Skip to main content

MicroRNAs and Alcohol-Related Liver Disease

  • Chapter
  • First Online:
Alcohol and Alcohol-related Diseases
  • 608 Accesses

Abstract

MicroRNAs (miR) are small non-coding RNAs that bind to specific mRNA targets and promote their degradation or inhibit translation. In this book chapter, we reviewed the roles of multiple miRNAs, which are involved in the pathogenesis of alcohol-related liver disease (ALD). We also briefly discuss the roles of miRNAs as the mediators for inter-organ crosstalk and the development of ALD. We provided clues for the potential clinical applications of miRNAs as the prognostic markers and the future perspectives on the use of miRNA-based strategy for the treatment of patients with ALD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang T, Chen L, Song J, et al. Integrated analysis of multiscale large-scale biological data for investigating human disease 2016. Biomed Res Int. 2016;2016:6585069.

    Article  PubMed Central  Google Scholar 

  2. Pogue AI, Clement C, Hill JM, et al. Evolution of microRNA (miRNA) structure and function in plants and animals: relevance to aging and disease. J Aging Sci. 2014:2.

    Google Scholar 

  3. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–61.

    Article  CAS  PubMed Central  Google Scholar 

  4. O'Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.

    Article  CAS  Google Scholar 

  5. Wahid F, Shehzad A, Khan T, et al. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803:1231–43.

    Article  CAS  Google Scholar 

  6. Mullokandov G, Baccarini A, Ruzo A, et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods. 2012;9:840–6.

    Article  CAS  PubMed Central  Google Scholar 

  7. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed Central  Google Scholar 

  8. Osterndorff-Kahanek EA, Tiwari GR, Lopez MF, et al. Long-term ethanol exposure: temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One. 2018;13:e0190841.

    Article  PubMed Central  Google Scholar 

  9. Mandrekar P. Epigenetic regulation in alcoholic liver disease. World J Gastroenterol. 2011;17:2456–64.

    Article  CAS  PubMed Central  Google Scholar 

  10. Miranda RC, Pietrzykowski AZ, Tang Y, et al. MicroRNAs: master regulators of ethanol abuse and toxicity? Alcohol Clin Exp Res. 2010;34:575–87.

    Article  CAS  PubMed Central  Google Scholar 

  11. Bala S, Petrasek J, Mundkur S, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012;56:1946–57.

    Article  CAS  Google Scholar 

  12. Mandrekar P, Bataller R, Tsukamoto H, et al. Alcoholic hepatitis: translational approaches to develop targeted therapies. Hepatology. 2016;64(4):1343–55.

    Article  Google Scholar 

  13. Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol. 2019;70:260–72.

    Article  Google Scholar 

  14. Gao B, Ahmad MF, Nagy LE, et al. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol. 2019;70:249–59.

    Article  PubMed Central  Google Scholar 

  15. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108:5003–8.

    Article  CAS  PubMed Central  Google Scholar 

  16. Natarajan SK, Pachunka JM, Mott JL. Role of microRNAs in alcohol-induced multi-organ injury. Biomol Ther. 2015;5:3309–38.

    CAS  Google Scholar 

  17. Wang X, He Y, Mackowiak B, et al. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut. 2021;70:784–95.

    Article  CAS  Google Scholar 

  18. Yang Z, Zhang T, Kusumanchi P, et al. Transcriptomic analysis reveals the MicroRNAs responsible for liver regeneration associated with mortality in alcohol-associated hepatitis. Hepatology. 2021;74:2436–51.

    Article  CAS  Google Scholar 

  19. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8:706–13.

    Article  CAS  PubMed Central  Google Scholar 

  20. Zhang T, Yang Z, Kusumanchi P, et al. Critical role of microRNA-21 in the pathogenesis of liver diseases. Front Med (Lausanne). 2020;7:7.

    Article  Google Scholar 

  21. Zhu H, Luo H, Li Y, et al. MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol. 2013;33:1100–9.

    Article  CAS  Google Scholar 

  22. Beltrami C, Besnier M, Shantikumar S, et al. Human pericardial fluid contains exosomes enriched with cardiovascular-expressed MicroRNAs and promotes therapeutic angiogenesis. Mol Ther. 2017;25:679–93.

    Article  CAS  PubMed Central  Google Scholar 

  23. Sun C, Huang F, Liu X, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J Mol Med. 2015;35:847–53.

    Article  CAS  Google Scholar 

  24. Francis H, McDaniel K, Han Y, et al. Regulation of the extrinsic apoptotic pathway by microRNA-21 in alcoholic liver injury. J Biol Chem. 2014;289:27526–39.

    Article  CAS  PubMed Central  Google Scholar 

  25. Wu N, McDaniel K, Zhou T, et al. Knockout of microRNA-21 attenuates alcoholic hepatitis through the VHL/NF-kappaB signaling pathway in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2018;315:G385–98.

    Article  CAS  PubMed Central  Google Scholar 

  26. Srivastava A, Parrish A, Hoek JB, et al. Modulation of miR-21 can reprogram the TGF-beta signaling pathway to alter HSC phenotype in vitro. FASEB J. 2022;36(Suppl):1.

    Google Scholar 

  27. Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17.

    Article  CAS  PubMed Central  Google Scholar 

  28. Zhang J, Han C, Wu T. MicroRNA-26a promotes cholangiocarcinoma growth by activating beta-catenin. Gastroenterology. 2012;143:246–56.e8.

    Article  CAS  Google Scholar 

  29. Witwer KW, Sisk JM, Gama L, et al. MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol. 2010;184:2369–76.

    Article  CAS  Google Scholar 

  30. Zhou J, Ju W, Wang D, et al. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS One. 2012;7:e33577.

    Article  CAS  PubMed Central  Google Scholar 

  31. Han W, Fu X, Xie J, et al. MiR-26a enhances autophagy to protect against ethanol-induced acute liver injury. J Mol Med (Berl). 2015;93:1045–55.

    Article  CAS  Google Scholar 

  32. Prins SA, Przybycien-Szymanska MM, Rao YS, et al. Long-term effects of peripubertal binge EtOH exposure on hippocampal microRNA expression in the rat. PLoS One. 2014;9:e83166.

    Article  PubMed Central  Google Scholar 

  33. Saha B, Bruneau JC, Kodys K, et al. Alcohol-induced miR-27a regulates differentiation and M2 macrophage polarization of normal human monocytes. J Immunol. 2015;194:3079–87.

    Article  CAS  Google Scholar 

  34. Saha B, Momen-Heravi F, Kodys K, et al. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J Biol Chem. 2016;291:149–59.

    Article  CAS  Google Scholar 

  35. Santos-Bezerra DP, Cavaleiro AM, Santos AS, et al. Alcohol use disorder is associated with upregulation of MicroRNA-34a and MicroRNA-34c in hippocampal postmortem tissue. Alcohol Clin Exp Res. 2021;45:64–8.

    Article  CAS  Google Scholar 

  36. Piccolo P, Ferriero R, Barbato A, et al. Up-regulation of miR-34b/c by JNK and FOXO3 protects from liver fibrosis. Proc Natl Acad Sci U S A. 2021:118.

    Google Scholar 

  37. Liu H, French BA, Li J, et al. Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice. Exp Mol Pathol. 2015;99:552–7.

    Article  CAS  PubMed Central  Google Scholar 

  38. Fan H, Yuan F, Yun Y, et al. MicroRNA-34a mediates ethanol-induced impairment of neural differentiation of neural crest cells by targeting autophagy-related gene 9a. Exp Neurol. 2019;320:112981.

    Article  CAS  PubMed Central  Google Scholar 

  39. Meng F, Glaser SS, Francis H, et al. Epigenetic regulation of miR-34a expression in alcoholic liver injury. Am J Pathol. 2012;181:804–17.

    Article  CAS  PubMed Central  Google Scholar 

  40. Wan Y, McDaniel K, Wu N, et al. Regulation of cellular senescence by miR-34a in alcoholic liver injury. Am J Pathol. 2017;187:2788–98.

    Article  CAS  PubMed Central  Google Scholar 

  41. Xu H, He JH, Xiao ZD, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. Hepatology. 2010;52:1431–42.

    Article  CAS  Google Scholar 

  42. Satishchandran A, Ambade A, Rao S, et al. MicroRNA 122, regulated by GRLH2, protects livers of mice and patients from ethanol-induced liver disease. Gastroenterology. 2018;154(238–252):e7.

    Google Scholar 

  43. Teng KY, Barajas JM, Hu P, et al. Role of B cell lymphoma 2 in the regulation of liver fibrosis in miR-122 knockout mice. Biology (Basel). 2020:9.

    Google Scholar 

  44. Long JK, Dai W, Zheng YW, et al. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med. 2019;25:26.

    Article  PubMed Central  Google Scholar 

  45. Pasqualotto A, Ayres R, Longo L, et al. Chronic exposure to ethanol alters the expression of miR-155, miR-122 and miR-217 in alcoholic liver disease in an adult zebrafish model. Biomarkers. 2021;26:146–51.

    Article  CAS  Google Scholar 

  46. Zhang Q, Yu K, Cao Y, et al. miR-125b promotes the NF-kappaB-mediated inflammatory response in NAFLD via directly targeting TNFAIP3. Life Sci. 2021;270:119071.

    Article  CAS  Google Scholar 

  47. Zhang ZC, Liu Y, Xiao LL, et al. Upregulation of miR-125b by estrogen protects against non-alcoholic fatty liver in female mice. J Hepatol. 2015;63:1466–75.

    Article  CAS  Google Scholar 

  48. Hu Z, Li L, Ran J, et al. miR-125b acts as anti-fibrotic therapeutic target through regulating Gli3 in vivo and in vitro. Ann Hepatol. 2019;18:825–32.

    Article  CAS  Google Scholar 

  49. Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J Hepatol. 2016;64:1378–87.

    Article  CAS  PubMed Central  Google Scholar 

  50. Bala S, Szabo G. MicroRNA signature in alcoholic liver disease. Int J Hepatol. 2012;2012:498232.

    Article  PubMed Central  Google Scholar 

  51. Chen X, Liu J, Feng WK, et al. MiR-125b protects against ethanol-induced apoptosis in neural crest cells and mouse embryos by targeting Bak 1 and PUMA. Exp Neurol. 2015;271:104–11.

    Article  CAS  PubMed Central  Google Scholar 

  52. Ren L, Qv A, Liu Y, et al. Downregulation of miR-129-5p alleviates alcohol-induced barrier dysfunction of Caco-2 human intestinal epithelial cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2019;35:892–6.

    Google Scholar 

  53. Zhang Z, Wen H, Peng B, et al. Downregulated microRNA-129-5p by Long non-coding RNA NEAT1 upregulates PEG3 expression to aggravate non-alcoholic steatohepatitis. Front Genet. 2020;11:563265.

    Article  CAS  Google Scholar 

  54. Ye J, Lin Y, Yu Y, et al. LncRNA NEAT1/microRNA-129-5p/SOCS2 axis regulates liver fibrosis in alcoholic steatohepatitis. J Transl Med. 2020;18:445.

    Article  CAS  PubMed Central  Google Scholar 

  55. Lin X, Jia J, Du T, et al. Overexpression of miR-155 in the liver of transgenic mice alters the expression profiling of hepatic genes associated with lipid metabolism. PLoS One. 2015;10:e0118417.

    Article  PubMed Central  Google Scholar 

  56. Csak T, Bala S, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis. PLoS One. 2015;10:e0129251.

    Article  PubMed Central  Google Scholar 

  57. Bala S, Marcos M, Kodys K, et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 2011;286:1436–1444.

    Google Scholar 

  58. Bala S, Csak T, Kodys K, et al. Alcohol-induced miR-155 and HDAC11 inhibit negative regulators of the TLR4 pathway and lead to increased LPS responsiveness of Kupffer cells in alcoholic liver disease. J Leukoc Biol. 2017;102:487–98.

    Article  CAS  PubMed Central  Google Scholar 

  59. Saikia P, Bellos D, McMullen MR, et al. MicroRNA 181b-3p and its target importin alpha5 regulate toll-like receptor 4 signaling in Kupffer cells and liver injury in mice in response to ethanol. Hepatology. 2017;66:602–15.

    Article  CAS  Google Scholar 

  60. Wang W, Zhong GZ, Long KB, et al. Silencing miR-181b-5p upregulates PIAS1 to repress oxidative stress and inflammatory response in rats with alcoholic fatty liver disease through inhibiting PRMT1. Int Immunopharmacol. 2021;101:108151.

    Article  CAS  Google Scholar 

  61. Wang Y, Zhu K, Yu W, et al. MiR-181b regulates steatosis in nonalcoholic fatty liver disease via targeting SIRT1. Biochem Biophys Res Commun. 2017;493:227–32.

    Article  CAS  Google Scholar 

  62. Blaya D, Coll M, Rodrigo-Torres D, et al. Integrative microRNA profiling in alcoholic hepatitis reveals a role for microRNA-182 in liver injury and inflammation. Gut. 2016;65:1535–45.

    Article  Google Scholar 

  63. Zuo Z, Li Y, Zeng C, et al. Integrated analyses identify key molecules and reveal the potential mechanism of miR-182-5p/FOXO1 Axis in alcoholic liver disease. Front Med (Lausanne). 2021;8:767584.

    Article  Google Scholar 

  64. Yeligar S, Tsukamoto H, Kalra VK. Ethanol-induced expression of ET-1 and ET-BR in liver sinusoidal endothelial cells and human endothelial cells involves hypoxia-inducible factor-1alpha and microrNA-199. J Immunol. 2009;183:5232–43.

    Article  CAS  Google Scholar 

  65. Feng J, Wang J, Chen M, et al. miR-200a suppresses cell growth and migration by targeting MACC1 and predicts prognosis in hepatocellular carcinoma. Oncol Rep. 2015;33:713–20.

    Article  CAS  Google Scholar 

  66. Zhao YX, Sun YY, Huang AL, et al. MicroRNA-200a induces apoptosis by targeting ZEB2 in alcoholic liver disease. Cell Cycle. 2018;17:250–62.

    CAS  PubMed Central  Google Scholar 

  67. Tang Y, Banan A, Forsyth CB, et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res. 2008;32:355–64.

    Article  CAS  Google Scholar 

  68. Han D, Hanawa N, Saberi B, et al. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1–7.

    Article  CAS  Google Scholar 

  69. Dong X, Liu H, Chen F, et al. MiR-214 promotes the alcohol-induced oxidative stress via down-regulation of glutathione reductase and cytochrome P450 oxidoreductase in liver cells. Alcohol Clin Exp Res. 2014;38:68–77.

    Article  CAS  Google Scholar 

  70. Zangar RC, Davydov DR, Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol. 2004;199:316–31.

    Article  CAS  Google Scholar 

  71. Xiang H, Tu B, Luo M, et al. Knockdown of UCA1 attenuated the progression of alcoholic fatty disease by sponging miR-214. Mamm Genome. 2022;33:534–42.

    Article  CAS  Google Scholar 

  72. Yin H, Hu M, Zhang R, et al. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J Biol Chem. 2012;287:9817–26.

    Article  CAS  PubMed Central  Google Scholar 

  73. Yin H, Liang X, Jogasuria A, et al. miR-217 regulates ethanol-induced hepatic inflammation by disrupting Sirtuin 1-Lipin-1 signaling. Am J Pathol. 2015;185(5):1286–96.

    Article  CAS  PubMed Central  Google Scholar 

  74. Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451:1125–9.

    Article  CAS  Google Scholar 

  75. Li M, He Y, Zhou Z, et al. MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47(phox)-oxidative stress pathway in neutrophils. Gut. 2017;66:705–15.

    Article  CAS  Google Scholar 

  76. El-Benna J, Dang PM, Gougerot-Pocidalo MA, et al. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med. 2009;41:217–25.

    Article  CAS  PubMed Central  Google Scholar 

  77. Ren R, He Y, Ding D, et al. Aging exaggerates acute-on-chronic alcohol-induced liver injury in mice and humans by inhibiting neutrophilic sirtuin 1-C/EBPalpha-miRNA-223 axis. Hepatology. 2022;75:646–60.

    Article  CAS  Google Scholar 

  78. Saikia P, Roychowdhury S, Bellos D, et al. Hyaluronic acid 35 normalizes TLR4 signaling in Kupffer cells from ethanol-fed rats via regulation of microRNA291b and its target Tollip. Sci Rep. 2017;7:15671.

    Article  PubMed Central  Google Scholar 

  79. McDaniel K, Huang L, Sato K, et al. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. J Biol Chem. 2017;292:11336–47.

    Article  CAS  PubMed Central  Google Scholar 

  80. Massey VL, Qin L, Cabezas J, et al. TLR7-let-7 signaling contributes to ethanol-induced hepatic inflammatory response in mice and in alcoholic hepatitis. Alcohol Clin Exp Res. 2018;42:2107–22.

    Article  CAS  PubMed Central  Google Scholar 

  81. Momen-Heravi F, Bala S, Kodys K, et al. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep. 2015;5:9991.

    Article  CAS  PubMed Central  Google Scholar 

  82. Ambade A, Satishchandran A, Szabo G. Alcoholic hepatitis accelerates early hepatobiliary cancer by increasing stemness and miR-122-mediated HIF-1alpha activation. Sci Rep. 2016;6:21340.

    Article  CAS  PubMed Central  Google Scholar 

  83. Chen YP, Jin X, Kong M, et al. Pattern of microRNA expression associated with different stages of alcoholic liver disease in rat models. Mol Med Rep. 2014;10:1195–204.

    Article  CAS  PubMed Central  Google Scholar 

  84. Chakraborty C, Sharma AR, Sharma G, et al. Therapeutic advances of miRNAs: a preclinical and clinical update. J Adv Res. 2021;28:127–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suthat Liangpunsakul .

Editor information

Editors and Affiliations

Ethics declarations

None of the authors have any conflicts of interest with this work.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perez, K., Ma, J., Huda, N., Yang, Z., Liangpunsakul, S. (2023). MicroRNAs and Alcohol-Related Liver Disease. In: Mueller, S., Heilig, M. (eds) Alcohol and Alcohol-related Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-32483-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32483-3_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32482-6

  • Online ISBN: 978-3-031-32483-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics