Skip to main content

Trigeminal Nerve Reconstruction in Maxillofacial Surgery

  • Chapter
  • First Online:
Advancements and Innovations in OMFS, ENT, and Facial Plastic Surgery

Abstract

Nerve injury has been reported since the times of Hippocrates. Peripheral nerve injury continues to be common in clinical practice today and is especially true in the head and neck region. Trigeminal nerve injury results in neurosensory disturbances that have detrimental effects on patients’ quality-of-life. Neurosensory testing and classification via the Medical Research Council Scale (MRCS) grading scores allow for valid comparison and outcome measurement. Current options for trigeminal repair and reconstruction include direct repair and interpositional grafting utilizing autograft or allograft. This is usually coupled with the aid of connectors. Future developments in reconstruction may involve newly developed nerve conduits with the implementations of growth factors, stem cells, and/or internal architecture. With the advancement in 3D bioprinting, convoluted and large-scale nerve defects may be designed and employed in repair. The goal is for newer technologies to supersede the current clinical outcomes of autografts and allografts with fewer side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weyh A, Pucci R, Valentini V, Fernandes R, Salman S. Injuries of the peripheral mandibular nerve, evaluation of interventions and outcomes: a systematic review. Craniomaxillofac Trauma Reconstr. 2021;14(4):337–48.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaleem A, Amailuk P, Hatoum H, Tursun R. The trigeminal nerve injury. Oral Maxillofac Surg Clin North Am. 2020;32(4):675–87. https://doi.org/10.1016/j.coms.2020.07.005.

    Article  PubMed  Google Scholar 

  3. Meyer RA, Bagheri SC. Microsurgical reconstruction of the trigeminal nerve. Oral Maxillofac Surg Clin North Am. 2013;25(2):287–302. https://doi.org/10.1016/j.coms.2013.01.002.

    Article  PubMed  Google Scholar 

  4. Ducic I, Yoon J. Reconstructive options for inferior alveolar and lingual nerve injuries after dental and oral surgery: an evidence-based review. Ann Plast Surg. 2019;82(6):653–60.

    Article  CAS  PubMed  Google Scholar 

  5. Smith JG, Elias L-A, Yilmaz Z, Barker S, Shah K, Shah S, et al. The psychosocial and affective burden of posttraumatic stress neuropathy following injuries to the trigeminal nerve. J Orofac Pain. 2013;27(4):293–303.

    Article  PubMed  Google Scholar 

  6. Miloro M, Zuniga JR, Meyer RA. How many oral surgeons does it take to classify a nerve injury? J Oral Maxillofac Surg. 2021;79(7):1550–6. https://doi.org/10.1016/j.joms.2021.01.006.

    Article  PubMed  Google Scholar 

  7. Walters BC. History of peripheral nerve repair. Vol. 1, Nerves and nerve injuries. London: Elsevier; 2015. p. 23–36. https://doi.org/10.1016/B978-0-12-410390-0.00002-0.

    Book  Google Scholar 

  8. Belen D, Aciduman A, Er U. History of peripheral nerve repair: may the procedure have been practiced in Hippocratic School? Surg Neurol. 2009;72(2):190–3. https://doi.org/10.1016/j.surneu.2008.03.030.

    Article  PubMed  Google Scholar 

  9. Wessberg GA, Wolford LM. Bilateral microneurosurgical reconstruction of inferior alveolar nerves via autogenous sural nerve transplantation. Oral Surg Oral Med Oral Pathol. 1981;52(5):465–70.

    Article  CAS  PubMed  Google Scholar 

  10. Mozsary PG, Middleton RA. Microsurgical reconstruction of the lingual nerve. J Oral Maxillofac Surg. 1984;42(7):415–20.

    Article  CAS  PubMed  Google Scholar 

  11. Hausamen JE, Samii M, Schmidseder R. Indication and technique for the reconstruction of nerve defects in head and neck. J Maxillofac Surg. 1974;2(C):159–67.

    Article  CAS  PubMed  Google Scholar 

  12. Seddon HJ. A classification of nerve injuries. Br Med J. 1942;2(4260):237–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaudin R, Knipfer C, Henningsen A, Smeets R, Heiland M, Hadlock T. Approaches to peripheral nerve repair: generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery. Biomed Res Int. 2016;2016:3856262.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shanti RM, Ziccardi VB. Use of decellularized nerve allograft for inferior alveolar nerve reconstruction: a case report. J Oral Maxillofac Surg. 2011;69(2):550–3. https://doi.org/10.1016/j.joms.2010.10.004.

    Article  PubMed  Google Scholar 

  15. Ducic I, Safa B, De Vinney E. Refinements of nerve repair with connector-assisted coaptation. Microsurgery. 2017;37(3):256–63.

    Article  PubMed  Google Scholar 

  16. Zuniga JR, Williams F, Petrisor D. A case-and-control, multisite, positive controlled, prospective study of the safety and effectiveness of immediate inferior alveolar nerve processed nerve allograft reconstruction with ablation of the mandible for benign pathology. J Oral Maxillofac Surg. 2017;75(12):2669–81. https://doi.org/10.1016/j.joms.2017.04.002.

    Article  PubMed  Google Scholar 

  17. AxoGen. 2022. https://www.axogeninc.com.

  18. Callahan N, Miloro M, Markiewicz MR. Immediate reconstruction of the infraorbital nerve after maxillectomy: is it feasible? J Oral Maxillofac Surg. 2020;78(12):2300–5. https://doi.org/10.1016/j.joms.2020.07.211.

    Article  PubMed  Google Scholar 

  19. Suhaym O, Miloro M. Does early repair of trigeminal nerve injuries influence neurosensory recovery? A systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2021;50(6):820–9. https://doi.org/10.1016/j.ijom.2020.10.002.

    Article  CAS  PubMed  Google Scholar 

  20. Kushnerev E, Yates JM. Evidence-based outcomes following inferior alveolar and lingual nerve injury and repair: a systematic review. J Oral Rehabil. 2015;42(10):786–802.

    Article  CAS  PubMed  Google Scholar 

  21. Miloro M, Zuniga JR. Does immediate inferior alveolar nerve allograft reconstruction result in functional sensory recovery in pediatric patients? J Oral Maxillofac Surg. 2020;78(11):2073–9. https://doi.org/10.1016/j.joms.2020.06.033.

    Article  PubMed  Google Scholar 

  22. Rath EM. Surgical treatment of maxillary nerve injuries. The infraorbital nerve. Atlas Oral Maxillofac Surg Clin North Am. 2001;9(2):31–41.

    Article  CAS  PubMed  Google Scholar 

  23. Pogrel MA. Recovery of sensation over the distribution of the inferior alveolar nerve following mandibular resection without nerve reconstruction. J Oral Maxillofac Surg. 2021;79(10):2143–6. https://doi.org/10.1016/j.joms.2021.04.029.

    Article  PubMed  Google Scholar 

  24. Le Donne M, Jouan R, Bourlet J, Louvrier A, Ducret M, Sigaux N. Inferior alveolar nerve allogenic repair following mandibulectomy: a systematic review. J Stomatol Oral Maxillofac Surg. 2021;123:233–8. https://doi.org/10.1016/j.jormas.2021.04.007.

    Article  PubMed  Google Scholar 

  25. Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43(5):553–72. https://doi.org/10.1016/j.injury.2010.12.030.

    Article  CAS  PubMed  Google Scholar 

  26. López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral nerve injury: current challenges, conventional treatment approaches, and new trends in biomaterials-based regenerative strategies. ACS Biomater Sci Eng. 2017;3(12):3098–122. https://doi.org/10.1021/acsbiomaterials.7b00655.

    Article  CAS  PubMed  Google Scholar 

  27. Scheib J, Höke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668–76. https://doi.org/10.1038/nrneurol.2013.227.

    Article  CAS  PubMed  Google Scholar 

  28. Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med. 2012;10(1):1–15. https://doi.org/10.1186/1479-5876-10-239.

    Article  CAS  Google Scholar 

  29. Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin. 2020;41(10):1289–300. https://doi.org/10.1038/s41401-019-0338-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation. 2011;8:109. https://doi.org/10.1186/1742-2094-8-109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang L, Zhao Y, Cheng X, et al. Effects of locally applied nerve growth factor to the inferior alveolar nerve histology in a rabbit model of mandibular distraction osteogenesis. Int J Oral Maxillofac Surg. 2009;38(1):64–9. https://doi.org/10.1016/j.ijom.2008.11.010.

    Article  PubMed  Google Scholar 

  32. Hergt AC, Beck-Broichsitter BE, Raethjen J, et al. Nerve regeneration techniques respecting the special characteristics of the inferior alveolar nerve. J Cranio-Maxillofac Surg. 2016;44(9):1381–6. https://doi.org/10.1016/j.jcms.2016.06.020.

    Article  Google Scholar 

  33. Nemoto A, Akashi Y, Nakajima K, et al. The effects of recombinant human basic fibroblast growth factor on nerve regeneration in a partial defect inferior alveolar nerve model in rabbits. J Oral Maxillofac Surg Med Pathol. 2021;33(3):348–53. https://doi.org/10.1016/j.ajoms.2020.12.003.

    Article  Google Scholar 

  34. Sarker MD, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Regeneration of peripheral nerves by nerve guidance conduits: influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol. 2018;171(July):125–50. https://doi.org/10.1016/j.pneurobio.2018.07.002.

    Article  CAS  PubMed  Google Scholar 

  35. Madduri S, Feldman K, Tervoort T, Papaloïzos M, Gander B. Collagen nerve conduits releasing the neurotrophic factors GDNF and NGF. J Control Release. 2010;143(2):168–74. https://doi.org/10.1016/j.jconrel.2009.12.017.

    Article  CAS  PubMed  Google Scholar 

  36. Ma F, Xu F, Li R, et al. Sustained delivery of glial cell-derived neurotrophic factors in collagen conduits for facial nerve regeneration. Acta Biomater. 2018;69:146–55.

    Article  CAS  PubMed  Google Scholar 

  37. Roam JL, Yan Y, Nguyen PK, et al. A modular, plasmin-sensitive, clickable poly(ethylene glycol)-heparin-laminin microsphere system for establishing growth factor gradients in nerve guidance conduits. Biomaterials. 2015;72:112–24. https://doi.org/10.1016/j.biomaterials.2015.08.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wood MD, Gordon T, Kim H, et al. Fibrin gels containing GDNF microspheres increase axonal regeneration after delayed peripheral nerve repair. Regen Med. 2013;8(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  39. Giannaccini M, Calatayud MP, Poggetti A, et al. Magnetic nanoparticles for efficient delivery of growth factors: stimulation of peripheral nerve regeneration. Adv Healthc Mater. 2017;6(7):1601429. https://doi.org/10.1002/adhm.201601429.

    Article  CAS  Google Scholar 

  40. Chen X, Ge X, Qian Y, et al. Electrospinning multilayered scaffolds loaded with melatonin and Fe3O4 magnetic nanoparticles for peripheral nerve regeneration. Adv Funct Mater. 2020;30(38):1–12. https://doi.org/10.1002/adfm.202004537.

    Article  CAS  Google Scholar 

  41. Wei Z, Hong FF, Cao Z, Zhao SY, Chen L. In situ fabrication of nerve growth factor encapsulated chitosan nanoparticles in oxidized bacterial nanocellulose for rat sciatic nerve regeneration. Biomacromolecules. 2021;22(12):4988–99. https://doi.org/10.1021/acs.biomac.1c00947.

    Article  CAS  PubMed  Google Scholar 

  42. Mokarram N, Merchant A, Mukhatyar V, Patel G, Bellamkonda RV. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials. 2012;33(34):8793–801. https://doi.org/10.1016/j.biomaterials.2012.08.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mokarram N, Dymanusb K, Srinivasan A, et al. Immunoengineering nerve repair. Proc Natl Acad Sci U S A. 2017;114(26):E5077–84. https://doi.org/10.1073/pnas.1705757114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khodorova A, Nicol GD, Strichartz G. The TrkA receptor mediates experimental thermal hyperalgesia produced by nerve growth factor: modulation by the p75 neurotrophin receptor. Neuroscience. 2017;340:384–97. https://doi.org/10.1016/j.neuroscience.2016.10.064.

    Article  CAS  PubMed  Google Scholar 

  45. Hayakawa Y, Sakitani K, Konishi M, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31(1):21–34. https://doi.org/10.1016/j.ccell.2016.11.005.

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Fraser D, Mereness J, et al. Tissue engineered neurovascularization strategies for craniofacial tissue regeneration. ACS Appl Bio Mater. 2022;5(1):20–39. https://doi.org/10.1021/acsabm.1c00979.

    Article  CAS  PubMed  Google Scholar 

  47. Khalifian S, Sarhane KA, Tammia M, et al. Stem cell-based approaches to improve nerve regeneration: potential implications for reconstructive transplantation? Arch Immunol Ther Exp. 2015;63(1):15–30. https://doi.org/10.1007/s00005-014-0323-9.

    Article  CAS  Google Scholar 

  48. Hu Y, Wu Y, Gou Z, et al. 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci Rep. 2016;6(August):1–12. https://doi.org/10.1038/srep32184.

    Article  CAS  Google Scholar 

  49. Sun AX, Prest TA, Fowler JR, et al. Conduits harnessing spatially controlled cell-secreted neurotrophic factors improve peripheral nerve regeneration. Biomaterials. 2019;203:86–95. https://doi.org/10.1016/j.biomaterials.2019.01.038.

    Article  CAS  PubMed  Google Scholar 

  50. di Summa PG, Kalbermatten DF, Pralong E, Raffoul W, Kingham PJ, Terenghi G. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience. 2011;181:278.

    Article  PubMed  Google Scholar 

  51. Wang Y, Zhao Z, Ren Z, et al. Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neurosci Lett. 2012;514(1):96–101. https://doi.org/10.1016/j.neulet.2012.02.066.

    Article  CAS  PubMed  Google Scholar 

  52. Onode E, Uemura T, Takamatsu K, et al. Bioabsorbable nerve conduits three-dimensionally coated with human induced pluripotent stem cell-derived neural stem/progenitor cells promote peripheral nerve regeneration in rats. Sci Rep. 2021;11(1):1–13. https://doi.org/10.1038/s41598-021-83385-9.

    Article  CAS  Google Scholar 

  53. Fan L, Liu C, Chen X, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces. 2018;10(21):17742–55. https://doi.org/10.1021/acsami.8b05293.

    Article  CAS  PubMed  Google Scholar 

  54. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19(8):998–1004. https://doi.org/10.1038/nm.3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arcaute K, Mann BK, Wicker RB. Fabrication of off-the-shelf multilumen poly(Ethylene glycol) nerve guidance conduits using stereolithography. Tissue Eng Part C Methods. 2010;17(1):27–38. https://doi.org/10.1089/ten.tec.2010.0011.

    Article  CAS  PubMed  Google Scholar 

  56. Yao L, de Ruiter GCW, Wang H, et al. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials. 2010;31(22):5789–97. https://doi.org/10.1016/j.biomaterials.2010.03.081.

    Article  CAS  PubMed  Google Scholar 

  57. Koh HS, Yong T, Teo WE, et al. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng. 2010;7(4):046003. https://doi.org/10.1088/1741-2560/7/4/046003.

    Article  CAS  PubMed  Google Scholar 

  58. Singh A, Asikainen S, Teotia AK, et al. Biomimetic photocurable three-dimensional printed nerve guidance channels with aligned cryomatrix lumen for peripheral nerve regeneration. ACS Appl Mater Interfaces. 2018;10(50):43327–42. https://doi.org/10.1021/acsami.8b11677.

    Article  CAS  PubMed  Google Scholar 

  59. Huang L, Zhu L, Shi X, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater. 2018;68:223–36. https://doi.org/10.1016/j.actbio.2017.12.010.

    Article  CAS  PubMed  Google Scholar 

  60. Du J, Liu J, Yao S, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 2017;55:296–309. https://doi.org/10.1016/j.actbio.2017.04.010.

    Article  CAS  PubMed  Google Scholar 

  61. Yang S, Zhu J, Lu C, et al. Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. Bioact Mater. 2022;8:529–44. https://doi.org/10.1016/j.bioactmat.2021.05.056.

    Article  CAS  PubMed  Google Scholar 

  62. Magaz A, Faroni A, Gough JE, Reid AJ, Li X, Blaker JJ. Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair. Adv Healthc Mater. 2018;7(23):e1800308. https://doi.org/10.1002/adhm.201800308.

    Article  CAS  PubMed  Google Scholar 

  63. Wei GJ, Yao M, Wang YS, et al. Promotion of peripheral nerve regeneration of a peptide compound hydrogel scaffold. Int J Nanomedicine. 2013;8:3217–25. https://doi.org/10.2147/IJN.S43681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li A, Hokugo A, Yalom A, et al. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials. 2014;35(31):8780–90. https://doi.org/10.1016/j.biomaterials.2014.06.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Álvarez Z, Kolberg-Edelbrock AN, Sasselli IR, et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science. 2021;374(6569):848–56. https://doi.org/10.1126/science.abh3602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lopez-Silva TL, Cristobal CD, Lai CSE, Leyva-Aranda V, Lee HK, Hartgerink JD. Self-assembling multidomain peptide hydrogels accelerate peripheral nerve regeneration after crush injury. Biomaterials. 2021;265:120401. https://doi.org/10.1016/j.biomaterials.2020.120401.

    Article  CAS  PubMed  Google Scholar 

  67. Wu X, He L, Li W, et al. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration. Regen Biomater. 2017;4(1):21–30. https://doi.org/10.1093/rb/rbw034.

    Article  CAS  PubMed  Google Scholar 

  68. Leach JB, Brown XQ, Jacot JG, Dimilla PA, Wong JY. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J Neural Eng. 2007;4(2):26–34. https://doi.org/10.1088/1741-2560/4/2/003.

    Article  PubMed  Google Scholar 

  69. Wheeldon I, Farhadi A, Bick AG, Jabbari E, Khademhosseini A. Nanoscale tissue engineering: spatial control over cell-materials interactions. Nanotechnology. 2011;22(21):212001. https://doi.org/10.1088/0957-4484/22/21/212001.Nanoscale.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem. 2020;4(11):615–34. https://doi.org/10.1038/s41570-020-0215-y.

    Article  CAS  Google Scholar 

  71. Wang X, Hu W, Cao Y, Yao J, Wu J, Gu X. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain. 2005;128(8):1897–910.

    Article  PubMed  Google Scholar 

  72. Sufan W, Suzuki Y, Tanihara M, et al. Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in cat. J Neurotrauma. 2001;18(3):329–38. https://doi.org/10.1089/08977150151070991.

    Article  CAS  PubMed  Google Scholar 

  73. Takata M, Murayama M, Sasaki K, Shibahara T. Histomorphometric observations of surgical methods for partial amputation injury of the inferior alveolar nerve using polyglycolic acid. J Oral Maxillofac Surg Med Pathol. 2018;30(2):95–110. https://doi.org/10.1016/j.ajoms.2017.10.001.

    Article  Google Scholar 

  74. Ribitsch I, Baptista PM, Lange-Consiglio A, et al. Large animal models in regenerative medicine and tissue engineering: to do or not to do. Front Bioeng Biotechnol. 2020;8(August):1–28. https://doi.org/10.3389/fbioe.2020.00972.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond P. Shupak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shupak, R.P. et al. (2023). Trigeminal Nerve Reconstruction in Maxillofacial Surgery. In: Melville, J.C., Coelho, P.G., Young, S. (eds) Advancements and Innovations in OMFS, ENT, and Facial Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-32099-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32099-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32098-9

  • Online ISBN: 978-3-031-32099-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics