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Abstract. Resource demands of HPC applications vary significantly.
However, it is common for HPC systems to primarily assign resources
on a per-node basis to prevent interference from co-located workloads.
This gap between the coarse-grained resource allocation and the varying
resource demands can lead to HPC resources being not fully utilized. In
this study, we analyze the resource usage and application behavior of
NERSC’s Perlmutter, a state-of-the-art open-science HPC system with
both CPU-only and GPU-accelerated nodes. Our one-month usage anal-
ysis reveals that CPUs are commonly not fully utilized, especially for
GPU-enabled jobs. Also, around 64% of both CPU and GPU-enabled
jobs used 50% or less of the available host memory capacity. Additionally,
about 50% of GPU-enabled jobs used up to 25% of the GPU memory,
and the memory capacity was not fully utilized in some ways for all jobs.
While our study comes early in Perlmutter’s lifetime thus policies and
application workload may change, it provides valuable insights on per-
formance characterization, application behavior, and motivates systems
with more fine-grain resource allocation.

Keywords: HPC · Large-scale Characterization · Resource
Utilization · GPU Utilization · Memory System · Disaggregated
Memory

1 Introduction

In the past decade, High-Performance Computing (HPC) systems shifted from
traditional clusters of CPU-only nodes to clusters of more heterogeneous nodes,
where accelerators such as GPUs, FPGAs, and 3D-stacked memories have been
introduced to increase compute capability [7]. Meanwhile, the collection of open-
science HPC workloads is particularly diverse and recently increased its focus
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on machine learning and deep learning [4]. Heterogeneous hardware combined
with diverse workloads that have a wide range of resource requirements makes it
difficult to achieve efficient resource management. Inefficient resource manage-
ment threatens to not fully utilize expensive resources that can rapidly increase
capital and operating costs. Previous studies have shown that the resources of
HPC systems are often not fully utilized, especially memory [10,17,20].

NERSC’s Perlmutter also adopts a heterogeneous design to bolster perfor-
mance, where CPU-only nodes and GPU-accelerated nodes together provide a
three to four times performance improvement over Cori [12,13], making Perl-
mutter rank 8th in the Top500 list as of December 2022. However, Perlmutter
serves a diverse set of workloads from fusion energy, material science, climate
research, physics, computer science, and many other science domains [11]. In
addition, it is useful to gain insight into how well users are adapting to Perlmut-
ter’s heterogeneous architecture.

Consequently, it is desirable to understand how system resources in Perlmut-
ter are used today. The results of such an analysis can help us evaluate current
system configurations and policies, provide feedback to users and programmers,
offer recommendations for future systems, and motivate research in new archi-
tectures and systems. In this work, we focus on understanding CPU utilization,
GPU utilization, and memory capacity utilization (including CPU host mem-
ory and GPU memory) on Perlmutter. These resources are expensive, consume
significant power, and largely dictate application performance.

In summary, our contributions are as follows:

– We conduct a thorough utilization study of CPUs, GPUs, and memory capac-
ity in Perlmutter, a top 8 state-of-the-art HPC system that contains both
CPU-only and GPU-accelerated nodes. We discover that both CPU-only and
GPU-enabled jobs usually do not fully utilize key resources.

– We find that host memory capacity is largely not fully utilized for memory-
balanced jobs, while memory-imbalanced jobs have significant temporal
and/or spatial memory requirements.

– We show a positive correlation between job node hours, maximum memory
usage, as well as temporal and spatial factors.

– Our findings motivate future research such as resource disaggregation, job
scheduling that allows job co-allocation, and research that mitigates potential
drawbacks from co-locating jobs.

2 Related Work

Many previous works have utilized job logs and correlated them with system
logs to analyze job behavior in HPC systems [3,5,9,16,26]. For example, Zheng
et al. correlated the Reliability, Availability, and Serviceability (RAS) logs with
job logs to identify job failure and interruption characteristics [26]. Other works
utilize performance monitoring infrastructure to characterize application and
system performance in HPC [6,8,10,18,19,23,24]. In particular, the paper pre-
sented by Ji et al. analyzed various application memory usage in terms of object
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access patterns [6]. Patel et al. collected storage system data and performed
a correlative analysis of the I/O behavior of large-scale applications [18]. The
resource utilization analysis of the Titan system [24] summarized the CPU and
GPU time, memory, and I/O utilization across a five-year period. Peng et al.
focused on the memory subsystem and studied the temporal and spatial mem-
ory usage in two production HPC systems at LLNL [19]. Michelogiannakis et
al. [10] performed a detailed analysis of key metrics sampled in NERSC’s Cori
to quantify the potential of resource disaggregation in HPC.

System analysis provides insights into resource utilization and therefore
drives research on predicting and improving system performance [2,17,20,25].
Xie et.al developed a predictive model for file system performance on the Titan
supercomputer [25]. Desh [2], proposed by Das et al., is a framework that builds
a deep learning model based on system logs to predict node failures. Panwar et
al. performed a large-scale study of system-level memory utilization in HPC and
proposed exploiting unused memory via novel architecture support for OS [17].
Peng et al. performed a memory utilization analysis of HPC clusters and explored
using disaggregated memory to support memory-intensive applications [20].

3 Background

3.1 System Overview

NERSC’s latest system, Perlmutter [13], contains both CPU-only nodes and
GPU-accelerated nodes with CPUs. Perlmutter has 1,536 GPU-accelerated
nodes (12 racks, 128 GPU nodes per rack) and 3,072 CPU-only nodes (12 racks,
256 CPU nodes per rack). These nodes are connected through HPE/Cray’s Sling-
shot Ethernet-based high performance network. Each GPU-accelerated node fea-
tures four NVIDIA A100 Tensor Core GPUs and one AMD “Milan” CPU. The
memory subsystem in each GPU node includes 40 GB of HBM2 per GPU and
256 GB of host DRAM. Each CPU-only node features two AMD “Milan” CPUs
with 512 GB of memory. Perlmutter currently uses SLURM version 21.08.8 for
resource management and job scheduling. Most users submit jobs to the reg-
ular queue that has no maximum number of nodes and a maximum allowable
duration of 12 h.

The workload served by the NERSC systems includes applications from a
diverse range of science domains, such as fusion energy, material science, cli-
mate research, physics, computer science, and more [11]. From the over 45-year
history of the NERSC HPC facility and 12 generations of systems with diverse
architectures, the traditional HPC workloads evolved very slowly despite the
substantial underlying system architecture evolution [10]. However, the number
of deep learning and machine learning workloads across different science dis-
ciplines has grown significantly in the past few years [22]. Furthermore, in our
sampling time, Perlmutter was operating in parallel with Cori. Thus, the NERSC
workload was divided among the two machines and Perlmutter’s workload may
change once Cori retires. Therefore, while our study is useful to (i) find the gap
between resource provider and resource user and (ii) extract insights early in
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Fig. 1. Data are collected from CPU-only and GPU nodes, aggregated by aggregation
nodes, stored in CSV files, and then processed using python’s parquet library after
being joined by job-level data provided by SLURM.

Perlmutter’s lifetime to guide future policies and procurement, as in any HPC
system the workload may change in the future. Still, our methodology can be
reused in the future and on different systems.

3.2 Data Collection

NERSC collects system-wide monitoring data through the Lightweight Dis-
tributed Metric Service (LDMS) [1] and Nvidia’s Data Center GPU Manager
(DCGM) [14]. LDMS is deployed on both CPU-only and GPU nodes; it sam-
ples node-level metrics either from a subset of hardware performance counters
or operating system data, such as memory usage, I/O operations, etc. DCGM is
dedicated to collecting GPU-specific metrics, including GPU utilization, GPU
memory utilization, NVlink traffic, etc. The sampling interval of both LDMS
and DCGM is set by the system at 10 s. The monitoring data are aggregated
into CSV files from which we build a processing pipeline for our analysis, shown
in Fig. 1. As a last step, we merge the job metadata from SLURM (job ID, job
step, allocated nodes, start time, end time, etc.) with the node-level monitoring
metrics. The output from our flow is a set of parquet files.

Due to the large volume of data, we only sample Perlmutter from Novem-
ber 1 to December 1 of 2022. The system’s monitoring infrastructure is still
under deployment and some important traces such as memory bandwidth are
not available at this time. A duration of one month is typically representative in
an open-science HPC system [10], which we separately confirmed by sampling
other periods. However, Perlmutter’s workload may shift after the retirement of
Cori as well as the introduction of policies such as allowing jobs to share nodes
in a limited fashion. Still, a similar extensive study in Cori [10] that allows node
sharing extracted similar resource usage conclusions as our study. Therefore,
we anticipate that the key insights from our study in Perlmutter will remain
unchanged, and we consider that studies conducted in the early stages of a sys-
tem’s lifetime hold significant value.
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We measure CPU utilization from cpu id (CPU idle time among all cores in
a node, expressed as a percentage) reported from vmstat through LDMS [1]; we
then calculate CPU utilization (as a percentage) as: 100−cpu id. GPU utilization
(as a percentage) is directly read from DCGM reports [15]. Memory capacity uti-
lization encompasses both the utilization of memory by user-space applications
and the operating system. We use fb free (framebuffer memory free) from DCGM
to calculate GPU HBM2 utilization and mem free (the amount of idle memory)
from LDMS to calculate host DRAM capacity utilization. Memory capacity uti-
lization (as a percentage) is calculated as MemUtil = MemTotal−MemFree

MemTotal ×100,
where MemTotal, as described above, is 512 GB for CPU nodes, 256 GB for
the host memory of GPU nodes, and 40 GB for each GPU HBM2. MemFree is
the unused memory of a node, which essentially shows how much more memory
the job could have used.

In order to understand the temporal and spatial imbalance of resource usage
among jobs, we use the equations proposed in [19] to calculate the temporal
imbalance factor (RItemporal) and spatial imbalance factor (RIspatial). These
factors allow us to quantify the imbalance in resource usage over time and across
nodes, respectively. For a job that requests N nodes and runs for time T, and
its utilization of resource r on node n at time t is Un,t, the temporal imbalance
factor is defined as:

RItemporal(r) = max
1≤n≤N

(1 −
∑T

t=0 Un,t
∑T

t=0 max0≤t≤T (Un,t)
) (1)

Similarly, the spatial imbalance factor is defined as:

RIspatial(r) = 1 −
∑N

n=1 max0≤t≤T (Un,t)
∑N

n=1 max0≤t≤T,1≤n≤N (Un,t)
(2)

Both RItemporal and RIspatial are bound within the range of [0, 1]. Ideally, a
job uses fully all resources on all allocated nodes across the job’s lifetime, cor-
responding to a spatial and temporal factor of 0. A larger factor value indicates
a variation in resource utilization temporally/spatially and the job experiences
more temporal/spatial imbalance.

We exclude jobs with a runtime of less than 1 h in our subsequent analysis,
as such jobs are likely for testing or debugging purposes. Furthermore, since our
sampling frequency is 10 s, it is difficult to capture peaks that last less than 10 s
accurately. As a result, we concentrate on analyzing the behavior of sustained
workloads. Table 1 summarizes job-level statistics in which each job’s resource
usage is represented by its maximum resource usage among all allocated nodes
throughout its runtime.

3.3 Analysis Methods

To distill meaningful insights from our dataset we use Cumulative Distribution
Functions (CDFs), Probability Density Functions (PDFs), and Pearson correla-
tion coefficients. The CDF shows the probability that the variable takes a value
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Table 1. Perlmutter measured data summary. Each job’s resource utilization is repre-
sented by its peak usage.

Metric Statistics of all jobs Statistics of jobs ≥ 1h

Median Mean Max Std Dev Median Mean Max Std Dev

CPU Jobs 21.75% of CPU jobs ≥ 1h

Allocated nodes 1 6.51 1713 37.83 1 4.84 1477 25.43

Job duration (hours) 0.16 1.40 90.09 3.21 4.19 5.825 90.09 4.73

CPU util (%) 35.0 39.98 100.0 34.60 51.0 56.68 100.0 35.89

DRAM util (%) 13.29 22.79 98.62 23.65 18.61 33.69 98.62 30.88

GPU Jobs 23.42% GPU jobs ≥ 1h

Allocated nodes 1 4.66 1024 27.71 1 5.88 512 23.33

Job duration (hours) 0.30 1.14 13.76 2.42 2.2 4.12 13.76 3.67

Host CPU util (%) 4.0 19.60 100.0 23.53 4.0 18.00 100.0 24.81

Host DRAM util (%) 17.57 29.76 98.29 12.51 18.04 28.24 98.29 20.94

GPU util (%) 96.0 71.08 100.0 40.07 100.0 83.73 100.0 30.45

GPU HBM2 util (%) 16.28 34.07 100.0 37.49 18.88 40.23 100.0 36.33

less than or equal to x, for all values of x; the PDF shows the probability that
the variable has a value equal to x. To evaluate the resource utilization of jobs,
we analyze the maximum resource usage that occurred during each job’s entire
runtime, and we factor in the job’s impact on the system by weighting the job’s
data points based on the number of nodes allocated and the duration of the job.
We then calculate the CDF and PDF of job-level metrics using these weighted
data points. The Pearson correlation coefficient, which is a statistical tool to
identify potential relationships between two variables, is used to investigate the
correlation between two characteristics. The correlation factor, or Pearson’s r,
ranges from −1.0 to 1.0; a positive value indicates a positive correlation, zero
indicates no correlation, and a negative value indicates a negative correlation.

4 Results

In this section, we start with an overview of the job characteristics, including
their size, duration, and the applications they represent. Then we use CDF and
PDF plots to investigate the resource usage pattern across jobs, followed by the
characterization of the temporal and spatial variability of jobs. Lastly, we assess
the correlation between the different resource types assigned to each job.

4.1 Workloads Overview

We divide jobs into six groups by the number of allocated nodes and calculate the
percentage of each group compared to the total number of jobs. The details are
shown in Table 2. As shown, 68.10% of CPU jobs and 65.89% of GPU jobs only
request one node, while large jobs that allocate more than 128 nodes are only
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Table 2. Job size and duration. Jobs shorter than one hour are excluded.

Job Size (Nodes) 1 (1, 4] (4, 16] (16, 64] (64, 128] (128, 128+)

CPU Jobs Total Number: 21706 14783 2486 3738 550 62 87

Percentage (%) 68.10 11.45 17.22 2.54 0.29 0.40

GPU Jobs Total Number: 24217 15924 5358 1837 706 318 74

Percentage (%) 65.89 22.04 7.56 2.90 1.31 0.30

Job Duration (Hours) [1, 3] (3, 6] (6, 12] (12, 24] (24, 48] (48, 48+)

CPU Jobs Total Number: 21706 8879 4109 6300 2393 15 10

Percentage (%) 40.90 18.94 29.02 11.02 0.07 0.05

GPU Jobs Total Number: 24217 14495 3888 4916 918 0 0

Percentage (%) 59.86 16.05 20.30 3.79 0 0

0.40% and 0.30% on CPU and GPU nodes, respectively. Also, 40.90% of CPU
jobs and 59.86% of GPU jobs execute for less than three hours (as aforemen-
tioned, jobs with less than one hour of runtime are discarded from the dataset).
We also observe that about 88.86% of CPU jobs and 96.21% of GPU jobs execute
less than 12 h, and only a few CPU jobs and no GPU jobs exceed 48 h. This is
largely a result of policy since Perlmutter’s regular queue allows a maximum of
12 h. However, jobs using a special reservation can exceed this limit [13].

Next, we analyze the job names obtained from Slurm’s sacct and estimate the
corresponding applications through empirical analysis. Although this approach
has limitations, such as the inability to identify jobs with undescriptive names
such as “python” or “exec”, it still offers useful information. Figure 2 shows that
most node hours on both CPU-only and GPU-accelerated nodes are consumed
by a few recurring applications. The top four CPU-only applications account
for 50% of node hours, with ATLAS alone accounting for over a quarter. Over
600 CPU applications make up only 22% of the node hours, using less than
2% each (not labeled on the pie chart). On GPU-accelerated nodes, the top
11 applications consume 75% of node hours, while the other 400+ applications
make up the remaining 25%. The top six GPU applications account for 58% of
node hours, with usage roughly evenly divided.

We further classify system workloads into three groups according to their
maximum host memory capacity utilization. In particular, jobs using less than
25% of the total host memory capacity are categorized as low intensity, jobs
that use 25–50% are considered moderate intensity, and those exceeding 50%
are classified as high intensity [19]. Node-hours and the number of jobs can
also be decomposed in these three categories, where node-hours is calculated by
multiplying the total number of allocated nodes by the runtime (duration) of
each job.

As shown in Fig. 3a, CPU-only nodes have about 63% of low memory capacity
intensity jobs. Although moderate and high memory intensity jobs are 37% of the
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(a) CPU-only nodes. (b) GPU-accelerated nodes.

Fig. 2. Decomposition of node-hours by applications. Infrequent applications are not
labeled.

(a) CPU-only jobs. (b) GPU-accelerated jobs.

Fig. 3. Node-hours and job counts by host memory capacity intensity (utilization).

total CPU jobs, they consume about 54% of the total node-hours. This indicates
that moderate and high memory intensity jobs are likely to use more nodes
and/or run for a longer time. This observation holds true for GPU nodes in which
37% of memory-intensive jobs compose 58% of the total node-hours. In addition,
we observe that even though the percentage of high memory intensity jobs on
GPU nodes (17%) is less than that on CPU nodes (26%), the corresponding
percentages of the node-hours are close, indicating that high memory intensity
GPU jobs consume more nodes and/or run for a longer time than high memory
intensity CPU jobs.
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Fig. 4. Maximum CPU utilization of CPU node-hours (left) and GPU node-hours
(right).

Observation: The analysis shows that both CPU and GPU nodes have
around two-thirds of jobs that only occupy one node. GPU jobs have a higher
proportion of short-lived jobs that run for less than three hours compared
to CPU jobs. Additionally, jobs rarely allocate more than 128 nodes, which
suggests that the majority of jobs can be accommodated within a single rack
in the Perlmutter system. Furthermore, the analysis indicates that jobs that
are intensive in host memory tend to consume more node-hours, despite rep-
resenting a relatively small proportion of total jobs.

4.2 Resource Utilization

This subsection analyzes resource usage among jobs and compares the charac-
teristics of CPU-only jobs and GPU-enabled jobs. We consider the maximum
resource usage of a job across all allocated nodes and throughout its entire run-
time to represent its resource utilization because maximum utilization must be
accounted for when scheduling a job in a system. As jobs with larger sizes and
longer durations have a greater impact on system resource utilization, and the
system architecture is optimized for node-hours, we calculate the resource uti-
lization for each job and multiply the number of data points we add to our
dataset that measure that utilization by the job’s node-hours.

CPU Utilization. Figure 4 shows the distribution of the maximum CPU uti-
lization of CPU jobs and GPU jobs weighted by node-hours. As shown, 40.2% of
CPU node-hours have at most 50% CPU utilization, and about 28.7% of CPU
node-hours has a maximum CPU utilization of 50–55%. In addition, 24.4% of
jobs reach over 95% CPU utilization, creating a spike at the end of the CDF line.
Over one-third of CPU jobs only utilize up to 50% of the CPU resources available,
which could potentially be attributed to Simultaneous Multi-threading (SMT)
in the Milan architecture. While SMT can provide benefits for specific types
of workloads, such as communication-bound or I/O-bound parallel applications,
it may not necessarily improve performance for all applications and may even
reduce it in some cases [21]. Consequently, users may choose to disable SMT,
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Fig. 5. Maximum host memory capacity utilization of CPU node-hours (left) and GPU
node-hours (right).

leading to half of the logical cores being unused during runtime. Additionally,
certain applications are not designed to use SMT at all, resulting in a reported
utilization of only 50% in our analysis even with 100% compute core utilization.

In contrast to CPU jobs, GPU-enabled jobs exhibit a distinct distribution of
CPU usage, with the majority of jobs concentrated in the 0–5% bin and only
a small fraction of jobs utilizing the CPUs in full. We also obverse that node-
hours with high utilization of both CPU and GPU resources are rare, with only
2.47% of node-hours utilizing over 90% of these resources (not depicted). This is
because the CPUs in GPU nodes are primarily tasked with data preprocessing,
data retrieval, and loading computed data, while the bulk of the computational
load is offloaded to the GPUs. Therefore, the utilization of the CPUs in GPU-
enabled jobs is comparatively low, as their primary function is to support and
facilitate the GPU’s heavy computational tasks.

Host DRAM Utilization. We plot the CDF and PDF of the maximum host
memory utilization of job node-hours in Fig. 5. To help visualize the distribution
of memory usage, the red vertical lines at the X axis indicate the 25% and 50%
thresholds that we previously used to classify jobs into three memory intensity
groups. A considerable fraction of the jobs on both CPU and GPU nodes use
between 5% and 25% of host memory capacity, respectively. Specifically, 47.4% of
all CPU jobs and 43.3% of all GPU jobs fall within these ranges. The distribution
of memory utilization, like that of CPU utilization, displays spikes at the end of
the CDF lines due to a small percentage of jobs (12.8% for CPU and 9.5% for
GPU, respectively) that fully exhaust host memory capacity.

Our results indicate that a significant proportion of both CPU and GPU
jobs, 64.3% and 62.8% respectively, use less than 50% of the available memory
capacity. As a reminder, the available host memory capacity is 512 GB in CPU
nodes and 256 GB in GPU nodes. While memory capacity is also not fully utilized
in Cori [10], the higher memory capacity per node in Perlmutter exacerbates the
challenge of fully utilizing the available memory capacity.
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Fig. 6. Maximum GPU (left) and HBM2 capacity (right) utilization of GPU-hours.

GPU Resources. The utilization of GPUs in DCGM indicates the percentage
of time that GPU kernels are active during the sampling period, and it is reported
per GPU instead of per node. Therefore, we analyze GPU utilization in terms of
GPU-hours instead of node-hours. The left subfigure of Fig. 6 displays the CDF
plot of maximum GPU utilization, indicating that 50% of GPU jobs achieve
a maximum GPU utilization of up to 67%, while 38.45% of GPU jobs reach a
maximum GPU utilization of over 95%. To assess the idle time of GPUs allocated
to jobs, we separate the GPU utilization of zero from other ranges in the PDF
histogram plot. As shown in the green bar, approximately 15% of GPU hours
are fully idle.

Similarly, we measure the maximum GPU HBM2 capacity utilization for each
allocated GPU during the runtime of each job. As shown in the right subfigure
of Fig. 6, the HBM2 utilization is close to evenly distributed from 0% to 100%,
resulting in a nearly linear CDF line. The green bar in the PDF plot suggests
that 10.6% of jobs use no HBM2 capacity, which is lower than the percentage of
GPU idleness (15%). This finding is intriguing as it indicates that even though
some allocated GPUs are idle, their corresponding GPU memory is still utilized,
possibly by other GPUs or for other purposes.

The GPU resources’ idleness can be attributed to the current configuration
of GPU-accelerated nodes, which are not allowed to be shared by jobs at the
same time. As a result, each user has exclusive access to four GPUs per node,
even if they require fewer resources. Sharing nodes may be enabled in the future,
potentially leading to more efficient use of GPU resources.

Observation: After analyzing CPU and host DRAM utilization, we find that
GPU node-hours consume fewer CPU and host memory resources in compari-
son to CPU node-hours, likely because the computation is offloaded to GPUs.
Although most GPU-hours reach high GPU utilization rates, we find that
15% of them have fully idle GPUs, and 10.6% of GPU-hours do not utilize
HBM2 capacity, due to current configurations that do not allow for job shar-
ing of GPU nodes. Allowing GPU sharing could alleviate the idleness of GPU
resources and increase their average utilization.
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(a) Constant pattern. (b) Dynamic pattern. (c) Sporadic pattern.

Fig. 7. Temporal patterns illustrated with the memory capacity utilization metrics
of randomly selected jobs in Perlmutter, one representative job for each of the three
categories. Each color represents the memory capacity utilization (%) of each node
assigned to the job over the job’s runtime. The area plots at the bottom show the
normalized metrics for the node that has the maximum temporal factor among nodes
allocated to the job; the percentage of the blank area corresponds to the value of
RItemporal of a job. A larger blank area indicates more temporal imbalance.

4.3 Temporal Characteristics

Memory capacity utilization can become temporally imbalanced when a job does
not utilize memory capacity evenly over time. Temporal imbalance is particu-
larly common in applications that consist of phases that require different mem-
ory capacities. In such cases, a job may require significant amounts of memory
capacity during some phases, while utilizing much less during others, resulting
in a temporal imbalance of memory utilization.

We classify jobs into three patterns by the RItemporal value of host DRAM
utilization: constant, dynamic, and sporadic [19]. Jobs with RItemporal lower
than 0.2 are classified in the constant pattern, where memory utilization does
not show significant change over time. Jobs with RItemporal between 0.2 and 0.6
are in the dynamic pattern, where jobs have frequent and considerable memory
utilization changes. The sporadic pattern is defined by RItemporal larger than
0.6. In this pattern, jobs have infrequent and sporadic higher memory capacity
usage than the rest of the time.

Figure 7 illustrates three memory utilization patterns that were constructed
from our monitoring data. Each color in the scatter plot represents a differ-
ent node allocated to the job. The constant pattern job shows a nearly con-
stant memory capacity utilization of about 80% across all allocated nodes for its
entire runtime, resulting in the bottom area plot being almost fully covered. The
dynamic pattern job also exhibits similar behavior across its allocated nodes, but
due to variations over time, the shaded area has several bumps and dips, result-
ing in an increase in the blank area. For the sporadic pattern job, the memory
utilization readings of all nodes have the same temporal pattern, with sporadic
spikes and low memory capacity usage between spikes, resulting in the blank
area occupying most of the area and indicating poor temporal balance.

The CDFs and PDFs of the host memory temporal imbalance factor of CPU
jobs and GPU jobs are illustrated in Fig. 8, in which two vertical red lines sep-
arate the jobs into three temporal patterns. Overall, both CPU jobs and GPU
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(a) CPU jobs. (b) GPU jobs.

Fig. 8. CDFs and PDFs of the temporal factor of host memory capacity utilization
across nodes. The larger the value of the temporal factor, the more temporal imbalance.

(a) Temporal categories. (b) Spatial categories.

Fig. 9. Host DRAM distribution by temporal and spatial categories. The left portion
of each subfigure represents CPU jobs and the right portion GPU jobs.

jobs have good temporal balance: 55.3% of CPU jobs and 74.3% of GPU jobs
belong to the constant pattern, i.e., their RItemporal values are below 0.2. Jobs
on CPU nodes have a higher percentage of dynamic patterns: 35.9% of CPU jobs
have RItemporal value between 0.2 and 0.4, while GPU jobs have 24.9% in the
dynamic pattern. On GPU nodes, we only observe very few jobs (0.8%) in the
sporadic pattern, which means the cases of host DRAM having severe temporal
imbalance are few.

We further analyze the memory capacity utilization distribution of jobs in
each temporal pattern; the results are shown in Fig. 9a. We extract the maxi-
mum, minimum, and difference between maximum and minimum memory capac-
ity used from jobs in each category and present the distribution in box plots. The
minimum memory used for all categories on the same nodes is similar: about 25
GB and 19 GB on CPU and GPU nodes, respectively. 75% of jobs in the constant
category on CPU nodes use less than 86 GB while 75% jobs on GPU nodes use
less than 56 GB. As 55.3% CPU jobs and 74.3% GPU jobs are in the constant
category, 41.5% CPU jobs and 55.7% GPU jobs do not use 426 GB and 200 GB
of the available capacity, respectively. The maximum memory used in the con-
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(a) Convergent pattern. (b) Scattered pattern. (c) Deviational pattern.

Fig. 10. Spatial patterns illustrated with the memory capacity utilization metrics of
randomly selected jobs in Perlmutter, one representative job for each of the three
categories. Each color represents memory utilization (%) of a different node allocated
to each job.

stant pattern is 150 GB on CPU nodes and 94 GB on GPU nodes, both of which
do not exceed half of the memory capacity. Jobs using high memory capacity
are only observed in dynamic and sporadic patterns, where 75% sporadic jobs
use up to 429 GB on CPU nodes and 189 GB on GPU nodes, respectively.

Observation: Our analysis suggests that GPU nodes exhibit a greater pro-
portion of jobs with temporal balance in host DRAM usage compared to CPU
nodes. While over half of both CPU and GPU jobs fall under the category
of temporal constant jobs, jobs with temporal imbalance, characterized by
dynamic and sporadic patterns, generally require higher maximum memory
capacity compared to constant pattern jobs. Furthermore, the distribution
of host memory capacity usage among jobs with different temporal patterns
reveals that memory capacity is not fully utilized for constant pattern jobs,
whereas dynamic and sporadic pattern jobs may achieve high memory capac-
ity utilization at some point during their runtime.

4.4 Spatial Characteristics

The job scheduler and resource manager of current HPC systems do not consider
the varying resource requirements of individual tasks within a job, leading to
spatial imbalances in resource utilization across nodes. One common type of
spatial imbalance is when a job requires a significant amount of memory in a
small number of nodes, while other nodes use relatively less memory. Spatial
imbalance of memory capacity quantifies the uneven usage of memory capacity
across nodes allocated to a job.

To characterize the spatial imbalance of jobs, we use Eq. 2 presented
in Sect.3.2 to calculate the spatial factor RI spatial of memory capacity usage
for each job. Similar to the temporal factor, RI spatial falls in the range [0, 1]
and larger values represent higher spatial imbalance. Jobs are classified into one
of three spatial patterns: (i) convergent pattern that has RI spatial less than
0.2, (ii) scattered pattern that has RI spatial between 0.2 and 0.6, and (iii)
deviational pattern with its RI spatial larger than 0.6.



A Case Study of NERSC’s Perlmutter 311

(a) CPU jobs. (b) GPU jobs.

Fig. 11. CDFs and PDFs of the spatial factor of host memory capacity utilization of
jobs. The larger the value of the spatial factor, the more spatial imbalance.

As shown in the examples in Fig. 10, a job that exhibits a convergent pattern
has similar or identical memory capacity usage among all of its assigned nodes.
A job with a scattered pattern shows diverse memory usage and different peak
memory usage among its nodes. A spatial deviational pattern job has a similar
memory usage pattern in most of its nodes but has one or several nodes deviate
from the bunch. It is worth noting that low spatial imbalance does not indi-
cate low temporal imbalance. The spatial convergent pattern job shown in the
example has several spikes in memory usage and therefore is a temporal sporadic
pattern.

We present the CDFs and PDFs of the job-wise host memory capacity spatial
factor in Fig. 11. Overall, 83.5% of CPU jobs and 88.9% of GPU nodes are in
the convergent pattern and very few jobs are in the deviational pattern. Because
jobs that allocate a single node always have a spatial imbalance factor of zero, if
we include single-node jobs, the overall memory spatial balance is even better:
94.7% for CPU jobs and 96.2% for GPU jobs.

We combine the host memory spatial pattern with the host memory capac-
ity usage behavior in each job and plot the distribution of memory capacity
utilization by spatial patterns; the results are shown in Fig. 9b. Similar to the
distribution of the temporal patterns, we use the maximum, minimum, and dif-
ference of job memory to evaluate the memory utilization imbalance. Spatial
convergent jobs have relatively low memory usage. As shown in the green box
plots, 75% of spatial convergent jobs (upper quartile) use less than 254 GB
on CPU nodes and 95 GB on GPU nodes. Given that spatial convergent jobs
account for over 94% of total jobs, over 70% of jobs have 258 GB and 161 GB of
memory capacity unused for CPU and GPU nodes, respectively. Memory imbal-
ance, i.e., the difference between the maximum and minimum memory capacity
usage of a job (red box plots), is also the lowest in convergent pattern jobs. For
spatial-scattered jobs on CPU nodes, even though they are a small portion of
the total jobs, the memory difference spans a large range: from 115 GB at 25%
percentile to 426 GB at 75% percentile. Spatial deviational CPU jobs have a
shorter span in memory imbalance compared to GPU jobs; it only ranges from
286 GB to 350 GB at the lower and upper quartiles, respectively.
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(a) CPU jobs. (b) GPU jobs.

Fig. 12. Correlation of job node-hours, maximum memory capacity used, temporal,
and spatial factors.

Observation: Our analysis shows that a significant number of CPU and
GPU jobs on Perlmutter have a convergent pattern of spatial balance for host
memory capacity usage across allocated nodes. Even after eliminating single-
node jobs, the proportion of jobs with a convergent spatial pattern remains
high, suggesting that Perlmutter’s jobs generally have good spatial balance.
However, jobs with scattered and deviational spatial patterns, albeit fewer
in number, tend to consume more memory capacity in some allocated nodes,
leading to uneven memory capacity utilization across nodes and some nodes
exhibiting low memory capacity utilization.

4.5 Correlations

We conduct an analysis of the relationships between various job characteris-
tics on Perlmutter, including job size and duration (measured as node hours),
maximum CPU and host memory capacity utilization, and temporal and spa-
tial factors. The results of the analysis are presented in a correlation matrix
in Fig. 12. Our findings show that for both CPU and GPU nodes, job node-
hours are positively correlated with the spatial imbalance factor (ri spatial).
This suggests that larger jobs with longer runtimes are more likely to experience
spatial imbalance. Maximum CPU utilization is strongly positively correlated
with host memory capacity utilization and temporal factors in CPU jobs, while
the correlation is weak in GPU jobs. Moreover, the temporal imbalance factor
(ri temporal) is positively correlated with maximum memory capacity utiliza-
tion (mem max), with correlation coefficients (r-value) of 0.75 for CPU jobs and
0.59 for GPU jobs. These strong positive correlations suggest that jobs requiring
a significant amount of memory are more likely to experience temporal memory
imbalance, which is consistent with our previous observations. Finally, we find
a slight positive correlation (r-value of 0.16 for CPU jobs and 0.29 for GPU
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jobs) between spatial and temporal imbalance factors, indicating that spatially
imbalanced jobs are also more likely to experience temporal imbalance.

5 Discussion and Conclusion

In light of the increasing demands of HPC and the varied resource require-
ments of open-science workloads, there is a risk of not fully utilizing expensive
resources. To better understand this issue, we conducted a comprehensive analy-
sis of memory, CPU, and GPU utilization in NERSC’s Perlmutter. Our analysis
spanned one month and yielded important insights. Specifically, we found that
only a quarter of CPU node-hours achieved high CPU utilization, and CPUs on
GPU-accelerated nodes were typically utilized for only 0–5% of the node-hours.
Moreover, while a significant proportion of GPU-hours demonstrated high GPU
utilization (over 95%), more than 15% of GPU-hours had idle GPUs. Moreover,
both CPU host memory and GPU HBM2 were not fully utilized for the major-
ity of node-hours. Interestingly, jobs with temporal balance consistently did not
fully utilize memory capacity, while those with temporal imbalance had vary-
ing idle memory capacity over time. Finally, we observed that jobs with spatial
imbalance did not have high memory capacity utilization for all allocated nodes.

Insufficient resource utilization can be attributed to various application char-
acteristics, as similar issues have been observed in other HPC systems. Although
simultaneous multi-threading can potentially improve CPU utilization and mit-
igate stalls resulting from cache misses, it may not be suitable for all applica-
tions. Furthermore, GPUs, being a new compute resource to NERSC users, may
be currently not fully utilized because users and applications are still adapt-
ing to the new system, and the current configurations are not optimized yet to
support GPU node sharing. Furthermore, it is important to note that in most
systems, various parameters such as memory bandwidth and capacity are inter-
dependent. For instance, the number and type of memory modules significantly
impact memory bandwidth and capacity. Therefore, when designing a system,
it may be challenging to fully utilize every parameter while optimizing others.
This may result in some resources being not fully utilized to improve the overall
performance of the system. Thus, not fully utilizing system resources can be an
intentional trade-off in the design of HPC systems.

Our study provides valuable insights for system operators to understand and
monitor resource utilization patterns in HPC workloads. However, the scope of
our analysis was limited by the availability of monitoring data, which did not
include information on network and memory bandwidth as well as file system
statistics. Despite this limitation, our findings can help system operators identify
areas where resources are not fully utilized and optimize system configuration.

Our analysis also reveals several opportunities for future research. For
instance, given that 64% of jobs use only half or less of the on-node host DRAM
capacity, it is worth exploring the possibility of disaggregating the host memory
and using a remote memory pool. This remote pool can be local to a rack, group
of racks, or the entire system. Our job size analysis indicates that most jobs
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can be accommodated within the compute resources provided by a single rack,
suggesting that rack-level disaggregation can fulfill the requirements of most
Perlmutter jobs if they are placed in a single rack. Furthermore, a disaggregated
system could consider temporal and spatial characteristics when scheduling jobs
since high memory utilization is often observed in memory-unbalanced jobs. Such
jobs can be given priority for using disaggregated memory.

Another promising area for improving resource utilization is to reevaluate
node sharing for specific applications with compatible temporal and spatial char-
acteristics. One of the main challenges in job co-allocation is the potential for
shared resources, such as memory, to become saturated at high core counts
and significantly degrade job performance. However, our analysis reveals that
both CPU and memory resources are not fully utilized, indicating that there
may be room for co-allocation without negatively impacting performance. The
observation that memory-balanced jobs typically consume relatively low memory
capacity suggests that it may be possible to co-locate jobs with memory-balanced
jobs to reduce the probability of contention for memory capacity. By optimiz-
ing resource allocation and reducing the likelihood of resource contention, these
approaches can help maximize system efficiency and performance.
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