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CHAPTER 6

Digital Twins and Their Roles in Building 
Deep Renovation Life Cycle

Yuandong Pan, Zhiqi Hu, and Ioannis Brilakis

Abstract Digital twins have started to diffuse within architecture, engi-
neering, construction, and operations (AECO), based on their emerging 
and anticipated benefits to the various stakeholders involved in the build-
ing life cycle. However, their applications are still at an early stage, and 
much effort is still needed to exploit their full potential. This chapter 
explains some key notions to help understand digital twins in AECO. It 
exposes the various definitions of digital twins and illustrates the basic 
steps and relevant methods for creating a digital twin. The chapter also 
provides an overview of the state-of-the-art deep learning methods for 
digital twins and discusses some real-life use cases. Finally, the chapter 
discusses the benefits and challenges associated with the adoption of digi-
tal twins.
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6.1  IntroductIon

The construction sector remains one of the least digitised sectors. 
Digitalisation and automation can prove particularly valuable in overcom-
ing a number of traditional challenges in architecture, engineering, con-
struction, and operations (AECO). First, over half of the labour time is 
spent waiting for materials, equipment, and instructions on how to con-
duct the work during the construction stage, resulting in low productivity 
and shrinking profit margins. Second, many construction companies have 
suffered from underperforming projects, which leads to cost and schedule 
overruns and asset’s quality issues. Third, many assets are designed for 
functional activities. Less consideration is given to their environmental 
impact leading to high carbon emissions and resource wastage. Fourth, 
due to skill shortage, it is difficult to recruit enough construction profes-
sionals, such as supervisors, estimators, and engineers, which exacerbates 
the issue related to delays, asset qualities, and safety.

Digital twin (DT) is an emerging technological paradigm for achieving 
smart buildings, infrastructure, and cities (Tao et al., 2019). DT applica-
tions can facilitate project management in the AECO sector by increasing 
productivity and efficiency. From manual drawings to computer-aided 
design, object-oriented design, and computational design, computer 
power is shaping the process of assets’ construction and maintenance by 
encoding decision-makings through machine learning and other advanced 
technologies. This chapter aims to provide an overview of digital twins 
and their applications in the context of building renovation and discuss 
their main advantages, benefits, challenges, and barriers to adoption. The 
next section presents the definition of digital twins. The following section 
presents the main steps for creating a digital twin. This is followed by the 
presentation of a series of use cases and some concluding remarks on 
potential future developments.

6.2  What Is a dIgItal tWIn

According to Tao et al. (2019), a DT consists of three main elements: a 
physical product, a virtual representation of the physical product, and the 
connection that links these two parts together and enables data exchange 
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and information sharing. The physical product refers to the actual asset 
built in the real (physical) world, which can also be defined as physical 
twin (PT). It can be a residential or a commercial building, a hospital, a 
school, a bridge, and so on. The virtual representation refers to the digital 
replica of the physical asset, which can exist throughout its life cycle. This 
data can be accumulated over time and updated at different stages of a 
physical asset’s lifetime. The connection that links these two parts can be 
considered as an information exchanger to store, link, and update all prod-
uct and process information over time. A DT can serve as an information 
repository for storing and sharing an asset’s properties throughout its life 
cycle (El Saddik, 2018).

According to Sacks et  al. (2020), a DT is dynamic and thus can be 
enriched through different stages of an asset’s life cycle. Figure 6.1 depicts 
a typical life cycle of an asset PT and its DT from the design stage, through 
the construction stage, to the operation stage.
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Fig. 6.1 A typical life cycle of an asset PT and its DT from the design, construc-
tion, to the operation stage
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At the design stage, the asset’s designers start working on the concep-
tual plan. The asset’s foetal DT contains both product and process infor-
mation, where the former refers to different as-designed building 
information models (BIMs).1 Many of these models can be proposed at 
the beginning, but only the final client-approved design file at the end of 
the design stage can be marked as “Design Intent”, which means it will 
serve as a benchmark for evaluating the construction outcomes and can be 
considered as a guidance for the purpose of maintenance.

At the construction stage, the child PT contains off-site prefabricated 
assemblies and on-site constructed components. Therefore, the child DT 
consists of as-built product information and as-performed process infor-
mation to mirror the asset’s physical status at different steps during the 
construction stage. It should be noted that the product information and 
the process information accumulate over time into the child DT until the 
completion of construction. Each change will be updated in the asset’s 
child DT to reflect the as-is status and thus can facilitate progress monitor-
ing and quality control.

Lastly, at the operation stage, the adult PT remains unchangeable status 
because of the completion of the construction. The asset’s adult DT can 
support the analyses of performance, such as energy consumption and com-
ponent maintenance. The collected data will be added to the as- maintained 
product to enrich the asset’s adult DT. To conclude, an asset’s DT should 
contain all information that represents the related physical information 
throughout its life cycle. Both the physical product and process will be 
assigned to the DT as a virtual copy throughout the asset’s life cycle. 
Moreover, the logic of PT and DT can be extended to any type of physical 
entity, from small-scale manufactured objects to large-scale city- level 
objects. The product and process information contained in the DT should 
be determined by its purpose. Thus, a DT can be standardised and exten-
sible to address current project management problems in the AECO sector.

6.3  creatIng dIgItal tWIns

As mentioned in the previous section, a DT contains product information 
and process information. A geometric DT (GDT) is fundamental as it is 
used to create links with process information during the asset’s life cycle. 
Creating a GDT of an existing asset typically involves the following two 

1 Chapter 3 in this book provides a more detailed discussion on BIM.
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steps: (1) capturing raw visual and spatial data in the form of RGB images 
and laser-scanned point clouds and (2) detecting geometric objects and 
relationships between objects. Step 1 of this process is significantly more 
automated than step 2, as shown by Agapaki and Brilakis (2021). 
Unfortunately, the effort and corresponding cost required to complete 
step 2 for most assets still represent a barrier to adoption as it may com-
pletely offset the value created by the geometric DT.

For data capturing (step 1), two major technologies are currently used 
to capture the geometry of an asset: laser scanning (terrestrial and mobile) 
and photogrammetry. The data generated should reflect the physical sur-
faces of objects in the real world. Due to the discrete nature of the captur-
ing techniques, the data provided by scanners is also discrete. Laser 
scanners generate point clouds that are sets of points in a 3D space. Each 
point is defined by three coordinates and additional information depend-
ing on the device used, which could be intensity, normality, and colour 
information, among others.

As for step 2, detecting geometric objects and their geometric relation-
ships is still a time-consuming manual task. Lu et al. (2019), for example, 
scanned ten different road bridges and estimated that approximately 28 
hours of work are required, on average, for the as-is modelling in contrast 
to 2.82 hours for data capturing. A number of leading 3D CAD compa-
nies (Autodesk, Bentley, ClearEdge3D, etc.) have developed software 
products that provide a variety of 3D modelling features which enable 
modelling from point cloud data. Agapaki et al. (2018) suggest that 64% 
of man-hour savings can be achieved by using state-of-the-art software 
supporting a semi-automated modelling process. However, 2382 man- 
hours are still needed to model, for example, a small petrochemical plant 
with 240,687 objects and 53,834 pipes.

In order to reduce the human effort in creating a GDT, researchers 
have proposed a number of alternative approaches mostly focused on 
structural elements. Sanchez and Zakhor (2012) proposed a method that 
applies principal component analysis (PCA) and random sample consensus 
(RANSAC) to find relatively large-scale architectural structures, such as 
ceilings and floors. Monszpart et al. (2015) extracted planar structures in 
a point cloud that follows regularity constraints. They applied this approach 
in different scenarios, such as urban scenes, as well as the exterior and 
interior of buildings. Oesau et al. (2014) used horizontal slicing and then 
volumetric-cell labelling method. The volumetric cells are formulated as 
energy minimisation and solved by the graph-cut method. Xiao and 
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Furukawa (2014) proposed a method called “inverse constructive solid 
geometry (CSG)” which detects planar surfaces and subsequently fits the 
cuboid primitives to the point cloud. Ochmann et al. (2016) proposed a 
method that explicitly represents buildings as interconnected volumetric 
wall elements. They determined the optimal room and wall layout by 
graph-cut-based multi-label energy minimisation. A method named void- 
growing method by Pan et al. (2021) aims to extract void room spaces in 
the point cloud firstly and subsequently extract 3D models of different 
objects.

Other approaches leverage prior knowledge to reconstruct walls and 
rooms. Stambler and Huber (2015), for example, proposed the concept of 
enclosure reasoning that defines rooms as cycles of walls enclosing free 
interior space. Region growing is then applied to segment the point 
clouds, and simulated annealing is used to optimise rooms and walls. Tran 
et al. (2019) proposed a method called shape grammar to model indoor 
environments. They created 3D parametric models by placing cuboids 
into point clouds and classifying them into elements and spaces. The wall 
candidates are obtained from pairs of adjacent peaks in the histogram of 
point coordinates. Hu et al. (2022) provide a more in-depth review of this 
literature.

Deep learning (DL) is also widely applied to extract semantic informa-
tion from spatial and visual data. VoxNet is proposed by Maturana and 
Scherer (2015) to detect classes of objects from point cloud data. It aims 
to predict a class label for the input. Volumetric grids representing the 
spatial occupancy are calculated first and then applied to 3D CNNs. Qi 
et  al. (2017a) instead proposed the first neural network architecture, 
PointNet, designed for 3D deep learning in the point cloud. PointNet 
takes the point cloud as input and predicts labels for the entire input (point 
cloud classification) or labels for each point (point cloud segmentation). 
An improved version of the PointNet architecture called PointNet++ has 
then been presented by Qi et  al. (2017b) and claims to provide better 
performance by considering spatial information of points in the point sets. 
These DL methods have been adopted in the AECO sector to facilitate 
GDT construction (Agapaki & Brilakis, 2020; Perez-Perez et al., 2021).

In summary, current approaches are still not fully automated, which 
means they still require human effort in the process of reconstruction. 
Their performance, especially when applied to a point cloud with high 
occlusions, would decrease due to the geometric occlusion of furniture. 
On the other hand, DL is an efficient and powerful tool that can be used 
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to extract semantic information from the point cloud, but the lack of 
labelled data sets in the AECO domain causes difficulties with regard to 
training which in turn affects models’ performance. In addition to this, 
the overall prediction performance differs significantly across categories, 
which makes it really hard to create a detailed GDT representing the cur-
rent state of an asset when only considering the output of the DL methods.

6.4  dIgItal tWIn use cases

There are several use cases of DT in the construction sector, including 
construction progress monitoring, facilities management and operation, 
asset condition monitoring, sustainable development, and more. DT can 
provide reliable and useful information during a building’s life cycle to 
AECO stakeholders.

DT can be applied to any physical asset at any given time. For historical 
assets which have been completed many years or decades ago and do not 
yet have any digital records, DT can help to start and keep a record of their 
performance for better maintenance and renovation. For facilities under 
construction, a dynamic DT can support real-time progress monitoring, 
quality control, diagnostics, and prognostics. In addition, DT can also be 
used in the future for capital investment projects before the design and 
construction of the facility, as it provides an efficient way to simulate the 
performance of a building and aid the decision-making process.

The way the physical and the digital twins are synchronised in real use 
cases depends on the purpose of the DT, which also determines the con-
tent of DTs (i.e., the elements and processes to be digitised, the level of 
detail required, how frequent the model is supposed to be updated, etc.). 
As the concept of digital twins is broad, it is impractical to propose a pre-
cise and detailed definition of a digital twin that covers everything without 
considering its purpose. Some potential applications of DTs relevant to 
deep building renovations are presented hereafter.

Example 1: Condition Monitoring
A DT can be used to monitor the current condition of a building. By cap-
turing geometric information through different sensors, the current condi-
tion of the asset can be visualised and represented by the DT. The geometry 
of facilities can be monitored by comparing the current condition with 
previous asset conditions over time, which allows a DT to give mainte-
nance suggestions to the asset holders and managers (Hu et al.,  2023).

6 DIGITAL TWINS AND THEIR ROLES IN BUILDING DEEP RENOVATION… 
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Apart from monitoring the geometry change of a discrete asset, DT can 
also be used to monitor more complex large-scale systems, for example, 
the sewer system of a city. In this context, predictive maintenance opera-
tions can be utilised to identify potential blockages. Similarly, the current 
state of flow in pipes can be recorded and compared with the historical 
values to predict or locate disruptions in the system. Predictive mainte-
nance recommendations or alerts can be sent to facility managers for more 
informed and timely decision-making.

Example 2: Facility Management
There is a very broad spectrum of facility operation, which includes but is 
not limited to operation management of mechanical, electrical, and 
plumbing (MEP) components in a facility (Z. Hu et  al., 2016; Cheng 
et  al., 2020), internal environment monitoring (Cao et  al., 2015), and 
working productivity (Meerman et al., 2014). With the increasing adop-
tion of the Internet of Things (IoT) and artificial intelligence (AI) which 
are key components supporting DTs, facility management is becoming 
more and more intelligent. Similarly, augmented reality (AR) and virtual 
reality (VR) can be used in conjunction with DT to visualise the built 
environment and improve efficiency (Baek et al., 2019; Chen et al., 2020; 
Chen et al., 2021; Zhang et al., 2020).

The concept of the digital twin is capable of embedding all these use 
cases in facility management according to the concept illustrated in 
Fig. 6.2. Relevant objects and values are captured and represented in a 
detailed digital model through capturing devices like laser scanners and 
cameras. By applying various IoT sensors such as thermometers, hygrom-
eters, and carbon dioxide sensors, different values (like temperature, 
humidity, and carbon dioxide level) that represent internal environment 
conditions can be recorded and then updated in the digital model regu-
larly. AI-relevant technologies can be used to help the process of creating 
the initial model as well as updating the model throughout a facility’s life 
cycle. Facility managers can check the visually assistive information pro-
vided by AR and VR devices, which is able to lighten their workload and 
benefit working efficiency. From small-scale facilities, like offices, to large- 
scale urban environments, different sensors can be used to find how peo-
ple exactly use these facilities and map occupant behaviour. With a better 
understanding of this data, the environmental conditions can be opti-
mised, ultimately improving human wellness and living satisfaction.

 Y. PAN ET AL.
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Fig. 6.2 Digital twin for facility management

Example 3: Environment Simulation
Digital twins can be used in the renovation phase of a project to simulate 
various scenarios without modifying the real asset. These scenarios can 
involve changing the natural light design, artificial lighting, heating simu-
lation, and so forth. By only modifying facilities in the DT, the impact of 
these changes can be understood without implementing the modifications 
in the real world. VR/AR devices can make use of the DT to visualise the 
proposed designs and show the impact of changes and modifications (e.g., 
lighting). This improves the decision-making of renovation and enhances 
the communication between designers and clients. For instance, different 
lighting atmospheres can be visualised, helping designers to aesthetically 
assess the design and present the outcomes of the setup to their clients 
(Natephra et al., 2017).

6.5  challenges to dIgItal tWIn adoptIon

Despite the fact that a DT is considered to offer benefits to all stakeholders 
of the built environment, some challenges hinder its adoption in real proj-
ects. Firstly, the effort involved in creating a digital twin is demanding, 
which undermines its feasibility and benefits. Many researchers are work-
ing on automating the process of digital twinning in the built environ-
ment in order to reduce human effort. The effort in the existing literature 
has been concentrated on reconstructing relatively large structural ele-
ments like ceilings, floors, and walls. MEP elements (such as fire alarms, 
emergency switches, etc.) should also be included in a DT, as these are 
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essential elements for facility managers. In the repair and maintenance  
(R & M) activities of an asset, MEP costs usually constitute the largest 
share of the total cost (Adán et al., 2018). Therefore, a DT would be more 
valuable if it were to contain those elements. In addition, facility manage-
ment also involves floor plans, space utilisation, asset location, and techni-
cal plants (D’Urso, 2011), which requires more accurate capture and 
modelling. Text information such as room numbers and serial numbers 
(IDs) of objects that can identify the corresponding asset instance is also 
beneficial, especially when managing large-scale facilities. These IDs rep-
resent the exact object instances in a facility and can be used to make the 
links between physical assets and DT much clearer. Currently, such activi-
ties are mainly performed manually in real projects. Some studies (e.g., 
Pan et al., 2022) in this area have started to emerge.

6.6  conclusIon and Future dIrectIon

This chapter provides an overview of the background, definitions, genera-
tion, and applications of DT in the built environment generally and build-
ing renovation specifically. The state-of-the-art methods to create and 
update the geometry of digital twins were described. The potential appli-
cations of DTs, along with their advantages and current challenges, have 
been discussed with examples. The overarching conclusion is that DTs 
provide benefits and offer applications across the whole life cycle of built 
assets. Much research is still required to support the generation and the 
update of DTs, which is necessary to support the identified applications 
and unlock their respective benefits.

In the built environment, how to generate and update DTs precisely 
and efficiently to bring the benefits into real applications throughout the 
whole life cycle of a facility is still under research.
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