
Chapter 2
A System of Ordinary Differential Equations

Above, we introduced a very simple differential equation given by

y′(t) = y(t). (2.1)

This is referred to as an ordinary differential equation (ODE) because it involves
the derivative with respect to only one variable. If the derivative with respect to
more than one variable is involved, the equation is referred to as a partial differential
equation (PDE). We will come back to PDEs in Chapter 3, and spend some time
discussing how to solve them, but in this chapter, we will keep focusing on ODEs.

The ODE (2.1) is a scalar equation because there is only a single unknown
function to be found. Now, we will start considering systems of ODEs. A typical
system of ODEs can be written in the form

y′(t) = F(y(t)). (2.2)

Here, y is a vector and F is vector valued function.

2.1 The FitzHugh-Nagumo Model

We will introduce numerical methods for systems of ODEs by considering the
celebrated1 FitzHugh-Nagumo model published by FitzHugh [1] in 1961 and,
independently, by Nagumo et. al. [2] in 1962. The model is a system of ordinary
differential equations with two unknowns, and is commonly used as a simple model
for the action potentials of excitable pacemaker cells.

We consider the following version of the FitzHugh-Nagumo model,

v ′ = c1v(v − a)(1 − v) − c2w, (2.3)
w ′ = b(v − dw). (2.4)

1 These two papers together are cited more than 11,000 times.
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Fig. 2.1 Numerical solutions vn (left) and wn (right) of the FitzHugh-Nagumo model specified by
(2.3)–(2.5). The numerical scheme used to compute the solutions is specified in (2.8)–(2.9), and
we have used ∆t = 1 and the initial conditions v0 = 0.26 and w0 = 0.

Here, the constants are given by

a = −0.12, c1 = 0.175, c2 = 0.03, b = 0.011, d = 0.55, (2.5)

and the unknown functions are v and w. In order to solve the system of equations
numerically, we use the steps introduced for the scalar equation in Chapter 1 and
start by replacing derivatives by differences. The discrete system then reads

vn+1 − vn
∆t

= c1vn(vn − a)(1 − vn) − c2wn, (2.6)
wn+1 − wn

∆t
= b(vn − dwn). (2.7)

Again, we reorganize this system to write it in computational form,

vn+1 = vn + ∆t[c1vn(vn − a)(1 − vn) − c2wn], (2.8)
wn+1 = wn + ∆t[b(vn − dwn)]. (2.9)

This time, however, we note that we will need a piece of software to compute the
solutions. But it is straightforward to implement this since the numerical solution at
time tn+1 is an explicit function of the numerical solution at time tn.

2.1.1 Numerical Computations

We assume that the solution is known initially, so we define (for instance) v0 = 0.26
and w0 = 0. Here, it is useful to note that if we put both v0 and w0 equal to zero,
the solution will remain zero (for both v and w) for all time. But if we perturb v a
little, we get very different solutions. In Fig. 2.1, we show the numerical solution
from t = 0 to t = T = 5000. In the computation, we have used N = 5000 which
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Fig. 2.2 The numerical
solutions vn and wn of the
FitzHugh-Nagumo model
from Fig. 2.1 displayed in a
parametric plot with vn on the
x-axis and wn on the y-axis. v
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Table 2.1 Error of the numerical solution of the FitzHugh-Nagumo model specified by (2.3)–(2.5)
at t = T = 5000 for different values of ∆t = T

N . The error is defined as EN = |v−vN |+ |w−wN |,
where v and w are the numerical solutions for a very fine resolution (∆t = 0.001), and vN and wN

are the numerical solutions for larger values of ∆t.

N ∆t EN EN /∆t

500 10 0.0923 0.0092
1000 5 0.0433 0.0087
5000 1 0.00727 0.0073
10000 0.5 0.00353 0.0071
50000 0.1 0.000682 0.0068

gives ∆t = T/N = 1. In Fig. 2.2, we show the numerical solutions (vn, wn)
N
n=1 in

a parametric plot, and we note that the solutions are periodic. In electrophysiology,
such solutions are useful for studying pacemaker cells that keep on creating action
potentials at a steady rate.

2.2 What Is the Error?

In the very simple equation in the previous chapter, we had a formula for the
analytical solution and a formula for the numerical solution, and thus it was
straightforward to find the error introduced by replacing a derivative by a difference.
For the FitzHugh-Nagumo equations, this is harder. In numerical analysis there are
techniques for proving error bounds for numerical methods. But the proofs tend to
be very technical and often involve constants that need to be estimated. So we are
looking for something simpler. If we just assume that we have convergence towards
the correct solution as ∆t tends to zero, we can compute an accurate approximation
of the solution by using a very small∆t and thenmonitoring the convergence towards
this highly resolved solution.
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Fig. 2.3 Numerical solutions vn (left) and wn (right) of the FitzHugh-Nagumo model specified by
(2.3)–(2.5). We compare the solutions for a very fine resolution (∆t = 0.001, solid blue line) to the
solutions for three cases of coarser resolution (dotted orange line). In the upper panel, we consider
∆t = 10, in the middle panel, we consider ∆t = 5, and in the lower panel, we consider ∆t = 1. To
improve visibility, we only show the solutions from t = 4000 to t = 5000. As ∆t is decreased, the
coarse numerical solutions are more similar to the numerical solution computed with a very small
∆t , and for ∆t = 1 the two solutions are indistinguishable.

For simplicity, we assume that we are merely interested in the error at the final
time t = T = 5000. We first compute the solution using an extremely fine resolution
(∆t = 0.001) and regard that as the correct solution at time T . Then, we compute
solutions for varying resolutions (different values of the time step ∆t) and compare
the "correct" and approximate solutions. In Fig. 2.3, we compare the solutions for
a few different choices of ∆t. The error defined by EN = |v − vN | + |w − wN |,
where (v, w) denotes the fine scale solution, is given in Table 2.1. Again, we observe
that EN/∆t is more or less constant and we therefore conclude again that the error
in the numerical solution is proportional to the time step ∆t. In other words, the
convergence is linear (or first order) in ∆t.
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Fig. 2.4 Illustration of a
definition of the action
potential duration, APD50.
The APD50 value is defined as
the duration between the two
times v crosses the threshold
value defined at the center
between the maximum and
minimum value of v.
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2.3 Upstroke Velocity and Action Potential Duration

In applications of the FitzHugh-Nagumo model, the unknown function v is often
used to represent the membrane potential of an excitable cell, e.g., a neuron or a
cardiac cell, firing a sequence of action potentials. A single action potential from the
solution of the FitzHugh-Nagumo model is illustrated in Fig. 2.4. In general terms,
the action potential first consists of a period during which the value of v increases
slowly, followed by a more rapid increase (the upstroke). Then, v decreases relatively
slowly for a while before it decreases rapidly back to the minimum value and starts
increasing again. In this setting, we often refer to v increasing as depolarization, and
v decreasing as repolarization. We will come back to these terms below where we
introduce models with proper physical units.

By solving the FitzHugh-Nagumo model equations for different values of the
model constants, or parameters, (a, c1, c2, b, and d), we could gain some insight into
how the parameters affect the firing of action potentials. For example, we could
investigate how the parameters affect the frequency of firing or the shape of the fired
action potentials. Two properties that are of interest regarding the shape of the action
potential are the maximal upstroke velocity and the action potential duration. The
maximal upstroke velocity is often defined as the maximum value of the derivative
of v with respect to time. Using a finite difference approximation of the derivative,
this can be defined as

max
n

( vn+1 − vn
∆t

)
. (2.10)

The action potential duration is often defined in terms of a given percentage of
repolarization, for example APD50 or APD90, for 50% or 90% repolarization,
respectively. Here, APD50 represents the duration from the start of the action
potential until the membrane potential reaches a value that is 50% repolarized (i.e.,
at v50 = 0.5 (maxn(vn) +minn(vn))), at tdown

50 . Similarly, APD90 is defined as the
duration from the start of the action potential until the membrane potential reaches a
value that is 90% repolarized (i.e., at v90 = maxn(vn) − 0.9(maxn(vn) −minn(vn))),
at tdown

90 . The start of the action potential used in the definition of the action potential
duration can, for example, be defined as the point in time when the maximal
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Fig. 2.5 The numerical solution, vn , of the FitzHugh-Nagumo model, defined by the two equations
v′ = c1v(v − a)(1− v) − c2w, and w′ = b(v − dw). The parameters are as specified in (2.5), except
that in each row of the figure, the value of either a, c1, c2, b, or d is adjusted. The title above each
plot specifies the parameter change.

upstroke velocity occurs, or when the membrane potential crosses the 50% or 90%
repolarization thresholds, v50 or v90, during the upstroke, denoted by tup

50 or tup
90 ,

respectively. In the latter case, APD50 and APD90 can be defined as

APD50 = tdown
50 − tup

50, (2.11)

APD90 = tdown
90 − tup

90 . (2.12)

Such a definition of APD50 is illustrated in Fig. 2.4.
In Fig. 2.5, we show the numerical solution, vn, of the FitzHugh-Nagumo model

with different choices of parameters. In each row, we consider three different values
of one of the parameters a, c1, c2, b, or d, and keep the remaining values fixed at
the values specified in (2.5). In the plots, we observe that increasing the value of
c1 appears to make the action potentials longer and the firing frequency slower,
whereas the opposite effect is observed when c2 or b are increased. In Fig. 2.6, we
study the effects on the individual action potentials more closely. In the left panel, we
have zoomed in on the points in time representing the action potential upstroke. We
observe that decreasing the value of c1 reduces the upstroke velocity, but changing
the other parameters do not seem to have a significant effect on the upstroke. In the
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Fig. 2.6 The numerical solution, vn , of the FitzHugh-Nagumo model, defined by the two equations
v′ = c1v(v − a)(1− v) − c2w, and w′ = b(v − dw). The parameters are as specified in (2.5), except
that in each row, the value of either a, c1, c2, b, or d is adjusted. The legends at the right-hand
side of each row specify the parameter changes. The time axes of the solutions are adjusted such
that the maximal upstroke velocity occurs at the same time for all the parameter changes. The left
panel shows the upstroke of the action potential and the right panel shows one action potential for
each parameter set.

right panel, we consider a single action potential for the different parameter choices.
We observe that all the parameters have a significant effect on the action potential
duration.
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