that follow a binary distribution, the response variable option “(event = “1 “)” 
determines which value of the binary variable is modeled as the event of interest. 
Since no “link” option is specified, the link is also chosen on an observation-by-
observation basis as a predetermined link for the respective distribution. The fol-
lowing GLIMMIX commands fit this dataset with two distributions:
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Table 9.45 Hospital condition and length of stay of patients 

D Patient Age OKstatus y D Patient Age OKstatus y 

B 1 78 1 0 B 17 79 0 0 

P 1 78 1 9 P 17 79 0 3 

B 2 60 1 0 B 18 51 1 1 

P 2 60 1 4 P 18 51 1 5 

B 3 68 1 1 B 19 57 1 1 

P 3 68 1 7 P 19 57 1 8 

B 4 62 0 1 B 20 51 0 1 

P 4 62 0 35 P 20 51 0 8 

B 5 76 0 0 B 21 48 1 1 

P 5 76 0 9 P 21 48 1 3 

B 6 76 1 1 B 22 48 1 1 

P 6 76 1 7 P 22 48 1 5 

B 7 64 1 1 B 23 66 1 1 

P 7 64 1 5 P 23 66 1 8 

B 8 74 1 1 B 24 71 1 0 

P 8 74 1 16 P 24 71 1 2 

B 9 68 0 1 B 25 75 0 0 

P 9 68 0 7 P 25 75 0 7 

B 10 79 1 0 B 26 2 1 1 

P 10 79 1 11 P 26 2 1 0  

B 11 80 0 1 B 27 65 1 0 

P 11 80 0 4 P 27 65 1 16 

B 12 48 1 1 B 28 42 1 0 

P 12 48 1 9 P 28 42 1 3 

B 13 35 1 1 B 29 54 1 0 

P 13 35 1 2 P 29 54 1 2 

B 14 58 1 1 B 30 43 1 1 

P 14 58 1 4 P 30 43 1 3 

B 15 40 1 1 B 31 4 1 1 

P 15 40 1 3 P 31 4 1 3 

B 16 19 1 1 B 32 52 1 1 

P 16 19 1 4 P 32 52 1 8 

data Poi_Bin; 
length dist $7; 
input d$ patient age OKstatus response @@; 
if d = 'B' then dist='Binary'; else dist='Poisson'; 
datalines; 
B 1  78  1 0  P 1  78  1  9 B  2 60  1  0 P 2  60  1 4  
B 3  68  1 1  1 P  3 68 1 7  B  4  62 0 1 P  4 62 0  35  
................................. 
...................................... 
...................................



.................................... 

..................................... 

.................................. 
B 29 54 1 0 P 29  54  1 2 B 30 43 1 1 1 P 30 43  1  3  
B 31 4  1 1  1 P  31  4  1  3  B  32  52  1 1  1 P  32  52  1  8  
; 
proc glimmix data=joint; 
class patient dist; 
model response(event='1') = dist dist*age dist*OKstatus / 
noint s dist=byobs(dist); 
random int / subject=patient; 
lsmeans dist/lines ilink; 
run; 
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Table 9.46 Model information 

Model information 

Dataset WORK.POI_BIN 

Response variable Response 

Response distribution Multivariate 

Link function Multiple 

Variance function Default 

Variance matrix blocked by Patient 

Estimation technique Residual pseudo-likelihood (PL) 

Degrees of freedom method Containment 

Some of the output is shown below. Table 9.46 (“Model information”) shows that 
the distribution of the data is multivariate and that possibly multiple link functions 
are involved; by default, proc. GLIMMIX uses a logit link for the binary observa-
tions and a log link for the Poisson data. 

Table 9.47 shows the value of the distribution statistic Gener. chi - square/ 
DF = 0.90, which indicates that there is no overdispersion, and also shows the 
estimated variance component due to patient, which is, σ2 patient = 0:299. The fixed 
effects tests for the effects of age and status are shown in part (c). 

In addition to the above results, the maximum likelihood estimators of the 
intercepts, as well as the values of the slopes of each of the variables of both 
probability distributions, are tabulated in Table 9.48. 

Thus, to calculate the probability that a patient will experience a routine recovery, 
the following expression is used: 

π̂ = 
1 

1 þ exp - β0 - β1 × age- β2 × okstatus 

= 
1 

1þ exp - 5:7783þ0:07572 × ageþ0:4697 × okstatusf g
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Table 9.47 Results of the 
analysis of variance 

(a) Fit statistics

-2 Res log pseudo-likelihood 226.71 

Generalized chi-square 52.25 

Gener. chi-square/DF 0.90 

(b) Covariance parameter estimates 

Cov Parm Subject Estimate Standard error 

Intercept Patient 0.2990 0.1116 

(c) Type III tests of fixed effects 

Effect Num DF Den DF F-value Pr > F 

Dist 2 29 2.74 0.0814 

Age*dist 2 29 5.94 0.0069 

OKstatus*dist 2 29 0.24 0.7909 

Table 9.48 Maximum likelihood estimators for fixed effects 

fiSolutions for xed effects 

Effect Dist Estimate Standard error DF t-value Pr > |t| 

Dist Binary 5.7783 2.9048 29 1.99 0.0562 

Dist Poisson 0.8410 0.5696 29 1.48 0.1506 

Age*dist Binary -0.07572 0.03791 29 -2.00 0.0552 

Age*dist Poisson 0.01875 0.007383 29 2.54 0.0167 

OKstatus*dist Binary -0.4697 1.1251 29 -0.42 0.6794 

OKstatus*dist Poisson -0.1856 0.3020 29 -0.61 0.5435 

whereas the following expression is used to calculate the average value of the length 
of hospital stay after the surgery (in days): 

λ̂= exp α0þα1 × ageþα2 × okstatusf g  = exp 0:8410þ0:01875× age- 0:1856 × okstatusf g  

9.11 Exercises 

Exercise 9.11.1 Consider an experiment in which three treatments are compared. 
There are r blocks of n animals, each using grouping criteria relevant to the 
experiment. Within each block, one animal is randomly assigned to each treatment. 
A measurement was taken on animals at “week 0,” when treatments were applied, 
and again at weeks 4 and 12. Variables measured included weight, the presence or 
absence of disease symptoms, and severity of symptoms, classified as “worse,” “no 
change,” or “better.” The focus of this experiment was on repeated measures analysis 
of the last two types of data in the above list: categorical data that are binary or 
ordinal and ordinal responses/ratings in an experiment designed with a repeated 
measures and treatment factor structure. Regardless of whether the observations are



normally distributed, categorical, or have some other distribution, a general 
approach to repeated measures analysis based on the linear mixed model uses the 
following general form: 
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Table 9.49 Results of a repeated measures experiment with an ordinal response variable 

Week 0 Week 4 Week 12 

Response Placebo Trt1 Trt2 Response Placebo Trt1 Trt2 Response Placebo 

Bad 60 59 54 14 5 3 13 10 7 

Without 
change 

7 6 13 34 33 38 25 17 21 

Better 0 0 0 15 22 17 17 28 21 

Observation= systematic between- subjects variationþ random between
- subjects variation þ systematic within- subjects effectsþ random within
- subjects variation: 

The following table shows the data from an experiment in which each cell 
contains the number of animals in a given treatment × week × response category 
combination (Table 9.49). 

(a) List all the components of the repeated measures under a multinomial GLMM. 
(b) Study and choose the best covariance structure that models this dataset. Cite the 

most relevant results. 
(c) Fit the multinomial cumulative logit model to these data. Perform a complete and 

appropriate analysis of the data, focusing on: 

(i) An evaluation of the effects of the combination of treatments 
(ii) Odds ratio interpretation 
(iii) The expected probability per category for each treatment 

(d) Test whether the proportional odds assumption is viable. Cite relevant evidence 
to support your conclusion regarding the adequacy of the assumption. 

Repeat (b) through (d), assuming a generalized multinomial logit in Exercise 
9.11.1. Discuss your results. 

Repeat (b) through (d) assuming a multinomial cumulative probit in Exercise 
9.11.1. Discuss your results and compare with those found in (1) and (2). 

Alternatively, the contingency table approach can be implemented using a 
log-linear model. For the previous example, 9.11.1, fit the log-linear model 

log λijk = μþ τi þ ϖj þ τϖð Þij þ ck þ τcð Þik þ τϖcð Þijk 

where λijk is the expected count of the treatment combination ijk by week by response 
category and τ, ϖ, and c refer to treatment, week,and response category effects, 
respectively.
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Table 9.50 Nitrogen injection treatment factors study 

Handling practices Application rate 
1 = N surface applied without additional water injection 2.5 g/cm2 

2 = N surface area applied with supplementary water injection 

3 = N injected with a number 56 nozzle (7.6 cm depth of injection) 5.0 g/cm2 

4 = N injected with a number 53 nozzle (12.7 cm depth of injection) 

Handling practices 1 Driving practice 2 
Quality N1 N2 Total Quality N1 N2 Total 
Poor 14 5 19 Poor 15 8 23 

Average 2 11 13 Average 1 8 9 

Good 0 0 0 Good 0 0 0 

Excellent 0 0 0 Excellent 0 0 0 

Total 16 16 32 Total 16 16 32 

Handling practices 3 Handling practices 4 
Quality N1 N2 Total Quality N1 N2 Total 
Poor 0 0 0 Poor 1 0 1 

Average 9 2 11 Average 12 4 16 

Good 7 14 21 Good 0 0 0 

Excellent 0 0 0 Excellent 0 0 0 

Total 16 16 32 Total 16 16 32 

Exercise 9.11.2 Fertilization of turf has traditionally been accomplished through 
surface applications. The introduction of new equipment (Hydroject) has made it 
possible to place soluble materials below the surface (Table 9.50). 

A study was conducted during the 1997 growing season to compare surface 
application and subsoil injection of nitrogen on the green color of bentgrass 
(Agrostis palustris L. Huds) 1 year after transplanting. The treatment structure was 
a full factorial of grass management factors (four types/levels) and the rate/level (two 
levels) of nitrogen application per square meter (g/m2 ). Eight treatment combina-
tions were arranged in a completely randomized design with four replications. Turf 
color was evaluated in each experimental unit at weekly intervals of 4 weeks as poor, 
average, good, or excellent. 

Of particular interest was the determination of the water injection effect, the 
subsurface effect, and the comparison of injection versus surface applications. These 
are contrasts between the levels of factor management practice and their primary 
objective, which was to determine whether the factor interacts with the rate of 
application. 

(a) List all the GLMM components of this experiment. 
(b) Fit the multinomial cumulative logit proportional odds model to these data. 

Perform a complete and appropriate analysis of the data, focusing on: 

(i) An evaluation of the effects of the combination of treatments 
(ii) Interpretation of the odds ratios 
(iii) The expected probability per category for each treatment
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(c) Test whether the proportional odds assumption is viable. Cite relevant evidence 
to support your conclusion regarding the adequacy of the assumption. 

Exercise 9.11.3 Refer to Exercise 9.11.1. 

(a) Fit the multinomial generalized logit proportional odds model to these data. 
(b) List all the components of the GLMM of this experiment. 
(c) Perform a complete and appropriate analysis of the data, focusing on: 

(i) An evaluation of the effects of the combination of treatments 
(ii) Interpretation of odds ratios 
(iii) The expected probability per category for each treatment 

(d) Test whether the proportional odds assumption is viable. Cite relevant evidence 
to support your conclusion regarding the adequacy of the assumption. 

Exercise 9.11.4 Refer to Exercise 9.11.1. 

(a) List all the components of the GLMM of this experiment. 
(b) Fit the multinomial cumulative probit proportional odds model to these data. 

Perform a complete and appropriate analysis of the data, focusing on: 

(i) An evaluation of the effects of the combination of treatments 
(ii) Interpretation of the odds ratios 
(iii) The expected probability per category for each treatment 

(c) Test whether the proportional odds assumption is viable. Cite relevant evidence 
to support your conclusion regarding the adequacy of the assumption. 

Appendix 

Data: Feeding line experiment 

Tray Feeding Run Proportion Tray Feeding Run Proportion 

1 H 1 0.18217 1 H 3 0.06818 

2 H 1 0.15493 2 H 3 0.05874 

3 H 1 0.15906 3 H 3 0.05757 

4 H 1 0.15869 4 H 3 0.10349 

5 H 1 0.14891 5 H 3 0.08564 

6 H 1 0.17654 6 H 3 0.09359 

7 H 1 0.12915 7 H 3 0.09706 

8 H 1 0.12895 8 H 3 0.13188 

9 H 1 0.16688 9 H 3 0.18477 

10 H 1 0.11965 10 H 3 0.10966 

11 H 1 0.21719 11 H 3 0.18069 

12 H 1 0.20797 12 H 3 0.18182

(continued)
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Data: Feeding line experiment 

Tray Feeding Run Proportion Tray Feeding Run Proportion 

1 L 1 0.70601 1 L 3 0.75524 

2 L 1 0.68817 2 L 3 0.77249 

3 L 1 0.68317 3 L 3 . 

4 L 1 0.77805 4 L 3 0.84204 

5 L 1 0.76692 5 L 3 0.81572 

6 L 1 0.79127 6 L 3 0.79161 

7 L 1 0.73653 7 L 3 0.81234 

8 L 1 0.74939 8 L 3 0.81795 

9 L 1 0.78773 9 L 3 0.8225 

10 L 1 0.7381 10 L 3 0.79384 

11 L 1 0.88486 11 L 3 0.8135 

12 L 1 0.90401 12 L 3 0.83965 

1 H 2 0.07547 1 H 4 0.07105 

2 H 2 0.05801 2 H 4 0.05511 

3 H 2 0.0565 3 H 4 0.05217 

4 H 2 0.09579 4 H 4 0.10567 

5 H 2 0.10954 5 H 4 0.0755 

6 H 2 0.12154 6 H 4 0.0853 

7 H 2 0.1144 7 H 4 0.09363 

8 H 2 0.13728 8 H 4 0.11154 

9 H 2 0.15012 9 H 4 0.16264 

10 H 2 0.12113 10 H 4 0.09215 

11 H 2 0.17633 11 H 4 0.1834 

12 H 2 0.16408 12 H 4 0.21016 

1 L 2 0.78318 1 L 4 0.76556 

2 L 2 0.78418 2 L 4 0.78307 

3 L 2 0.78589 3 L 4 0.76486 

4 L 2 0.78867 4 L 4 0.82391 

5 L 2 0.81988 5 L 4 0.8044 

6 L 2 0.82793 6 L 4 0.81178 

7 L 2 0.81384 7 L 4 0.84339 

8 L 2 0.81037 8 L 4 0.78833 

9 L 2 0.77528 9 L 4 0.79804 

10 L 2 0.78916 10 L 4 0.82236 

11 L 2 0.87109 11 L 4 0.83807 

12 L 2 0.84704 12 L 4 0.85532



D
at
a:
 N

itr
ou

s 
ox

id
e 
em

is
si
on

 

A
T

T
F

pH
H
E

T
E

tx
tm

H
x

H
m

A
T

t
F

pH
H
E

T
E

tx
tm

H
x

H
m
 

3
1

1
10

8
8

85
20

17
16

69
68

2
1

1
4.
13

6.
9

87
20

19
19

67
66

 

2
2

1
15

4.
7

86
20

17
16

69
68

3
2

1
82

.4
7

87
22

19
19

67
66

 

1
3

1
33

5.
5

85
20

17
16

69
68

4
3

1
51

.4
6.
4

87
20

19
19

67
66

 

4
4

1
23

6.
4

84
21

17
16

69
68

1
4

1
70

4
95

20
19

19
67

66
17

0 

3
1

2
-
58

8
85

23
34

34
54

51
3

2
2

14
7

87
22

27
27

68
67

 

2
2

2
-
45

4.
7

86
24

34
34

54
51

4
3

2
13

0
6.
4

87
24

27
27

68
67

 

1
3

2
-
97

5.
5

85
29

34
34

54
51

1
4

2
53

7
95

24
27

27
68

67
17

0 

4
4

2
18

5
6.
4

84
28

34
34

54
51

3
2

3
1.
02

7
87

25
28

27
63

57
 

3
1

3
47

8
85

32
35

35
38

30
4

3
3

41
.9

6.
4

87
24

28
27

63
57

 

2
2

3
26

4.
7

86
32

35
35

38
30

1
4

3
82

4
95

24
28

27
63

57
17

0 

1
3

3
41

5.
5

85
34

35
35

38
30

3
2

4
53

.9
7

87
20

22
22

61
60

 

4
4

3
19

6.
4

84
34

35
35

38
30

4
3

4
9.
88

6.
4

87
20

22
22

61
60

 

3
1

4
31

1
8

85
28

30
30

40
38

1
4

4
74

5
95

20
22

22
61

60
17

0 

2
2

4
-
29

4.
7

86
27

30
30

40
38

3
2

5
92

.7
7

87
20

22
22

65
62

 

1
3

4
37

5.
5

85
28

30
30

40
38

4
3

5
18

7
6.
4

87
20

22
22

65
62

 

4
4

4
20

4
6.
4

84
27

30
30

40
38

1
4

5
59

1
95

20
22

22
65

62
17

0 

3
1

5
6.
8

8
85

22
27

27
51

43
3

2
1

7
6.
6

85
20

20
18

80
74

 

2
2

5
-
18

4.
7

86
22

27
27

51
43

4
3

1
8.
39

6.
8

87
20

20
18

80
74

 

1
3

5
68

5.
5

85
22

27
27

51
43

1
4

1
13

67
86

20
20

18
80

74
17

0 

4
4

5
91

6.
4

84
22

27
27

51
43

3
2

5
-
49

6.
6

85
19

18
18

89
89

 

3
1

1
13

5
4.
6

84
20

18
18

60
59

4
3

5
-
91

6.
8

87
19

18
18

89
89

 

2
2

1
1.
4

4.
3

85
20

18
18

60
59

1
4

5
71

1
86

19
18

18
89

89
17

0 

1
3

1
55

6.
5

85
20

18
18

60
59

3
2

1
10

8
7.
1

86
20

17
16

87
87

 

4
4

1
18

6.
1

85
21

18
18

60
59

4
3

1
15

6.
8

87
20

17
16

87
87

 

3
1

5
5

4.
6

84
22

24
24

61
59

1
4

1
62

1
86

20
17

16
87

87
17

0

418 9 Generalized Linear Mixed Models for Repeated Measurements



2
2

5
12

4.
3

85
22

24
24

61
59

3
2

5
6.
19

7.
1

86
26

24
24

65
64

 

1
3

5
12

1
6.
5

85
22

24
24

61
59

4
3

5
1.
36

6.
8

87
24

24
24

65
64

 

4
4

5
51

6.
1

85
23

24
24

61
59

1
4

5
65

6
86

25
24

24
65

64
17

0 

3
1

1
21

4.
3

85
19

18
17

61
58

3
2

1
18

.2
7.
3

86
20

18
17

77
76

 

2
2

1
87

4.
6

86
19

18
17

61
58

4
3

1
55

.9
7

87
20

18
17

77
76

 

1
3

1
21

6.
5

85
19

18
17

61
58

1
4

1
73

1
90

19
18

17
77

76
17

0 

4
4

1
28

6.
1

85
19

18
17

61
58

3
2

5
-
77

7.
3

86
26

25
25

65
63

 

3
1

5
31

4.
3

85
23

25
25

57
55

4
3

5
33

.6
7

87
25

25
25

65
63

 

2
2

5
10

1
4.
6

86
23

25
25

57
55

1
4

5
88

0
90

26
25

25
65

63
16

3 

1
3

5
-
37

6.
5

85
23

25
25

57
55

1
2

1
29

.4
7.
5

88
20

20
21

60
59

 

4
4

5
13

6
6.
1

85
23

25
25

57
55

2
3

1
49

.3
7.
1

88
20

20
21

60
59

 

3
1

1
26

4.
4

84
19

19
19

61
60

3
4

1
69

.7
6.
7

85
20

20
21

60
59

 

2
2

1
16

4.
8

85
19

19
19

61
60

4
1

2
36

.1
6.
8

90
24

42
29

51
20

 

1
3

1
92

5.
5

87
19

19
19

61
60

1
2

2
-
10

0
7.
5

88
24

42
29

51
20

 

4
4

1
-
82

6
85

19
19

19
61

60
2

3
2

12
3

7.
1

88
24

42
29

51
20

 

3
1

5
35

4.
4

84
22

24
22

67
62

3
4

2
45

.3
6.
7

85
24

42
29

51
20

 

2
2

5
-
10

4.
8

85
25

24
22

67
62

4
1

3
18

.2
6.
8

90
30

39
34

45
29

 

1
3

5
41

5.
5

87
23

24
22

67
62

1
2

3
-
21

6
7.
5

88
30

39
34

45
29

 

4
4

5
19

6
85

23
24

22
67

62
2

3
3

-
71

7.
1

88
30

39
34

45
29

 

1
1

1
16

54
16

0
16

1
4

2
2

1
3

4
3

3.
47

6.
7

85
30

39
34

45
29

 

3
3

1
83

5.
8

85
21

16
19

50
54

4
1

4
57

.6
6.
8

90
26

31
28

26
23

 

2
4

1
28

7.
2

84
20

16
19

50
54

1
2

4
59

.1
7.
5

88
26

31
28

26
23

 

1
1

2
24

55
16

0
16

1
4

2
2

2
2

3
4

38
.2

7.
1

88
26

31
28

26
23

 

3
3

2
29

5.
8

85
23

24
23

58
55

3
4

4
74

.4
6.
7

85
26

31
28

26
23

 

2
4

2
9.
4

7.
2

84
22

24
23

58
55

4
1

5
26

6.
8

90
24

26
25

43
31

 

1
1

3
29

44
16

0
16

1
4

2
2

3
1

2
5

67
.5

7.
5

88
24

26
25

43
31

 

3
3

3
38

5.
8

85
31

29
25

51
44

2
3

5
-
77

7.
1

88
24

26
25

43
31

 

(c
on

tin
ue
d)

Appendix 419



D
at
a:
 N

itr
ou

s 
ox

id
e 
em

is
si
on

 

A
T

T
F

pH
H
E

T
E

tx
tm

H
x

H
m

A
T

t
F

pH
H
E

T
E

tx
tm

H
x

H
m
 

2
4

3
1.
2

7.
2

84
31

29
25

51
44

3
4

5
40

.8
6.
7

85
24

26
25

43
31

 

1
1

4
28

35
16

0
16

1
4

2
2

4
4

1
1

37
.5

7.
2

89
22

18
17

61
48

 

3
3

4
81

5.
8

85
27

28
27

35
35

1
2

1
88

.4
8.
1

88
21

18
17

61
48

 

2
4

4
17

7.
2

84
29

28
27

35
35

2
3

1
63

.4
7.
6

90
22

18
17

61
48

 

1
1

5
26

39
16

0
16

1
4

2
2

5
3

4
1

-
72

7.
4

85
22

18
17

61
48

 

3
3

5
99

5.
8

85
20

26
26

41
39

4
1

5
-
83

7.
2

89
26

29
27

48
45

 

2
4

5
31

7.
2

84
20

26
26

41
39

1
2

5
95

.1
8.
1

88
26

30
28

49
46

 

1
1

1
20

50
16

0
16

1
4

2
2

1
2

3
5

72
.8

7.
6

90
26

31
29

50
47

 

3
3

1
-
45

6.
4

85
20

20
20

54
50

3
4

5
12

.2
7.
4

85
26

32
30

51
48

 

2
4

1
10

8
7.
4

84
22

20
20

54
50

4
1

1
27

6.
9

88
21

23
22

63
58

 

1
1

5
27

47
16

0
16

1
4

2
2

5
1

2
1

23
.2

8.
1

90
22

23
22

63
58

 

3
3

5
2.
3

6.
4

85
28

27
26

50
47

2
3

1
-
0.
7

7.
4

88
22

23
22

63
58

 

2
4

5
39

7.
4

84
28

27
26

50
47

3
4

1
61

.1
7.
3

86
24

23
22

63
58

 

1
1

1
24

53
16

0
16

1
4

2
2

1
4

1
5

73
.8

6.
9

88
19

18
18

76
65

 

3
3

1
13

6.
4

85
20

24
22

54
53

1
2

5
62

.1
8.
1

90
20

18
18

76
65

 

2
4

1
14

8
7.
1

84
20

24
22

54
53

2
3

5
-
96

7.
4

88
20

18
18

76
65

 

1
1

5
24

57
16

0
16

1
4

2
2

5
3

4
5

40
.2

7.
3

86
20

18
18

76
65

 

3
3

5
9

6.
4

85
28

24
23

60
57

4
1

1
7.
22

7.
3

90
17

17
17

73
67

 

2
4

5
13

7.
1

84
28

24
23

60
57

1
2

1
5.
53

7.
9

88
17

17
17

73
67

 

1
1

1
22

69
16

0
16

1
4

2
2

1
2

3
1

74
.5

7.
4

86
18

17
17

73
67

 

3
3

1
-
36

6.
5

83
20

22
21

73
69

3
4

1
-
23

7.
4

82
19

17
17

73
67

 

2
4

1
45

6.
8

84
20

22
21

73
69

4
1

5
90

.3
7.
3

90
20

21
20

70
69

 

1
1

5
23

70
16

0
16

1
4

2
2

5
1

2
5

-
21

7.
9

88
20

21
20

70
69

 

3
3

5
35

6.
5

83
22

23
22

71
70

2
3

5
63

.9
7.
4

86
20

21
20

70
69

 

2
4

5
-
17

6.
8

84
22

23
22

71
70

3
4

5
-
16

7.
4

82
20

21
20

70
69

420 9 Generalized Linear Mixed Models for Repeated Measurements



Data: Percentage inhibition (Bio bioassay, Con concentration, Rep repetition, Por percentage 
inhibition) 

Bio Day Con Rep Por Bio Day Con Rep Por 

1 1 0 3 5.2632 1 6 2000 4 35.1724 

1 1 0 4 5.2632 2 1 0 2 0.0016 

1 1 500 1 15.7895 2 1 0 3 14.2857 

1 1 500 2 26.3158 2 1 500 1 42.8571 

1 1 500 3 15.7895 2 1 500 2 42.8571 

1 1 500 4 15.7895 2 1 500 3 42.8571 

1 1 1000 1 36.8421 2 1 500 4 42.8571 

1 1 1000 2 36.8421 2 1 1000 1 7.1429 

1 1 1000 3 36.8421 2 1 1000 2 42.8571 

1 1 1000 4 36.8421 2 1 1000 3 42.8571 

1 1 2000 1 15.7895 2 1 1000 4 42.8571 

1 1 2000 2 36.8421 2 2 0 1 1.3699 

1 1 2000 3 36.8421 2 2 0 2 1.3699 

1 1 2000 4 36.8421 2 2 0 4 1.3699 

1 2 0 2 1.9355 2 2 500 1 34.2466 

1 2 0 3 4.5161 2 2 500 2 31.5068 

1 2 0 4 1.9355 2 2 500 3 42.4658 

1 2 500 1 43.2258 2 2 500 4 36.9863 

1 2 500 2 48.3871 2 2 1000 1 34.2466 

1 2 500 3 40.6452 2 2 1000 2 47.9452 

1 2 500 4 40.6452 2 2 1000 3 45.2055 

1 2 1000 1 35.4839 2 2 1000 4 45.2055 

1 2 1000 2 45.8065 2 2 2000 1 47.9452 

1 2 1000 3 43.2258 2 2 2000 2 53.4247 

1 2 1000 4 32.9032 2 2 2000 3 50.6849 

1 2 2000 1 58.7097 2 2 2000 4 56.1644 

1 2 2000 2 53.5484 2 3 0 1 4.2735 

1 2 2000 3 53.5484 2 3 0 4 14.5299 

1 2 2000 4 58.7097 2 3 500 1 28.2051 

1 3 0 2 1.2346 2 3 500 2 28.2051 

1 3 0 3 3.7037 2 3 500 3 35.0427 

1 3 500 1 25.9259 2 3 500 4 24.7863 

1 3 500 2 23.4568 2 3 1000 1 24.7863 

1 3 500 3 23.4568 2 3 1000 2 35.0427 

1 3 500 4 24.6914 2 3 1000 3 24.7863 

1 3 1000 1 30.8642 2 3 1000 4 26.4957 

1 3 1000 2 32.0988 2 3 2000 1 40.1709 

1 3 1000 3 28.3951 2 3 2000 2 38.4615 

1 3 1000 4 25.9259 2 3 2000 3 47.0085 

1 3 2000 1 53.0864 2 3 2000 4 41.8803 

1 3 2000 2 49.3827 2 4 0 2 1.5015 

1 3 2000 3 49.3827 2 4 0 3 1.5015 

(continued)
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Data: Percentage inhibition (Bio bioassay, Con concentration, Rep repetition, Por percentage 
inhibition) 

Bio Day Con Rep Por Bio Day Con Rep Por 

1 3 2000 4 51.8519 2 4 0 4 1.5015 

1 4 0 3 4.6729 2 4 500 1 20.7207 

1 4 500 1 19.6262 2 4 500 2 23.1231 

1 4 500 2 20.5607 2 4 500 3 27.9279 

1 4 500 3 22.4299 2 4 500 4 20.7207 

1 4 500 4 20.5607 2 4 1000 1 35.1351 

1 4 1000 1 21.4953 2 4 1000 2 26.7267 

1 4 1000 2 21.4953 2 4 1000 3 26.7267 

1 4 1000 3 23.3645 2 4 1000 4 32.7327 

1 4 1000 4 20.5607 2 4 2000 1 33.9339 

1 4 2000 1 42.0561 2 4 2000 2 37.5375 

1 4 2000 2 36.4486 2 4 2000 3 44.7447 

1 4 2000 3 32.7103 2 4 2000 4 38.7387 

1 4 2000 4 40.1869 2 5 0 2 2.008 

1 5 0 3 4.065 2 5 0 4 0.4016 

1 5 0 4 4.065 2 5 500 1 13.253 

1 5 500 1 21.1382 2 5 500 2 21.2851 

1 5 500 2 24.3902 2 5 500 3 21.2851 

1 5 500 3 17.0732 2 5 500 4 18.0723 

1 5 500 4 17.0732 2 5 1000 1 21.2851 

1 5 1000 1 18.6992 2 5 1000 2 18.0723 

1 5 1000 2 18.6992 2 5 1000 3 16.4659 

1 5 1000 3 20.3252 2 5 1000 4 16.4659 

1 5 1000 4 17.8862 2 5 2000 1 35.743 

1 5 2000 1 41.4634 2 5 2000 2 34.1365 

1 5 2000 2 38.2114 2 5 2000 3 29.3173 

1 5 2000 3 34.1463 2 5 2000 4 30.9237 

1 5 2000 4 33.3333 2 6 0 2 4.2159 

1 6 0 3 4.8276 2 6 0 4 0.1686 

1 6 0 4 2.069 2 6 500 1 18.3811 

1 6 500 1 17.2414 2 6 500 2 20.4047 

1 6 500 2 18.6207 2 6 500 3 22.4283 

1 6 500 3 16.5517 2 6 500 4 20.4047 

1 6 500 4 13.7931 2 6 1000 1 21.0793 

1 6 1000 1 15.8621 2 6 1000 2 17.7066 

1 6 1000 2 16.5517 2 6 1000 3 17.7066 

1 6 1000 3 15.8621 2 6 1000 4 20.4047 

1 6 1000 4 18.6207 2 6 2000 1 31.1973 

1 6 2000 1 32.4138 2 6 2000 2 29.1737 

1 6 2000 2 29.6552 2 6 2000 3 29.8482 

1 6 2000 3 31.7241 2 6 2000 4 30.5228
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