Skip to main content
  • 183 Accesses

Abstract

Surgical decision-making is the utmost difficult and individual compromise between patient demands and surgical expertise in a specific socioeconomic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicolescu B. Manifesto of transdisciplinarity. Albany: State University of New York Press; 2002.

    Google Scholar 

  2. Nicolescu B. Stéphane Lupasco et le tiers inclus. Rev Synth. 2005;126:431–41.

    Article  Google Scholar 

  3. Lynch JM, Dowrick C, Meredith P, McGregor SLT, van Driel M. Transdisciplinary Generalism: naming the epistemology and philosophy of the generalist. J Eval Clin Pract. 2021;27(3):638–47. https://doi.org/10.1111/jep.13446. Epub 2020 Sep 16.

    Article  PubMed  Google Scholar 

  4. Chartier J-P. From pluridisciplinarity to transdisciplinarity. Cliniques. 2012;1(3):96–114. https://doi.org/10.3917/clini.003.0096.

    Article  Google Scholar 

  5. Lapierre A, Gauvin-Lepage J, Lefebvre H. La collaboration interprofessionnelle lors de la prise en charge d’un polytraumatisé aux urgences : une revue de la littérature [Interprofessional collaboration in the management of a polytrauma at the emergency department : a literature review.]. Rech Soins Infirm. 2017;(129):73–88. French. https://doi.org/10.3917/rsi.129.0073.

  6. Fernandes I, Rueff MC, Portela S. Transdisciplinarity in strategic decisions for oncological treatments. Med Law. 2015;34(1):645–59.

    CAS  PubMed  Google Scholar 

  7. Sargent L, Slattum P, Brooks M, Gendron T, Mackiewicz M, Diallo A, Waters L, Winship J, Battle K, Ford G, Falls K, Chung J, Zanjani F, Pretzer-Aboff I, Price ET, Prom-Worley E, Parsons P, iCubed Health and Wellness in Aging Transdisciplinary Core. Bringing transdisciplinary aging research from theory to practice. Gerontologist. 2020;22:gnaa214. https://doi.org/10.1093/geront/gnaa214. Epub ahead of print.

    Article  Google Scholar 

  8. Pétermann M. Transdisciplinarity: a prerequisite for palliative care practice. Rev Int Soins Palliatifs. 2007;22:19–22. https://doi.org/10.3917/inka.071.0019.

    Article  Google Scholar 

  9. Bäumer P, Pham M, Bendzus M. MR neurography. Diagnostic imaging modality for the peripheral nervous system. Akt Neurol. 2014;41:461–8.

    Google Scholar 

  10. Bisinella GL, Birch R, Smith SJM. Neurophysiological prediction of outcome in obstetric lesions of the brachial plexus. J Hand Surg Br. 2003;28(2):148–52.

    Article  CAS  PubMed  Google Scholar 

  11. Gilbert A, Whitaker I. Obstetrical brachial plexus lesions. J Hand Surg Am. 1991;16:489–91.

    Article  CAS  Google Scholar 

  12. Menorca RMG, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin. 2013;29:317–30.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krug C, Holzbach T, Giunta R. Periphere nervenverletzungen. Handchir Scan. 2015;4:57–69.

    Article  Google Scholar 

  14. Samara C, Poirot O, Domènech-Estévez E, Chrast R. Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions. Front Cell Neurosci. 2013;7:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu B, et al. Myelin sheath structure and regeneration in peripheral nerve injury repair. Proc Natl Acad Sci U S A. 2019;116:22347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aguayo AJ, Charron L, Bray GM. Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and radiographic study. J Neurocytol. 1976;5:565–73.

    Article  CAS  PubMed  Google Scholar 

  17. Ritchie JM, Rang HP. Extraneuronal saxitoxin binding sites in rabbit myelinated nerve. Proc Natl Acad Sci. 1983;80:2803–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baker MD. Electrophysiology of mammalian Schwann cells. Prog Biophys Mol Biol. 2002;78:83–103.

    Article  CAS  PubMed  Google Scholar 

  19. Muzio MR, Cascella M. Histology, Axon. StatPearls; 2020.

    Google Scholar 

  20. Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci. 2020:1–13. https://doi.org/10.1007/s00018-020-03516-9.

  21. Bunge RP. Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol. 1993;3:805–9.

    Article  CAS  PubMed  Google Scholar 

  22. Corfas G, Velardez MO, Ko C-P, Ratner N, Peles E. Mechanisms and roles of Axon-Schwann cell interactions. J Neurosci. 2004;24:9250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rocco ML, Soligo M, Manni L, Aloe L. Nerve growth factor: early studies and recent clinical trials. Curr Neuropharmacol. 2018;16:1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen A, Xiong L-J, Tong Y, Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep. 2013;1:167–76.

    Article  CAS  PubMed  Google Scholar 

  26. Maisonpierre P, et al. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 1990;80(247):1446–51.

    Article  Google Scholar 

  27. Sendtner M, Stöckli K, Thoenen H. Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J Cell Biol. 1992;118:139.

    Article  CAS  PubMed  Google Scholar 

  28. Sendtner M, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature. 1990;345:440–1.

    Article  CAS  PubMed  Google Scholar 

  29. Baloh RH, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3–RET receptor complex. Neuron. 1998;21:1291–302.

    Article  CAS  PubMed  Google Scholar 

  30. Mishchenko TA, Mitroshina EV, Shishkina TV, Vedunova MB. Antioxidant properties of glial cell-derived neurotrophic factor (GDNF). Bull Exp Biol Med. 2018;166:293–6.

    Article  CAS  PubMed  Google Scholar 

  31. Boggs JM. Myelin basic protein: a multifunctional protein. Cell Mol Life Sci. 2006;63:1945–61.

    Article  CAS  PubMed  Google Scholar 

  32. Snipes G, Suter U, Welcher A, Shooter E. Characterization of a novel peripheral nervous system myelin protein (PMP-22/SR13). J Cell Biol. 1992;117:225–38.

    Article  CAS  PubMed  Google Scholar 

  33. Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem. 2007;100:1431–48.

    CAS  PubMed  Google Scholar 

  34. Waller A. Experiments on the section of the glosso-pharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Edinburgh Med Surg J. 1851;76:369.

    Google Scholar 

  35. Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594:3521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perry VH, Brown MC, Gordon S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med. 1987;165:1218–23.

    Article  CAS  PubMed  Google Scholar 

  37. Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130:605–18.

    Article  CAS  PubMed  Google Scholar 

  38. Trapp B, Hauer P, Lemke G. Axonal regulation of myelin protein mRNA levels in actively myelinating Schwann cells. J Neurosci. 1988;8:3515–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chaudhry N, et al. Myelin-associated glycoprotein inhibits Schwann cell migration and induces their death. J Neurosci. 2017;37:5885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation. 2011;8:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beuche W, Friede RL. The role of non-resident cells in Wallerian degeneration. J Neurocytol. 1984;13:767–96.

    Article  CAS  PubMed  Google Scholar 

  42. Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature. 1987;330:658–9.

    Article  CAS  PubMed  Google Scholar 

  43. Salzer JL, Bunge RP. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol. 1980;84:739–52.

    Article  CAS  PubMed  Google Scholar 

  44. Weinberg HJ, Spencer PS. The fate of Schwann cells isolated from axonal contact. J Neurocytol. 1978;7:555–69.

    Article  CAS  PubMed  Google Scholar 

  45. Lee DA, Zurawel RH, Windebank AJ. Ciliary neurotrophic factor expression in Schwann cells is induced by axonal contact. J Neurochem. 1995;65:564–8.

    Article  CAS  PubMed  Google Scholar 

  46. Jejurikar SS, Marcelo CL, Kuzon WM. Skeletal muscle denervation increases satellite cell susceptibility to apoptosis. Plast Reconstr Surg. 2002;110:160–8.

    Article  PubMed  Google Scholar 

  47. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Behav Genet. 2015;45:183–95.

    Google Scholar 

  48. Kalamida D, et al. Muscle and neuronal nicotinic acetylcholine receptors: structure, function and pathogenicity. FEBS J. 2007;274:3799–845.

    Article  CAS  PubMed  Google Scholar 

  49. Grassi F, Fucile S. Calcium influx through muscle nAChR-channels: one route, multiple roles. Neuroscience. 2020;439:117–24.

    Article  CAS  PubMed  Google Scholar 

  50. Schwarz H, Giese G, Müller H, Koenen M, Witzemann V. Different functions of fetal and adult AChR subtypes for the formation and maintenance of neuromuscular synapses revealed in ε-subunit-deficient mice. Eur J Neurosci. 2000;12:3107–16.

    Article  CAS  PubMed  Google Scholar 

  51. Cisterna BA, et al. Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat Commun. 2020;11:1073. https://doi.org/10.1038/s41467-019-14063-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yampolsky P, Pacifici PG, Witzemann V. Differential muscle-driven synaptic remodeling in the neuromuscular junction after denervation. Eur J Neurosci. 2010;31:646–58.

    Article  PubMed  Google Scholar 

  53. Castets P, et al. mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4. Nat Commun. 2019;10:1–16.

    Article  CAS  Google Scholar 

  54. Rudolf R, Straka T. Nicotinic acetylcholine receptor at vertebrate motor endplates: endocytosis, recycling, and degradation. Neurosci Lett. 2019;711:134434.

    Article  CAS  PubMed  Google Scholar 

  55. Morano M, et al. Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation. Sci Rep. 2018;8:5047.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wong A, Pomerantz JH. The role of muscle stem cells in regeneration and recovery after denervation: a review. Plast Reconstr Surg. 2019;143:779–88.

    Article  CAS  PubMed  Google Scholar 

  57. Forcina L, Miano C, Pelosi L, Musarò A. An overview about the biology of skeletal muscle satellite cells. Curr Genomics. 2019;20(1):24–37. https://doi.org/10.2174/1389202920666190116094736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 2007;19:628–33.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Viguie CA, Lu DAX, Huang SK, Rengen H, Carlson BM. Quantitative study of the effects of long-term denervation on the extensor digitorum longus muscle of the rat. Anat Rec. 1997;248:346–54.

    Article  CAS  PubMed  Google Scholar 

  60. Carlson BM. The biology of long-term denervated skeletal muscle. Eur J Transl Myol. 2014;24:5–11.

    Article  Google Scholar 

  61. Carlson BM, Borisov AB, Dedkov EI, Dow D, Kostrominova TY. The biology and restorative capacity of long-term denervated skeletal muscle. Basic Appl Myol. 2002;12:249–56.

    Google Scholar 

  62. Chen L, Huang HW, Gu SH, Xu L, Xu JG. The study of myogenin expression in denervated human skeletal muscles. J Int Med Res. 2011;39:378–87.

    Article  CAS  PubMed  Google Scholar 

  63. Ruijs ACJ, Jaquet JB, Kalmijn S, Giele H, Hovius SER. Median and ulnar nerve injuries: a meta-analysis of predictors of motor and sensory recovery after modern microsurgical nerve repair. Plast Reconstr Surg. 2005;116:484–94.

    Article  CAS  PubMed  Google Scholar 

  64. Seddon HJ. Three types of nerve injury. Brain. 1943;66:237–88.

    Article  Google Scholar 

  65. Dahlin LB. Techniques of peripheral nerve repair. Scand J Surg. 2008;97:310–6.

    Article  CAS  PubMed  Google Scholar 

  66. Mackinnon SE. New directions in peripheral nerve surgery. Ann Plast Surg. 1989;22:257–73.

    Article  CAS  PubMed  Google Scholar 

  67. Millesi H. Nerve grafting. Clin Plast Surg. 1984;11:115–20.

    Article  CAS  PubMed  Google Scholar 

  68. Sunderland IRP, et al. Effect of tension on nerve regeneration in rat sciatic nerve transection model. Ann Plast Surg. 2004;53:382–7.

    Article  PubMed  Google Scholar 

  69. Pfister BJ, et al. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng. 2011;39:81–124.

    Article  PubMed  Google Scholar 

  70. Gupta R, et al. Human motor endplate remodeling after traumatic nerve injury. J Neurosurg. 2020a:1–8. https://doi.org/10.3171/2020.8.jns201461.

  71. Hart AM, Terenghi G, Wiberg M. Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection. Neurol Res. 2008;30:999–1011.

    Article  PubMed  Google Scholar 

  72. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Ann Rev Chem Biomol Eng. 2011;2:403–30.

    Article  Google Scholar 

  73. Nikolaev M, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature. 2020;585:574–8.

    Article  PubMed  Google Scholar 

  74. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95.

    Article  Google Scholar 

  75. Carnes ME, Pins GD. Skeletal muscle tissue engineering: biomaterials-based strategies for the treatment of volumetric muscle loss. Bioengineering. 2020;7:1–39.

    Article  Google Scholar 

  76. Gilbert-Honick J, Grayson W. Vascularized and innervated skeletal muscle tissue engineering. Adv Healthc Mater. 2020;9:e1900626.

    Article  PubMed  Google Scholar 

  77. Schäfer B, et al. Warp-Knitted spacer fabrics: a versatile platform to generate fiber-reinforced hydrogels for 3D tissue engineering. Materials (Basel, Switzerland). 2020;13:3518.

    Article  PubMed  Google Scholar 

  78. Syverud BC, Lee JD, VanDusen KW, Larkin LM. Isolation and purification of satellite cells for skeletal muscle tissue engineering. J Regen Med. 2015;3:117.

    Google Scholar 

  79. Robey P. ‘Mesenchymal stem cells’: fact or fiction, and implications in their therapeutic use. F1000Research. 2017;6:524.

    Article  Google Scholar 

  80. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  81. Keating A. Mesenchymal stromal cells. Curr Opin Hematol. 2006;13:419–25.

    Article  PubMed  Google Scholar 

  82. Cai A, et al. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds. BMC Biotechnol. 2018;18:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bajek A, et al. Human adipose-derived and amniotic fluid-derived stem cells: a preliminary in vitro study comparing myogenic differentiation capability. Med Sci Monit. 2018;24:1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pantelic MN, Larkin LM. Stem cells for skeletal muscle tissue engineering. Tissue Eng B Rev. 2018;24:373–91.

    Article  Google Scholar 

  85. Dixon TA, et al. Bioinspired three-dimensional human neuromuscular junction development in suspended hydrogel arrays. Tissue Eng Part C Methods. 2018;24:346–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dziki J, et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen Med. 2016;1:16008.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Smoak MM, Mikos AG. Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Mater Today Bio. 2020;7:100069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim WJ, et al. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues. Biomaterials. 2020;230:119632.

    Article  CAS  PubMed  Google Scholar 

  89. Bitto FF, et al. Myogenic differentiation of mesenchymal stem cells in a newly developed neurotised AV-loop model. Biomed Res Int. 2013;2013:935046.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dellon ES, Dellon AL. The first nerve graft, Vulpian, and the nineteenth century neural regeneration controversy. J Hand Surg Am. 1993;18:369–72.

    Article  CAS  PubMed  Google Scholar 

  91. Socolovsky M, Di Masi G, Battaglia D. Use of long autologous nerve grafts in brachial plexus reconstruction: factors that affect the outcome. Acta Neurochir. 2011;153:2231–40.

    Article  PubMed  Google Scholar 

  92. Ijpma FFA, Nicolai J-PA, Meek MF. Sural nerve donor-site morbidity. Ann Plast Surg. 2006;57:391–5.

    Article  CAS  PubMed  Google Scholar 

  93. Tada K, et al. Long-term outcomes of donor site morbidity after sural nerve graft harvesting. J Hand Surg Glob Online. 2020;2:74–6.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hallgren A, Björkman A, Chemnitz A, Dahlin LB. Subjective outcome related to donor site morbidity after sural nerve graft harvesting: a survey in 41 patients. BMC Surg. 2013;13:39.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artif Cells Nanomed Biotechnol. 2019;47:3524–39.

    Article  CAS  PubMed  Google Scholar 

  96. Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35:6143–56.

    Article  CAS  PubMed  Google Scholar 

  97. Rhode SC, Beier JP, Ruhl T. Adipose tissue stem cells in peripheral nerve regeneration—in vitro and in vivo. J Neurosci Res. 2021;99:545–60.

    Article  CAS  PubMed  Google Scholar 

  98. Lundborg G, Gelberman RH, Longo FM, Powell HC, Varon S. In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap. J Neuropathol Exp Neurol. 1982;41:412–22.

    Article  CAS  PubMed  Google Scholar 

  99. Pfister LA, Papaloïzos M, Merkle HP, Gander B. Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst. 2007;12:65–82.

    Article  CAS  PubMed  Google Scholar 

  100. Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-dimensional engineered peripheral nerve: toward a new era of patient-specific nerve repair solutions. Tissue Eng Part B Rev. 2021;28(2):295–335. https://doi.org/10.1089/TEN.TEB.2020.0355.

    Article  PubMed  Google Scholar 

  101. Hyung S, et al. Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor neurons. Glia. 2019;67:360–75.

    Article  PubMed  Google Scholar 

  102. Hess JR, et al. Use of cold-preserved allografts seeded with autologous Schwann cells in the treatment of a long-gap peripheral nerve injury. Plast Reconstr Surg. 2007;119:246–59.

    Article  CAS  PubMed  Google Scholar 

  103. Strauch B, et al. Autologous Schwann cells drive regeneration through a 6-cm autogenous venous nerve conduit. J Reconstr Microsurg. 2001;17:589–95.

    Article  CAS  PubMed  Google Scholar 

  104. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM, Potiny S, Green P, Halvorsen YD, Cheatham B, Storms RW, Gimble JM. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702–9. https://doi.org/10.1002/jcp.21068. PMID: 17477371.

  105. Singh D, et al. Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomater. 2018;78:48–63.

    Article  CAS  PubMed  Google Scholar 

  106. Hashimoto T, et al. Peripheral nerve regeneration through alginate gel: analysis of early outgrowth and late increase in diameter of regenerating axons. Exp Brain Res. 2002;146:356–68.

    Article  CAS  PubMed  Google Scholar 

  107. Gupta R, Chan JP, Uong J, Palispis WA, Wright DJ, Shah SB, Ward SR, Lee TQ, Steward O. Human motor endplate remodelling after traumatic nerve injury. J Neurosurg. 2020b:1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Bahm .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahm, J. (2023). Decision-Making in Reconstructive Surgery. In: Surgical Rationales in Functional Reconstructive Surgery of the Upper Extremity. Springer, Cham. https://doi.org/10.1007/978-3-031-32005-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32005-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32004-0

  • Online ISBN: 978-3-031-32005-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics