Skip to main content

Skeletal Muscle and Adipose Tissue: Targets or Relays for Interorgan Axis in Alcohol-Induced Tissue Injury?

  • Chapter
  • First Online:
Alcohol and Alcohol-related Diseases
  • 630 Accesses

Abstract

At-risk alcohol use is an independent risk factor for liver disease and type 2 diabetes and synergizes with an obesogenic environment additively increasing the risk of cardiometabolic disease. At the core of metabolic dysregulation is alcohol-induced cellular injury of the liver, pancreas, skeletal muscle (SKM), and adipose tissue (AT). This chapter focuses on the contribution of SKM and AT to alcohol-mediated metabolic dysregulation. SKM and AT are targets of alcohol-mediated dysregulation of glucose, protein, and lipid metabolism; aberrant extracellular matrix remodeling; bioenergetic adaptations; and impaired differentiation of muscle and adipose derived progenitors. Based on emerging evidence of interorgan communication as an important mechanism underlying alcohol-associated tissue injury, SKM and AT as relays are discussed. Secretion of soluble factors and extracellular vesicles are proposed as critical mediators of inter-organ communication contributing to metabolic dyshomeostasis associated with at-risk alcohol use. We provide insight into areas of research gaps that warrant systematic studies on how alcohol-mediated changes in mediators, particularly extracellular vesicles, and their bioactive cargo, mechanistically contribute to cardiometabolic disease. Research integrating these complex metabolic networks is imperative to elucidate their role and potential as targets for interventions to reduce comorbidities and improve quality of life among people with at-risk alcohol use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peacock A, Leung J, Larney S, Colledge S, Hickman M, Rehm J, et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction. 2018;113(10):1905–26.

    Article  PubMed  Google Scholar 

  2. Andersen BN, Hagen C, Faber OK, Lindholm J, Boisen P, Worning H. Glucose tolerance and B cell function in chronic alcoholism: its relation to hepatic histology and exocrine pancreatic function. Metab Clin Exp. 1983;32(11):1029–32.

    Article  CAS  PubMed  Google Scholar 

  3. Pezzarossa A, Cervigni C, Ghinelli F, Molina E, Gnudi A. Glucose tolerance in chronic alcoholics after alcohol withdrawal: effect of accompanying diet. Metabolism. 1986;35(11):984–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hatonen KA, Virtamo J, Eriksson JG, Perala MM, Sinkko HK, Leiviska J, et al. Modifying effects of alcohol on the postprandial glucose and insulin responses in healthy subjects. Am J Clin Nutr. 2012;96(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kim SJ, Ju A, Lim SG, Kim DJ. Chronic alcohol consumption, type 2 diabetes mellitus, insulin-like growth factor-I (IGF-I), and growth hormone (GH) in ethanol-treated diabetic rats. Life Sci. 2013;93(21):778–82.

    Article  CAS  PubMed  Google Scholar 

  6. Kim JY, Hwang JY, Lee DY, Song EH, Park KJ, Kim GH, et al. Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo. J Biol Chem. 2014;289(39):27065–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nelson NG, Suhaidi FA, Law WX, Liang NC. Chronic moderate alcohol drinking alters insulin release without affecting cognitive and emotion-like behaviors in rats. Alcohol. 2018;70:11–22.

    Article  CAS  PubMed  Google Scholar 

  8. Hodge AM, Dowse GK, Collins VR, Zimmet PZ. Abnormal glucose tolerance and alcohol consumption in three populations at high risk of non-insulin-dependent diabetes mellitus. Am J Epidemiol. 1993;137(2):178–89.

    Article  CAS  PubMed  Google Scholar 

  9. Wei M, Gibbons LW, Mitchell TL, Kampert JB, Blair SN. Alcohol intake and incidence of type 2 diabetes in men. Diabetes Care. 2000;23(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  10. Simon L, Souza-Smith FM, Molina PE. Alcohol-associated tissue injury: current views on pathophysiological mechanisms. Annu Rev Physiol. 2022;84:87–112.

    Article  PubMed  Google Scholar 

  11. Baliunas DO, Taylor BJ, Irving H, Roerecke M, Patra J, Mohapatra S, et al. Alcohol as a risk factor for type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2009;32(11):2123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pietraszek A, Gregersen S, Hermansen K. Alcohol and type 2 diabetes. A review. Nutr Metab Cardiovasc Dis. 2010;20(5):366–75.

    Article  CAS  PubMed  Google Scholar 

  13. Muscari A, Bianchi G, Conte C, Forti P, Magalotti D, Pandolfi P, et al. No direct survival effect of light to moderate alcohol drinking in community-dwelling older adults. J Am Geriatr Soc. 2015;63(12):2526–33.

    Article  PubMed  Google Scholar 

  14. Teratani T, Morimoto H, Sakata K, Oishi M, Tanaka K, Nakada S, et al. Dose-response relationship between tobacco or alcohol consumption and the development of diabetes mellitus in Japanese male workers. Drug Alcohol Depend. 2012;125(3):276–82.

    Article  CAS  PubMed  Google Scholar 

  15. Wood AM, Kaptoge S, Paige E, Di Angelantonio E, Danesh J. Risk thresholds for alcohol consumption - Authors' reply. Lancet. 2018;392(10160):2167–8.

    Article  PubMed  Google Scholar 

  16. Cederbaum AI. Alcohol metabolism. Clin Liver Dis. 2012;16(4):667–85.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Molina PE, Gardner JD, Souza-Smith FM, Whitaker AM. Alcohol abuse: critical pathophysiological processes and contribution to disease burden. Physiology (Bethesda). 2014;29(3):203–15.

    CAS  PubMed  Google Scholar 

  18. Wilson DF, Matschinsky FM. Ethanol metabolism: the good, the bad, and the ugly. Med Hypotheses. 2020;140:109638.

    Article  CAS  PubMed  Google Scholar 

  19. Zakhari S. Alcohol metabolism and epigenetics changes. Alcohol Res. 2013;35(1):6–16.

    PubMed  PubMed Central  Google Scholar 

  20. Simon L, Jolley SE, Molina PE. Alcoholic myopathy: pathophysiologic mechanisms and clinical implications. Alcohol Res. 2017;38(2):207–17.

    PubMed  PubMed Central  Google Scholar 

  21. Zimmerman JL, Shen MC. Rhabdomyol Chest. 2013;144(3):1058–65.

    Article  CAS  PubMed  Google Scholar 

  22. Torres PA, Helmstetter JA, Kaye AM, Kaye AD. Rhabdomyolysis: pathogenesis, diagnosis, and treatment. Ochsner J. 2015;15(1):58–69.

    PubMed  PubMed Central  Google Scholar 

  23. Thapaliya S, Runkana A, McMullen MR, Nagy LE, McDonald C, Naga Prasad SV, et al. Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy. 2014;10(4):677–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caceres-Ayala C, Pautassi RM, Acuna MJ, Cerpa W, Rebolledo DL. The functional and molecular effects of problematic alcohol consumption on skeletal muscle: a focus on athletic performance. Am J Drug Alcohol Abuse. 2022;48(2):133–47.

    Article  PubMed  Google Scholar 

  25. Molina PE, Lang CH, McNurlan M, Bagby GJ, Nelson S. Chronic alcohol accentuates simian acquired immunodeficiency syndrome-associated wasting. Alcohol Clin Exp Res. 2008;32(1):138–47.

    Article  CAS  PubMed  Google Scholar 

  26. Steiner JL, Lang CH. Ethanol acutely antagonizes the refeeding-induced increase in mTOR-dependent protein synthesis and decrease in autophagy in skeletal muscle. Mol Cell Biochem. 2019;456(1-2):41–51.

    Article  CAS  PubMed  Google Scholar 

  27. Zhong W, Zhao Y, Tang Y, Wei X, Shi X, Sun W, et al. Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis. Am J Pathol. 2012;180(3):998–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang W, Zhong W, Sun X, Sun Q, Tan X, Li Q, et al. Visceral white adipose tissue is susceptible to alcohol-induced lipodystrophy in rats: role of acetaldehyde. Alcohol Clin Exp Res. 2015;39(3):416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steiner JL, Gordon BS, Lang CH. Moderate alcohol consumption does not impair overload-induced muscle hypertrophy and protein synthesis. Physiol Rep. 2015;3(3)

    Google Scholar 

  30. Feng L, Song YF, Guan QB, Liu HJ, Ban B, Dong HX, et al. Long-term ethanol exposure inhibits glucose transporter 4 expression via an AMPK-dependent pathway in adipocytes. Acta Pharmacol Sin. 2010;31(3):329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lang CH, Frost RA, Vary TC. Acute alcohol intoxication increases REDD1 in skeletal muscle. Alcohol Clin Exp Res. 2008;32(5):796–805.

    Article  CAS  PubMed  Google Scholar 

  32. Vary TC, Frost RA, Lang CH. Acute alcohol intoxication increases atrogin-1 and MuRF1 mRNA without increasing proteolysis in skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2008;294(6):R1777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang L, Chen X, Sebastian BM, Pratt BT, Bederman IR, Alexander JC, et al. Chronic ethanol and triglyceride turnover in white adipose tissue in rats: inhibition of the anti-lipolytic action of insulin after chronic ethanol contributes to increased triglyceride degradation. J Biol Chem. 2007;282(39):28465–73.

    Article  CAS  PubMed  Google Scholar 

  34. Crowell KT, Steiner JL, Coleman CS, Lang CH. Decreased whole-body fat mass produced by chronic alcohol consumption is associated with activation of S6K1-mediated protein synthesis and increased autophagy in epididymal white adipose tissue. Alcohol Clin Exp Res. 2016;40(9):1832–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shih MF, Taberner PV. Effects of acute and chronic ethanol administration on the response of mouse adipose tissue hormone-sensitive lipase to alpha(2)-adrenoceptor activation bu UK 14304. Alcohol Alcohol. 2001;36(5):381–7.

    Article  CAS  PubMed  Google Scholar 

  36. Steiner JL, Pruznak AM, Navaratnarajah M, Lang CH. Alcohol differentially alters extracellular matrix and adhesion molecule expression in skeletal muscle and heart. Alcohol Clin Exp Res. 2015;39(8):1330–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dodd T, Simon L, LeCapitaine NJ, Zabaleta J, Mussell J, Berner P, et al. Chronic binge alcohol administration accentuates expression of pro-fibrotic and inflammatory genes in the skeletal muscle of simian immunodeficiency virus-infected macaques. Alcohol Clin Exp Res. 2014;38(11):2697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ford SM Jr, Simon Peter L, Berner P, Cook G, Vande Stouwe C, Dufour J, et al. Differential contribution of chronic binge alcohol and antiretroviral therapy to metabolic dysregulation in SIV-infected male macaques. Am J Physiol Endocrinol Metab. 2018;315(5):E892–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clary CR, Guidot DM, Bratina MA, Otis JS. Chronic alcohol ingestion exacerbates skeletal muscle myopathy in HIV-1 transgenic rats. AIDS Res Ther. 2011;8:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levitt DE, Yeh AY, Prendergast MJ, Jr RGB, Adler KA, Cook G, et al. Chronic alcohol dysregulates skeletal muscle myogenic gene expression after hind limb immobilization in female rats. Biomol Ther 2020;10(3).

    Google Scholar 

  41. Dekeyser GJ, Clary CR, Otis JS. Chronic alcohol ingestion delays skeletal muscle regeneration following injury. Regen Med Res. 2013;1(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang J, Liu Y, Zhang L, Ji J, Wang B, Jin W, et al. Effects of increased matrix metalloproteinase-9 expression on skeletal muscle fibrosis in prolonged alcoholic myopathies of rats. Mol Med Rep. 2012;5(1):60–5.

    CAS  PubMed  Google Scholar 

  43. Naveau S, Cassard-Doulcier AM, Njike-Nakseu M, Bouchet-Delbos L, Barri-Ova N, Boujedidi H, et al. Harmful effect of adipose tissue on liver lesions in patients with alcoholic liver disease. J Hepatol. 2010;52(6):895–902.

    Article  CAS  PubMed  Google Scholar 

  44. Voican CS, Njike-Nakseu M, Boujedidi H, Barri-Ova N, Bouchet-Delbos L, Agostini H, et al. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int. 2015;35(3):967–78.

    Article  CAS  PubMed  Google Scholar 

  45. Simon L, LeCapitaine N, Berner P, Vande Stouwe C, Mussell JC, Allerton T, et al. Chronic binge alcohol consumption alters myogenic gene expression and reduces in vitro myogenic differentiation potential of myoblasts from rhesus macaques. Am J Physiol Regul Integr Comp Physiol. 2014;306(11):R837–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sebastian BM, Roychowdhury S, Tang H, Hillian AD, Feldstein AE, Stahl GL, et al. Identification of a cytochrome P4502E1/bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice. J Biol Chem. 2011;286(41):35989–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin HZ, Yang SQ, Zeldin G, Diehl AM. Chronic ethanol consumption induces the production of tumor necrosis factor-alpha and related cytokines in liver and adipose tissue. Alcohol Clin Exp Res. 1998;22(5 Suppl):231S–7S.

    Article  CAS  PubMed  Google Scholar 

  48. Levitt DE, Chalapati N, Prendergast MJ, Simon L, Molina PE. Ethanol-impaired myogenic differentiation is associated with decreased myoblast glycolytic function. Alcohol Clin Exp Res. 2020;44(11):2166–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee HI, Lee MK. Coordinated regulation of scopoletin at adipose tissue-liver axis improved alcohol-induced lipid dysmetabolism and inflammation in rats. Toxicol Lett. 2015;237(3):210–8.

    Article  CAS  PubMed  Google Scholar 

  50. Song SK, Rubin E. Ethanol produces muscle damage in human volunteers. Science. 1972;175(4019):327–8.

    Article  CAS  PubMed  Google Scholar 

  51. Duplanty AA, Siggins RW, Allerton T, Simon L, Molina PE. Myoblast mitochondrial respiration is decreased in chronic binge alcohol administered simian immunodeficiency virus-infected antiretroviral-treated rhesus macaques. Physiol Rep. 2018;6(5)

    Google Scholar 

  52. Duplanty AA, Simon L, Molina PE. Chronic binge alcohol-induced dysregulation of mitochondrial-related genes in skeletal muscle of simian immunodeficiency virus-infected rhesus macaques at end-stage disease. Alcohol Alcohol. 2017;52(3):298–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30(12):1000–7.

    Article  CAS  PubMed  Google Scholar 

  54. Miyazaki M, Esser KA. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol (1985). 2009;106(4):1367–73.

    Article  CAS  PubMed  Google Scholar 

  55. Steiner JL, Kimball SR, Lang CH. Acute alcohol-induced decrease in muscle protein synthesis in female mice is REDD-1 and mTOR-independent. Alcohol Alcohol. 2016;51(3):242–50.

    Article  CAS  PubMed  Google Scholar 

  56. Mahdy MAA. Skeletal muscle fibrosis: an overview. Cell Tissue Res. 2019;375(3):575–88.

    Article  PubMed  Google Scholar 

  57. Perandini LA, Chimin P, Lutkemeyer DDS, Camara NOS. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J. 2018;285(11):1973–84.

    Article  CAS  PubMed  Google Scholar 

  58. Mandrekar P, Jeliazkova V, Catalano D, Szabo G. Acute alcohol exposure exerts anti-inflammatory effects by inhibiting IkappaB kinase activity and p65 phosphorylation in human monocytes. J Immunol. 2007;178(12):7686–93.

    Article  CAS  PubMed  Google Scholar 

  59. Szabo G, Chang S, Dolganiuc A. Altered innate immunity in chronic hepatitis C infection: cause or effect? Hepatology. 2007;46(4):1279–90.

    Article  CAS  PubMed  Google Scholar 

  60. Steiner JL, Lang CH. Dysregulation of skeletal muscle protein metabolism by alcohol. Am J Physiol Endocrinol Metab. 2015;308(9):E699–712.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kumar A, Davuluri G, Welch N, Kim A, Gangadhariah M, Allawy A, et al. Oxidative stress mediates ethanol-induced skeletal muscle mitochondrial dysfunction and dysregulated protein synthesis and autophagy. Free Radic Biol Med. 2019;145:284–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Singh SS, Kumar A, Welch N, Sekar J, Mishra S, Bellar A, et al. Multiomics-identified intervention to restore ethanol-induced dysregulated Proteostasis and secondary sarcopenia in alcoholic liver disease. Cell Physiol Biochem. 2021;55(1):91–116.

    Article  CAS  PubMed  Google Scholar 

  63. Levitt DE, Ferguson TF, Primeaux SD, Zavala JA, Ahmed J, Marshall RH, et al. Skeletal muscle bioenergetic health and function in people living with HIV: association with glucose tolerance and alcohol use. Am J Physiol Regul Integr Comp Physiol. 2021;321(5):R781–R90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.

    Article  CAS  PubMed  Google Scholar 

  65. Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta. 2014;1842(3):358–69.

    Article  CAS  PubMed  Google Scholar 

  66. Wang P, Mariman E, Renes J, Keijer J. The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol. 2008;216(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  67. Addolorato G, Capristo E, Marini M, Santini P, Scognamiglio U, Attilia ML, et al. Body composition changes induced by chronic ethanol abuse: evaluation by dual energy X-ray absorptiometry. Am J Gastroenterol. 2000;95(9):2323–7.

    Article  CAS  PubMed  Google Scholar 

  68. Kvist H, Hallgren P, Jönsson L, Pettersson P, Sjöberg C, Sjöström L, et al. Distribution of adipose tissue and muscle mass in alcoholic men. Metabolism. 1993;42(5):569–73.

    Article  CAS  PubMed  Google Scholar 

  69. Kim KH, Oh SW, Kwon H, Park JH, Choi H, Cho B. Alcohol consumption and its relation to visceral and subcutaneous adipose tissues in healthy male Koreans. Ann Nutr Metab. 2012;60(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  70. DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76(1):149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Virtanen KA, Lönnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002;87(8):3902–10.

    Article  CAS  PubMed  Google Scholar 

  72. Sun X, Tang Y, Tan X, Li Q, Zhong W, Jia W, et al. Activation of peroxisome proliferator-activated receptor-γ by rosiglitazone improves lipid homeostasis at the adipose tissue-liver axis in ethanol-fed mice. Am J Physiol Gastrointest Liver Physiol. 2012;302(5):G548–57.

    Article  CAS  PubMed  Google Scholar 

  73. Mudráková E, Kovár J. Ethanol consumption affects lipoprotein lipase gene expression in C57BL/6 mice. Physiol Res. 2007;56(4):497–501.

    Article  PubMed  Google Scholar 

  74. Schneider J, Liesenfeld A, Mordasini R, Schubotz R, Zöfel P, Kubel F, et al. Lipoprotein fractions, lipoprotein lipase and hepatic triglyceride lipase during short-term and long-term uptake of ethanol in healthy subjects. Atherosclerosis. 1985;57(2-3):281–91.

    Article  CAS  PubMed  Google Scholar 

  75. Wang M, Zhang XJ, Feng K, He C, Li P, Hu YJ, et al. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice. Sci Rep. 2016;6:26826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Parkes JG, Auerbach W, Goldberg DM, Effect of alcohol on lipoprotein metabolism. II. Lipolytic activities and mixed function oxidases. Enzyme. 1990;43(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  77. Shih MF, Taberner PV. Dose-dependent effects of chronic ethanol on mouse adipose tissue lipase activity and cyclic AMP accumulation. Br J Pharmacol. 1997;120(4):721–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feng L, Gao L, Guan Q, Hou X, Wan Q, Wang X, et al. Long-term moderate ethanol consumption restores insulin sensitivity in high-fat-fed rats by increasing SLC2A4 (GLUT4) in the adipose tissue by AMP-activated protein kinase activation. J Endocrinol. 2008;199(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  79. Steiner JL, Lang CH. Alcohol, Adipose tissue and lipid dysregulation. Biomol Ther 2017;7(1).

    Google Scholar 

  80. Wei X, Shi X, Zhong W, Zhao Y, Tang Y, Sun W, et al. Chronic alcohol exposure disturbs lipid homeostasis at the adipose tissue-liver axis in mice: analysis of triacylglycerols using high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling. PLoS One. 2013;8(2):e55382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Itaya K. Effect of ethanol on adrenaline-stimulated glucose uptake in rat white adipose tissue. J Pharm Pharmacol. 1979;31(8):536–41.

    CAS  PubMed  Google Scholar 

  82. Yki-Järvinen H, Koivisto VA, Ylikahri R, Taskinen MR. Acute effects of ethanol and acetate on glucose kinetics in normal subjects. Am J Phys. 1988;254(2 Pt 1):E175–80.

    Google Scholar 

  83. Lang CH, Derdak Z, Wands JR. Strain-dependent differences for suppression of insulin-stimulated glucose uptake in skeletal and cardiac muscle by ethanol. Alcohol Clin Exp Res. 2014;38(4):897–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shih MF, Taberner PV. Changes in adipose tissue hormone-sensitive lipase activity and cAMP during ethanol withdrawal. Eur J Pharmacol. 2000;409(3):223–31.

    Article  CAS  PubMed  Google Scholar 

  85. Wilkes JJ, DeForrest LL, Nagy LE. Chronic ethanol feeding in a high-fat diet decreases insulin-stimulated glucose transport in rat adipocytes. Am J Phys. 1996;271(3 Pt 1):E477–84.

    CAS  Google Scholar 

  86. Nakajima I, Yamaguchi T, Ozutsumi K, Aso H. Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation. 1998;63(4):193–200.

    Article  CAS  PubMed  Google Scholar 

  87. Molina H, Yang Y, Ruch T, Kim JW, Mortensen P, Otto T, et al. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J Proteome Res. 2009;8(1):48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Datta R, Podolsky MJ, Atabai K. Fat fibrosis: friend or foe? JCI Insight. 2018;3(19)

    Google Scholar 

  89. Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A, et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes. 2010;59(11):2817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Michaud A, Tordjman J, Pelletier M, Liu Y, Laforest S, Noël S, et al. Relevance of omental pericellular adipose tissue collagen in the pathophysiology of human abdominal obesity and related cardiometabolic risk. Int J Obes. 2016;40(12):1823–31.

    Article  CAS  Google Scholar 

  91. Guglielmi V, Cardellini M, Cinti F, Corgosinho F, Cardolini I, D'Adamo M, et al. Omental adipose tissue fibrosis and insulin resistance in severe obesity. Nutr Diabetes. 2015;5:e175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gorwood J, Bourgeois C, Mantecon M, Atlan M, Pourcher V, Pourcher G, et al. Impact of HIV/simian immunodeficiency virus infection and viral proteins on adipose tissue fibrosis and adipogenesis. AIDS. 2019;33(6):953–64.

    Article  CAS  PubMed  Google Scholar 

  93. Tang H, Sebastian BM, Axhemi A, Chen X, Hillian AD, Jacobsen DW, et al. Ethanol-induced oxidative stress via the CYP2E1 pathway disrupts adiponectin secretion from adipocytes. Alcohol Clin Exp Res. 2012;36(2):214–22.

    Article  CAS  PubMed  Google Scholar 

  94. Yoshinari K, Sato T, Okino N, Sugatani J, Miwa M. Expression and induction of cytochromes p450 in rat white adipose tissue. J Pharmacol Exp Ther. 2004;311(1):147–54.

    Article  CAS  PubMed  Google Scholar 

  95. Fulham MA, Ratna A, Gerstein RM, Kurt-Jones EA, Mandrekar P. Alcohol-induced adipose tissue macrophage phenotypic switching is independent of myeloid toll-like receptor 4 expression. Am J Physiol Cell Physiol. 2019;317(4):C687–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Souza-Smith FM, Siggins RW, Molina PE. Mesenteric lymphatic-Perilymphatic adipose crosstalk: role in alcohol-induced Perilymphatic adipose tissue inflammation. Alcohol Clin Exp Res. 2015;39(8):1380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Castillo-Armengol J, Fajas L, Lopez-Mejia IC. Inter-organ communication: a gatekeeper for metabolic health. EMBO Rep. 2019;20(9):e47903.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Than UTT, Guanzon D, Leavesley D, Parker T. Association of Extracellular Membrane Vesicles with cutaneous wound healing. Int J Mol Sci. 2017;18(5)

    Google Scholar 

  99. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro-Oncol. 2013;113(1):1–11.

    Article  Google Scholar 

  100. Kawaratani H, Tsujimoto T, Douhara A, Takaya H, Moriya K, Namisaki T, et al. The effect of inflammatory cytokines in alcoholic liver disease. Mediat Inflamm. 2013;2013:495156.

    Article  Google Scholar 

  101. Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 2015;13:261.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Momen-Heravi F, Bala S, Kodys K, Szabo G. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep. 2015;5:9991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol. 2017;34:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Severinsen MCK, Pedersen BK. Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev. 2020;41(4)

    Google Scholar 

  105. Laurens C, Bergouignan A, Moro C. Exercise-released myokines in the control of energy metabolism. Front Physiol. 2020;11:91.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gamas L, Matafome P, Seica R. Irisin and Myonectin regulation in the insulin resistant muscle: implications to adipose tissue: muscle crosstalk. J Diabetes Res. 2015;2015:359159.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, et al. Muscle releases alpha-Sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS One. 2015;10(5):e0125094.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Estrada AL, Valenti ZJ, Hehn G, Amorese AJ, Williams NS, Balestrieri NP, et al. Extracellular vesicle secretion is tissue-dependent ex vivo and skeletal muscle myofiber extracellular vesicles reach the circulation in vivo. Am J Physiol Cell Physiol. 2022;322(2):C246–C59.

    Article  CAS  PubMed  Google Scholar 

  109. Fruhbeis C, Helmig S, Tug S, Simon P, Kramer-Albers EM. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles. 2015;4:28239.

    Article  PubMed  Google Scholar 

  110. Forterre A, Jalabert A, Chikh K, Pesenti S, Euthine V, Granjon A, et al. Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle. 2014;13(1):78–89.

    Article  CAS  PubMed  Google Scholar 

  111. Murach KA, Vechetti IJ Jr, Van Pelt DW, Crow SE, Dungan CM, Figueiredo VC, et al. Fusion-independent satellite cell communication to muscle fibers during load-induced hypertrophy. Function (Oxf). 2020;1(1):zqaa009.

    Article  PubMed  Google Scholar 

  112. Murach KA, Peck BD, Policastro RA, Vechetti IJ, Van Pelt DW, Dungan CM, et al. Early satellite cell communication creates a permissive environment for long-term muscle growth. iScience. 2021;24(4):102372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vechetti IJ Jr, Peck BD, Wen Y, Walton RG, Valentino TR, Alimov AP, et al. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J. 2021;35(6):e21644.

    Article  CAS  PubMed  Google Scholar 

  114. Jalabert A, Vial G, Guay C, Wiklander OP, Nordin JZ, Aswad H, et al. Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia. 2016;59(5):1049–58.

    Article  CAS  PubMed  Google Scholar 

  115. Gonzalez-Reimers E, Fernandez-Rodriguez CM, Santolaria-Fernandez F, de la Vega-Prieto MJ, Martin-Gonzalez C, Gomez-Rodriguez MA, et al. Interleukin-15 and other myokines in chronic alcoholics. Alcohol Alcohol. 2011;46(5):529–33.

    Article  CAS  PubMed  Google Scholar 

  116. Shammam KH, Al-Tu’ma FJ, El-Yassin HD. Myokines in alcoholic myopathy. J Contemp Med Sci. 2015;3(1):20–3.

    Google Scholar 

  117. Martin-Gonzalez C, Romero-Acevedo L, Fernandez-Rodriguez CM, Medina-Vega L, Garcia-Rodriguez A, Ortega-Toledo P, et al. Brain-derived neurotrophic factor among patients with alcoholism. CNS Spectr. 2021;26(4):400–5.

    Article  PubMed  Google Scholar 

  118. Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8(3):1031–63.

    Article  PubMed  Google Scholar 

  119. Tian C, Jin X, Ye X, Wu H, Ren W, Zhang R, et al. Long term intake of 0.1% ethanol decreases serum adiponectin by suppressing PPARgamma expression via p38 MAPK pathway. Food Chem Toxicol. 2014;65:329–34.

    Article  CAS  PubMed  Google Scholar 

  120. Ford SM Jr, Simon L, Vande Stouwe C, Allerton T, Mercante DE, Byerley LO, et al. Chronic binge alcohol administration impairs glucose-insulin dynamics and decreases adiponectin in asymptomatic simian immunodeficiency virus-infected macaques. Am J Physiol Regul Integr Comp Physiol. 2016;311(5):R888–R97.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Poole LG, Dolin CE, Arteel GE. Organ-organ crosstalk and alcoholic liver disease. Biomol Ther. 2017;7(3)

    Google Scholar 

  122. Buechler C, Schaffler A, Johann M, Neumeier M, Kohl P, Weiss T, et al. Elevated adiponectin serum levels in patients with chronic alcohol abuse rapidly decline during alcohol withdrawal. J Gastroenterol Hepatol. 2009;24(4):558–63.

    Article  CAS  PubMed  Google Scholar 

  123. Hillemacher T, Weinland C, Heberlein A, Groschl M, Schanze A, Frieling H, et al. Increased levels of adiponectin and resistin in alcohol dependence--possible link to craving. Drug Alcohol Depend 2009;99(1-3):333-337.

    Google Scholar 

  124. Stejskal D, Ruzicka V, Fanfrdlova G, Kolar V, Bartek J. High adiponectin and TNF-alpha levels in moderate drinkers suffering from liver steatosis: comparison with non drinkers suffering from similar hepatopathy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  125. Jung SK, Kim MK, Shin J, Choi BY. A cross-sectional analysis of the relationship between daily alcohol consumption and serum adiponectin levels among adults aged 40 years or more in a rural area of Korea. Eur J Clin Nutr. 2013;67(8):841–7.

    Article  CAS  PubMed  Google Scholar 

  126. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.

    Article  CAS  PubMed  Google Scholar 

  127. Bjorbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res. 2004;59:305–31.

    Article  CAS  PubMed  Google Scholar 

  128. Yu HC, Li SY, Cao MF, Jiang XY, Feng L, Zhao JJ, et al. Effects of chronic ethanol consumption on levels of adipokines in visceral adipose tissues and sera of rats. Acta Pharmacol Sin. 2010;31(4):461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pravdova E, Macho L, Fickova M. Alcohol intake modifies leptin, adiponectin and resistin serum levels and their mRNA expressions in adipose tissue of rats. Endocr Regul. 2009;43(3):117–25.

    CAS  PubMed  Google Scholar 

  130. Tan X, Sun X, Li Q, Zhao Y, Zhong W, Sun X, et al. Leptin deficiency contributes to the pathogenesis of alcoholic fatty liver disease in mice. Am J Pathol. 2012;181(4):1279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nicolas JM, Fernandez-Sola J, Fatjo F, Casamitjana R, Bataller R, Sacanella E, et al. Increased circulating leptin levels in chronic alcoholism. Alcohol Clin Exp Res. 2001;25(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  132. Pravdova E, Macho L, Hlavacova N, Fickova M. Long-time alcohol intake modifies resistin secretion and expression of resistin gene in adipose tissue. Gen Physiol Biophys. 2007;26(3):221–9.

    CAS  PubMed  Google Scholar 

  133. da Silva TE, Costa-Silva M, Correa CG, Denardin G, Alencar MLA, Coelho M, et al. Clinical significance of serum adiponectin and resistin levels in liver cirrhosis. Ann Hepatol. 2018;17(2):286–99.

    Article  PubMed  Google Scholar 

  134. Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-'t Hoen EN, de Jager W, Wauben MH, et al. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity (Silver Spring). 2014;22(10):2216–23.

    Article  CAS  PubMed  Google Scholar 

  135. Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009;58(11):2498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Eguchi A, Lazic M, Armando AM, Phillips SA, Katebian R, Maraka S, et al. Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J Mol Med (Berl). 2016;94(11):1241–53.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang Y, Mei H, Chang X, Chen F, Zhu Y, Han X. Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR-155. J Mol Cell Biol. 2016;8(6):505–17.

    Article  CAS  PubMed  Google Scholar 

  138. Liu T, Sun YC, Cheng P, Shao HG. Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun. 2019;515(2):352–8.

    Article  CAS  PubMed  Google Scholar 

  139. Yu Y, Du H, Wei S, Feng L, Li J, Yao F, et al. Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARgamma. Theranostics. 2018;8(8):2171–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang YC, Li Y, Wang XY, Zhang D, Zhang H, Wu Q, et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia. 2013;56(10):2275–85.

    Article  CAS  PubMed  Google Scholar 

  141. Wei M, Gao X, Liu L, Li Z, Wan Z, Dong Y, et al. Visceral adipose tissue derived exosomes exacerbate colitis severity via pro-inflammatory MiRNAs in high fat diet fed mice. ACS Nano. 2020;14(4):5099–110.

    Article  CAS  PubMed  Google Scholar 

  142. McCullough RL, McMullen MR, Poulsen KL, Kim A, Medof ME, Nagy LE. Anaphylatoxin receptors C3aR and C5aR1 are important factors that influence the impact of ethanol on the adipose Secretome. Front Immunol. 2018;9:2133.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NIAAA: P60AA009803 (P.E.M.), F30AA029358 (B.L.B.), F31AA028459 (J.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia E. Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simon, L., Bourgeois, B.L., Poret, J.M., Molina, P.E. (2023). Skeletal Muscle and Adipose Tissue: Targets or Relays for Interorgan Axis in Alcohol-Induced Tissue Injury?. In: Mueller, S., Heilig, M. (eds) Alcohol and Alcohol-related Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-32483-3_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32483-3_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32482-6

  • Online ISBN: 978-3-031-32483-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics