Skip to main content

Transcriptomics of the Carotid Body

  • Conference paper
  • First Online:
Arterial Chemoreceptors (ISAC XXI 2022)

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1427))

Included in the following conference series:

Abstract

The carotid body (CB) has emerged as a potential therapeutic target for treating sympathetically mediated cardiovascular, respiratory, and metabolic diseases. In adjunct to its classical role as an arterial O2 sensor, the CB is a multimodal sensor activated by a range of stimuli in the circulation. However, consensus on how CB multimodality is achieved is lacking; even the best studied O2-sensing appears to involve multiple convergent mechanisms. A strategy to understand multimodal sensing is to adopt a hypothesis-free, high-throughput transcriptomic approach. This has proven instrumental for understanding fundamental mechanisms of CB response to hypoxia and other stimulants, its developmental niche, cellular heterogeneity, laterality, and pathophysiological remodeling in disease states. Herein, we review this published work that reveals novel molecular mechanisms underpinning multimodal sensing and reveals numerous gaps in knowledge that require experimental testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Study claims to compare the transcriptomes of O2-sensitive organs (CB, AM) to those insensitive to O2 (SCG) (Gao et al. 2017). However, more recently, it was shown that SCG neurons modulate ventilatory responses to hypoxia independently of preganglionic input in mice with bilateral transection of the cervical sympathetic chain (Getsy et al. 2021). This shows that SCG cannot be regarded as O2-insensitive.

References

  • Abdala AP, McBryde FD, Marina N, Hendy EB, Engelman ZJ, Fudim M, Sobotka PA, Gourine AV, Paton JFR (2012) Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J Physiol 590:4269–4277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander SPH, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Al E (2019) The concise guide to pharmacology 2019/20: introduction and other protein targets. Br J Pharmacol 176:S1–S20

    PubMed  PubMed Central  Google Scholar 

  • Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, Hart M, Abu-Halima M, Grässer FA, Lenhof HP, Keller A, Meese E (2019) An estimate of the total number of true human miRNAs. Nucleic Acids Res 47:3353–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baccarella A, Williams CR, Parrish JZ, Kim CC (2018) Empirical assessment of the impact of sample number and read depth on RNA-Seq analysis workflow performance. BMC Bioinf 19:1–12

    Article  Google Scholar 

  • Balbir A, Lee H, Okumura M, Biswal S, Fitzgerald RS, Shirahata M (2007) A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am J Phys Lung Cell Mol Phys 292:L704–L715

    CAS  Google Scholar 

  • Bardsley EN, Pen DK, McBryde FD, Ford AP, Paton JFR (2021) The inevitability of ATP as a transmitter in the carotid body. Auton Neurosci 234:102815

    Article  CAS  PubMed  Google Scholar 

  • Campain A, Yang YH (2010) Comparison study of microarray meta-analysis methods. BMC Bioinf 11:408

    Article  Google Scholar 

  • Carroll JL, Agarwal A, Donnelly DF, Kim I (2012) Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats. In: Nurse CA, Gonzalez C, Peers C, Prabhakar N (eds) Arterial chemoreception, advances in experimental medicine and biology. Springer Netherlands, Dordrecht, pp 249–253

    Chapter  Google Scholar 

  • Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA (2015) Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 527:240–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ching T, Huang S, Garmire LX (2014) Power analysis and sample size estimation for RNA-Seq differential expression. RNA 20:1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conde SV, Monteiro EC, Sacramento JF (2017) Purines and carotid body: new roles in pathological conditions. Front Pharmacol 8:913

    Article  PubMed  PubMed Central  Google Scholar 

  • Denisenko E, Guo BB, Jones M, Hou R, de Kock L, Lassmann T, Poppe D, Clément O, Simmons RK, Lister R, Forrest ARR (2020) Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol 21:21–25

    Article  Google Scholar 

  • Fagerlund MJ, Kåhlin J, Ebberyd A, Schulte G, Mkrtchian S, Eriksson LI (2010) The human carotid body: expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology 113:1270–1279

    Article  PubMed  Google Scholar 

  • Gallego Romero I, Pai AA, Tung J, Gilad Y (2014) RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol 12:1–13

    Article  Google Scholar 

  • Ganfornina MD, Pérez-García MT, Gutiérrez G, Miguel-Velado E, Lopez-Lopez JR, Marín A, Sánchez D, González C (2005) Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia. J Physiol 566:491–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Bonilla-Henao V, García-Flores P, Arias-Mayenco I, Ortega-Sáenz P, López-Barneo J (2017) Gene expression analyses reveal metabolic specifications in acute O2-sensing chemoreceptor cells. J Physiol 595:6091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getsy PM, Coffee GA, Hsieh Y-H, Lewis SJ (2021) The superior cervical ganglia modulate ventilatory responses to hypoxia independently of preganglionic drive from the cervical sympathetic chain. J Appl Physiol 131:836–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes AP, Ray CJ, Pearson SA, Coney AM, Kumar P (2018) Ecto-5′-nucleotidase (CD73) regulates peripheral chemoreceptor activity and cardiorespiratory responses to hypoxia. J Physiol 596:3137–3148

    Article  CAS  PubMed  Google Scholar 

  • Jendzjowsky NG, Roy A, Barioni NO, Kelly MM, Green FHY, Wyatt CN, Pye RL, Tenorio-Lopes L, Wilson RJA (2018) Preventing acute asthmatic symptoms by targeting a neuronal mechanism involving carotid body lysophosphatidic acid receptors. Nat Commun 9:1–15

    Article  CAS  Google Scholar 

  • Jendzjowsky NG, Roy A, Iftinca M, Barioni NO, Kelly MM, Herrington BA, Visser F, Altier C, Wilson RJA (2021) PKCε stimulation of TRPV1 orchestrates carotid body responses to asthmakines. J Physiol 599:1335–1354

    Article  CAS  PubMed  Google Scholar 

  • Kim LJ, Shin M-K, Pho H, Tang W-Y, Hosamane N, Anokye-Danso F, Ahima RS, Sham JSK, Pham LV, Polotsky VY (2022) TRPM7 channels regulate breathing during sleep in obesity by acting peripherally in the carotid bodies. J Physiol 600:5145

    Article  CAS  PubMed  Google Scholar 

  • Leonard EM, Salman S, Nurse CA (2018) Sensory processing and integration at the carotid body tripartite synapse: neurotransmitter functions and effects of chronic hypoxia. Front Physiol 9:1–14

    Article  CAS  Google Scholar 

  • Liu X, He L, Dinger B, Stensaas L, Fidone S (2013) Sustained exposure to cytokines and hypoxia enhances excitability of oxygen-sensitive type I cells in rat carotid body: correlation with the expression of HIF-1α protein and adrenomedullin. High Alt Med Biol 14:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez A, Saldise L, Ramirez MJ, Belzunegui S, Zudaire E, Luquin MR, Cuttitta F (2003) Adrenomedullin expression and function in the rat carotid body. J Endocrinol 176:95–102

    Article  CAS  PubMed  Google Scholar 

  • Massoni-Badosa R, Iacono G, Moutinho C, Kulis M, Palau N, Marchese D, Rodríguez-Ubreva J, Ballestar E, Rodriguez-Esteban G, Marsal S, Aymerich M, Colomer D, Campo E, Julià A, Martín-Subero JI, Heyn H (2020) Sampling time-dependent artifacts in single-cell genomics studies. Genome Biol 21:1–16

    Article  Google Scholar 

  • Milsom WK, Burleson ML (2007) Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol 157:4–11

    Article  CAS  PubMed  Google Scholar 

  • Mkrtchian S, Kåhlin J, Ebberyd A, Gonzalez C, Sanchez D, Balbir A, Kostuk EW, Shirahata M, Fagerlund MJ, Eriksson LI (2012) The human carotid body transcriptome with focus on oxygen sensing and inflammation – a comparative analysis. J Physiol 590:3807–3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mkrtchian S, Lee KL, Kåhlin J, Ebberyd A, Poellinger L, Fagerlund MJ, Eriksson LI (2018) Hypoxia regulates MicroRNA expression in the human carotid body. Adv Exp Med Biol 1071:25–33

    Article  CAS  PubMed  Google Scholar 

  • Mkrtchian S, Kåhlin J, Gómez-Galán M, Ebberyd A, Yoshitake T, Schmidt S, Kehr J, Hildenborg M, Jonsson Fagerlund M, Erlandsson Harris H, Eriksson LI (2020) The impact of damage-associated molecular patterns on the neurotransmitter release and gene expression in the ex vivo rat carotid body. Exp Physiol 105:1634–1647

    Article  CAS  PubMed  Google Scholar 

  • Nair S, Gupta A, Fudim M, Robinson C, Ravi V, Hurtado-Rua S, Engelman Z, Lee KS, Phillips CD, Sista AK (2013) CT angiography in the detection of carotid body enlargement in patients with hypertension and heart failure. Neuroradiology 55:1319–1322

    Article  PubMed  Google Scholar 

  • Narkiewicz K, Ratcliffe LEK, Hart EC, Briant LJB, Chrostowska M, Wolf J, Szyndler A, Hering D, Abdala AP, Manghat N, Burchell AE, Durant C, Lobo MD, Sobotka PA, Patel NK, Leiter JC, Engelman ZJ, Nightingale AK, Paton JFR (2016) Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. JACC Basic Transl Sci 1:313–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro-Guerrero E, Platero-Luengo A, Linares-Clemente P, Cases I, López-Barneo J, Pardal R (2016) Gene expression profiling supports the neural crest origin of adult rodent carotid body stem cells and identifies CD10 as a marker for mesectoderm-committed progenitors. Stem Cells 34:1637–1650

    Article  CAS  PubMed  Google Scholar 

  • Nguyen RP, Shah LM, Quigley EP, Harnsberger HR, Wiggins RH (2011) Carotid body detection on CT angiography. AJNR Am J Neuroradiol 32:1096–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Flanagan CH, Campbell KR, Zhang AW, Kabeer F, Lim JLP, Biele J, Eirew P, Lai D, McPherson A, Kong E, Bates C, Borkowski K, Wiens M, Hewitson B, Hopkins J, Pham J, Ceglia N, Moore R, Mungall AJ, McAlpine JN, Shah SP, Aparicio S (2019) Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol 20:1–13

    Article  Google Scholar 

  • Pandey AK, Lu L, Wang X, Homayouni R, Williams RW (2014) Functionally enigmatic genes: a case study of the brain ignorome. PLoS One 9:e88889

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardal R, Ortega-Sáenz P, Durán R, López-Barneo J (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131:364–377

    Article  CAS  PubMed  Google Scholar 

  • Pauža AG, Mecawi AS, Paterson A, Hindmarch CCT, Green-wood M, Murphy D, Greenwood MP (2021) Osmoregulation of the transcriptome of the hypothalamic supraoptic nucleus: a resource for the community. J Neuroendocrinol 33:e13007

    Article  PubMed  Google Scholar 

  • Pauza AG, Thakkar P, Tasic T, Felippe I, Bishop P, Green-wood MP, Rysevaite-Kyguoliene K, Ast J, Broichhagen J, Hodson DJ, Salgado HC, Pauza DH, Japundzic-Zigon N, Paton JFR, Murphy D (2022) GLP1R attenuates sympathetic response to high glucose via carotid body inhibition. Circ Res 130:694–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Shumate A, Pertea G, Varabyou A, Breitwieser FP, Chang YC, Madugundu AK, Pandey A, Salzberg SL (2018) CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise. Genome Biol 19:1–14

    Article  Google Scholar 

  • Pijacka W, Moraes DJA, Ratcliffe LEK, Nightingale AK, Hart EC, da Silva MP, Machado BH, McBryde FD, Abdala AP, Ford AP, Paton JFR (2016) Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nat Med 22:1151–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porzionato A, Macchi V, Sandra Belloni A, Parenti A, De Caro R (2006) Adrenomedullin immunoreactivity in the human carotid body. Peptides 27:69–73

    Article  CAS  PubMed  Google Scholar 

  • Salman S, Vollmer C, McClelland GB, Nurse CA (2017) Characterization of ectonucleotidase expression in the rat carotid body: regulation by chronic hypoxia. Am J Phys Cell Phys 313:C274–C284

    Google Scholar 

  • Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, Wrobel N, Gharbi K, Simpson G, Owen-Hughes T, Blaxter M, Barton GJ (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22:839–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin M, Eraso CC, Mu Y, Gu C, Yeung BHY, Lenise J, Sham JSK, Polotsky VY (2019) Leptin induces hypertension acting on transient receptor potential melastatin 7 channel in the carotid body. Circ Res 125:989–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeger T, Gerlach M, Morimoto RI, Nunes Amaral LA (2018) Large-scale investigation of the reasons why potentially important genes are ignored. PLoS Biol 16:e2006643

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarca AL, Romero R, Draghici S (2006) Analysis of microarray experiments of gene expression profiling. Am J Obstet Gynecol 195:373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Berge K, Hembach KM, Soneson C, Tiberi S, Clement L, Love MI, Patro R, Robinson MD (2019) RNA sequencing data: Hitchhiker’s guide to expression analysis. Ann Rev Biomed Data Sci 2:139–173

    Article  Google Scholar 

  • Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9:78644

    Article  Google Scholar 

  • Zhao S, Zhang Y, Gamini R, Zhang B, von Schack D (2018) Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion. Sci Rep 8:4781

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Chien M-S, Kaleem S, Matsunami H (2016) Single cell transcriptome analysis of mouse carotid body glomus cells. J Physiol 594:4225–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrys G. Pauza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pauza, A.G., Murphy, D., Paton, J.F.R. (2023). Transcriptomics of the Carotid Body. In: Conde, S.V., Iturriaga, R., del Rio, R., Gauda, E., Monteiro, E.C. (eds) Arterial Chemoreceptors. ISAC XXI 2022. Advances in Experimental Medicine and Biology, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-031-32371-3_1

Download citation

Publish with us

Policies and ethics