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Series Foreword

Dear reader,
the series Simula SpringerBriefs on Computing was established in 2016, with

the aim of publishing compact introductions and state-of-the-art overviews of
select fields in computing. Research is increasingly interdisciplinary, and students
and experienced researchers both often face the need to learn the foundations,
tools, and methods of a new field. This process can be demanding, and typically
involves extensive reading of multidisciplinary publications with different notations,
terminologies and styles of presentation. The briefs in this series aremeant to ease the
process by explaining important concepts and theories in a specific interdisciplinary
field without assuming extensive disciplinary knowledge and by outlining open
research challenges and posing critical questions in the field.

Simula has a major research program in computational physiology that includes
a long and close collaboration with the University of California (UC) San Diego. To
reflect this research focus, we established in 2020 a new subseries entitled Simula
Springer Briefs onComputing - Reports onComputational Physiology. The subseries
includes both introductory and advanced texts on select fields of computational
physiology, designed to advance interdisciplinary scientific literacy and promote
effective communication and collaboration in the field. This subseries is also the
outlet for collections of reports from the annual Summer School in Computational
Physiology, organized by Simula, University of Oslo, and UC San Diego. The school
starts in June each year with students spending two weeks in Oslo learning the
principles underlying mathematical models commonly used in studying the heart
and the brain. During their stay in Oslo, students are assigned a research project to
work on over the summer. In August, they travel to San Diego for another week of
training and project work, and a final presentation of their findings. Every year, we
have been impressed by the students’ creativity and we often see results that could
lead to a scientific publication. Starting with the 2021 edition of the summer school,
we have taken the course one step further by having each team conclude their project
with a scientific report that can pass rigorous peer review as a publication in this
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All items in the main series and the subseries are published within the
SpringerOpen framework, as this will allow authors to use the series to publish
an initial version of their manuscript that could subsequently evolve into a full-scale
book on a broader theme. Since the briefs are freely available online, the authors do
not receive any direct income from the sales; however, remuneration is provided for
every completed manuscript. Briefs are written on the basis of an invitation from a
member of the editorial board.

Suggestions for possible topics are most welcome, and interested authors are
encouraged to contact a member of the editorial board.

March 2023 Dr. Joakim Sundnes
sundnes@simula.no

Dr. Kimberly J. McCabe
kimberly@simula.no

Dr. Andrew McCulloch
amcculloch@ucsd.edu

Dr. Aslak Tveito
aslak@simula.no

mailto:sundnes@simula.no
mailto:kimberly@simula.no
mailto:amcculloch@ucsd.edu
mailto:aslak@simula.no


Series Editor for this Volume

Joakim Sundnes, Simula Research Laboratory, Oslo, Norway

vii



Preface

Why would you want to read these notes?

When something is very large, very small or very complex, it’s often helpful to
represent it using a model in order to understand what is going on. Nature offers
many examples of situations where direct interrogations are difficult, and a model
can provide insight into the phenomena of interest. Physiology, for example, is a
field that is complex and sometimes poorly understood, and where mathematical
models are frequently used to increase understanding. These models are often
formulated in terms of differential equations. However, many students who want
to learn state-of-the-art physiology may not be familiar with differential equations.
They are probably able to use software tools that solve these equations in numerical
simulations, but they may not fully understand the underlying principles. Our goal
with these notes is to provide a simple introduction to differential equations and
give examples of how to solve them. Differential equations is a vast area of active
research, and we can only provide a glimpse. But, we hope that these notes will
provide a basic understanding of the principles, such that computational codes will
appear less like a black box, and more like something that is comprehensible.

The Simula Summer School in Computational Physiology

Every year SimulaResearchLaboratory organizes a summer school inComputational
Physiology together with the University of California, San Diego (UCSD) and the
University of Oslo (UiO). The students come to Oslo in June and learn about models
and software used in computational physiology. Next, the students are divided into
groups and work on different projects through the summer. All groups are assigned
one or more mentors who help the students with their investigations. In August, all
students and mentors meet again at UCSD and continue their work on the project. In

ix



x Preface

addition, they attend guest lectures at UCSD and a two-day workshop on scientific
writing organized by experienced editors of Nature.

The models and software used in the course are state-of-the art and the students
complete the course by writing a scientific report that is published in a Simula
SpringerBriefs on Computing in the sub-series on Computational Physiology. In
order to reach the advanced level of using state-of-the-artmethods and software, there
is not enough time to cover the details of all the subjects covered in the course. The
students are most often enrolled in MSc., PhD or Post Doc programs in universities
around the world. Their scientific backgrounds vary greatly. There are students
from theoretical disciplines like computer science, scientific computing, statistics or
mathematics, and from more classical science disciplines like physics, biology, or
medicine. And perhaps the largest group of students comes with a background in
bioengineering. We notice that the students easily follow ’their’ part of the course
and struggle with the parts they are unfamiliar with.

Scientific work in computational physiology is inherently interdisciplinary so
meeting this reality in the summer school is proper training. Typical research projects
comprise elements of many disciplines and thus it is very common to not fully
understand all elements of a project, and almost no project is completed by only
one person. Similarly, it is exceptionally rare to see a single-authored paper in
computational physiology, or in computational science in general for that matter. So,
learning to communicate across disciplines is very useful, but also very challenging.

The most common mathematical machinery used to model physiology (and
physics in general) is differential equations. Most of the models introduced in
the summer school is founded, in one way or another, on differential equations.
Elements of this subject are taught at every university in the world and students
from mathematics, physics or scientific computing most likely have a course in this
subject. But students from biology, medicine or even computer science rarely know
much about differential equations. Now, the summer school is very streamlined and
the software is usually prepared and can be used without a complete understanding
of the underlying models, but it is clearly advantageous to know, at least intuitively,
the foundation of the models and solution methods that are used in the course.

How are the notes organized?

We have organized these notes in two parts. In the first part (Chapters 1–7), we
introduce the concept of differential equations and numerical methods. To keep the
exposition as simple as possible, we use simple, unitless equations as examples
in these chapters. In the second part (Chapters 8–12), we apply the techniques
introduced in the first part of the book to a selection of models of electrophysiology.

More specifically, we start these notes by considering a very simple differential
equation. For this equation, we introduce a numerical method and we study the error
of the method. The simplicity of the equation allows us to study these important
concepts in a very explicit manner. Next, we move on to systems of ordinary



Preface xi

differential equations and we show how the FitzHugh-Nagumo model can be solved
numerically. Partial differential equations are then introduced and we show how the
diffusion equation can be solved numerically. By combining the diffusion equation
and the FitzHugh-Nagumo model, we introduce traveling wave solutions and show
how a reaction-diffusion system can be handled numerically.

At the beginning of the second part of the notes, in Chapter 8, we introduce
the Hodgkin-Huxley equations and from this chapter we start using units for all
quantities involved. The Hodgkin-Huxley equations are the most famous system of
equations in physiology. The equations model the action potential of an axon and
have been proved to represent that process with great accuracy. We also consider
a similar model for a cardiac action potential. The membrane models of cardiac
electrophysiology have evolved into a very complex matter, but the structure remains
very similar to the Hodgkin-Huxley model.

After being familiarized with the Hodgkin-Huxleymembranemodel, we combine
it with the cable equation to model the propagation of an action potential along an
axon. Next, we introduce the bidomain and the monodomain models in two spatial
dimensions. The monodomain equation is very similar to the cable equation, but the
numerical solutionwill be a bit more complicated becausewe consider a 2D problem.
The bidomain model is more complex than the monodomain model, but we will see
that by using operator splitting, solution methods become quite straightforward.
Never heard of operator splitting? You will learn about it from these notes. It is
a very powerful technique used to break complicated problems into problems we
already know how to deal with. We will explain it in Chapter 7 and show some
applications later in the notes.

Onemajor issue with the monodomain and bidomainmodels is that they represent
averaged quantities in the sense that the cardiomyocytes are not present in the model.
In fact, both the extracellular (E) space, the cell membrane (M) and the intracellular
(I) space are assumed to exist everywhere. That is a bold assumption, so we will also
introduce the EMI model where all these elements (E, M, and I) are explicitly part
of the model.

The monodomain and bidomain models provide reasonable approximations
of cardiac electrophysiology at the mm-scale, and the EMI model addresses
electrophysiology at the µm-scale. The next level is the nm scale1. The relevant
equations at the nm-scale are the Poisson-Nernst-Planck (PNP) equations. From a
computational perspective, the PNP equations are extremely challenging and can, at
present, only be used to study very small regions; one complete cardiomyocyte is
far too large to be modeled by the PNP equations. We will show how to solve these
equations in the final chapter using operator splitting and finite differences.

In order to keep these notes relatively brief, many details about the methods
and models introduced must inevitably be left out. At the end of most chapters, we
therefore include a section called ’Comments and Further Reading’, providing some
comments on these details and suggestions for further reading.

1 Note here that meter is denoted by m, and mm means millimeter or 10−3m, µm is micrometer
and means 10−6m, and, finally, nm means nanometer or 10−9m. If you ever need help with units,
we recommend www.wolframalpha.com.

http://www.wolframalpha.com
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Why do we use the finite difference method?

There aremanyways to solve differential equations. In computational physiology, the
finite element method may very well be the most popular alternative. The reason for
this is that the geometry of the computational domain (e.g., the heart) is quite complex
and thus very difficult to represent using a finite difference method. Finite difference
methods are easiest to work with when the computational mesh is very regular,
but the finite element method is constructed to allow for highly irregular meshes.
Both finite element methods and finite volume methods are successfully applied to
simulate complex phenomenas on complex geometries. The finite difference method
is successfully applied to simulate complex dynamics but the code quickly becomes
clunky in the presence of geometries that are any more complex than a cuboid.
Nevertheless, we have chosen to focus entirely on the finite differencemethod in these
notes and the reason for this is simplicity. The method is more or less completely
defined by simply replacing derivatives by differences. Therefore, we stick to simple
geometries and use finite differences. In the summer school, much more advanced
simulations, using finite elements, will be performed, but we still think it is useful
to know how this in principle can be done using the simplest possible method.

It’s open access

These notes are printed in Simula SpringerBriefs on Computing in the sub-series on
Computational Physiology. That means that the notes can be downloaded for free.
The software (Matlab) used to generate all figures and tables in these notes are freely
available online. The codes are written primarily for clarity and less emphasis is put
on efficiency. If you find a bug in the codes or an error in these notes, please send a
mail to aslak@simula.no. The software associated with these notes can be found at:
https://github.com/karolihj/differential-equations-book-2023
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Part I
Tools for Differential Equations and

Numerical Methods



Chapter 1
Getting Started

In this introductory chapter we will introduce two essential concepts: differential
equations and numerical methods. If you want to spend as little energy as possible
(don’t be ashamed of that - energy preservation is both fashionable and a fundamental
property of many biological mechanisms - it’s fine) you can get a good overview
from this chapter alone.

1.1 What Is a Differential Equation?

You have no doubt seen an algebraic equation. A typical algebraic equation may
look like

x2 − 4x + 3 = 0 (1.1)

with solutions x = 1 and x = 3. So, solutions of algebraic equations are numbers.
The solutions of differential equations, on the other hand, are functions. One very
simple differential equation is given by

y′(t) = y(t). (1.2)

Here, we typically assume that t represents time, and that the equation (1.2) describes
how the function y changes with time. Suppose we also know that the solution is 1
at t = 0, that is

y(0) = 1. (1.3)

Such a condition is generally referred to as an initial condition and is needed in order
to find a unique solution of the problem. In this case, the solution is given by the
function

y(t) = et . (1.4)

It is straightforward to verify this. We simply note that y(0) = e0 = 1 and, by
differentiation, that y′(t) = et = y(t). So all is good; we have found the solution of
our first differential equation.

3© The Author(s) 2023 
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For a long time, differential equations were solved in this way. Formulas were
derived using pencil and paper. If the equations were very complex, they were
simplified in order to be solved by a formula and people spent whole academic
careers deriving such approximate solutions of differential equations. The reason
for this was that the solutions of the equations could bring critical insight into a
phenomenon modeled by the equation. Nowadays, differential equations are solved
by computers. In some cases analytical formulas can be derived and then it is usually
done by computing systems like Mathematica or Maple, or other tools for symbolic
computations. But the more common approach is to solve the equations numerically.
In order to do that, we need to transform the equations into a form that is suitable
for computers. Almost all differential equations that are solved in computational
physiology are solved by computers. It is the main purpose of these notes to teach
you the basics of how that is done, and we might as well start with the very simple
case that we’ve already introduced.

1.2 What Is a Numerical Method?

A numerical method is a way to solve a mathematical problem on a computer. We
will see that one way to prepare differential equations for solution on computers is
to replace derivatives by differences. That may not come as a surprise since you may
remember from calculus that the derivativewas introduced as the limit of a difference.
Concretely, for a smooth1 function f = f (t), the derivative is, per definition,

f ′(t) = lim
∆t→0

f (t + ∆t) − f (t)
∆t

. (1.5)

Instead of going all the way to zero, we can settle for a small value of ∆t and use the
approximation

f ′(t) ≈
f (t + ∆t) − f (t)

∆t
. (1.6)

Here, t is time, and we are interested in solving the equation from t = 0 (where the
solution, y, is known to be 1) until some t = T , for example T = 1. For some fixed
value of ∆t, it is useful to define a number of discrete points in time,

tn = n × ∆t, (1.7)

for n = 0, ...,N , where N = T/∆t. We note here that the step in time from tn−1 to tn
is ∆t, and that the final time is given by tN = N × ∆t = T . We want to compute a
numerical approximation to the solution of the problem

1 A lot could be said about smooth functions. Generally, regularity of functions is important in
solving differential equations. But for these notes it is sufficient to simply think of smooth functions
as – smooth.
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y′(t) = y(t), (1.8)
y(0) = 1, (1.9)

at the time steps {tn}Nn=0 by replacing the derivative of y by the formula given in
(1.6). This replacement can be written as

yn+1 − yn

∆t
= yn, (1.10)

y0 = 1, (1.11)

where, in general, yn denotes an approximation of the solution of (1.8) at time tn;
i.e., yn ≈ y(tn). By rearranging (1.10), we find that

yn+1 = (1 + ∆t)yn, (1.12)

and we refer to this as the computational form of the numerical scheme. Since y0 = 1,
we find y1 = 1 + ∆t, and y2 = (1 + ∆t)y1 = (1 + ∆t)2, and so forth. In general, we
have

yn = (1 + ∆t)n. (1.13)

So in this unusually simple case, we don’t need a program to compute the numerical
solution. That is very unusual and we use this example just to introduce the concepts.
More commonly, we first need to compute the solution y1 from the initial condition,
y0, using a formula like (1.12), and then insert this solution y1 into (1.12) to find
the solution y2, and so on until we find yN using the previously computed yN−1.
This type of repetitive computation is usually most conveniently performed using a
computer program.

In Fig. 1.1 we have plotted the analytical (i.e. exact) solution, y, together with the
numerical solution, yn, for some different choices of the time step, ∆t. We observe
that when ∆t is small, the numerical and analytical solutions are indistinguishable,
but that for larger values of ∆t, for example ∆t = 0.2, there is a visible difference
between the two solutions. The analytical solution is exact, which means that the
difference between the two solutions are due to an error of the numerical method. In
the next section, we will consider this error in some more detail.
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Fig. 1.1 Analytical (solid line) and numerical (dotted line) solutions of the differential equation
(1.8)–(1.9) for t between 0 and 1 for some different values of ∆t .
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1.3 What Is the Error of a Numerical Method?

The error of a numerical method is the difference between the numerical and the
exact solution of the problem. Since we are in the fortunate position of knowing
both the analytical (exact) solution, y(t), and the numerical solution, yn, we can also
compute the error2 of the numerical solution defined by

En = |y(tn) − yn |. (1.14)

As observed in Fig. 1.1, the error depends on the size of the time step, ∆t, which
is natural since we are supposed to pass to the limit of ∆t = 0 in the definition of
the derivative (see (1.6)). When we approximate 0 by something small, we must be
prepared for it to come with a price – and the price is the error we will encounter. To
illustrate this, we put T = 1 and compare the analytical solution y(T) = e with the
numerical solution at T = 1 for several values of ∆t. Since the final time is T = 1,
we must have N × ∆t = 1 and therefore we compare

yN =

(
1 +

1
N

)N
(1.15)

with the exact solution y(1) = e. In Table 1.1, we show the error EN = |y(1) − yN |

for N =5, 10, 100, and 1000. We also show EN/∆t and we note that this value seems
to be more or less constant. It is thus evident that when ∆t goes to zero (N goes to
infinity), the numerical solution converges towards the analytical solution3.

Table 1.1 Error of the numerical solution of the differential equation (1.2)–(1.4) at t = T = 1 for
different values of ∆t = T

N . The error is defined as EN = |y(1) − yN |, where y(1) = e is the
analytical solution, and yN is the numerical solution, defined by (1.15).

N ∆t EN EN /∆t

5 0.2 0.23 1.15
10 0.1 0.125 1.25
100 0.01 0.0135 1.35
1000 0.001 0.00136 1.36

2 The error defined here is referred to as the absolute error. An alternative is to consider the relative
error given by

|y(tn) − yn |

|y(tn) |
.

3 If this feels familiar, it may be because you learned in calculus that

lim
ε→0
(1 + ε)

1
ε = e.
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We have learned that by replacing the derivative y′(t) by a finite difference
approximation (yn+1 − yn)/∆t we can find an approximate solution. Usually, the
finite difference scheme must be implemented on a computer but in this very simple
case, we can find a formula for both the numerical and the analytical solutions.
The error introduced by this method is EN ≈ 1.36 × ∆t. This indicates a relation
that is generally true: The error is smaller for smaller values of ∆t, but the work
associated with running through the time steps to compute the numerical solutions
is increasing for smaller values of ∆t. We will see plenty of examples of the fact
that finer resolutions (i.e., smaller ∆t) means higher accuracy and more work. So
life is fair; a low quality solution is cheap and a high quality solution is expensive.
Since EN is proportional to ∆t, we have linear (or first order) convergence. If the
error had been proportional to ∆t2 we would have had quadratic (or second order)
convergence, and so on.

1.4 Implicit vs. Explicit Numerical Schemes

At this point, we will briefly mention the difference between an implicit and an
explicit numerical scheme. When a numerical scheme can be written in the generic
form

yn+1 = F(yn),

like in (1.12), we refer to the scheme as an explicit scheme because yn+1 can be
explicitly computed as a function of yn. Conversely, if an equation has to be solved
in order to compute yn+1 based on yn, the scheme is referred to as implicit. Implicit
schemes will be introduced in Chapter 4 of these notes.

1.5 But What Is a Differential Equation?

We have given you one example of a differential equation, and there are many more
in the subsequent chapters. The easiest way to grasp what differential equations are
is probably by seeing many examples. However, in general, differential equations
are mathematical relations where the unknown is a function, and derivatives of the
function are used in the formulation of the equation. The solution is a function.
Classical mathematical questions related to differential equations are: Existence: Is
there a solution of the equation? Uniqueness: Is there only one solution? Stability:
Can we slightly perturb the parameters of the equation and obtain almost the same
solution? And Solution: How can we find the solution? In these notes, our emphasis
will be on the last question and we will concentrate on numerical solutions of the
equations.
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1.6 Analytical Solutions

Our focus in these notes will be on numerical methods for solving differential
equations. However, we will also encounter some cases where analytical solutions
(i.e., solutions given by a formula) can be found. While finding analytical solutions
to differential equations is a vast field, these techniques are not typically applicable
to the types of problems we will be studying, which is why we will rely on numerical
methods. In this section, we will indicate a couple of possible approaches to obtain
analytical solutions to illustrate that it is not entirely mysterious, but we will not
delve into the methods in these notes, and you can safely skip this subsection and
jump to Chapter 2 if you want.

First, we will demonstrate an approach for obtaining an analytical solution for the
simple example studied earlier. We start by repeating that the differential equation is
given by

y′(t) = y(t) (1.16)

with the initial condition y(0) = 1. To find an analytical solution for this problem,
we first write the equation in the form

y′(t)
y(t)

= 1. (1.17)

Now, we can integrate both sides from 0 to t and get∫ t

0

y′(τ)

y(τ)
dτ =

∫ t

0
1dτ. (1.18)

Therefore,
[ln(y(τ))]t0 = t, (1.19)

or
ln(y(t)) − ln(y(0)) = t . (1.20)

Since y(0) = 1, and thus ln(y(0)) = 0, (1.20) reads

ln(y(t)) = t, (1.21)

and raising e to the power of both sides of the equation, we get the analytical solution

y(t) = et . (1.22)

This way of finding the solution of a differential equation can be generalized to
equations of the form

F ′(y)y′(t) = F(y(t)) (1.23)

with the initial condition y(0) = y0, where y0 is a given number. Here, F = F(y) is
assumed to be some invertible function. By following the steps above we find that
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[ln(F(y(τ)))]t0 = t, (1.24)

or
ln

(
F(y(t))
F(y0)

)
= t, (1.25)

so
F(y(t)) = F(y0)et, (1.26)

and, finally,
y(t) = F−1(F(y0)et ). (1.27)

1.6.1 Integrating Factors

Another way of obtaining analytical solutions of differential equations is by applying
integrating factors. We can illustrate this technique by considering the equation

y′(t) + p(t)y(t) = q(t), (1.28)

with the initial condition y(0) = y0, where y0 is given. Here, we assume that p = p(t)
and q = q(t) are known functions. In addition, we assume that we have a function
P = P(t) with the special property that

P′(t) = p(t). (1.29)

By multiplying (1.28) by the integrating factor

eP(t)

we get
eP(t)y′(t) + eP(t)p(t)y(t) = eP(t)q(t). (1.30)

Here we observe that (because of (1.29)) the left-hand side can be written in a more
compact manner as,

eP(t)y′(t) + eP(t)p(t)y(t) = (eP(t)y(t))′. (1.31)

and therefore (1.30) can be rewritten to read,

(eP(t)y(t))′ = eP(t)q(t). (1.32)

Integrating both sides from 0 to t, we obtain,

eP(t)y(t) − eP(0)y0 =

∫ t

0
eP(τ)q(τ)dτ. (1.33)

Finally, the solution is given by
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y(t) = e−P(t)
(
eP(0)y0 +

∫ t

0
eP(τ)q(τ)dτ

)
. (1.34)

In the case of the simple example equation considered in this chapter, y′(t) = y(t),
we note that the equation can be written in the form (1.28) for p(t) = −1, q(t) = 0,
and y0 = 1. Furthermore, (1.29) is fulfilled if P(t) = −t. Inserting these functions
into (1.34), we obtain the analytical solution

y(t) = e−(−t)
(
e0 · 1 +

∫ t

0
e−τ · 0dτ

)
= et . (1.35)

1.7 Comments and Further Reading

Here is a list of suggested further reading on a few of the overarching topics of these
notes.

1. Throughout these lecture notes, we will refer to results from calculus. A good
book on the topic is [12].

2. Introductions to the basics of scientific computing are presented in, e.g., [3, 4,
5, 6, 10, 11, 14, 17].

3. Introductions to differential equations can be found in [7, 8, 13, 16]. There are
many texts on analytical solutions of differential equations; one comprehensive
collection of solutions is given in [15]. Analytical techniques like the methods
described above are well covered in [2].

4. A comprehensive introduction to mathematical biology can be found in [9].
5. For those interested in reading about the place of mathematics in biology, and

the role of biology in mathematics, we strongly recommend [1].

References

[1] Cohen JE (2004) Mathematics is biology’s next microscope, only better;
biology is mathematics’ next physics, only better. PLoS Biology 2(12):e439

[2] Constanda C (2013) Differential Equations: A Primer for Scientists and
Engineers. Springer

[3] Deuflhard P, Hohmann A (2003) Numerical analysis in modern scientific
computing: an introduction, vol 43. Springer

[4] Heath MT (2018) Scientific computing: an introductory survey, revised second
edition. SIAM

[5] Kincaid D, Kincaid DR, Cheney EW (2009) Numerical analysis: mathematics
of scientific computing, vol 2. American Mathematical Society

[6] Langtangen HP, Langtangen HP (2011) A primer on scientific programming
with Python, vol 1. Springer



References 11

[7] Logan JD (2014) Applied partial differential equations. Springer
[8] Martin B (1993) Differential equations and their applications: an introduction

to applied mathematics. Springer
[9] Murray JD (2002) Mathematical biology: I. An introduction. Springer
[10] Quarteroni A, Saleri F, Gervasio P (2006) Scientific computing withMATLAB

and Octave, vol 3. Springer
[11] Shen W (2019) An introduction to numerical computation. World Scientific
[12] Stewart J (2015) Calculus. Cengage Learning
[13] Strang G (2014) Differential equations and linear algebra.

Wellesley-Cambridge Press Wellesley
[14] Sundnes J (2020) Introduction to scientific programmingwith Python. Springer
[15] TenenbaumM, Pollard H (1985) Ordinary differential equations: an elementary

textbook for students of mathematics, engineering, and the sciences. Courier
Corporation

[16] Tveito A, Winther R (2009) Introduction to partial differential equations; a
computational approach, 2nd edn. Springer

[17] Tveito A, Langtangen HP, Nielsen BF, Cai X (2010) Elements of scientific
computing. Springer

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 

Commons license, unless indicated otherwise in a credit line to the material. If material is not 

included in the chapter’s Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 

the copyright holder. 

http://creativecommons.org/licenses/by/4.0/


Chapter 2
A System of Ordinary Differential Equations

Above, we introduced a very simple differential equation given by

y′(t) = y(t). (2.1)

This is referred to as an ordinary differential equation (ODE) because it involves
the derivative with respect to only one variable. If the derivative with respect to
more than one variable is involved, the equation is referred to as a partial differential
equation (PDE). We will come back to PDEs in Chapter 3, and spend some time
discussing how to solve them, but in this chapter, we will keep focusing on ODEs.

The ODE (2.1) is a scalar equation because there is only a single unknown
function to be found. Now, we will start considering systems of ODEs. A typical
system of ODEs can be written in the form

y′(t) = F(y(t)). (2.2)

Here, y is a vector and F is vector valued function.

2.1 The FitzHugh-Nagumo Model

We will introduce numerical methods for systems of ODEs by considering the
celebrated1 FitzHugh-Nagumo model published by FitzHugh [1] in 1961 and,
independently, by Nagumo et. al. [2] in 1962. The model is a system of ordinary
differential equations with two unknowns, and is commonly used as a simple model
for the action potentials of excitable pacemaker cells.

We consider the following version of the FitzHugh-Nagumo model,

v ′ = c1v(v − a)(1 − v) − c2w, (2.3)
w ′ = b(v − dw). (2.4)

1 These two papers together are cited more than 11,000 times.

13© The Author(s) 2023 
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Fig. 2.1 Numerical solutions vn (left) and wn (right) of the FitzHugh-Nagumo model specified by
(2.3)–(2.5). The numerical scheme used to compute the solutions is specified in (2.8)–(2.9), and
we have used ∆t = 1 and the initial conditions v0 = 0.26 and w0 = 0.

Here, the constants are given by

a = −0.12, c1 = 0.175, c2 = 0.03, b = 0.011, d = 0.55, (2.5)

and the unknown functions are v and w. In order to solve the system of equations
numerically, we use the steps introduced for the scalar equation in Chapter 1 and
start by replacing derivatives by differences. The discrete system then reads

vn+1 − vn
∆t

= c1vn(vn − a)(1 − vn) − c2wn, (2.6)
wn+1 − wn

∆t
= b(vn − dwn). (2.7)

Again, we reorganize this system to write it in computational form,

vn+1 = vn + ∆t[c1vn(vn − a)(1 − vn) − c2wn], (2.8)
wn+1 = wn + ∆t[b(vn − dwn)]. (2.9)

This time, however, we note that we will need a piece of software to compute the
solutions. But it is straightforward to implement this since the numerical solution at
time tn+1 is an explicit function of the numerical solution at time tn.

2.1.1 Numerical Computations

We assume that the solution is known initially, so we define (for instance) v0 = 0.26
and w0 = 0. Here, it is useful to note that if we put both v0 and w0 equal to zero,
the solution will remain zero (for both v and w) for all time. But if we perturb v a
little, we get very different solutions. In Fig. 2.1, we show the numerical solution
from t = 0 to t = T = 5000. In the computation, we have used N = 5000 which
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Fig. 2.2 The numerical
solutions vn and wn of the
FitzHugh-Nagumo model
from Fig. 2.1 displayed in a
parametric plot with vn on the
x-axis and wn on the y-axis. v
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Table 2.1 Error of the numerical solution of the FitzHugh-Nagumo model specified by (2.3)–(2.5)
at t = T = 5000 for different values of ∆t = T

N . The error is defined as EN = |v−vN |+ |w−wN |,
where v and w are the numerical solutions for a very fine resolution (∆t = 0.001), and vN and wN

are the numerical solutions for larger values of ∆t.

N ∆t EN EN /∆t

500 10 0.0923 0.0092
1000 5 0.0433 0.0087
5000 1 0.00727 0.0073
10000 0.5 0.00353 0.0071
50000 0.1 0.000682 0.0068

gives ∆t = T/N = 1. In Fig. 2.2, we show the numerical solutions (vn, wn)
N
n=1 in

a parametric plot, and we note that the solutions are periodic. In electrophysiology,
such solutions are useful for studying pacemaker cells that keep on creating action
potentials at a steady rate.

2.2 What Is the Error?

In the very simple equation in the previous chapter, we had a formula for the
analytical solution and a formula for the numerical solution, and thus it was
straightforward to find the error introduced by replacing a derivative by a difference.
For the FitzHugh-Nagumo equations, this is harder. In numerical analysis there are
techniques for proving error bounds for numerical methods. But the proofs tend to
be very technical and often involve constants that need to be estimated. So we are
looking for something simpler. If we just assume that we have convergence towards
the correct solution as ∆t tends to zero, we can compute an accurate approximation
of the solution by using a very small∆t and thenmonitoring the convergence towards
this highly resolved solution.



4000 4500 5000
-0.5

0

0.5

1

1.5
v

v
t = 0.001
t = 10

4000 4500 5000
-0.5

0

0.5

1

1.5

w

w
t = 0.001
t = 10

4000 4500 5000
-0.5

0

0.5

1

1.5

v

t = 0.001
t = 5

4000 4500 5000
-0.5

0

0.5

1

1.5

w

t = 0.001
t = 5

4000 4500 5000
t

-0.5

0

0.5

1

1.5

v

t = 0.001
t = 1

4000 4500 5000
t

-0.5

0

0.5

1

1.5

w

t = 0.001
t = 1

Fig. 2.3 Numerical solutions vn (left) and wn (right) of the FitzHugh-Nagumo model specified by
(2.3)–(2.5). We compare the solutions for a very fine resolution (∆t = 0.001, solid blue line) to the
solutions for three cases of coarser resolution (dotted orange line). In the upper panel, we consider
∆t = 10, in the middle panel, we consider ∆t = 5, and in the lower panel, we consider ∆t = 1. To
improve visibility, we only show the solutions from t = 4000 to t = 5000. As ∆t is decreased, the
coarse numerical solutions are more similar to the numerical solution computed with a very small
∆t , and for ∆t = 1 the two solutions are indistinguishable.

For simplicity, we assume that we are merely interested in the error at the final
time t = T = 5000. We first compute the solution using an extremely fine resolution
(∆t = 0.001) and regard that as the correct solution at time T . Then, we compute
solutions for varying resolutions (different values of the time step ∆t) and compare
the "correct" and approximate solutions. In Fig. 2.3, we compare the solutions for
a few different choices of ∆t. The error defined by EN = |v − vN | + |w − wN |,
where (v, w) denotes the fine scale solution, is given in Table 2.1. Again, we observe
that EN/∆t is more or less constant and we therefore conclude again that the error
in the numerical solution is proportional to the time step ∆t. In other words, the
convergence is linear (or first order) in ∆t.

16 2 A System of Ordinary Differential Equations
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Fig. 2.4 Illustration of a
definition of the action
potential duration, APD50.
The APD50 value is defined as
the duration between the two
times v crosses the threshold
value defined at the center
between the maximum and
minimum value of v.
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2.3 Upstroke Velocity and Action Potential Duration

In applications of the FitzHugh-Nagumo model, the unknown function v is often
used to represent the membrane potential of an excitable cell, e.g., a neuron or a
cardiac cell, firing a sequence of action potentials. A single action potential from the
solution of the FitzHugh-Nagumo model is illustrated in Fig. 2.4. In general terms,
the action potential first consists of a period during which the value of v increases
slowly, followed by a more rapid increase (the upstroke). Then, v decreases relatively
slowly for a while before it decreases rapidly back to the minimum value and starts
increasing again. In this setting, we often refer to v increasing as depolarization, and
v decreasing as repolarization. We will come back to these terms below where we
introduce models with proper physical units.

By solving the FitzHugh-Nagumo model equations for different values of the
model constants, or parameters, (a, c1, c2, b, and d), we could gain some insight into
how the parameters affect the firing of action potentials. For example, we could
investigate how the parameters affect the frequency of firing or the shape of the fired
action potentials. Two properties that are of interest regarding the shape of the action
potential are the maximal upstroke velocity and the action potential duration. The
maximal upstroke velocity is often defined as the maximum value of the derivative
of v with respect to time. Using a finite difference approximation of the derivative,
this can be defined as

max
n

( vn+1 − vn
∆t

)
. (2.10)

The action potential duration is often defined in terms of a given percentage of
repolarization, for example APD50 or APD90, for 50% or 90% repolarization,
respectively. Here, APD50 represents the duration from the start of the action
potential until the membrane potential reaches a value that is 50% repolarized (i.e.,
at v50 = 0.5 (maxn(vn) +minn(vn))), at tdown

50 . Similarly, APD90 is defined as the
duration from the start of the action potential until the membrane potential reaches a
value that is 90% repolarized (i.e., at v90 = maxn(vn) − 0.9(maxn(vn) −minn(vn))),
at tdown

90 . The start of the action potential used in the definition of the action potential
duration can, for example, be defined as the point in time when the maximal
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Fig. 2.5 The numerical solution, vn , of the FitzHugh-Nagumo model, defined by the two equations
v′ = c1v(v − a)(1− v) − c2w, and w′ = b(v − dw). The parameters are as specified in (2.5), except
that in each row of the figure, the value of either a, c1, c2, b, or d is adjusted. The title above each
plot specifies the parameter change.

upstroke velocity occurs, or when the membrane potential crosses the 50% or 90%
repolarization thresholds, v50 or v90, during the upstroke, denoted by tup

50 or tup
90 ,

respectively. In the latter case, APD50 and APD90 can be defined as

APD50 = tdown
50 − tup

50, (2.11)

APD90 = tdown
90 − tup

90 . (2.12)

Such a definition of APD50 is illustrated in Fig. 2.4.
In Fig. 2.5, we show the numerical solution, vn, of the FitzHugh-Nagumo model

with different choices of parameters. In each row, we consider three different values
of one of the parameters a, c1, c2, b, or d, and keep the remaining values fixed at
the values specified in (2.5). In the plots, we observe that increasing the value of
c1 appears to make the action potentials longer and the firing frequency slower,
whereas the opposite effect is observed when c2 or b are increased. In Fig. 2.6, we
study the effects on the individual action potentials more closely. In the left panel, we
have zoomed in on the points in time representing the action potential upstroke. We
observe that decreasing the value of c1 reduces the upstroke velocity, but changing
the other parameters do not seem to have a significant effect on the upstroke. In the

18 2 A System of Ordinary Differential Equations
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Fig. 2.6 The numerical solution, vn , of the FitzHugh-Nagumo model, defined by the two equations
v′ = c1v(v − a)(1− v) − c2w, and w′ = b(v − dw). The parameters are as specified in (2.5), except
that in each row, the value of either a, c1, c2, b, or d is adjusted. The legends at the right-hand
side of each row specify the parameter changes. The time axes of the solutions are adjusted such
that the maximal upstroke velocity occurs at the same time for all the parameter changes. The left
panel shows the upstroke of the action potential and the right panel shows one action potential for
each parameter set.

right panel, we consider a single action potential for the different parameter choices.
We observe that all the parameters have a significant effect on the action potential
duration.

2.3 Upstroke Velocity and Action Potential Duration 19



20 2 A System of Ordinary Differential Equations

References

[1] FitzHugh R (1961) Impulses and physiological states in theoretical models of
nerve membrane. Biophysical Journal 1(6):445–466

[2] Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line
simulating nerve axon. Proceedings of the IRE 50(10):2061–2070

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 

Commons license, unless indicated otherwise in a credit line to the material. If material is not 

included in the chapter’s Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 

the copyright holder. 

http://creativecommons.org/licenses/by/4.0/


Chapter 3
The Diffusion Equation

The diffusion equation appears in many applications in science and engineering,
and computational physiology is no exception. In its most basic form, the diffusion
equation is also useful as an example of how to deal with a PDE using numerical
methods. We will start by considering it as a stand-alone model, but in the next
chapterswewill study it in combinationwith non-linearODEs. This chapter therefore
serves as a warm-up for the more complex models. We will also follow the path we
started above. In the very simplest case of an ODE, we found a formula for the
solution of both the differential equation and the numerical scheme approximating
the equation. One nice consequence of this is that, as we saw above, we can explicitly
study the error introduced by the numerical approximation. In this chapter, we will
use the same approach to study the error of the numerical approximation of the
diffusion equation.

3.1 The Problem = Equation + Initial Values + Boundary
Conditions

We consider the diffusion equation

∂u
∂t
(t, x) =

∂2u
∂x2 (t, x). (3.1)

Here, u models1 the concentration of a chemical in a spatial domain, x is the spatial
variable and t is time. And since partial derivatives are present, the equation is a
PDE (see page 13). We study the problem for values of x in the spatial domain (0,1)
and for time t in the interval (0,T]. We will assume that the solution is given by u0(x)
at time t = 0, and that u = 0 at x = 0 and x = 1 for all time in the interval [0,T].

1 In the beginning of these notes, we treat all models as unitless. In models of electrophysiology,
units can be a true nightmare so we follow the prudent path of trying to deal with one nightmare at
the time. Units will come later.
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22 3 The Diffusion Equation

The function u0 = u0(x) is called the initial condition, and u = 0 at x = 0 and x = 1
are called boundary conditions. In particular, these boundary conditions are referred
to as Dirichlet boundary conditions, as opposed to Neumann boundary conditions,
which will be introduced below.

We will consider the special case of

u0(x) = sin(πx). (3.2)

For that particular initial condition, the analytical solution of the diffusion equation
(3.1) is given by

u(t, x) = e−π
2t sin(πx). (3.3)

This can be verified by observing that the boundary conditions are satisfied since
clearly u(t,0) = u(t,1) = 0, since sin(0) = 0, and the initial condition is also satisfied
since u(0, x) = sin(πx) = u0(x). It remains to be seen whether equation (3.1) is
satisfied by u(t, x). To this end, we note that

∂u
∂t
= −π2e−π

2t sin(πx) = −π2u, (3.4)

and
∂2u(t, x)
∂x2 = −π2e−π

2t sin(πx) = −π2u, (3.5)

so (3.1) holds.

3.2 The Numerical Scheme

We define a numerical approximation of the problem simply by replacing derivatives
by differences. In order to replace the left-hand side of (3.1), we use the same formula
as above and state that

∂u
∂t
≈

u(t + ∆t, x) − u(t, x)
∆t

. (3.6)

To approximate the right-hand side of (3.1), we need to recall from calculus that the
Taylor series of u states that

u(t, x + ∆x) ≈ u(t, x) + ∆xux(t, x) +
1
2
∆x2uxx(t, x), (3.7)

where ux and uxx are shorthand for ∂u(t ,x)∂x and ∂2u(t ,x)
∂x2 , respectively. Similarly,

u(t, x − ∆x) ≈ u(t, x) − ∆xux(t, x) +
1
2
∆x2uxx(t, x), (3.8)

and therefore, by adding (3.7) and (3.8), we get the approximation,
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uxx(t, x) ≈
u(t, x − ∆x) − 2u(t, x) + u(t, x + ∆x)

∆x2 . (3.9)

As above, we introduce tn = n × ∆t, where ∆t = T/N for a sufficiently large integer
N . Furthermore, we introduce the spatial mesh points given by xj = ( j − 1) ×∆x for
j = 1, ...,M , where ∆x = 1/(M − 1) for a suitable2 integer M .

We have defined the points {(tn, xj)} and we let un
j denote a numerical

approximation in these points. It remains to define these values. The beginning
is very simple; we clearly want the numerical scheme to satisfy the initial condition
so we define,

u0
j = u0(xj), (3.10)

and for our special problem we have u0
j = sin(πxj). Next, we apply the boundary

conditions and define
un

1 = 0, (3.11)

and
un
M = 0, (3.12)

for all n ≤ N .We still need to find values ofun
j for j = 2, . . . ,M−1 and 1 < n ≤ N .We

find these by using the finite difference approximations (3.6) and (3.9). Specifically,
we define un

j by the following numerical scheme,

un+1
j − un

j

∆t
=

un
j−1 − 2un

j + un
j+1

∆x2 . (3.13)

By defining

ρ =
∆t
∆x2 , (3.14)

we can write the scheme in computational form,

un+1
j = ρun

j−1 + (1 − 2ρ)un
j + ρun

j+1. (3.15)

Starting with n = 0, we note that we can compute all the values at time t1 = ∆t
since u1

j only depends on values at the time t0 = 0 and they are given by the initial
condition u0

j ( j = 1, . . . ,M). When the values at time t1 = ∆t have been computed,
we can use them to compute all the values at t = 2∆t and so forth. The scheme is
illustrated in Fig. 3.1.

3.3 Analytical Solution of the Numerical Scheme and Error

This subsection is very technical and can be skipped without serious consequences
(jump to Section 3.4). The purpose of the section is to provide formulas for the

2 ’Sufficiently large integer’ and ’suitable integer’ are intentionally vague – stay calm – it will
become clear (clearer) later on.
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Fig. 3.1 Illustration of the explicit finite difference scheme for the diffusion equation. The solutions
un
j−1, u

n
j and un

j+1 from the previous time step are used to compute the new solution, un+1
j , at this

time step. The scheme is given by (3.15).

numerical solution and the associated error for a PDE like we did for an ODE in
(1.13). Such formulas are available only in rare cases, but can be useful for analyzing
the error of the numerical approximation.

For a general initial condition, we have to write a program to use the scheme
(3.15), and we will do that below, but for the special initial condition (3.2), we can
find a formula for the numerical solution. It is given by

un
j = (1 − ∆tµ)n sin(πxj), (3.16)

where
µ =

4
∆x2 sin2(π∆x/2). (3.17)

In order to show that this is the solution, we first check that the formula holds at time
t0. Inserting n = 0 into (3.16), we get u0

j = sin(πxj), which matches the numerical
solution at time t0 = 0 (see (3.2) and (3.10)). Next, we assume that the formula is
correct at time tn and show that it also holds at time tn+1, – then the formula holds
by induction. By inserting (3.16) into (3.15), we get,

un+1
j = ρun

j−1 + (1 − 2ρ)un
j + ρun

j+1 (3.18)

= (1 − ∆tµ)n[ρ sin(πxj−1) + (1 − 2ρ) sin(πxj) + ρ sin(πxj+1)]. (3.19)

We need two trigonometric identities from calculus to proceed from here,

1 − cos(y) = 2 sin2(y/2), (3.20)

and
sin(x + y) + sin(x − y) = 2 cos(y) sin(x). (3.21)

These identities hold for all values of x and y. We define

zj = ρ sin(πxj−1) + (1 − 2ρ) sin(πxj) + ρ sin(πxj+1) (3.22)

and rewrite it like

24 3 The Diffusion Equation
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zj = sin(πxj) + ρ[sin(πxj−1) + sin(πxj+1) − 2 sin(πxj)] (3.23)
= sin(πxj) + ρ[sin(πxj − π∆x) + sin(πxj + π∆x) − 2 sin(πxj)], (3.24)

so by (3.21), we get

zj = sin(πxj) + ρ[2 cos(π∆x) sin(πxj) − 2 sin(πxj)] (3.25)
= sin(πxj) + 2ρ[cos(π∆x) − 1] sin(πxj). (3.26)

By (3.20), we now get,

zj = sin(πxj) − 4ρ sin2(π∆x/2) sin(πxj) (3.27)

= sin(πxj)[1 − 4ρ sin2(π∆x/2)], (3.28)

so, by (3.14) and (3.16), we have

zj = [1 − ∆tµ] sin(πxj). (3.29)

Here, µ is defined by (3.17). By combining (3.19), (3.22) and (3.29), we find that

un+1
j = (1 − ∆tµ)n+1 sin(πxj), (3.30)

and thus the formula (3.16) holds by induction.

3.3.1 What Is the Error?

Since we now have the analytical solution of the PDE (3.1) given by

u(t, x) = e−π
2t sin(πx) (3.31)

and a formula (3.16) for the numerical solution

un
j = (1 − ∆tµ)n sin(πxj) (3.32)

it is straightforward to compare the analytical and numerical solutions. The spatial
part of the solutions are identical, and therefore it is sufficient to consider the temporal
part of the solution. We thus consider the relative error in time defined by

En =
|(1 − ∆tµ)n − e−π

2tn |

e−π2tn
. (3.33)

In Table 3.1 we show EN where N = 1/∆t for several values of ∆t. We also show
EN/∆t and we see that, again, this is more or less constant and therefore we again
have linear convergence with EN ≈ 48 × ∆t.
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Table 3.1 Error of the temporal part of the numerical solution of the diffusion equation at t = T = 1
for ∆x = 0.001 and different values of ∆t = T

N . The error is defined in (3.33).

N ∆t EN EN /∆t

100 0.01 0.406 40.6
1000 0.001 0.0478 47.8
10000 0.0001 0.00485 48.5
100000 0.00001 0.000479 47.9

3.3.2 More on the Error

We can go one step further in comparing the analytical (3.31) and numerical (3.32)
solutions using the formulas for these solutions. Since the spatial dependency of the
solutions are equal, we just pick x = 1/2 and then we want to compare the analytical
solution

U(T) = u(T,1/2) = e−π
2T . (3.34)

and the numerical solution

UN = uN
(M+1)/2 = (1 − ∆tµ)N , (3.35)

at the final time t = T = N × ∆t. Here we have assumed that M is an odd number.
Recall, again from calculus, that the Taylor series of the sine function states that3

sin(z) = z +O(z3), (3.36)

so for small values of z, we have sin(z) ≈ z. We can use this to approximate the value
of

µ =
4
∆x2 sin2(π∆x/2) (3.37)

for small values of ∆t. By the Taylor series, we get

µ ≈
4
∆x2 (π∆x/2)2 = π2. (3.38)

So the numerical solution satisfies

UN ≈ (1 − ∆tπ2)N . (3.39)

We can also approximate the analytical solution using the following Taylor series for
the exponential function,

3 You don’t remember the O-notation? It is shorthand for telling how fast something goes to zero.
So f (x) = O(x2) means that f (x) goes to zero as fast as x2 goes to zero for small values of x. In
numerical analysis this notation is often used to indicate the size of an error term. Often, it is the
remainder of a truncated Taylor series.
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e−z = 1 − z +O(z2). (3.40)

By using this approximation, we find that the analytical solution at x = 1/2 can be
approximated by

U(T) = e−π
2T = e−π

2N∆t = (e−π
2∆t )N ≈ (1 − π2

∆t)N , (3.41)

hence, clearly, we have
UN ≈ U(T). (3.42)

3.4 Instabilities in the Numerical Solution

Numerical instabilities often appear and it can be hard to understand the origin. Here,
we will show instabilities that appear because of too long time steps, but keep in
mind that a long list of other instabilities can appear as well. Differential equations
can have oscillatory solutions, but as the mesh parameters are refined, the numerical
solution should converge towards the correct solution. Numerical instabilities, on
the other hand, manifest themselves by diverging as the mesh is refined, rather than
converging.

3.4.1 Specification of a Stable Problem with Unstable Numerical
Solutions

Suppose you have a tank of length 1 filled with water, where you have ink added
to the water for x ≤ 1/2 but no ink for x > 1/2. In the middle of the tank, at
x = 1/2, there is an impermeable membrane, so there is no ink leaking from the left
to the right side of the tank. At time t = 0, we remove the membrane and we are
curious about what is going to happen. Intuitively, we expect the ink to diffuse to the
right-hand side of the tank and that, eventually, the ink will be uniformly distributed
throughout the tank. Qualitatively, we can get an impression of what happens by
solving the diffusion equation

∂u
∂t
(t, x) =

∂2u
∂x2 (t, x). (3.43)

We will use the initial condition u(0, x) = 1 for x ≤ 1/2 and u(0, x) = 0 for x > 1/2.
The boundary conditions are given

∂u
∂x
(t,0) =

∂u
∂x
(t,1) = 0, (3.44)
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i.e., that the spatial derivative is zero at the boundary. This is referred to as a no-flux
boundary condition, or a Neumann boundary condition, and simply means that we
don’t allow the ink to leak out of the tank.

3.4.2 Numerical Scheme for Neumann Boundary Conditions

In order to deal with this alternative set of boundary conditions in the numerical
scheme, we consider the two Taylor series of u considered in Section 3.2, i.e.,

u(t, x + ∆x) ≈ u(t, x) + ∆xux(t, x) +
1
2
∆x2uxx(t, x), (3.45)

and
u(t, x − ∆x) ≈ u(t, x) − ∆xux(t, x) +

1
2
∆x2uxx(t, x). (3.46)

By subtracting (3.46) from (3.45), we obtain

u(t, x + ∆x) − u(t, x − ∆x) ≈ 2∆xux(t, x), (3.47)

which yields

ux(t, x) ≈
u(t, x + ∆x) − u(t, x − ∆x)

2∆x
. (3.48)

Replacing the derivatives by this difference in the boundary condition (4.24), we get

un
2 − un

0
2∆x

= 0,
un
M+1 − un

M−1
2∆x

= 0, (3.49)

which yield

un
0 = un

2 , un
M+1 = un

M−1, (3.50)

for all n ≤ N . Inserting (3.50) into the main scheme (3.15) for j = 1 and j = M , we
obtain

un+1
1 = (1 − 2ρ)un

1 + 2ρun
2 , (3.51)

un+1
M = (1 − 2ρ)un

M + 2ρun
M−1. (3.52)

3.4.3 Example of Instabilities in the Numerical Solution

In Fig. 3.2 we have solved the problem numerically using∆t = 0.0001 and∆x = 0.02
and we note that the solution seems to evolve as we expected. But in Fig. 3.3, we
attempt to take longer time steps, and then we see pretty wild oscillations in the
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numerical solution. This is a classical type of numerical instability that often appears
in numerical methods. Usually it helps to reduce the time steps, and it certainly helps
in this case.
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Fig. 3.2 Numerical solution of the diffusion equation with boundary conditions ∂u
∂x (t , 0) =

∂u
∂x (t , 1) = 0 and initial conditions u(0, x) = 1 for x ≤ 1/2 and u(0, x) = 0 for x > 1/2
using ∆t = 0.0001 and ∆x = 0.02. The solution is plotted at five different time points.

Fig. 3.3 Numerical solution
of the diffusion equation
with boundary conditions
∂u
∂x (t , 0) = ∂u

∂x (t , 1) = 0 and
initial conditions u(0, x) = 1
for x ≤ 1/2 and u(0, x) = 0
for x > 1/2 using ∆t = 0.001
and ∆x = 0.02. For these
values of ∆t and ∆x, we get
pretty wild oscillations in
the numerical solution. Note
that the scaling of the y-axis
is different in each row of
the figure, corresponding to
different points in time.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

u

t = 0

0 0.2 0.4 0.6 0.8 1
-1
0
1
2

u

t = 0.001

0 0.2 0.4 0.6 0.8 1
-2
0
2

u

108 t = 0.01

0 0.2 0.4 0.6 0.8 1
-2

0

2

u

1046 t = 0.05

0 0.2 0.4 0.6 0.8 1
x

-1

0

1

u

1094 t = 0.1



30 3 The Diffusion Equation

3.5 Stability Condition for the Numerical Scheme

The diffusion equation satisfies a maximum principle stating that the solution will
always be bounded by the values of the initial condition and the boundary conditions.
We will show that the numerical solution generated by the scheme (3.15) satisfies
the same principle, provided that the time step is sufficiently small. For simplicity
we again assume that the boundary conditions are given by u = 0 for x = 0 and
x = 1. Concretely, we consider the scheme

un+1
j = ρun

j−1 + (1 − 2ρ)un
j + ρun

j+1, (3.53)

where we recall that
ρ =

∆t
∆x2 , (3.54)

and where the boundary conditions are given by un
1 = 0 and un

M = 0. Define

u+ = max
j
|u0

j |, (3.55)

i.e., the biggest (in absolute value) initial value, and assume that ρ ≤ 1/2, i.e. we
assume that

∆t ≤
∆x2

2
. (3.56)

Now, we want to prove that
|un

j | ≤ u+ (3.57)

for all j ∈ [2,M−1] and n ≥ 0. We will show this by induction and start by assuming
that (3.57) holds for an arbitrary value of n. Then, by the scheme (3.53), we get4

|un+1
j | = |ρun

j−1 + (1 − 2ρ)un
j + ρun

j+1 |

≤ ρ|un
j−1 | + (1 − 2ρ)|un

j | + ρ|u
n
j+1 |

≤ ρu+ + (1 − 2ρ)u+ + ρu+
= u+

and therefore (3.57) holds by induction.
We also note that the criterion (3.56) is in agreement with the results observed in

the numerical example in the previous section. In that case, we had ∆x2

2 = 0.0002.
Thus, for the stable case of ∆t = 0.0001 (Fig. 3.2), the stability criterion (3.56)
was satisfied, whereas for the unstable case of ∆t = 0.001 (Fig. 3.3), the stability
criterion was not satisfied.

When using explicit finite difference schemes to solve equations where the
diffusion equation is part of the problem, a stability condition similar to (3.56)
usually has to be satisfied in order to obtain proper numerical results.

4 Here we use the triangle equality stating that |a + b | ≤ |a | + |b | for any numbers a and b.
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3.6 A Brief Comment on Uniqueness

We have seen that a formula can be obtained for the solution of the diffusion equation
and for the numerical approximation of the same problem. But are these solutions
unique? Can there be other solutions than those given by the formulas? In order to
see that the solution of the continuous problem is in fact unique, we assume that we
have two solutions, u and v, with coinciding initial condition given by f = f (x), and
the usual Dirichlet boundary conditions. Since u and v solve

∂u
∂t
(t, x) =

∂2u
∂x2 (t, x) (3.58)

and
∂v

∂t
(t, x) =

∂2v

∂x2 (t, x), (3.59)

respectively, we find (by subtracting (3.59) from (3.58)) that the difference between
the solutions, given by e = u − v, solves the equation

∂e
∂t
(t, x) =

∂2e
∂x2 (t, x). (3.60)

Now, we can define a measure of the difference between these solutions as a function
of time,

E(t) =
1
2

∫ 1

0
e2(t, x)dx, (3.61)

and observe that

E ′(t) =
∫ 1

0
e(t, x)

∂e
∂t
(t, x)dx =

∫ 1

0
e(t, x)

∂2e
∂x2 (t, x). (3.62)

By using integrations by parts, we find that∫ 1

0
e(t, x)

∂2e
∂x2 (t, x) = −

∫ 1

0

(
∂e
∂x
(t, x)

)2
dx, (3.63)

and therefore,
E ′(t) ≤ 0. (3.64)

Since u and v have the same initial condition given by f = f (x), we clearly have
e(0, x) = 0 for all relevant values of x. Therefore, since E(0) = 0, and E ′(t) ≤ 0
we have E(t) ≡ 0 for all time and thus u and v are equal, and the solution of the
problem must be unique. A similar argument can be given for the discrete case, so
the numerical solution given by the formula (3.16) is also unique. This is a classical
energy argument and it can be extended to also provide stability estimates of the
solutions; see, e.g., [1].
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Chapter 4
Implicit Numerical Methods

In the previous chapter, we saw that the simple explicit numerical scheme resulted
in an instability problem. We also saw that the problem could be resolved by
using sufficiently short time steps. But in many situations, short time steps become
exceedingly short, as can be seen, e.g., in the stability criterion (3.56). This means
that we have to perform computations for a very large number of time steps to reach
the final time and it is therefore tempting to look for alternatives. The most common
alternative is to use an implicit scheme, which generally allows for much longer time
steps.

4.1 Explicit and Implicit Numerical Schemes

In Section 1.4 (page 7) we briefly introduced the concept of explicit and implicit
numerical schemes. So far we have only considered explicit schemes and the reason
for that is just simplicity. If we have a differential equation that can be written in the
form

u′(t) = F(u(t)), (4.1)

we can, as seen in Chapter 1, use the the approximation

u′(t) ≈
u(t + ∆t) − u(t)

∆t
, (4.2)

to replace (4.1) by the difference equation,

un+1 − un

∆t
= F(un), (4.3)

leading to the explicit scheme

un+1 = un + ∆tF(un). (4.4)
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But an alternative, equally plausible, approach is to replace (4.1) by the difference
equation

un+1 − un

∆t
= F(un+1), (4.5)

which leads to the implicit scheme

un+1 − ∆tF(un+1) = un. (4.6)

As we shall see below, the advantage of the implicit scheme is that we obtain
numerically stable results for longer time steps, but the disadvantage is that we have
to solve a potentially nonlinear equation of the form

u − ∆tF(u) = ū (4.7)

at every time step. Here, ū is known from the previous time step, and u is the unknown
that we need to compute.

We will now show how to derive implicit schemes and demonstrate that they are
more stable than the explicit versions. But keep in mind that we also have to deal
with accuracy. For this purpose we still want the time steps to be reasonably short
without being too short.

4.2 An Implicit Scheme for the Diffusion Equation

Let us first recall how we derived the explicit scheme for the diffusion equation1,

ut = uxx, (4.8)

equipped with the initial and boundary conditions,

u(0, x) = u0(x), (4.9)
u(t,0) = u(t,1) = 0. (4.10)

As in (4.3), we can approximate this equation by replacing the time derivative by

ut ≈
u(t + ∆t) − u(t)

∆t
. (4.11)

For the right-hand side of (4.8) there are two alternatives (actuallymany alternatives).
We can either approximate the right-hand side by a difference approximation of
uxx(t, x) or of uxx(t + ∆t, x). The first alternative results in the explicit scheme we
used above,

1 If you just browse these notes and didn’t recognize the notation used here, we repeat that
ut = ∂u/∂t , and uxx = ∂

2u/∂x2 – keep on browsing.
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un+1
j − un

j

∆t
=

un
j−1 − 2un

j + un
j+1

∆x2 , (4.12)

and the second alternative results in the implicit scheme,

un+1
j − un

j

∆t
=

un+1
j−1 − 2un+1

j + un+1
j+1

∆x2 . (4.13)

In Fig. 4.1 we have illustrated how this scheme works. Here, we realize that there
is a fundamental difference between the explicit (see Fig. 3.1) and implicit schemes.
The explicit schemes are very simple since every value is simply an explicit function
of the values of the previous time step. This is straightforward to implement in
software. But the implicit scheme is much more convoluted. In fact, all values at
time tn+1 are coupled with all other other values at that the same time step. Well,
actually, every point is connected to two neighbors, but these again are coupled to

uj
n

uj
n+1uj-1

n+1 uj+1
n+1

Solution known from
previous time step

Unknown solution
to be computed

Fig. 4.1 Illustration of the implicit finite difference scheme for the diffusion equation. The unknown
solutions un+1

j−1 and un+1
j+1 from the present time step, in addition to the known solution un

j from the
previous time step, are all needed to compute the solution un+1

j . The scheme is given by (4.14), or
on matrix form by (4.21).

4.3 The Linear System

Wewill write the scheme (4.13) as a linear system of equations, but first we rearrange
it by putting unknowns (variables at time tn+1) at the left-hand side and previously
computed variables (tn) on the right-hand side of the equation,

− ρun+1
j−1 + (1 + 2ρ)un+1

j − ρun+1
j+1 = un

j , (4.14)

where again

ρ =
∆t
∆x2 . (4.15)

their neighbors and so on. So we end up with a linear system of equations.
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The implicit scheme has the form (4.14) for j = 3, . . . ,M − 2 but takes a different
form for j = 2 and j = M − 1. Recall that the boundary conditions are specified by
(4.10), given by

un
1 = un

M = 0 (4.16)

for all n. Hence, for j = 2, the scheme (4.14) takes the form,

(1 + 2ρ)un+1
2 − ρun+1

3 = un
2 . (4.17)

Similarly, for j = M − 1, we get the scheme

− ρun+1
M−2 + (1 + 2ρ)un+1

M−1 = un
M−1. (4.18)

We are now ready to rewrite the somewhat messy scheme defined by (4.14), (4.17),
(4.18) in matrix form. To this end, we defined the vectors2

un =

©«
un

2
un

3
...

un
M−1

ª®®®®¬
, (4.19)

and the matrix

A =

©«

1 + 2ρ −ρ 0 · · · 0
−ρ 1 + 2ρ −ρ 0 · · · 0
0 −ρ 1 + 2ρ −ρ 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −ρ 1 + 2ρ

ª®®®®®®¬
. (4.20)

With these definitions, we can rewrite the scheme defined by (4.14), (4.17), (4.18)
on the simple form

Aun+1 = un. (4.21)

The matrix A defined in (4.20) is tridiagonal and this makes the system (4.21) easy
to solve. In the software associated these notes, the solution is shown in Matlab, but
the system is easy to solve in any numerically oriented computing system.

4.3.1 Neumann Boundary Conditions

In Section 3.4 we considered the numerical solution of a specific diffusion equation
problem given by

2 Note that un
1 and un

M are given directly by the boundary conditions at every time step, so these
values do not have to be included in the vector of unknowns.
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ut = uxx, (4.22)

with the initial and boundary conditions

u(0, x) =

{
1, if x ≤ 1/2,
0, if x > 1/2,

(4.23)

ux(t,0) = ux(t,1) = 0. (4.24)

For the inner points j = 2, . . . ,M − 1, an implicit numerical scheme for this problem
can be given by (4.14) like above, but for the boundary points ( j = 1 and j = M), we
need to take the different set of boundary conditions into account. One way to do this
is by following the same procedure as in Section 3.4.2. That is, using the difference

ux(t, x) ≈
u(t, x + ∆x) − u(t, x − ∆x)

2∆x
. (4.25)

Replacing the derivatives by this difference in the boundary condition (4.24), we get

un
2 − un

0
2∆x

= 0,
un
M+1 − un

M−1
2∆x

= 0, (4.26)

which yield

un
0 = un

2 , un
M+1 = un

M−1, (4.27)

for all n ≤ N . Inserting (4.27) into the main scheme (4.14) for j = 1 and j = M , we
obtain

(1 + 2ρ)un+1
1 − 2ρun+1

2 = un
1 , (4.28)

(1 + 2ρ)un+1
M − 2ρun+1

M−1 = un
M , (4.29)

and the scheme can be written on matrix form

Aun+1 = un, (4.30)

where

un =

©«
un

1
un

2
...

un
M

ª®®®®¬
, (4.31)

and

A =

©«

1 + 2ρ −2ρ 0 · · · 0
−ρ 1 + 2ρ −ρ 0 · · · 0
0 −ρ 1 + 2ρ −ρ 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −2ρ 1 + 2ρ

ª®®®®®®¬
. (4.32)
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4.4 The Implicit Scheme Is Stable

We noticed above that if the time steps we used for the explicit scheme were too long,
we got a solution with wild oscillations. In Fig. 4.2 we repeat these computations
using the implicit scheme (4.30)–(4.32) and we notice that the oscillations are gone.
The computations could indicate that the solutions are stable for any value of ∆t.
In fact, unconditional stability of the implicit scheme for the diffusion equation is
classical and can be proved. One argument can be found in [3].
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Fig. 4.2 Numerical solutions of the diffusion equation with boundary conditions ∂u
∂x (t , 0) =

∂u
∂x (t , 1) = 0 and initial conditions u(0, x) = 1 for x ≤ 1/2 and u(0, x) = 0 for x > 1/2
using ∆t = 0.001 and ∆x = 0.02. The left panel shows the solution for the explicit scheme (as also
seen in Fig. 3.3), and we observe wild oscillations. In the right panel, we show the solution of the
implicit scheme, and the solution appears to be more reasonable. Note that at T = 0.5, the explicit
scheme is so broken down that the solution returned by the scheme are not numbers (NaNs).
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4.5 Comments and Further Reading

1. As mentioned above, when the PDE under consideration is in one spatial
dimension, the associated linear system (4.21) is easy to solve. But if we consider
the diffusion equation in three spatial dimensions, e.g.,

ut = uxx + uyy + uzz, (4.33)

this problem becomes much harder. The solution of linear systems in the form of
Ax = b, where A is a matrix, b is a known vector, and x is unknown, is a crucial
problem in scientific computing. It is a fundamental part of almost all scientific
computing projects and presents significant challenges. While small systems are
relatively straightforward to solve, larger systems become increasingly difficult.
This problem is well studied in the field of scientific computing, but it remains
a challenging task in general.

2. Numerical linear algebra is a field of research concerned with operations on
vectors and matrices on computers. A thorough introduction to the field is given
in [1].

3. A classical introduction to iterative methods for solving linear systems is
presented in [2].
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Chapter 5
Improved Accuracy

In the examples we have considered so far, the error introduced by the numerical
scheme has been O(∆t). This can easily be improved as we will show through two
simple examples.

5.1 Back to the Simplest Equation

The first equation we studied was

y′ = y, (5.1)

and we approximated the equation using the finite difference approximation

yn+1 − yn

∆t
= yn. (5.2)

This scheme resulted in an error proportional with the time step ∆t. From Chapter 4,
we realize that we can also use the approximation

yn+1 − yn

∆t
= yn+1. (5.3)

And, as a compromise between these two alternatives, we can use the following
midpoint1 approximation,

yn+1 − yn

∆t
=

1
2
(yn + yn+1). (5.4)

The explicit, implicit and midpoint schemes can be written on computational form
as follows,

1 This scheme is sometimes called the midpoint scheme (for obvious reasons) and sometimes called
the Cranck-Nicolson scheme because it was developed by John Crank and Phyllis Nicolson, [1].
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yn+1 = (1 + ∆t)yn, (5.5)

yn+1 =
1

1 − ∆t
yn, (5.6)

yn+1 =
1 + ∆t/2
1 − ∆t/2

yn, (5.7)

respectively. In Table 5.1 we show the errors introduced by these three schemes
and we note that the midpoint scheme is clearly more accurate than the two other
schemes. Furthermore, we find that the error of the implicit and explicit schemes
are both proportional to ∆t, or O(∆t), whereas the error of the midpoint scheme is
proportional to ∆x2, or O(∆t2). This means that the implicit and explicit schemes
have first order (linear) convergence, whereas the midpoint scheme has second order
(quadratic) convergence.

Table 5.1 Errors of numerical solutions of the differential equation (5.1) with initial condition
u0 = 1 at t = T = 1 for different values of ∆t. The errors are defined as Ee = |y(1) − yN ,e |,
Ei = |y(1) − yN ,i | and Em = |y(1) − yN ,m |, where y(1) = e is the analytical solution, and yN ,e ,
yN ,i , and yN ,m , are the numerical solutions of the explicit (5.5), implicit (5.6) and midpoint (5.7)
schemes, respectively, at time 1.

∆t Ee Ee/∆t Ei Ei/∆t Em Em/∆t
2

0.1 0.125 1.25 0.15 1.5 0.00227 0.227
0.01 0.0135 1.35 0.0137 1.37 2.27·10−5 0.227
0.001 0.00136 1.36 0.00136 1.36 2.27·10−7 0.227
0.0001 0.000136 1.36 0.000136 1.36 2.27·10−9 0.227

The difference in numerical errors reported in Table 5.1 may not seem to be
dramatic. But if you require the error to be less than, say, 10−10, then the number of
time steps needed for the first order schemes are about 2.85× 105 larger than what is
needed for the second order scheme. So, the difference in computing time between a
first and second order scheme can be dramatic. For the very simple model considered
here, the computation is trivial in any case, but with a challenging system of partial
differential equations in three spatial dimensions, the difference in computing efforts
can become enormous.

5.2 A Linear Reaction-Diffusion Equation

We considered the diffusion equation above. That equation becomes a little more
interesting if we add a reaction term to it,

ut = uxx + f (u). (5.8)
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Here, f = f (u) is referred to as a reaction term. In order to keep things simple, we
will consider a linear reaction term and define

f (u) = λu, (5.9)

and we will wait a little before defining the value of λ. Above, we noted that a
numerical scheme for the diffusion equation could be written in a very compact form
by introducing vector/matrix notation. We will extend this in order to define three
alternative schemes for the reaction-diffusion equation (5.9). Note that we still apply
the following initial and boundary conditions,

u(0, x) = u0(x), (5.10)
u(t,0) = u(t,1) = 0. (5.11)

As above, we let

un =

©«
un

2
un

3
...

un
M−1

ª®®®®¬
, (5.12)

and in addition, we introduce the matrix

D =
1
∆x2

©«

−2 1 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −2

ª®®®®®®¬
. (5.13)

With this notation at hand we can approximate the linear version of equation (5.8)
using an explicit, implicit or midpoint approximation of the right-hand side of the
equation

un+1 − un

∆t
= Dun + λun, (5.14)

un+1 − un

∆t
= Dun+1 + λun+1, (5.15)

un+1 − un

∆t
=

1
2
(Dun + Dun+1 + λun + λun+1). (5.16)

To help ease the implementation of the numerical schemes and make it more
straightforward to write the schemes in matrix form as in, e.g., (4.21), it is convenient
to write these schemes in computational form, that is, collect all terms involving the
unknown solutions to be computed in each time step, un+1, on the left-hand side and
all the terms involving the know solutions from the previous time step, un, on the
right-hand side. The schemes (5.14)–(5.16) can be written in this form by,
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un+1 = [(1 + λ∆t)I + ∆tD]un (5.17)

[(1 − λ∆t)I − ∆tD]un+1 = un (5.18)[(
1 −

λ∆t
2

)
I −
∆t
2

D
]

un+1 =

[(
1 +

λ∆t
2

)
I +
∆t
2

D
]

un, (5.19)

where I is the identity2 matrix.
Let us now consider the problem (5.8)-(5.11) with a specific choice of λ = 2π2

and u0(x) = sin(πx). Then, the analytical solution is given by

u(t, x) = eπ
2t sin(πx). (5.20)

In Fig. 5.1, we show the results of the implicit (5.18) and midpoint (5.19) schemes
together with the analytical solution at time T = 1. In addition, we show the results
of the explicit scheme at T = 0.1. We have used ∆x = 0.01 and ∆t = 0.001. For this
choice of discretization parameters, we get wild oscillations for the explicit scheme.
The implicit and midpoint schemes produce more reasonable solutions, and we note
that the midpoint scheme is clearly more accurate than the implicit scheme.
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Fig. 5.1 Analytical and numerical solutions of the reaction-diffusion equation (5.8) with λ = 2π2,
boundary conditionsu(t , 0) = u(t , 1) = 0 and initial conditionsu(0, x) = sin(πx). In the numerical
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Chapter 6
A Simple Cable Equation

The cable equation was first derived to model transport of electrical signals in
telegraphic cables. But it later gained enormous popularity as a model of transport
of electrical signals along a neuronal axon. In Chapter 9, we will discuss how this
equation is derived and how the different terms in the equation come about. But
here, we will just take a simple version of the equations for granted and then try to
solve them. We will observe that the few techniques we learned above are actually
sufficient to solve the non-linear reaction-diffusion equations we consider here.

6.1 A Non-Linear Reaction-Diffusion System

We will consider a system of equations where we add a diffusion term to the
FitzHugh-Nagumo equations. Specifically, we consider the equations1,

vt = δvxx + c1v(v − a)(1 − v) − c2w, (6.1)
wt = b(v − dw). (6.2)

We use the same constants as above,

a = −0.12, c1 = 0.175, c2 = 0.03, b = 0.011, d = 0.55, (6.3)

and in addition we use the diffusion coefficient2 δ = 5 · 10−5.

1 Recall, once again, that we use the convention that vt = ∂v
∂t and vxx = ∂2v

∂x2 .
2 We still use no units; they will be introduced later.
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6.2 The Explicit Numerical Scheme

We note that we can use the same approximation of vt and wt that we used for
the FitzHugh-Nagumo model in Chapter 2 (see (2.6) and (2.7)), and the same
approximation for vxx as we used for the diffusion equation in Chapter 3 (see (3.13))
to define an explicit numerical scheme,

vn+1
j − vnj

∆t
= δ

vn
j−1 − 2vnj + v

n
j+1

∆x2 + c1v
n
j (vn − a)(1 − vnj ) − c2w

n
j , (6.4)

wn+1
j − wn

j

∆t
= b(vnj − dwn

j ). (6.5)

Here, vnj and wn
j denote approximations of v(xj, tn) and w(xj, tn), respectively. It is

straightforward to put this scheme in computational form,

vn+1
j = ρvnj−1 + (1 − 2ρ)vnj + ρv

n
j+1 + ∆t[c1v

n
j (vn − a)(1 − vnj ) − c2w

n
j ],

wn+1
j = wn

j + ∆tb(vnj − dwn
j )

where ρ = δ∆t/∆x2.

6.3 Traveling Wave Solutions

Traveling wave solutions are characteristic of solutions of reaction-diffusion models
of neuronal axons and myocardial tissue. Here, we will see such solutions for the
simple model given by (6.1) and (6.2).

In Fig. 6.1, we show the numerical solution of v as a function of x at five different
points in time. In order to initiate a wave traveling from left to right, we let the initial
conditions be specified by v0 = 0 and w0 = 0 for all values of x, except that we set
v0 = 0.26 for x ≤ 0.04. We use ∆x = 0.01 and ∆t = 0.005. The boundary conditions
for v are given by ∂v

∂x (t,0) =
∂v
∂x (t,1) = 0.

In the leftmost panel of Fig. 6.1, at t = 0, we see the initial conditions for the
variable v. In the second panel, at t = 50, we see that the value of v has started to
increase in an area close to the left boundary of the domain, and in the next panels,
at t = 100, t = 200, and t = 300, we see that the increase in v gradually moves from
left to right like a traveling wave.

6.3.1 Adjusting Parameters

In Fig. 6.2, we show the solution of the model at five different points in time for
three different values of the parameters δ. We observe that for a low value of δ
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Fig. 6.1 Numerical solution of v in the FitzHugh-Nagumo equations with a diffusion term added.
The boundary conditions are given by ∂v

∂x (t , 0) = ∂v
∂x (t , 1) = 0, and the initial conditions are

w(0, x) = 0 everywhere and v(0, x) = 0 for x > 0.04 and v(0, x) = 0.26 for x ≤ 0.04. We use
∆t = 0.005 and ∆x = 0.01, and show the solution at five different points in time.

(δ = 1 · 10−5), the traveling wave moves more slowly through the domain. For
example, at t = 200, the wave has crossed about half of the distance from x = 0 to
x = 1 for the default case of δ = 5 · 10−5, and only about a quarter of the distance for
δ = 1 · 10−5. Moreover, for a high value of δ (δ = 20 · 10−5), the wave moves more
quickly through the domain, and has almost crossed the entire domain at t = 200.
We also observe that the slope of the wavefront of the traveling wave appears to
become less steep at the value of δ is increased.

In Fig. 6.3, we similarly consider the traveling wave solutions for three different
values of the parameter c1. As when we adjust the value of δ, we observe that the
wave moves more quickly as the value of c1 is increased.

6.3.2 Conduction Velocity

In Fig. 6.2 and Fig. 6.3, we observed that the travelingwavemovesmore quickly aswe
increased the value of δ or c1. The conduction velocity is often used to characterize
the speed with which a traveling wave traverses the domain. In Fig. 6.3, we have
computed the conduction velocity for some different values of δ and c1. Here, we
have defined the conduction velocity as

CV =
x2 − x1
t2 − t1

, (6.6)

where x1 = 0.5 and x2 = 0.7. Furthermore, t1 and t2 are the points in time when
the value of v first increases to a value v ≥ 0.5, in the spatial points x1 and x2,
respectively. As expected Fig. 6.3 shows that increasing δ or c1 in themodel increases
the computed conduction velocity.
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Fig. 6.2 Numerical solution of v in the FitzHugh-Nagumo equations with an added diffusion
term at for three different values of δ. The remaining parameter values are as specified in (6.3).
The boundary conditions are given by ∂v

∂x (t , 0) = ∂v
∂x (t , 1) = 0, and the initial conditions are

w(0, x) = 0 everywhere and v(0, x) = 0 for x > 0.04 and v(0, x) = 0.26 for x ≤ 0.04. We use
∆t = 0.005 and ∆x = 0.01, and show the solution at five different points in time.
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Fig. 6.3 Numerical solution of v in the FitzHugh-Nagumo equations with an added diffusion term
for three different values of δ for three different values of c1. The remaining parameter values are as
specified in (6.3) and δ = 5 · 10−5. The boundary conditions are given by ∂v

∂x (t , 0) = ∂v
∂x (t , 1) = 0,

and the initial conditions are w(0, x) = 0 everywhere and v(0, x) = 0 for x > 0.04 and v(0, x) =
0.26 for x ≤ 0.04. We use ∆t = 0.005 and ∆x = 0.01, and show the solution at five different points
in time.
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Fig. 6.4 Conduction velocity for different values of δ and c1, computed from numerical solutions
of the FitzHugh-Nagumo equations with an added diffusion equation term. The conduction velocity
is computed as defined in (6.6).
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Chapter 7
Operator Splitting

In mathematics, a common approach to solving a new problem is to break down
the problem into sub-problems that you know how to solve and then try to glue the
pieces together to yield a solution of the new problem. This approach is also very
useful in software development; well-tested pieces of software can be glued together
in order to obtain solutions to a wider class of problems. Operator splitting is a
technique that illustrates this principle very well. Rather complex equations can be
broken down into more familiar problems and solved individually. It’s a miracle that
it works, but it does. And it’s no miracle because there are proofs of convergence.
Anyway, we will illustrate operator splitting with two examples and then come back
to this technique when the equations become more challenging.

7.1 Numerical Schemes for a Reaction-Diffusion Equation

Suppose we want to solve the following reaction-diffusion equation,

ut = uxx + f (u), (7.1)

with initial and boundary conditions,

u(0, x) = u0(x), (7.2)
u(t,0) = u(t,1) = 0. (7.3)

Clearly, we can use the techniques introduced above. By using the notation introduced
on page 43, we can write explicit, implicit, and midpoint schemes as follows,
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un+1 − un

∆t
= Dun + f (un), (7.4)

un+1 − un

∆t
= Dun+1 + f (un+1), (7.5)

un+1 − un

∆t
=

1
2
(Dun + Dun+1) +

1
2
( f (un) + f (un+1)), (7.6)

where we have tacitly extended f to be a vector valued function with components
fi = f (ui). These schemes can be rearranged to computational form as follows,

un+1 = [I + ∆tD]un + ∆t f (un),

[I − ∆tD]un+1 − ∆t f (un+1) = un,(
I −
∆t
2

D
)

un+1 −
∆t
2

f (un+1) =

(
I +
∆t
2

D
)

un +
∆t
2

f (un),

where, again, we use the convention that known quantities are on the right-hand side
of the equations and the unknowns are at the left-hand side. The explicit scheme is
straightforward to implement since computing un+1 simply amounts to evaluating
the right-hand side. But the implicit scheme has become more complicated than we
are used to because we have to solve a potentially non-linear system of algebraic
equations in order to compute un+1. We can do that using Newton’s method, but we
can also avoid this by introduction operator splitting.

7.2 Operator Splitting for a Reaction-Diffusion Equation

Let un denote an approximation of u(tn, x), where tn = n∆t as usual. Then, the
problem (7.1) can be solved by alternately solving ut = uxx and ut = f (u). More
precisely, we assume that an approximate solution has been computed for time t = tn.
Then, an approximate solution of (7.1) at tn+1 can be found in two steps. First we
solve

ut = uxx, (7.7)

from tn to tn+1 with the initial condition u(tn, ·) = un and boundary conditions given
by (7.2) and (7.3). We let un+1/2 denote the solution of the first step. In the second
step, we solve

ut = f (u), (7.8)

using the initial condition u(tn, ·) = un+1/2. Now, we have broken the somewhat
complex problem (7.1) down to two problems we are more familiar with. We will
show how this works with a couple of examples. Note, however, that the main
message from this chapter is the technique of breaking down the numerical solution
of a problem into two simpler problems like described in this subsection. So if you
reach a point where you feel that themathematics in the remaining part of this chapter
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becomes a bit overwhelming, it might be good to jump ahead to Chapter 8, where
we will start applying the methods introduced above to models of electrophysiology.

7.2.1 Numerical Example

In the first numerical example, we consider the problem

ut = uxx − u2, (7.9)

with the boundary conditions u(t,0) = u(t,1) = 0 and the initial condition u(0, x) =
sin(πx). We want to use the operator splitting procedure introduced above to solve
this problem numerically, and this will result in two steps. The first step is to solve

ut = uxx, (7.10)

with an implicit scheme (see page 34). The second step is to solve

ut = −u2, (7.11)

using an implicit scheme. Note that this equation has to be solved for each mesh
point xi , so the implicit scheme reads

un+1
j − un+1/2

j

∆t
= −(un+1

j )
2, (7.12)

where un+1/2
j is the result of the first step. By using operator splitting we have avoided

solving a big system of non-linear equations. Instead we need to solve a usual linear
system of equations arising from the discrete version of (7.10) and a series of second
order algebraic equations given by (7.12) whose solutions are given by the quadratic
formula,
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un+1
j =

−1 +
√

1 + 4∆tun+1/2
j

2∆t
. (7.13)

In Fig. 7.1 we show the solution of this problem using ∆x = 0.01 and ∆t = 0.001.
Furthermore, in Table 7.1 we have computed the error by comparing the solution to
a very fine scale solution of this problem using a standard explicit scheme. Again we
note that the error seems to be first order in ∆t.

Table 7.1 Errors of the numerical solutions of the differential equation ut = uxx − u2, with
boundary conditions u(t , 0) = u(t , 1) = 0 and initial condition u(0, x) = sin(πx) for different
values of ∆t . The error is defined as E = max j |ue , j − uN

j |, where ue , j is the solution of the
problem found using a standard explicit schemewith a very fine time step (∆t = 10−6), anduN

j is the
numerical solution of the operator splitting scheme described in (7.10)–(7.13). We use ∆x = 0.01.

∆t E E/∆t

0.01 2.77·10−5 0.0028
0.005 1.27·10−5 0.0025
0.001 2.37·10−6 0.0024
0.0005 1.17·10−6 0.0023
0.0001 2.35·10−7 0.0024

7.2.2 A Detour via Numerical Integration

Very few things come for free, but second order convergence does. With minimal
change of the algorithm above, we can obtain second order convergence. Actually,
just the first and the last step of the algorithm are slightly changed (half step instead
of whole step). Exactly the same alteration is present in changing from a first order
to a second order scheme of numerical integration. We will show that similarity here
because it might help make the second order operator splitting algorithm seem less
mysterious, but if you are not interested, just skip this subsection and go to page 58
where you can read about second order operator splitting.

First and Second Order Schemes for Numerical Integration

Suppose we have a smooth function g = g(x) defined on the interval from 0 to 1,
and that we want to compute an approximation of the integral of g on this interval.
We start by defining ∆x = 1/(M − 1) and xi = (i − 1) × ∆x for a sufficiently large
integer M . In Fig. 7.2, we show two approximations of the function g. The first
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Fig. 7.2 Illustration of two approximations of a function g. In the left panel, we illustrate a piecewise
constant approximation defined by the value of g at x = xi for the interval between xi to xi+1. In
the right panel, we illustrate a piecewise linear approximation defined to coincide with g for x = xi
and x = xi+1.

approximation is simply a constant function defined by the value of g at x = xi . The
second is a linear function that coincides with g for x = xi and x = xi+1.

If we use these two approximations to estimate the integral of g from x = xi to
x = xi+1, we get ∫ xi+1

xi

g(x)dx ≈ ∆xg(xi) (7.14)

and ∫ xi+1

xi

g(x)dx ≈
1
2
∆x(g(xi) + g(xi+1)), (7.15)

respectively. Since we clearly have∫ 1

0
g(x)dx =

M−1∑
i=1

∫ xi+1

xi

g(x)dx, (7.16)

we get two approximations of the integral from (7.15) and (7.16), respectively;∫ 1

0
g(x)dx ≈ ∆x

M−1∑
i=1

g(xi), (7.17)

and ∫ 1

0
g(x)dx ≈

1
2
∆x

M−1∑
i=1
(g(xi) + g(xi+1)). (7.18)

Here, the latter formula can be rewritten slightly to∫ 1

0
g(x)dx ≈ ∆x

[
1
2
g(x1) + g(x2) + g(x3) + · · · + g(xM−1) +

1
2
g(xM )

]
. (7.19)
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Table 7.2 Maximum errors of the Riemann sum approximation (ER, (7.17)) and the Trapezoidal
scheme approximation (ET, (7.19)) to the integral

∫ 1
0 x2dx for some different values of ∆x.

∆x ER ER/∆x ET ET/∆x
2

0.1 0.0483 0.48 0.00167 0.17
0.02 0.00993 0.5 6.67·10−5 0.17
0.01 0.00498 0.5 1.67·10−5 0.17
0.002 0.000999 0.5 6.67·10−7 0.17
0.001 0.0005 0.5 1.67·10−7 0.17

The approximation of the integral defined by (7.17) is referred to as a Riemann
sum, whereas the approximation given by (7.19) is referred to as the Trapezoidal
method of integration. In Table 7.2, we show the error when using these to schemes
to approximate the integral ∫ 1

0
x2dx =

1
3

using several values of ∆x. For the Riemann sum, the error is O(∆x), and for the
Trapezoidal scheme, the error is O(∆x2). So, by using the same number of function
evaluations, the accuracy of the integration scheme is improved from first to second
order.

7.2.3 Second Order Operator Splitting

In order to introduce second order operator splitting, it is useful to introduce notations
that we can use to simplify the formulations. We recall that the problem we want to
solve is the following reaction-diffusion equation,

ut = uxx + f (u), (7.20)

with initial and boundary conditions,

u(0, x) = u0(x), (7.21)
u(t,0) = u(t,1) = 0. (7.22)

First, we let D(∆t) be an operator that evolves the solution of the diffusion equation
one time step∆t ahead. If the function u = u(t, ·) is known at time t, then u(t+∆t, ·) =
D(∆t)u(t, ·) denotes the solution of

ut = uxx, (7.23)
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at time t + ∆t, where u(t) is the initial condition at time t. Similarly, we let R play
the same role for the reaction part of the equation. If u = u(t, ·) is known, then
u(t + ∆t, ·) = R(∆t)u(t, ·) denotes the solution of

ut = f (u), (7.24)

at time t +∆t, where u(t) is the initial condition at time t. With this notation, we can
rewrite the first order operator splitting derived above in a very compact manner.
The step from tn to tn+1 can be written

un+1 = R(∆t)D(∆t)un. (7.25)

By simply repeating the process, we find that

un = (R(∆t)D(∆t))nu0. (7.26)

Equipped with this notation, we can improve the accuracy of the operator splitting
using the same approach as for numerical integration (7.19). In order to improve the
accuracy of the operator splitting to second order, we now approximate one time
step by

un+1 = D(∆t/2)R(∆t)D(∆t/2)un. (7.27)

By combining several steps, we get

un = [D(∆t/2)R(∆t)D(∆t/2) · · · D(∆t/2)R(∆t)D(∆t/2)]u0. (7.28)

Note that by the definition of D, it has the following useful property,

D(∆t/2)D(∆t/2) = D(∆t),

since applying D(∆t/2) twice simply means to solve the equation twice using the
time step ∆t/2 . By using this property, we can rewrite (7.28) as follows,

un =
(
D(∆t/2)[R(∆t)D(∆t)]n−1R(∆t)D(∆t/2)

)
u0. (7.29)

So the only difference between the first order scheme (7.26) and the second order
scheme (7.29) is that in the latter, we do a half time step in the first and last time
steps. This is very similar to the half step in the first and last step of the numerical
integration above; see (7.19) compared to (7.17).

7.3 Operator Splitting Applied to a System of Reaction-Diffusion
Equations

In order to demonstrate the use of the operator splitting techniques introduced above,
we revisit the FitzHugh-Nagumo system,
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vt = δvxx + c1v(v − a)(1 − v) − c2w, (7.30)
wt = b(v − dw). (7.31)

We use the same constants as above,

a = −0.12, c1 = 0.175, c2 = 0.03, b = 0.011, d = 0.55, δ = 5 · 10−5. (7.32)

Here, the solution operator of the diffusion step D evolves

vt = δvxx, (7.33)
wt = 0, (7.34)

and the R evolves

vt = c1v(v − a)(1 − v) − c2w, (7.35)
wt = b(v − dw). (7.36)

In Table 7.3 we show the error when the first order (see (7.26)) and second order (see
(7.29)) algorithms. The solutions are computed by replacingD andR by the standard
explicit schemes with a fine time step (∆t = 10−4), and the errors are estimated by
comparing the solutions to a numerical solution found using the fine time step and
no operator splitting. As anticipated, the convergence of the two methods are first
and second order.

Table 7.3 Maximum errors of the first order (E1, (7.26)) and the second order (E2, (7.29)) operator
splitting techniques applied to the FitzHugh-Nagumo system (7.30)–(7.32). In each operator
splitting step, the system is solved using standard explicit schemes with ∆t = 10−4 and ∆x =
0.01. The error is found by comparing the solutions to solutions found using a standard explicit
scheme with ∆t = 10−4 and ∆x = 0.01 without operator splitting.

∆t E1 E1/∆t E2 E2/∆t
2

5 0.0205 0.0041 0.00612 0.00024
2 0.00768 0.0038 0.0011 0.00028
1 0.00384 0.0038 0.000296 0.00030
0.5 0.00192 0.0038 7.48·10−5 0.00030
0.2 0.000765 0.0038 1.05·10−5 0.00026

7.4 Comments and Further Reading

1. The example in Section 7.3 indicates the strength of operator splitting. If we
have a good solver for the diffusion step, and a good solver for a system of
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ordinary differential equations, these solvers can be combined to get a solution
of the reaction diffusion problem. In this case, this is not really necessary, but
there are extremely complex problems out there that are virtually impossible to
solve without using operator splitting.

2. Why does operator splitting work? This question is studied in some detailed in,
e.g., [4, 5, 7, 8, 9, 12]. A detailed discussion of this topic is far outside of our
scope. However, we can give a hint to why this works. To this end, we consider
a linear system of ordinary differential equations

ut = Au + Bu,

where u is a vector and A and B are matrices compatible with the dimensions of
u; they may represent discrete version of spatial derivatives as above. An explicit
scheme for this system can be written on the form

un+1 = (I + ∆t A + ∆tB)un,

and using first order operator splitting, we get the scheme

Un+1/2 = (I + ∆t A)Un, (7.37)

Un+1 = (I + ∆tB)Un+1/2. (7.38)

By combining the two steps of the operator splitting scheme, we get

Un+1 = (I + ∆t A)(I + ∆tB)Un. (7.39)

This scheme can be expanded to read

Un+1 = (I + ∆t A + ∆tB)Un + ∆t2 ABUn. (7.40)

Hence, in the step from tn to tn+1 the results of the two schemes differ by O(∆t2),
and thus the difference summed over N ∼ ∆t−1 steps is O(∆t). Therefore, the
standard explicit scheme and the first order operator splitting scheme converges
to the same solution as ∆t goes to zero.

3. Thefirst order operator splitting is referred to asGodunov splitting [3] and second
order splitting is referred to as Strang splitting [10]. In [2], these methods are
used to split spatial parts of the differential equation. In that setting, the method
is referred to as the method of fractional steps.

4. In computational electrophysiology, operator splitting was introduced for the
monodomain model in [6] and extended to the bidomain model in [11]. The
error of the method was analyzed in [7], and higher order splitting methods were
introduced in [1].

5. In this chapter, we have learned that operator splitting is an effective method for
breaking down complex problems into simpler ones. This technique is widely
used in mathematics and is particularly useful in computational mathematics,
as it enables the reuse of code. However, the question remains whether a
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coupled system is inherently more difficult to solve. It is possible to solve a
reaction-diffusion equation using a fully coupled implicit scheme and Newton’s
method, but when the problem involves large systems of equations defined on
different domains and scales, and it can be impractical to solve the problem in
a fully coupled manner. In such cases, operator splitting is often necessary to
manage the complexity of the problem.
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Part II
Models of Electrophysiology



Chapter 8
Membrane Models

In the previous chapters, we introduced techniques that can be used to find numerical
solutions of differential equations. The examples we considered were simple,
theoretical differential equations without units. From this point forwards, we will
look at how to apply the methods introduced in the previous chapters to differential
equations that are set up to model aspects of electrophysiology.

In this chapter, we will consider a type of model that is commonly used to model
the dynamics across the membrane of excitable cells. We will start by introducing
a model for the action potentials generated in neurons. More specifically, we will
consider the Hodgkin-Huxley model for the action potential of the squid giant axon
[10]. Then, we will introduce a similar model for a cardiac action potential —
specifically, a model for the action potential of a rabbit ventricular cardiomyocyte
[9].

8.1 The Hodgkin-Huxley Model

The Hodgkin-Huxley model [10] consists of a system of four ordinary differential
equations with the four unknowns v, m, h, and r 1:

Cm
dv
dt
= −(INa + IK + IL), (8.1)

dm
dt
= αm(1 − m) − βmm, (8.2)

dh
dt
= αh(1 − h) − βhh, (8.3)

dr
dt
= αr (1 − r) − βrr . (8.4)

1 The unknown function r is actually called n in the original formulation of the Hodgkin-Huxley
model, but we will use the name r to avoid confusion with the index n used to denote the time step
in the numerical schemes.
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Here, the unknown function v has unit millivolts (mV) and represents the membrane
potential, and Cm = 1 µF/cm2 is a parameter representing the specific membrane
capacitance. Furthermore, INa, IK, and IL represent the current density through three
types of ion channel: Na+ channels, K+ channels, and non-specific leak channels.
The current densities are given in units of µA/cm2 and are defined by

INa = gNam3h(v − vNa), (8.5)

IK = gKr4(v − vK), (8.6)
IL = gL(v − vL), (8.7)

where gNa = 120 mS/cm2, gK = 36 mS/cm2 and gL = 0.3 mS/cm2 are parameters
representing the maximal conductance density of the different channel types, and
vNa = 50 mV, vK = −77 mV and vL = −54.4 mV are the equilibrium potentials of
the channels. In addition, m3h and r4 represent the open probability of the Na+ and
the K+ channels, respectively. The open probability of the leak channels is assumed
to be 1 at all times.

The unknown functions m, h and r take values between 0 and 1 and are governed
by the equations (8.2)–(8.4). In these equations, αm, βm, αh , βh , αr , and βr represent
rates of the opening and closing of channel gates, are given in units of ms−1 and
depend on the value of v. More specifically, they are defined by

αm =
γ1(v + γ2)

1 − e−(v+γ2)/γ3
, βm = γ4e−(v+γ5)/γ6, (8.8)

αh = γ7e−(v+γ8)/γ9, βh =
γ10

1 + e−(v+γ11)/γ12
, (8.9)

αr =
γ13(v + γ14)

1 − e−(v+γ14)/γ15
, βr = γ16e−(v+γ17)/γ18, (8.10)

where the parameters γ1–γ18 are constants specified by

γ1 = 0.1 ms−1mV−1, γ2 = 40 mV, γ3 = 10 mV, (8.11)

γ4 = 4 ms−1, γ5 = 65 mV, γ6 = 18 mV, (8.12)

γ7 = 0.07 ms−1, γ8 = 65 mV, γ9 = 20 mV, (8.13)

γ10 = 1 ms−1, γ11 = 35 mV, γ12 = 10 mV, (8.14)

γ13 = 0.01 ms−1mV−1, γ14 = 55 mV, γ15 = 10 mV, (8.15)

γ16 = 0.125 ms−1, γ17 = 65 mV, γ18 = 80 mV. (8.16)

In our computations reported below, we will use the initial conditions

v(0) = −60 mV, m(0) = 0.1, h(0) = 0.6, r(0) = 0.3. (8.17)
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8.1.1 An Explicit Numerical Scheme

The differential equations of the Hodgkin-Huxley model can be solved numerically
using the techniques we have applied for simple example equations in the previous
chapters. More specifically, we can define a numerical scheme for the equations by
replacing the derivatives in (8.1)–(8.4) by the standard difference,

f ′(t) ≈
f (t + ∆t) − f (t)

∆t
, (8.18)

and define an explicit scheme by

Cm
vn+1 − vn
∆t

= −(INa(vn,mn, hn) + IK(vn,rn) + IL(vn)), (8.19)
mn+1 − mn

∆t
= αm(vn)(1 − mn) − βm(vn)mn, (8.20)

hn+1 − hn
∆t

= αh(vn)(1 − hn) − βh(vn)hn, (8.21)
rn+1 − rn
∆t

= αr (vn)(1 − rn) − βr (vn)rn, (8.22)

where, as usual, vn, mn, hn, and rn are the numerical solutions at time tn = n × ∆t.
The scheme can be written in computational form as

vn+1 = vn −
∆t
Cm
[INa(vn,mn, hn) + IK(vn,rn) + IL(vn)], (8.23)

mn+1 = mn + ∆t[αm(vn)(1 − mn) − βm(vn)mn], (8.24)
hn+1 = hn + ∆t[αh(vn)(1 − hn) − βh(vn)hn], (8.25)
rn+1 = rn + ∆t[αr (vn)(1 − rn) − βr (vn)rn]. (8.26)

8.1.2 Error of the Numerical Solution

In Table 8.1,we report the error, Ev , of the numerical solution of v using the numerical
scheme (8.23)–(8.26) for some different values of ∆t. The error is computed by
comparing the solutions at time t = 3 ms to the solutions found using a very fine
time step (∆t = 10−6 ms). As observed for simpler systems of equations in earlier
chapters, we find that the error of the explicit scheme is close to proportional to the
time step, ∆t, applied in the numerical scheme. In other words, we have linear (or
first order) convergence.



68 8 Membrane Models

Table 8.1 Error of the numerical solution of the Hodgkin-Huxley model for different values of ∆t .
The error is defined as Ev = |v − vN |, where v is the numerical solution at t = 3 ms for a very fine
time step (∆t = 10−6 ms), and vN is the numerical solution at t = 3 ms for each of the values of ∆t
reported in the first column of the table.

∆t (ms) Ev (mV) Ev/∆t (mV/ms)

0.01 0.982 98
0.005 0.49 98
0.001 0.0979 98
0.0005 0.0489 98
0.0001 0.0097 97

8.1.3 Details of the Model Solution

In Fig. 8.1, we show plots of the numerical solution of the Hodgkin-Huxley
model computed using ∆t = 0.001 ms. In the upper left panel, we have plotted
v, representing the membrane potential. We see that an action potential is generated,
starting with an increase in the value of v (depolarization) followed by a decrease in
the value of v (repolarization), like in the simple FitzHugh-Nagumo model studied
in Chapter 2. The action potential lasts for a couple of milliseconds.

In the next three panels of Fig. 8.1, we show the value of the unitless m, h, and r
variables, and in the final three panels we show each of the current densities INa, IK,
and IL. We see that INa obtains negative values, while IK is positive. The current IL
obtains both positive and negative values, and these values are considerably smaller
(in absolute value) than the values of INa and IK during the action potential. The sign
of the current densities can be explained by revisiting the definitions,

INa = gNam3h(v − vNa),

IK = gKr4(v − vK),

IL = gL(v − vL),

(see (8.5)–(8.7)) and recalling that gNa, gK, gL, m, h and r are all positive. Thus,
we see directly from the definition of the current densities that INa is positive for
v > vNa = 50 mV and negative for v < 50 mV. Similarly, IK is positive for v > vK =
−77 mV and negative for v < −77 mV, and IL is positive for v > vL = −54.4 mV
and negative for v < −54.4 mV.

Moreover, since Cmvt = −(INa+ IK+ IL), see (8.1), and Cm is positive, we deduce
that a negative value of the sum (INa + IK + IL) is needed for vt to be positive (i.e.,
for v to increase) and a positive value of the sum (INa + IK + IL) is needed for vt to be
negative (i.e., for v to decrease). We can therefore conclude that in the beginning of
the simulation, for v < −54.4 mV, both INa and IL contribute to the depolarization
of v, and that after v increases above −54.4 mV, INa is solely responsible for the
depolarization. However, as the value of v increases, the value of (v − vK) and r
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Fig. 8.1 Numerical solution of the Hodgkin-Huxley model with initial conditions v(0) = −60 mV,
m(0) = 0.1, h(0) = 0.6 and r(0) = 0.3. The system of equations is solved using the explicit scheme
described in (8.23)–(8.26) with ∆t = 0.001 ms.

increases, which leads to an increased value of IK. When IK + IL is more positive
than INa is negative, vt becomes negative, and v starts to repolarize.
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8.1.4 Upstroke Velocity and Action Potential Duration

From the discussion in the previous subsection, it seems reasonable to expect
that increasing INa, e.g., by increasing the value of the parameter gNa, will make
the depolarization phase (upstroke) of the action potential more rapid and the
repolarization slower (longer action potential duration)2. Similarly, we would expect
that increasing IK, e.g., by increasing the value of the parameter gK, would make the
repolarization of the action potential more rapid, and thus the duration of the action
potential shorter. In Fig. 8.2, we show the upstroke and the action potential for a few
choices of the parameters gNa, gK, and gL. As expected, we observe that increasing
gNa increases the upstroke velocity and the action potential duration, while increasing
gK decreases the action potential duration. The adjustments of gL do not seem to
have a significant effect on the computed upstroke or action potential duration.

Fig. 8.2 Numerical solution of the Hodgkin-Huxley model for some adjustments of the parameters
gNa, gK, and gL. The applied adjustments are given in the legends on the right-hand side of each
row, and the remaining parameters are kept at their default values. To make the comparison easier,
the timing is adjusted such that the time of the maximal upstroke velocity occurs at the same time
for all the parameter choices. The system of equations is solved using the explicit scheme described
in (8.23)–(8.26) with ∆t = 0.001 ms.

2 See Section 2.3 (page 17) for definitions of the upstroke velocity and action potential duration.
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8.2 A Parsimonious Model for the Action Potential of Rabbit
Ventricular Cardiomyocytes

In addition to the Hodgkin-Huxley model for neuronal action potentials, we will also
consider a similar model for a cardiac action potential. More specifically, we consider
a simple, so-called parsimonious, model for the action potential of rabbit ventricular
cardiomyocytes from [9]. Note, however, that numerous alternative cardiac action
potential models exist (see Section 8.3). The parsimonious rabbit model consists of
a system of three ordinary differential equations with three unknowns,

Cm
dv
dt
= −(INa + IK + Istim), (8.27)

dm
dt
=

m∞ − m
τm

, (8.28)

dh
dt
=

h∞ − h
τh

. (8.29)

Again, the unknown function v in units of millivolts (mV) represents the membrane
potential, and Cm = 1 µF/cm2 is a parameter representing the specific membrane
capacitance. Furthermore, INa and IK (in µA/cm2) represent the current densities
through Na+ and K+ channels and are given by

INa = gNam3h(v − vNa), (8.30)

IK = gKe−b(v−vK)(v − vK), (8.31)

where gNa = 11 mS/cm2 and gK = 0.3 mS/cm2 represent the maximal conductance
densities of Na+ and K+ channels, respectively, and vNa = 65 mV and vK = −83 mV
are the equilibrium potentials of the two channels types. In addition, m3h and
e−b(v−vK) represent the open probability of the Na+ and K+ channels, respectively.
The parameter b has the value b = 0.047 mV−1. As in the Hodgkin-Huxley model,
the unknown functions m and h take values between 0 and 1 and are governed by
(8.28)–(8.29)3 where

m∞ =
1

1 + e(v−Em)/km
, τm = 0.12 ms, (8.32)

h∞ =
1

1 + e(v−Eh )/kh
, τh =

2τ0
h

eδh (v−Eh )/kh

1 + e(v−Eh )/kh
, (8.33)

and

3 Note that the formulation of the equation for m used here (mt = (m∞ − m)/τm) corresponds
to the formulation used in the Hodgkin-Huxley model (mt = αm(1 − m) − βmm) if we define
τm =

1
αm+βm

and m∞ =
αm

αm+βm
. The equation for h can also be rewritten analogously.
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Fig. 8.3 Values ofm∞,h∞ and e−b(v−vK) in the parsimonious ventricular rabbitmodel (8.27)–(8.35)
as functions of v.

Em = −41 mV, km = −4.0 mV, (8.34)

Eh = −74.9 mV, kh = 4.4 mV, τ0
h = 6.8 ms, δh = 0.8. (8.35)

In addition, Istim is a stimulus current density given in units of µA/cm2. This stimulus
current density is introduced because the initial conditions (see below) yield a system
at rest, and the stimulus current is needed to trigger an action potential. The stimulus
current is described in more detail in Section 8.2.1 below.

In our computations, we will use the initial conditions

v(0) = −83 mV, m(0) = 0, h(0) = 0.9. (8.36)

8.2.1 The Stimulus Current Density

In the model (8.27)–(8.29), Istim is a stimulus current density that is used to initiate
an action potential by increasing the membrane potential enough to activate INa.
Specifically, the stimulus current density is given by

Istim =

{
astim, if t ≥ tstim and t ≤ tstim + dstim,

0, otherwise.
(8.37)

In other words, the stimulus current density is only nonzero in the period from tstim
to tstim + dstim. In our computations, we use astim = −25 µA/cm2, tstim = 50 ms, and
dstim = 2 ms, unless otherwise specified. This turns out to be a sufficiently strong
Istim to activate INa and thus initiate an action potential.

As mentioned above, without an included stimulus current density, the membrane
potential, v, is at rest (i.e., does not change with time) at the initial conditions, v(0) =
−83 mV, m(0) = 0, h(0) = 0.9. This is because both IK and INa on the right-hand side
of (8.27) are equal to or close to zero. The current density IK = gKe−b(v−vK)(v − vK)
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is zero because v = −83 mV, which is equal to the equilibrium potential of the K+
channels, vK, so (v−vK) = 0. Furthermore, the current density INa = gNam3h(v−vNa)
is zero because m is zero. From Fig. 8.3, we also see that m∞(v) ≈ 0 for v = −83 mV.
Therefore,m∞ ≈ m, whichmeans that dmdt =

m∞−m
τm
≈ 0 andm is expected tomaintain

a value close to zero. Since the membrane potential is at rest at v = −83 mV, it can
be referred to as the resting potential of the model.

However, if we apply a negative Istim for some time, this will allow v to increase a
bit. If we for example increase v to about −40 mV, then m∞(v) increases to about 0.5
(see Fig. 8.3), and dm

dt =
m∞−m
τm

becomes positive (if m ≈ 0), leading to an increased
value of m. For m > 0, we get a nonzero, negative INa, that will last as long as h > 0
and (v − vNa) > 0 (see (8.30)), and this negative INa creates the upstroke of the action
potential.

8.2.2 An Explicit Numerical Scheme

An explicit numerical scheme for the parsimonious ventricular rabbit model can be
defined in almost exactly the samemanner as in Section 8.1.1 for theHodgkin-Huxley
model by replacing the derivatives in (8.27)–(8.29) by the standard difference (8.18).
The computational form for the scheme reads:

vn+1 = vn −
∆t
Cm
[INa(vn,mn, hn) + IK(vn) + Istim(tn)], (8.38)

mn+1 = mn + ∆t
m∞(vn) − mn

τm(vn)
, (8.39)

hn+1 = hn + ∆t
h∞(vn) − hn
τh(vn)

. (8.40)

8.2.3 Numerical Computations

In Table 8.2,we report the error, Ev , of the numerical solution of v using the numerical
scheme (8.38)–(8.40) for some different values of ∆t. The error is computed by
comparing the solutions at time t = 10 ms to the solutions found using a very fine
time step (∆t = 10−5 ms). As observed for the Hodgkin-Huxley model, we find that
the error of the explicit scheme is close to proportional to the time step, ∆t, applied
in the numerical scheme. So again we have linear (or first order) convergence.

In Fig. 8.4, we show the numerical solution of the parsimonious ventricular rabbit
model solved using ∆t = 0.001 ms. In the upper left plot we show the membrane
potential, v, and we see that like in Fig. 8.1 for the Hodgkin-Huxley model, an
action potential is generated. The action potential starts around the time when Istim
is applied (at tstim = 50 ms) and seems to last for about 250 ms. This is significantly
longer than the about 2-3 ms long neuronal action potential in the Hodgkin-Huxley
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Table 8.2 Error of the numerical solution of the parsimonious ventricular rabbit model for different
values of ∆t . The error is defined as Ev = |v − vN |, where v is the numerical solution at t = 10 ms
for a very fine time step (∆t = 10−5 ms), and vN is the numerical solution at t = 10 ms for each
of the values of ∆t reported in the first column of the table. In these computations we have used
tstim = 0 ms and dstim = 2 ms.

∆t (ms) Ev (mV) Ev/∆t (mV/ms)

0.01 0.662 66
0.005 0.322 64
0.002 0.127 63
0.001 0.0627 63
0.0005 0.0309 62
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Fig. 8.4 Numerical solution of the parsimonious ventricular rabbit model. The system of equations
is solved using the explicit scheme described in (8.38)–(8.40) with ∆t = 0.001 ms. Note that INa is
shown in two panels, one with the same time scale as the remaining panels, and one with the time
scale zoomed in on the time of the peak current.

model for a neuronal action potential. The next two upper panels show how the value
of m and h changes with time, and the plots in the lower panels show the two ion
channel current densities, INa and IK. The lower left panel shows INa in the same
time scale as in the remaining panels, and the lower middle panel shows INa zoomed
in on the points in time when the peak current occurs. The lower right panel shows
IK.
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8.2.4 Upstroke Velocity and Action Potential Duration

In Fig. 8.5, we investigate how the upstroke velocity and action potential duration
are affected by adjusting the parameters gNa and gK in the parsimonious ventricular
rabbit model. In the upper panel, we observe that decreasing gNa leads to a slower
upstroke and a shorter action potential duration, whereas a lower value of gK leads
to a longer action potential duration. These observations are consistent with what we
observed for the Hodgkin-Huxley model in Fig. 8.5. We also observe that the onset
of the rapid upstroke happens slightly faster after the stimulus current is applied
when gK is decreased.
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Fig. 8.5 Numerical solution of v in the parsimonious ventricular rabbit model for some adjustments
of the parameters gNa and gK. The applied adjustments are given in the legends on the right-hand
side of each row, and the remaining parameters are kept at their default values.. The system of
equations are solved using the explicit scheme described in (8.38)–(8.40) with ∆t = 0.001 ms.

8.3 Comments and Further Reading

1. Following the publication of the Hodgkin-Huxley model [10] in 1952, many
similar models representing the action potential of different cell types were
published, building on the same basic principles. One example is the ventricular
rabbit model described in Section 8.2. More recent models are often more



76 8 Membrane Models

complex than the twomembrane models considered in this chapter. For instance,
a large number of additional membrane currents and dynamic intracellular ion
concentrations are often included in the equations. Nevertheless, the resulting
system of differential equations can be solved in exactly the same manner as
seen for the Hodgkin-Huxley model in Section 8.1.1 and for the parsimonious
ventricular rabbit model in Section 8.2.2.

2. A nice overview of the evolution of mathematical membrane models for
cardiomyocytes is found in [1]. These models include models for different
cell types, like Purkinje fibres (e.g., [4, 14, 19]), ventricular cardiomyocytes
(e.g., [7, 16, 20]), and atrial cardiomyocytes (e.g., [3, 8, 15]). They are set up to
represent cells from different species, like mice (e.g., [2]), guinea pigs (e.g., [6]),
rabbits (e.g., [18]), and humans (e.g., [16]).Membranemodels representing stem
cell derived cardiomyocytes have also been introduced (e.g., [11, 12, 13, 17]).

3. The membrane models in the form we have considered in this chapter are
expressed as a system of ordinary differential equations. The membrane
potential, v, obtains a single value at each time step and is governed by a number
of current densities. There is no spatial variation present in the model. In reality,
the currents across the membrane happen through ion channels at different
locations of the membrane. The current densities in the models in the form
considered in this chapter could therefore be interpreted as the average current
densities over a given area of membrane, for example, over the membrane of one
cell. In this case, v could be interpreted as the averaged membrane potential of
the cell. In the next chapters, we will combine the membrane models considered
in this chapter with spatial models of electrophysiology.

4. The formulation of the Hodgkin-Huxley model given in Section 8.1 is adjusted
for the membrane potential to have a resting state at v = −65 mV, and is taken
from [5].

5. Compared to the original publication of the parsimonious ventricular rabbit
model [9], we have for simplicity used values of τ0

h
and δh rounded off to one

decimal point.
6. A cardiomyocyte action potential typically lasts several hundred milliseconds.

In the parsimonious model considered above, it typically lasts between 200 ms
and 500 ms (see Fig. 8.5). In Fig. 8.4, we note that the gradients of the solution
are very sharp, and this indicates that we need to apply small time steps to pick
up the main features of the solutions. From Table 8.2, we note that the error is
about Ev ≈ 63×∆t mV/ms. Thus, if we accept an error of about 1 mV, we need
the time step to be less that 1/63 ms. If the action potential lasts for 500 ms, we
need to perform at least 31,500 time steps to achieve sufficient accuracy.

7. The action potential of a neuron lasts only a few milliseconds, while that of a
cardiomyocyte lasts several hundred milliseconds. The difference in duration is
due to a difference in the density of Na+ and K+ channels in the membrane of the
two cell types. In the models considered in this chapter, the neuronal model has
a 10 times higher density of Na+ channels and around a 100 times higher density
of K+ channels than the cardiac model. The high density of channels leads to a
brief and clear signal transmission in the neuronal model. On the other hand, the
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longer action potential of the cardiomyocyte is crucial in inducing an increase in
intracellular Ca2+ concentration (not part of the model above), resulting in the
mechanical contraction of the myocyte and effective pumping of blood. Thus,
the longer action potential is essential for optimal cardiac function.
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Chapter 9
The Cable Equation

In Chapter 6, we studied a simple version of the cable equation, where a diffusion
term was added to the FitzHugh-Nagumo equations. In this chapter, we will revisit
the cable equation and go through a simple derivation of the model. In addition, we
will consider the numerical solution of the cable equation for a neuronal axon with
membrane dynamics modeled by the Hodgkin-Huxley model.

9.1 Derivation of the Cable Equation

In order to get a sense of the origin of the terms in the cable equation, we will here
consider a simple derivation of the model. Similar derivations are found in, e.g.,
[1, 2, 4, 7, 9]. The derivation is based on dividing a cell (e.g., an axon) into a number
of compartments in the x-direction, as illustrated in Fig. 9.1.
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Fig. 9.1 Left: Illustration of a cell separated into a number of compartments of length ∆x. Right:
Illustration of one of the compartments, j. The cross-sectional area in the x-direction is denoted by
Ax , and the total membrane area is denoted by Am . The current across the membrane is denoted
by Im , the current from compartment j to compartment j + 1 is denoted by I+ and the current from
compartment j to compartment j − 1 is denoted by I−.
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The left panel of Fig. 9.1 illustrates a cell divided into a number of compartments
of length ∆x, and the right panel illustrates an arbitrary inner1 compartment number
j. We will derive the cable equation by considering each of the electric currents
flowing out of this compartment.

Currents Between Compartments

We assume that the currents that flow between compartments are governed by Ohm’s
law in the sense that the current from compartment j to compartment j + 1 is given
by

I+ =
ui, j − ui, j+1

R
, (9.1)

where ui, j is the electrical potential the center of compartment j and ui, j+1 is the
electrical potential in the center of compartment j + 1, both in units of millivolts
(mV). The subscript i is used to specify that we are considering the intracellular
potential of the cell. Furthermore, R is the intracellular resistance between the two
compartment centers in units of kilo-Ohm’s (kΩ). This resistance can be expressed
as (see, e.g., [5])

R =
∆x
σi Ax

, (9.2)

where ∆x is the distance between the centers of compartments j and j + 1 (in cm),
σi is the intracellular conductivity (in mS/cm), and Ax (in cm2) is the cross sectional
area of the cell (see Fig. 9.1). Inserting (9.2) into (9.1), we get

I+ = σi Ax

ui, j − ui, j+1

∆x
, (9.3)

and, following the same steps, we get that the current from compartment j to
compartment j − 1 is given by

I− = σi Ax

ui, j − ui, j−1

∆x
. (9.4)

The unit of I+ and I− is micro-Amperes (µA).

Membrane Currents

We assume that the membrane acts as a capacitor that can store charge and that
this property can be modeled like in the membrane models in Chapter 8. More
specifically, we assume that the total current across the membrane of compartment

1 Here, an arbitrary inner compartments refers to any of the compartments except for the rightmost
or leftmost compartments.
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j is given by2

Im = Am

(
Cm

∂vj

∂t
+ Iion

)
. (9.5)

Here, Am is the membrane area of compartment j (in cm2), given by

Am = ηm∆x, (9.6)

where ηm is the circumference of the compartment (in cm) and ∆x is the length of
the compartment (in cm). Furthermore, Cm is the specific membrane capacitance
(given in units of µF/cm2), and vj is the membrane potential (in mV) defined as the
potential difference

v = ui − ue, (9.7)

where ui is the intracellular potential in the compartment and ue is the extracellular
potential outside of the compartment. The termCm

∂vj
∂t is called the capacitive current

density and represents the current density to and from the collection of charges stored
by themembrane capacitor.Moreover, Iion is the current density (in µA/cm2) through
ion channels in the cell membrane. For example, if we assume that the membrane
dynamics are modeled by the Hodgkin-Huxley model (see Section 8.1), this current
density is given by

Iion = INa + IK + IL. (9.8)

Sum of Currents

In order to derive the cable equation, we assume that Kirchhoff’s current law applies
in each compartment. In other words, we assume that the sum of all of the currents
out of the compartment is zero. This gives

I+ + I− + Im = 0, (9.9)

and inserting (9.3)–(9.6), this yields

σi Ax

ui, j − ui, j+1

∆x
+ σi Ax

ui, j − ui, j−1

∆x
+ ηm∆x

(
Cm

∂vj

∂t
+ Iion

)
= 0, (9.10)

which can be rearranged to

Cm

∂vj

∂t
=
σi Ax

ηm

ui, j−1 − 2ui, j + ui, j+1

∆x2 − Iion. (9.11)

2 In (9.5) we recognize the termsCmvt and Iion (see (9.8)) from the membrane models considered
in Chapter 8. In those models, we ignored all spatial variation and assumed that Im was the only
current into or out of the cell. In order for the sum of the currents to be zero, we therefore ended up
with models on the form Cmvt = −Iion.
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Now, we insert an assumption that the extracellular potential is zero everywhere such
that v = ui (see (9.7))3. In that case, the model reads

Cm

∂vj

∂t
= δ

vj−1 − 2vj + vj+1

∆x2 − Iion, (9.12)

where
δ =

σi Ax

ηm
. (9.13)

From Chapter 3 (see page 23), we recall that

vxx(t, x) ≈
v(t, x − ∆x) − 2v(t, x) + v(t, x + ∆x)

∆x2 (9.14)

for a sufficiently small ∆x. We therefore assume that ∆x in (9.12) is very small, and
obtain the cable equation

Cm
∂v

∂t
= δ

∂2v

∂x2 − Iion. (9.15)

Since the considered compartment j was chosen as an arbitrary inner compartment,
we conclude that the equation (9.15) applies everywhere along the cell, except at
the left and right boundaries. The boundary conditions are considered in the next
subsection.

9.1.1 Boundary Conditions

Intuitively, for the leftmost compartment of the cell (see Fig. 9.1), the current from
this compartment to the non-existing compartment to the left, I−, should be assumed
to be zero. In other words,

I− = σi Ax

ui, j − ui, j−1

∆x
= 0. (9.16)

From previous chapters (see, e.g., (1.6) in Chapter 1), we know that

∂ui
∂x
(t, x) ≈

ui(t, x) − ui(t, x − ∆x)
∆x

(9.17)

for a sufficiently small ∆x. Assuming that ∆x is very small, (9.16) can therefore be
translated to the boundary condition

σi Ax
∂ui
∂x
(t,0) = 0, (9.18)

3 Note that the assumption that the extracellular potential is zero could be replaced by alternative
assumptions (see the Section 9.4 for more details).
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where we have assumed that the leftmost boundary of the cell is located at x = 0.
Dividing by σi Ax on both sides of the equation and using the assumption that the
extracellular potential is zero, which gives ui = v, we get the boundary condition

∂v

∂x
(t,0) = 0. (9.19)

Inserting this into the discrete version of the cable equation for the left boundary, we
get

Cm
∂v1
∂t
= δ
−v1 + v2

∆x2 − Iion. (9.20)

A similar argument for the right boundary of the cell, at x = L, gives the boundary
condition

∂v

∂x
(t, L) = 0 (9.21)

and the discrete equation

Cm
∂vM
∂t
= δ
−vM + vM−1

∆x2 − Iion. (9.22)

9.1.2 Geometry

The value of δ (see (9.13)) in the cable equation depends on the considered geometry.
If we consider a rectangular cuboid, as illustrated in Fig. 9.1, with width w in the y-
and z-directions, we have Ax = w

2 and ηm = 4w, which gives

δ =
σi Ax

ηm
=
wσi

4
. (9.23)

Similarly, if we consider a cylinder with radius r , we have Ax = πr2 and ηm = 2πr ,
which gives

δ =
σi Ax

ηm
=

rσi

2
. (9.24)

9.1.3 Additional State Variables

As mentioned in the derivation above, the term Iion represents the current density
through ion channels in the cell membrane. This current density could, for example,
be modeled by the Hodgkin-Huxley model:

Iion = INa + IK + IL (9.25)
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(see Section 8.1). Here, the formulation of INa and IK involve the additional state
variables m, h and r , which are governed by (8.2)–(8.4). In order to define the current
density, Iion, we therefore need to include these equations in the model, where m, h
and r are functions of both t and x. We thus get a system of equations of the form

Cm
∂v

∂t
= δ

∂2v

∂x2 − Iion, (9.26)

∂m
∂t
= αm(1 − m) − βmm, (9.27)

∂h
∂t
= αh(1 − h) − βhh, (9.28)

∂r
∂t
= αr (1 − r) − βrr . (9.29)

9.2 Numerical Schemes

We will consider two alternative numerical schemes for the cable equation. First,
a straightforward explicit scheme and then an operator splitting scheme, treating
the diffusion part of the system implicitly. In both schemes, we seek numerical
approximations to the solution in the M spatial points xj = ( j − 1) × ∆x, for
j = 1, ...,M , at the time points tn = n × ∆t for n = 1, ...,N . Here, ∆x = L

M−1 and
∆t = T

N , where L is the length of the domain and T is the total simulation time.

9.2.1 An Explicit Numerical Scheme for the Cable Equation

We consider a numerical scheme for the cable equation that is based on this discrete
spatial version of the equation considered in the derivation of the model, i.e., (9.12).
To define a numerical scheme, we have to replace the remaining derivative ∂v

∂t by a
difference, and we choose the usual difference (see, e.g., (1.5) on page 4). In addition,
similar replacements of derivatives by differences are inserted into (9.27)–(9.29), and
we get the explicit scheme

Cm

vn+1
j − vnj

∆t
= δ

vn
j−1 − 2vnj + v

n
j+1

∆x2 − Iion(v
n
j ,m

n
j , h

n
j ,r

n
j ), (9.30)

mn+1
j − mn

j

∆t
= αm(v

n
j )(1 − mn

j ) − βm(v
n
j )m

n
j , (9.31)

hn+1
j − hn

j

∆t
= αh(v

n
j )(1 − hn

j ) − βh(v
n
j )h

n
j , (9.32)

rn+1
j − rnj
∆t

= αr (v
n
j )(1 − rnj ) − βr (v

n
j )r

n
j , (9.33)



9.2 Numerical Schemes 85

for j = 2, ...,M −1. For j = 1 and j = M , we replace the right-hand side of (9.30) by
the right-hand sides of (9.20) and (9.22), respectively. This scheme can be rewritten
to computational form

vn+1 =

(
I +
∆t
Cm

A
)
vn −

∆t
Cm

Iion(v
n,mn, hn,rn), (9.34)

mn+1 = mn + ∆t[αm(vn)(1 − mn) − βm(v
n)mn], (9.35)

hn+1 = hn + ∆t[αh(vn)(1 − hn) − βh(v
n)hn], (9.36)

rn+1 = rn + ∆t[αr (vn)(1 − rn) − βr (vn)rn], (9.37)

where

vn =

©«
vn1
vn2
...
vnM

ª®®®®¬
, mn =

©«
mn

1
mn

2
...

mn
M

ª®®®®¬
, hn =

©«
hn

1
hn

2
...

hn
M

ª®®®®¬
, rn =

©«
rn1
rn2
...

rnM

ª®®®®¬
, (9.38)

the matrix A is defined by

A =
δ

∆x2

©«

−1 1 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −1

ª®®®®®®¬
, (9.39)

and I is the M × M identity matrix.

9.2.2 An Operator Splitting Scheme for the Cable Equation

A potential disadvantage of the explicit scheme defined above is instability issues,
like observed in Chapter 3 (see Section 3.4.3). In an attempt to avoid these issues,
we therefore also define an operator splitting scheme for the cable equation, with an
implicit treatment of the diffusion part of the system. In other words, we divide the
system into two parts for every time step by first solving

Cm
∂v

∂t
= δ

∂2v

∂x2 ,
∂m
∂t
= 0,

∂h
∂t
= 0,

∂r
∂t
= 0, (9.40)

using an implicit scheme and then solving
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Cm
∂v

∂t
= −Iion, (9.41)

∂m
∂t
= αm(1 − m) − βmm, (9.42)

∂h
∂t
= αh(1 − h) − βhh, (9.43)

∂r
∂t
= αr (1 − r) − βrr, (9.44)

using an explicit scheme. In computational form, using the vectors vn, mn, hn, rn as
defined in (9.38) and the matrix A as defined in (9.39), the scheme for the first step
reads(

I −
∆t
Cm

A
)
vn+1/2 = vn, mn+1/2 = mn, hn+1/2 = hn, rn+1/2 = rn, (9.45)

and the scheme for the second step reads

vn+1 = vn+1/2 −
∆t
Cm

Iion(v
n+1/2,mn+1/2, hn+1/2,rn+1/2), (9.46)

mn+1 = mn+1/2 + ∆t[αm(vn+1/2)(1 − mn+1/2) − βm(v
n+1/2)mn+1/2], (9.47)

hn+1 = hn+1/2 + ∆t[αh(vn+1/2)(1 − hn+1/2) − βh(v
n+1/2)hn+1/2], (9.48)

rn+1 = rn+1/2 + ∆t[αr (vn+1/2)(1 − rn+1/2) − βr (v
n+1/2)rn+1/2]. (9.49)

9.3 Numerical Computations

We apply the two numerical schemes to a simple test case for the cable equation
withmembrane dynamicsmodeled by theHodgkin-Huxleymodel.We consider a cell
shaped as a rectangular cuboid with length L = 0.5 cm and width w = 0.001 cm, and
we assume that σi = 4 mS/cm. This gives δ = 0.001 mS (see (9.13)). Furthermore,
the initial conditions are given by

v(0, x) =

{
−50 mV, for x <= 0.05 cm,
−65 mV, for x > 0.05 cm,

(9.50)

m(0, x) = 0.1, h(0, x) = 0.6, r(0, x) = 0.3. (9.51)

9.3.1 Stability

In Fig. 9.2, we show the numerical solution of the problem found using the explicit
scheme with ∆x = 0.001 cm and ∆t = 0.001 ms at some different points in time. We



Fig. 9.2 Numerical solution
of v in the cable equation with
membrane dynamics modeled
by the Hodgkin-Huxley
model at five different points
in time. The numerical
solution is found using
the explicit numerical
scheme (9.34)–(9.37), with
∆x = 0.001 cm and
∆t = 0.001 ms. We have
zoomed in on the solution
at the leftmost part of the
domain, and observe that we
get unreasonable oscillations
in the area close to the
discontinuity of the initial
conditions (x = 0.05 cm).
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observe that already at the first time steps, we get unreasonable oscillations close to
the discontinuity in the initial conditions (at x = 0.05 cm, see (9.50)).

In Fig. 9.3, we have solved the system of equations using the explicit scheme with
a smaller value of∆t (∆t = 0.0002ms). In this case, we avoid the oscillations, and we
seem to get a reasonable traveling wave solution. However, because of the small time
step, the numerical computations are quite slow. For this reason, we also try to solve
the system using the operator splitting scheme described in Section 9.2.2. Using this
scheme, we are able to use a time step of ∆t = 0.02 ms, and still get a solution that
is very similar to the one that we got using the explicit scheme with a fine time step
(compare the solid blue and dotted orange lines in Fig. 9.3). Even though we have to
solve a linear system of equations in order to find the solution in the first step of the
operator splitting scheme, the algorithm is able to find the solution much faster than
the explicit scheme because of the large difference in the required time step. More
specifically, for the laptop computer that we used to perform the computations, the
operator splitting scheme was about 25 times faster than the explicit scheme.

9.3 Numerical Computations 87



Fig. 9.3 Numerical solution
of v in the cable equation with
membrane dynamics modeled
by the Hodgkin-Huxley model
at five different points in
time. The solution drawn
with a solid line is found
using the explicit numerical
scheme (9.34)–(9.37), with
∆x = 0.001 cm and
∆t = 0.0002 ms, and
the solution drawn with a
dotted line is found using
the operator splitting scheme
described in Section 9.2.2,
with ∆x = 0.001 cm and
∆t = 0.02 ms.
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9.3.2 Conduction Velocity

In Chapter 6, we considered a unitless version of the cable equation with membrane
dynamicsmodeled by the FitzHugh-Nagumomodel and observed how the conduction
velocity, CV (i.e., the velocity with which the traveling wave moved though the
domain) depended on two of the model parameters. In Fig. 9.4, we show the results
of a similar experiment for the cable equation with membrane dynamics modeled by
the Hodgkin-Huxley model. We vary the value of the three parameters gNa, gK, and
gL representing the maximal conductance density of the three membrane currents
of the Hodgkin-Huxley model (see (8.5)–(8.7)). In addition, we vary the value of
the cell width, w, and the intracellular conductivity, σi , used to define δ in the cable
equation (see (9.23)).

We define the conduction velocity as

CV =
x2 − x1
t2 − t1

, (9.52)

88 9 The Cable Equation
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Fig. 9.4 Conduction velocity (CV) computed from the numerical solution of the cable equation as
described in (9.52) for a few adjustments of parameters. The parameter values not explicitly stated
on the x-axis are set to their default values. The numerical solution is found using the operator
splitting scheme described in Section 9.2.2, with ∆x = 0.001 cm and ∆t = 0.02 ms.

where x1 = 0.2 cm and x2 = 0.4. Furthermore, t1 and t2 are the points in time when
the value of v first increases to a value v ≥ 0 mV, in the spatial points x1 and x2,
respectively.

In Fig. 9.4, we observe that increasing the value of gNa, σi or the cell width,
w, significantly increases the conduction velocity. Increasing gL also increases the
conduction velocity somewhat, whereas increasing gK decreases the conduction
velocity.

9.4 Comments and Further Reading

1. In the derivation of the cable equation given in this chapter, we assume that
the extracellular potential is zero. However, if we instead assume that the
extracellular potential is another constant, C, different from zero, we end up
with the exact same formulation of the cable equation. In that case, we would
have u j

i = v
j + C (see (9.7)), and inserting this into (9.11), we get

Cm
∂v j

∂t
= δ

v j−1 + C − 2(v j + C) + v j + C
∆x2 − Iion

= δ
v j−1 − 2v j + v j

∆x2 − Iion. (9.53)
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which is exactly the same as (9.12).
2. The cable equation can also be derived by assuming that the value of the

extracellular potential can vary in the x-direction, but not in the y- and
z-directions. This leads to a different formulation of the constant δ in the cable
equation. See, e.g., [4] for more details on this version of the cable equation.

3. In Section 9.1.1, we derived boundary conditions for the cable equation by
considering the leftmost and rightmost compartments of the cell. However,
since it might be reasonable to assume that the left and right sides of the cell
are covered by membrane (see Fig. 9.1), we might also wish to assume that the
amount of membrane area is larger for these compartments. More specifically,
for the leftmost and rightmost compartments, we get

Am = Ax + Am = ∆x
(

Ax

∆x
+ ηm

)
. (9.54)

Inserting this into the discrete version of the cable equation, we get the adjusted

δb =
σi Ax

Ax

∆x + ηm
(9.55)

for the left and right boundaries. In the code associated with these notes, we have
included an example simulation where we compare the solution of the system
using this adjusted δb at the boundary to the case where the default δ is used
everywhere. By running that code, we see that the solutions for these two cases
are indistinguishable.

4. In this chapter, we considered the cable equation for modeling the spread of
an electrical signal along a neuronal axon. However, the cable equation (9.15)
can also be used to study the spread of an electrical signal along a cardiac fibre
composed of a row of cardiomyocytes connected to each other by gap junctions.
In this case, the increased resistance for the currents across the gap junctions
has to be taken into account, either in an averaged manner (see, e.g., [6]) or by
having a δ that depends on x in a way such that the discretely located cell-to-cell
connections are represented (see, e.g., [3]).

5. In (9.10)wederived a compartmental version of the cablemodel equations. Then,
we passed to the limit in∆x and obtained the differential equation (9.14). Finally,
we replaced the derivatives by differences, and obtained the scheme (9.30) which
is, more or less, the compartmental model we started by deriving. So, was the
differential equation just a detour? Do we need it? No, we don’t really need it,
but it is customary to phrase models in terms of partial differential equations.
The main reason for this may be tradition, but there are practical reasons as
well. When the problem is formulated as a partial differential equation, we have
a large collection of methods that can be applied; finite difference methods,
finite volume methods, finite element methods, boundary element methods, and
many more. Also, the problem can be expressed in a very compact manner using
differential equations whereas the compartmental form (or finite difference form
for that matter) is clunky and much harder to read for complex systems involving
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many equations. Finally, differential equations can be analyzed mathematically
using tools that are harder to apply when the equations are discretized. But
the major disadvantage of the formulation as a differential equation is that it
is not straightforward to solve using computers – the form and popularity is
inherited from a time where math was done using paper and pencils. An attempt
to introduce partial differential equations using both continuous and discrete
approaches can be found in [8].
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Chapter 10
Spatial Models of Cardiac Electrophysiology

In Chapter 8, we introduced mathematical models of the action potential across a
cell membrane. Understanding the properties of the cell membrane is absolutely
essential in order to understand the electrophysiology of excitable cells. However,
some essential properties can only be studied in spatially resolved models; i.e., in
models representing spatial variation across a single cell or a collection of cells.

Every heartbeat is based on an electrochemical wave traversing the whole cardiac
muscle. Strong perturbations to these waves are referred to as arrhythmias. These
disturbances can seriously disrupt the contraction of the heart muscle and are
therefore very dangerous and potentially lethal. Cardiac fibrillation refers to a state
of the heart where the contraction is completely unsynchronized, leading to severely
reduced pumping functions. In mathematical modelling, fibrillation can only be
studied in spatially resolved models, and hence the membrane models introduced
above are inadequate. But these models are excellent building blocks in models
representing collections of cells.

A first step towards spatially resolved modeling was presented in Chapter 9,
where we discussed the cable equation. This model is often used to study a strand
of cardiac cells, but since the model is inherently one-dimensional, it has limited
relevance for complex spatial phenomena like cardiac fibrillation. Here, we will
present the celebrated bidomainmodel. It is considered to represent the gold standard
of mathematical models of cardiac electrophysiology and dates back 50 years. From
the bidomain model it is easy to derive the somewhat simpler monodomain model.
This model is easier to deal with in terms of numerical solution and is therefore
frequently used as a replacement of the more correct bidomain model.

Here we will just present the models and show that the techniques we have
derived above can be used to obtain numerical solutions of both the monodomain
model and the bidomain model. In the notes below we will point to literature where
the models are derived, and we will point to better numerical methods and to
applications of the models. Again, we will just consider the finite difference method
in order to keep things as simple as possible (but not simpler) and therefore we
will use two-dimensional squares as computational domains. However, excellent
open-source software tools are available for numerical simulations based on the
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bidomain and monodomain models using the finite element method. Using the finite
element method, more realistic geometries can be applied.

10.1 First, the Diffusion Equation, Again

For purely technical and notational reasons, we will first briefly consider the
two-dimensional diffusion equation. This is helpful in order to understand the mesh,
the matrices and the vectors that we use to solve the bidomain and monodomain
equations below.

Consider the following initial and boundary value problem (unitless),

∂u(t, x, y)
∂t

= σ
∂2u(t, x, y)

∂x2 + σ
∂2u(t, x, y)

∂y2 , (10.1)

for Ω : (x, y) ∈ (0,1) × (0,1) and for t ≤ T . We let ∂Ω denote the boundary of
the computational domain, Ω. At the boundary, ∂Ω, we use the Neumann boundary
conditions

∂u(t,0, y)
∂x

= 0,
∂u(t,1, y)

∂x
= 0,

∂u(t, x,0)
∂y

= 0,
∂u(t, x,1)

∂y
= 0, (10.2)

and, in addition, we define the initial condition

u(0, x, y) = u0(x, y), (10.3)

where u0(x, y) is a given function. In (10.1), σ denotes a strictly positive (given)
constant. In order to derive a numerical scheme for this problem, we proceed as
usual by replacing derivatives by difference. By using the difference approximations
introduced in Chapter 3, we get the following scheme1,

un+1
k , j
− un

k , j

∆t
= σ

un
k−1, j − 2un

k , j
+ un

k+1, j

∆x2 + σ
un
k , j−1 − 2un

k , j
+ un

k , j+1

∆y2 . (10.4)

Here, un
k , j

denotes an approximation of u(tn, xk, yj) where tn = n∆t, xk = (k − 1)∆x
and yj = ( j − 1)∆y with ∆x = 1/(Mx − 1) and ∆y = 1/(My − 1) for sufficiently large
integers Mx and My .

We noted above (see page 43) that it is quite useful to formulate these numerical
schemes using matrix/vector notation. However, here the unknowns are given by
un
k , j

and thus it is not straightforward to use such a notation. We therefore introduce
a one-dimensional numbering of the two-dimensional problem. Specifically, we
define the new index i = Mx( j − 1) + k. Then, any two-dimensional vector z with
components {zk , j} can be rewritten as a one-dimensional vector zi where i runs
from 1 to M = Mx × My . The components of the one-dimensional vector are given

1 It may be useful to note the similarity with the one-dimensional case; see (3.13) at page 23.
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Fig. 10.1 Structure of the
matrix Aused in the numerical
scheme for the unitless
diffusion equation. We have
here used ∆x = ∆y = 0.2
and σ = 0.04, which gives
ρx = ρy = 1, Mx = My = 6,
and M = MxMy = 36.
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by zMx (j−1)+k where j and k runs from 1 to Mx and My , respectively. Using this
numbering, we can rewrite the scheme (10.4) as follows,

un+1
i − un

i

∆t
= σ

un
i−1 − 2un

i + un
i+1

∆x2 + σ
un
i−Mx

− 2un
i + un

i+Mx

∆y2 . (10.5)

By defining ρx = σ/∆x2 and ρy = σ/∆y2, we can rewrite the scheme as follows,

un+1
i = un

i + ∆t
[
ρx(un

i−1 + un
i+1) − 2(ρx + ρy)un

i + ρy(u
n
i−Mx

+ un
i+Mx
)
]
. (10.6)

Now, we can define an M × M matrix A where non-zero elements of a typical row i
in the matrix are given by

ai,i−Mx = ρy, (10.7)
ai,i−1 = ρx, (10.8)

ai,i = −2(ρx + ρy), (10.9)
ai,i+1 = ρx, (10.10)

ai,i+Mx = ρy . (10.11)

When the index i corresponds to a boundary point or to a corner point in the mesh,
there are exceptions. The detailed definition of all the elements of the matrix is found
in the software associated these notes, and a figure showing the structure of the
matrix is depicted in Fig. 10.1 in the case ∆x = ∆y = 0.2 and σ = 0.04, which gives
ρx = ρy = 1, Mx = My = 6, and M = MxMy = 36.

With this notation at hand, we can write the scheme (10.6) in the convenient form
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un+1 = (I + ∆t A)un. (10.12)

Furthermore, we can define the implicit scheme,

un+1 − un

∆t
= Aun+1, (10.13)

which can be rewritten as,
(I − ∆t A)un+1 = un, (10.14)

where, as usual, I denotes the identity matrix. We can also define the second order
midpoint scheme as follows,

un+1 − un

∆t
=

1
2

A(un + un+1), (10.15)

or (
I −
∆t
2

A
)

un+1 =

(
I +
∆t
2

A
)

un. (10.16)

10.2 The Bidomain Model

The bidomain model with membrane dynamics modeled by the parsimonious
ventricular rabbit model [6] can be written in the form

χ

(
Cm

∂v

∂t
+ Iion(v,m, h)

)
= ∇ · (σi∇v) + ∇ · (σi∇ue), (10.17)

0 = ∇ · (σi∇v) + ∇ · ((σi + σe)∇ue), (10.18)
dm
dt
=

m∞ − m
τm

, (10.19)

dh
dt
=

h∞ − h
τh

. (10.20)

We consider this system for Ω : (x, y) ∈ (0, L) × (0, L) and for t ≤ T . The spatial
coordinate is given centimeters (cm) and time is given in milliseconds (ms). The
unknown functions v and ue are the membrane potential and the extracellular
potential, respectively (in units of mV). Note that v = ui − ue, where ui is the
intracellular potential. We can use any pair of variables among v, ui and ue as prime
variables, but it is most common to use v and ue. The bidomainmodel can be derived
by assuming that the membrane potential, v, the intracellular potential, ui , and the
extracellular potential, ue, are all defined everywhere in the domain and following
the same steps as those used to derive the cable equation (see Chapter 9) without the
assumption of ue = 0 (see Comment 2 in Section 9.4).

In the bidomain model, σi and σe denote the conductivities of the extracellular
and intracellular spaces, respectively. The conductivities are tensors allowing the
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Table 10.1 Parameter values used in the bidomain model simulations.

Parameter Value

Cm 1 µF/cm2

σi ,x , σi ,y 3 mS/cm
σe ,x , σe ,y 10 mS/cm
χ 2000 cm−1

Lx , Ly 1 cm
∆x, ∆y 0.025 cm
∆t 0.01 ms

conductivity to vary according to the spatial directions. Specifically, we have

σe =

(
σe,x 0

0 σe,y

)
, σi =

(
σi,x 0

0 σi,y

)
.

In general, the conductivities can vary in space, but here we will assume that they are
constant. Furthermore, Cm is the specific membrane capacitance, and χ denotes the
surface-to-volume ratio of the cell membrane. The sum of the ion current densities
across the membrane are given by

Iion(v,m, h) = INa(v,m, h) + IK(v) + Istim. (10.21)

The specific formulations for the current densities INa and IK are as specified in
Chapter 8 (see page 71), and so are the associated gating functions m∞, h∞, τm and
τh . The current density Istim represents a stimulus used to start the electrical wave. It
is given by

Istim(t, x, y) =


astim, if t ≥ tstim and t ≤ tstim + dstim,

and
√

x2 + y2 ≤ lstim,
0, otherwise,

(10.22)

where astim = −25 µA/cm2, tstim = 0 ms, dstim = 2 ms, and lstim = 0.25 cm. The
initial conditions are as specified for the parsimonious rabbit model in Chapter 8
(see page 72), and, for simplicity, we use the boundary conditions

ue(t,0, y) = ue(t, Lx, y) = ue(t, x,0) = ue(t, x, Ly) = 0, (10.23)

∂ui(t,0, y)
∂x

= 0,
∂ui(t, Lx, y)

∂x
= 0,

∂ui(t, x,0)
∂y

= 0,
∂ui(t, x, Ly)

∂y
= 0.

(10.24)
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10.2.1 Operator Splitting for the Bidomain Model

In order to solve the somewhat intimidating system (10.17)–(10.20) we use, more
or less, all the tricks we have introduced above. The main technique, however, is to
break the complex problem into parts that we are able to deal with. The first step
along that path is to apply operator splitting. We start by assuming that the complete
solution vector given by (v,ue,m, h) is known at time t = tn = n × ∆t, and we want
to compute the solution at time t = tn+1. We do this in two steps. First we solve the
following system of ordinary differential equations,

Cm
∂v

∂t
= −Iion(v,m, h) (10.25)

dm
dt
=

m∞ − m
τm

, (10.26)

dh
dt
=

h∞ − h
τh

. (10.27)

By solving these equations with t ranging from tn to tn+1, we obtain a solution that
we denote (v,ue,m, h)n+1/2. In the next step, we solve the spatial part of the equation,

χCm
∂v

∂t
= ∇ · (σi∇v) + ∇ · (σi∇ue), (10.28)

0 = ∇ · (σi∇v) + ∇ · ((σi + σe)∇ue), (10.29)
dm
dt
= 0, (10.30)

dh
dt
= 0, (10.31)

where the initial conditions at time t = tn is given by (v,ue,m, h)n+1/2. Here, we
immediately note that mn+1 = mn+1/2 and hn+1 = hn+1/2. In order to compute v and
ue at tn+1, we need to solve the linear system,

χCm
∂v

∂t
= ∇ · (σi∇v) + ∇ · (σi∇ue), (10.32)

0 = ∇ · (σi∇v) + ∇ · ((σi + σe)∇ue), (10.33)

where the initial condition for v is given by vn+1/2.

10.2.2 Finite Difference Approximation

The task at hand is now to solve the system of ordinary differential equations
given by (10.25)–(10.27) and then solve the partial differential equations given by
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(10.32)-(10.33). In order to do this we introduce amesh as above. Specifically2, we let
un
k , j

and vn
k , j

denote approximations of u(tn, xk, yj) and v(tn, xk, yj) where tn = n∆t,
xk = (k − 1)∆x and yj = ( j − 1)∆y with ∆x = Lx/(Mx − 1), ∆y = Ly/(My − 1)
and ∆t = T/Mt for sufficiently large integers Mx , My and Mt . Again, we use the
mapping from a two-dimensional notation to a one-dimensional vector notation by
defining i = Mx( j − 1) + k.

Explicit ODE Step

By using this notation, we can write an explicit scheme3 for solving the ordinary
differential equations given by (10.25)–(10.27) as follows,

v
n+1/2
i = vni −

∆t
Cm
[INa(v

n
i ,m

n
i , h

n
i ) + IK(v

n
i ) + Istim(tn, xi, yi)], (10.34)

mn+1/2
i = mn

i + ∆t
m∞(vni ) − mn

i

τm(v
n
i )

, (10.35)

hn+1/2
i = hn

i + ∆t
h∞(vni ) − hn

i

τh(v
n
i )

, (10.36)

where 1 ≤ i ≤ Mx × My , and n = 0, . . . ,Mt − 1.

Implicit PDE Step

In the implicit PDE step we first note that mn+1 = mn+1/2 and hn+1 = hn+1/2. For the
systems of PDEs given by (10.32)–(10.33) we use the same discretization as we used
in (10.4) for the diffusion equation. This leads to the definition of two matrices, Ai

and Ae, with typical elements given by (10.7)–(10.11). For Ae, the typical elements
of the matrix are defined by using ρx = σe/∆x2 and ρy = σe/∆y

2 in (10.7)–(10.11).
Similarly, the typical elements of Ai are defined by using ρx = σi/∆x2 and ρy =
σi/∆y

2 in (10.7)–(10.11). With this notation, we are ready to define the following
scheme for the spatial part of the bidomain equations,

χCm
vn+1 − vn+1/2

∆t
= Aiv

n+1 + Aiun+1, (10.37)

0 = Aiv
n+1 + (Ai + Ae)un+1. (10.38)

This can be rewritten as a block matrix-vector system as follows,

2 We replace ue by u in order to reduce the load of subscripts.
3 This is exactly the same scheme as we used for the parsimonious rabbit model in Section 8.2, only
that we here need to solve the ODE system in all the computational nodes.
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I − ∆t

χCm
Ai − ∆t

χCm
Ai

Ai Ai + Ae

] [
vn+1

un+1

]
=

[
vn+1/2

0

]
. (10.39)

10.2.3 Traveling Wave Solution of the Bidomain Model

In Fig. 10.2, we show the solution of the numerical scheme for the bidomain model
described above, with parameter values specified in Table 10.1 and membrane
dynamics modeled by the parsimonious rabbit model described in Chapter 8. The
upper panel shows the membrane potential, v, at four different points in time, and
the lower panel shows the extracellular potential, ue, at the same time points. We
observe a traveling wave solution initiated by the stimulus current applied in the
lower left corner of the domain, leading to an increased value of v. This increase
in v gradually spreads through the domain, and at t = 20 ms the wave has traveled
almost all the way to the opposite corner of the domain.

From this traveling wave, we can compute the conduction velocity, for example,
by

CV =
√
(x2 − x1)2 + (y2 − y1)2

t2 − t1
, (10.40)

where x1 = y1 = 0.4 cm and x2 = y2 = 0.8 cm. Furthermore, t1 and t2 are the points
in time when the value of v first increases to a value v ≥ −20 mV, in the spatial points
(x1, y1) and (x2, y2), respectively. In that case, we find that the conduction velocity
in this default case is about 54 cm/s. In Fig. 10.3, we investigate how the conduction
velocity depends on the conductivity parameters, σi and σe, and we find that the
conduction velocity increases if σi or σe are increased.

0 0.5 1
0

0.5

1

y 
(c

m
)

t = 5 ms

0 0.5 1
x (cm)

0

0.5

1

y 
(c

m
)

0 0.5 1
0

0.5

1
t = 10 ms

0 0.5 1
x (cm)

0

0.5

1

0 0.5 1
0

0.5

1
t = 15 ms

0 0.5 1
x (cm)

0

0.5

1

0 0.5 1
0

0.5

1
t = 20 ms

-80

-60

-40

-20

0

20

v 
(m

V)

0 0.5 1
x (cm)

0

0.5

1

-20

-10

0

10

u e (m
V)

Fig. 10.2 Solution of the bidomain model at four different points in time. The upper panel shows
the membrane potential, v, and the lower panel shows the extracellular potential, ue . A traveling
wave solution is initiated by stimulating the cells in the lower left corner.
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Fig. 10.3 Conduction velocity computed from the solution of the bidomainmodel for some different
values of σi and σe . In the left plot, σe is fixed at the value specified in Table 1.1, and in the right
plot σi is fixed at the value specified in Table 1.1.

10.3 The Monodomain Model

As mentioned above, the bidomain model is often referred to as the gold-standard
for computational cardiac electrophysiology. But in many cases, results of relevant
accuracy can be achieved by using the simpler monodomain model. Here will show
that, under one specific condition, the two models actually give the same results. We
can show this by considering the linear PDE that needs to be solved in each time
step; see (10.32) and (10.33) above. We assume that the conductivities are constant
in space, and that they are related as follows,(

σe,x 0
0 σe,y

)
= λ

(
σi,x 0

0 σi,y

)
, (10.41)

where λ is a positive constant. By using this assumption, we note that the second
equation of the system

χCm
∂v

∂t
= ∇ · (σi∇v) + ∇ · (σi∇ue), (10.42)

0 = ∇ · (σi∇v) + ∇ · ((σi + σe)∇ue), (10.43)

can be rewritten as follows,

0 = ∇ · (σi∇v) + (1 + λ)∇ · (σi∇ue), (10.44)

and therefore,

∇ · (σi∇ue) = −
1

1 + λ
∇ · (σi∇v). (10.45)

By inserting this observation in (10.42), we observe that we can remove ue from this
equation and get the following scalar equation (only v is unknown here),
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χCm
∂v

∂t
=

λ

1 + λ
∇ · (σi∇v). (10.46)

10.3.1 Operator Splitting for the Monodomain System

In the case of the bidomain model, operator splitting involved alternating solution of
the ODEs by the scheme (10.34)–(10.36) and the PDEs by solving the linear system
(10.37) and (10.38). For the monodomain case, the PDE part can be simplified
considerably by solving the system

χCm
vn+1 − vn+1/2

∆t
=

λ

1 + λ
Aiv

n+1, (10.47)

(10.48)

which can be written to the computational form

(I − γ∆t Ai)v
n+1 = vn+1/2, (10.49)

(10.50)

where
γ =

λ

(1 + λ)χCm
.

10.4 Comments and Further Reading

1. Introductions to the bidomain and monodomain models can be found in, e.g.,
[4, 16].

2. Numerical simulations of cardiac electrophysiology based on the bidomain and
monodomain equations have been applied in a very large number of papers. Since
1990, a steady stream of results have been produced by many excellent research
groups. There are far too many studies for us to review here; instead we will refer
you to a few papers that have become classics in the field; [3, 5, 12, 13, 18, 19].

3. Numerical solution of the Poisson equation is one of the best studied problems
in scientific computing. The theory of fast linear solvers is very well developed
for symmetric and positive definite linear systems. The linear systems arising
from the bidomain model represent extensions of the classical systems generated
from the Poisson equation and have therefore received substantial interest. In
the system (10.39), the matrices Ai and Ae are symmetric and thus the complete
system can be written in a symmetric form if the lower part of the system is
multiplied by − ∆t

χCm
. Then the system reads
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I − ∆t

χCm
Ai − ∆t

χCm
Ai

− ∆t
χCm

Ai − ∆t
χCm
(Ai + Ae)

] [
vn+1

un+1

]
=

[
vn+1/2

0

]
. (10.51)

This system is symmetric and positive definite and therefore fast solvers can be
applied; see, e.g., [2, 4, 7, 8, 10, 11, 14, 15, 16, 17].

4. The units used in spatially resolved electrophysiology models can be horrible
to keep track of and it is not uncommon to miss the target by a factor of 103 or
even 106, and little sense arises from such computations. After some time you
will get used to this difficulty and will at least become wise enough to hide your
blunders until they are properly corrected. As usual, there is no way around this
but blood, toil, sweat and tears. However, finite differences can actually be of
some assistance. We find it easier to check the units when a system of equations
is written in the form of a finite difference scheme, because the derivatives in
the original equations often cause confusion, and differences are easier to deal
with. Note also that the basic rules are quite simple; all terms in a sum must be
expressed in terms of the same unit, and so must the left- and right-hand sides
of an equation.

5. There are two main reasons for approximating the bidomain model by the
monodomain model. The first reason is the complexity of solving the equations.
The monodomain model is of a very classical form and software are available
from other fields and in general finite element libraries. The bidomain model, on
the other hand, is less standard and implementing solution methods is therefore
consideredmore challenging.Note, however, that excellent open-source software
libraries are available; see, e.g., https://opencarp.org. The second reason is
that the computational complexity (CPU-efforts needed to solve the equations)
is often regarded to be much higher for the bidomain model than for the the
monodomain model. This strongly depends on the methods used to solve the
equations; see, e.g., [17].

6. It has been shown that solutions of the monodomain model, in many cases,
provide very good approximations of the solutions of the bidomain model, see,
e.g., [12].

7. The bidomain model is often hailed as the gold standard of computational
electrophysiology, and we have added to this acclaim. Forty years ago, it was
almost unthinkable to perform simulations of a whole heart because of the
computational complexity. In 1984, it was estimated that it would take 3000
years to solve the bidomain model for 10 ms using a mesh with a million
nodes [1], whereas the representation of the full human heart required about 26
million nodes. This estimate was clearly on the pessimistic side, since in 2006,
the full simulation was performed in only two days (see [12]), and a few years
later such simulations could be performed in minutes (see, e.g., [9]). Today,
the bidomain model is used routinely and simulation times are acceptable even
without extreme computing facilities.

https://opencarp.org
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Chapter 11
Re-Introducing the Cell: The
Extracellular-Membrane-Intracellular (EMI)
Model

As mentioned earlier, the bidomain system is currently the standard mathematical
model of cardiac electrophysiology. This system is now routinely solved and provides
valuable insights into the conduction of electrical signals in cardiac tissue. However,
the model has one glaring limitation: The cardiomyocyte is nowhere to be found in
themodel, since the extracellular space, the intracellular space and the cell membrane
are all assumed to be everywhere in the computational domain. The cell was lost in
homogenization! There is a tremendous advantage to this because themodel becomes
much simpler and thus solvable for the whole human heart. And it works! But the
downside is of course that the cell is the essential building block of the tissue and
leaving it out of the model has consequences. For instance, it becomes impossible
to investigate the detailed dynamics of the electrochemical processes in the vicinity
of a small collection of cells.

Here, we will present an alternative cell-based model. The model represents the
extracellular (E) domain, the cell membrane (M) and the intracellular (I) domain
explicitly and it is therefore referred to as the EMI model. The main advantage of
this model is that it becomes feasible to represent the cell and the cell membrane
in a much more detailed manner. For instance, it is possible to study both the effect
of varying ion channel density across the cell membrane and cell to cell variations
of properties in the model. But it comes with a stiff price: both implementation and
computing efforts are much more demanding than for the bidomain model.

Here, we will present the EMI model and observe that, again, we can come
up with a reasonable solution method by applying operator splitting and replacing
derivatives with differences. We will present a case that is as simple as possible but
also give references to more challenging applications.
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Ωe

Ωi

ne

ni

ne

∂Ωe

Γ

Fig. 11.1 Illustration of the different parts of the domain in the EMImodel. A cell,Ωi is surrounded
by an extracellular space,Ωe . The interface betweenΩi andΩe defines the cell membrane, Γ. Note
that all the EMI model simulations are performed in 3D.

11.1 The EMI Model for one Cell Surrounded by an
Extracellular Space

The system of partial differential equations forming the EMI model for a single cell
surrounded by an extracellular space like illustrated in Fig. 11.1 is given by (see,
e.g., [1, 2, 14, 41]):

∇ · σi∇ui = 0, inΩi, (11.1)
∇ · σe∇ue = 0, inΩe, (11.2)

ue = 0, at ∂Ωe, (11.3)
ne · σe∇ue = −ni · σi∇ui, at Γ, (11.4)

ui − ue = v, at Γ, (11.5)
Im = −ni · σi∇ui, at Γ, (11.6)
∂v

∂t
=

1
Cm
(Im − Iion), at Γ. (11.7)

Here, the unknown variables to be found are the intracellular potential, ui , the
extracellular potential, ue, and the membrane potential, v, all given in units of
millivolts (mV). The intracellular potential is defined in the intracellular space, Ωi ,
the extracellular potential is defined in the extracellular space,Ωe, and the membrane
potential is defined at the membrane, Γ, defined as the interface between Ωi and Ωe.
The outer boundary of the extracellular space is denoted by ∂Ωe. Time is given in
milliseconds (ms) and distance is specified in centimeters (cm). Furthermore, σi is
the intracellular conductivity (in mS/cm), σe is the extracellular conductivity (in
mS/cm), Cm is the specific membrane capacitance (in µS/cm2), and ni and ne are
the outward pointing unit normal vectors of Ωi and Ωe, respectively. Like in the
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membrane models in Chapter 8, the cable equation in Chapter 9 and in the bidomain
and monodomain models in Chapter 10, the term Iion represents the current density
(in µA/cm2) through ion channels on the cell membrane. These current densities
can, for example, be modeled by the Hodgkin-Huxley model described in Chapter 8.
In that case,

Iion = INa + IK + IL, (11.8)

and we get the following extra equations for the state variables defined at the
membrane, Γ:

∂m
∂t
= αm(1 − m) − βmm, at Γ, (11.9)

∂h
∂t
= αh(1 − h) − βhh, at Γ, (11.10)

∂r
∂t
= αr (1 − r) − βrr, at Γ. (11.11)

11.1.1 Numerical Scheme for the EMI Model

As observed in the previous chapters, a numerical finite difference scheme for the
EMI model can be defined by applying operator splitting and replacing derivatives
with differences. We define a scheme where for each time step, n, there is one
unknown, un

e , for all mesh points in the extracellular space and one unknown, un
i , for

each intracellular point. In addition, for the mesh points located on the membrane,
there are six unknowns, un

i , un
e , vn, mn, hn, and rn.

Operator Splitting for the EMI Model

We define an operator splitting scheme for the EMI model where for each time step
we first solve the nonlinear ordinary differential equation part of the system

∂v

∂t
= −

1
Cm

Iion, at Γ, (11.12)

∂m
∂t
= αm(1 − m) − βmm, at Γ, (11.13)

∂h
∂t
= αh(1 − h) − βhh, at Γ, (11.14)

∂r
∂t
= αr (1 − r) − βrr, at Γ, (11.15)

with initial conditions from the previous time step. Then, in the second step of the
operator splitting scheme, we solve the linear system,
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∇ · σi∇ui = 0, inΩi, (11.16)
∇ · σe∇ue = 0, inΩe, (11.17)

ue = 0, at ∂Ωe, (11.18)
ne · σe∇ue = −ni · σi∇ui, at Γ, (11.19)

ui − ue = v, at Γ, (11.20)
Im = −ni · σi∇ui, at Γ, (11.21)
∂v

∂t
=

1
Cm

Im, at Γ, (11.22)

with initial conditions provided from the first step of the operator splitting scheme.

Finite Difference Approximation of the EMI Model

The first step of the operator splitting scheme for the EMI model is simply a system
of ordinary differential equations, and we find the numerical solutions by replacing
the derivatives in the form ∂v

∂t with the differences in the form vn+1−vn

∆t in an explicit
manner.

In the second step of the operator splitting scheme, we also replace the temporal
derivative in (11.22) with the standard difference, but we here treat the system in an
implicit manner. That is, we replace (11.22) with

vn+1 − vn

∆t
=

1
Cm

In+1
m . (11.23)

Furthermore, we use standard differences for the derivatives in (11.16), (11.17),
(11.19), and (11.21). However, some special treatment is required for the normal
derivatives in (11.19) and (11.21) at the corners of the cell. The details of the
finite difference scheme is found in the code associated with these notes and is also
described in more detail in [41].

11.1.2 EMI Model Simulation of a Neuronal Axon

Using the parameter values specified in Table 11.1, we perform an EMI model
simulation of a neuronal axon using a similar setup as for the cable equation in
Chapter 9. However, to reduce the computational cost, we consider a shorter axon
than in Chapter 9 (0.2 cm). A traveling wave moving from left to right is initiated
by increasing the membrane potential of the leftmost 0.05 cm of the axon. Fig. 11.2
shows the numerical EMI model solution of the problem at three different points in
time along a plane in the x- and y-directions. The left panel shows the extracellular
potential, and the right panel shows the membrane potential, v.



11.2 The EMI Model for Connected Cardiomyocytes 111

Table 11.1 Parameter values used in the EMI model simulations of an axon. The parameter values
of the Hodgkin-Huxley model are as specified in Chapter 8.

Parameter Value Parameter Value

Cm 1 µF/cm2 Ωi 2000 µm × 10 µm × 10 µm
σi 4 mS/cm Ωi ∪Ωe 2060 µm × 50 µm × 50 µm
σe 3 mS/cm ∆x 10 µm
∆t 0.02 ms ∆y, ∆z 2.5 µm

Fig. 11.2 EMI model solution for three points in time along a plane in the x- and y-directions.
The plane is located at the z-value corresponding to the upper boundary of the cell. The left panel
shows the extracellular potential, and the right panel shows the membrane potential, v.

11.2 The EMI Model for Connected Cardiomyocytes

The EMI model for one cell considered in the previous section can be extended to
incorporate currents between individual cells through gap junctions and thus be used
to model collections of connected cardiomyocytes (see, e.g., [14, 16, 29, 35, 36, 37]).
The resulting system of equations can be solved using a similar operator splitting
technique as the one applied for a single cell above (see, e.g., [40]). Furthermore, a
spatial operator splitting approach can be introduced in order to split the linear part
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t = 0 ms t = 50 ms t = 100 ms t = 150 ms t = 200 ms

t = 250 ms t = 300 ms t = 350 ms t = 400 ms t = 450 ms

Fig. 11.3 EMI model solution (intracellular potential, ui ) for a pulmonary vein sleeve at ten points
in time, following the simulation set-up used in [20]. The two mutations N588K and A130V are
both present. The solutions are found using the finite element method (see [20]). The finite element
mesh used to represent each single cardiomyocyte in the simulation is illustrated in the lower panel
of the figure. The full cylinder of cells seen in the upper panels contains 3930 cardiomyocytes,
each associated with about 70 computational nodes. In addition, the mesh consists of about 44,000
extracellular nodes.

of the system system into one system for the extracellular space and one system for
each individual cell (see [17, 19]).

11.2.1 EMI Model Simulation of Cardiomyocytes in the Sleeve of a
Pulmonary Vein

To illustrate an example of the EMI model used for connected cardiomyocytes,
we consider a collection of myocytes located around the sleeve of a pulmonary
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vein. In [20], the EMI model was used to study how mutations that have been
found to be associated with increased risk of atrial fibrillation affected properties
of the cardiomyocytes in this region, known to be a common initiation site of atrial
fibrillation. In Fig. 11.3, we consider a collection of cells forming a cylinder around
the vein, using the same setup as in [20]. The mesh used to represent each single
cell in the simulation is illustrated in the lower panel of the figure. The properties
of the individual cells vary according to known differences for cardiomyocytes in
this region (see [20]). In the simulation, a combination of two mutations found to
be associated with atrial fibrillation is present. The first mutation, N588K, leads
to an increased potassium current (IKr), and thus shortening of the action potential
duration, whereas the second mutation, A130V, leads to reduced sodium current
(INa) and thereby reduced conduction velocity. In Fig. 11.3, we observe that when
the two mutations are present, the solution is a traveling wave continuously moving
around the cylinder of cells. Such a reentrant excitation wave could be a potential
mechanism of atrial fibrillation.

11.3 Comments and Further Reading

1. As mentioned above, the EMI model can be used to represent the individual
cells of cardiac tissue and can therefore be referred to as a cell-based model, as
opposed to the homogenized bidomain and monodomain models. Alternative
cell-based models have also been introduced, including 1D single strand models
(e.g., [6, 22, 30, 39, 42]), 2D sheetmodels (e.g., [9, 10, 11, 12, 21, 31, 32, 33, 34]),
and 3D microdomain models (e.g., [24, 25, 26]). Differences between the EMI
model and other cell-based models are discussed in [16].

2. The resolution used in monodomain and bidomain model simulations is often
about ∆x ≈ 0.25 mm (see, e.g., [5, 43]). The volume of a cardiomyocyte has
been reported to be around 16 pL, see [28]. Every computational block with
volume (0.25 mm)3 can thus cover almost 1000 cardiomyocytes (see [18]). This
means that homogenization is very efficient in removing lots of details, which is
good for computing efforts. But it also means that lots of details are lost, which
is bad news for understanding the physics at the level of the cells.

3. As mentioned above, the time to solve the bidomain model for a million nodes
was estimated to 3000 years in 1984. So what is the estimate for EMI (now, in
2023)? According to [18] the computing time for one time step is about 0.02 ms
for each cell. For an action potential lasting for 500 ms, the total number of time
steps is 500× 103 when the time step is ∆t = 0.001 ms. The computing time per
cell for an action potential of 500 ms is therefore about 10 seconds. This means
that we can easily deal with small collections of cells. Simulating 1000 cells
would take less than three hours. But the human heart contains between 2 and
3 billion cells (see [38]). The computing time for 2 billion cells for one action
potential is about 29 × 10 seconds or 23,148 days or about 63 years. So it is not
as bad as the bidomain model anno 1984, but it is a long wait!
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4. What is the relation between the EMI model and the bidomain model? The
bidomain model was developed long ago and can be derived in many different
ways, but it can also be directly obtain by averaging the EMI equations over
many cells (see [15]).

5. Derivations of the EMI model can be found in [1, 13, 14]. The EMI has been
used to study a number of different electrophysiological phenomena, including
applications relevant for both neuroscience (e.g., [2, 3, 4, 41]) and cardiac
electrophysiology (e.g., [16, 20, 29, 35, 36, 37]). Furthermore, a number of
numerical strategies for solving the equations have been proposed, including
both finite difference and finite element schemes (see, e.g., [1, 17, 19, 23, 40]).

6. One of the simplifying assumptions underlying the EMI model presented in
this chapter is that the effect of diffusion of ions in the intracellular and
extracellular spaces are ignored. Such diffusion effects can be included in the
model by including the Kirchhoff-Nernst-Planck (KNP) equations in the model,
sometimes referred to as KNP-EMI models (see, e.g., [7, 8, 27]).
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Māki-MarttunenT,HalnesG, EinevollGT (2017)An evaluation of the accuracy
of classical models for computing the membrane potential and extracellular
potential for neurons. Frontiers in Computational Neuroscience 11:27

[42] Wang Y, Rudy Y (2000) Action potential propagation in inhomogeneous
cardiac tissue: safety factor considerations and ionic mechanism. American
Journal of Physiology-Heart andCirculatory Physiology 278(4):H1019–H1029

[43] Xie F, Qu Z, Yang J, Baher A,Weiss JN, Garfinkel A, et al. (2004) A simulation
study of the effects of cardiac anatomy in ventricular fibrillation. The Journal
of Clinical Investigation 113(5):686–693

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 

Commons license, unless indicated otherwise in a credit line to the material. If material is not 

included in the chapter’s Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 

the copyright holder. 

http://creativecommons.org/licenses/by/4.0/


Chapter 12
The Poisson-Nernst-Planck (PNP) Model

In these notes, we have consideredmodels of electrophysiology across several scales.
The first was the membrane model. It assumes that the action potential is similar
across the whole cell membrane, and the model represents the action potential as
a function of time alone. No spatial variable is involved in the pure membrane
models, so a length scale of these models does not make sense. As models of cardiac
electrophysiology, we next considered the monodomain and bidomain equations.
These models are accurate descriptions of the physics at the scale of millimeters,
and the typical mesh resolution is about ∆x ≈ 0.25 mm (see, e.g., [1, 16]). The EMI
model is cell-based and represents the physics at the micrometer scale. The typical
mesh size for the EMI model is about 10 µm see, e.g., [7, 8, 9].

We have moved from the homogenized millimeter scale (monodomain/bidomain)
to the cell-basedEMImodel on themicrometer scale.Next,wemove to the nanometer
scale. The reason for this is that strong electrical and chemical gradients exist very
close to the cell membrane. These gradients, referred to as the Debye layer (see, e.g.,
[6]), are only a few nanometers wide. In order to study what happens very close to the
membrane, it is necessary to solve equations on the nanometer level, and the proper
equations are referred to as the Poisson-Nernst-Planck (PNP) model. Once again
we will see that even if the model is rather complex, we can use the standard tricks
introduced above to solve the equations; operator splitting and finite differences are
all we need (plus a little blood, toil, sweat and tears).
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12.1 The PNP System of Partial Differential Equations

The PNP system can be written in the form

∇ · (ε∇φ) = −ρ, (12.1)
∂ck
∂t
= ∇ · Dk∇ck + ∇ · (Dk βkck∇φ) , (12.2)

for k = {Na+, K+, Ca2+ and Cl−}.

In this system, the variables are the electric potential, φ (in mV), and the ion
concentrations, ck (in mM) for k = {Na+, K+, Ca2+, Cl−}. Furthermore, we have
used the following definitions,

ε = εrε0, (12.3)

ρ = ρ0 + F
∑
k

zkck, (12.4)

βk =
zke
kBT

. (12.5)

The parameters F, ε0, εr , ρ0,Dk, e, kB,T , and zk for k = {Na+, K+, Ca2+ and Cl−}
are defined in Table 12.1.

Table 12.1 Parameter values used in the PNP simulations, taken from [10].

Parameter Description Value

F Faraday’s constant 96485.3365 C/mol
ε0 Vacuum permittivity 8854 fF/m
ε1 Relative permittivity, εr , in Ωi and Ωe 80
εm Relative permittivity, εr , in Ωm , Ωc 2
DNa+ Diffusion coefficient for Na+ in Ωi and Ωe 1.33 · 106 nm2/ms
DK+ Diffusion coefficient for K+ in Ωi and Ωe 1.96 · 106 nm2/ms
DCa2+ Diffusion coefficient for Ca2+ in Ωi and Ωe 0.71 · 106 nm2/ms
DCl− Diffusion coefficient for Cl− in Ωi and Ωe 2.03 · 106 nm2/ms
zNa+ Valence of Na+ 1
zK+ Valence of K+ 1
zCa2+ Valence of Ca2+ 2
zCl− Valence of Cl− −1
e Elementary charge 1.60217662 · 10−19 C
kB Boltzmann constant 1.380649 · 10−20 mJ/K
T Temperature 310 K
∆x, ∆y Spatial discretization parameter 0.5 nm
∆t Numerical time step 0.02 ns

Again, we will solve this system by applying operator splitting and replacing
derivatives by differences.We assume that the solution is known at time tn = n∆t. The
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Table 12.2 Initial conditions for the ion concentrations in the intracellular space, Ωi , and the
extracellular space, Ωe . In the membrane, Ωm , all ion concentrations are set to zero. Furthermore,
in the K+ channel embedded in the membrane, the concentration of K+ ions varies linearly from
the intracellular to the extracellular concentration, whereas the remaining ion concentrations are
set to zero. To make the entire domain electroneurtral at t = 0, ρ0 is set up so that ρ = 0 in the
channel for the initial conditions (see (12.4)).

Ion Intracellular Extracellular

Na+ 12 mM 100 mM
K+ 125 mM 5 mM
Ca2+ 0.0001 mM 1.4 mM
Cl− 137.0002 mM 107.8 mM

first step in the algorithm is to compute the electrical potential at time tn+1 = (n+1)∆t.
This step can be written as

∇h · (ε∇hφ
n+1) = −ρn, (12.6)

where ∇h denotes a finite difference approximation of the gradient. Note that ρn is
taken from the previous time step so only the electrical potential is unknown in this
step. In the first time step, we use the initial conditions to compute ρ given by (12.4).

When φn+1 has been computed, we can compute ∇hφn+1 and use it to solve the
concentration equations by the following scheme,

cn+1
k
− cn

k

∆t
= ∇h · Dk∇hcn+1

k + ∇h ·
(
Dk βkcn+1

k ∇hφ
n+1

)
, (12.7)

for k = {Na+, K+, Ca2+,Cl−}. Writing the complete finite difference schemes for
these equations is a bit messy, but the interested reader can consult the online Matlab
code, or the supplementary information of [10].

12.1.1 Numerical Simulation of the Resting State

We will use the scheme given by (12.6) and (12.7) to compute the resting state close
to the cell membrane. In the models introduced in the previous chapters, we have
taken the concentrations to be constants in space; i.e., we have assumed that the
concentrations can vary in time across the cell membrane, but not in space in the
intra- or extracellular spaces. This is often an accurate approximation, but we will see
that significant gradients exist very close to the cell membrane. Furthermore, in the
EMI model, the cell membrane is assumed to be infinitely thin, and in the bidomain
and monodomain models, the cell membrane is assumed to be everywhere! In the
PNP model simulation, the cell membrane is explicitly represented in the model
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Fig. 12.1 Illustration of
the PNP model domain,
consisting of an intracellular
domain, Ωi , an extracellular
domain, Ωe , a membrane
domain, Ωm , and a K+
channel domain, Ωc . In
the simulation reported in
Fig. 12.2, we use the domain
size Li = Le = Ly = 50 nm,
Lm = 5 nm, wc = 5 nm.
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Fig. 12.2 The membrane
potential, v = φi − φe , as a
function of time in the PNP
simulation.
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(5 nm wide), but still the ion channels integrated in the membrane are modeled in
an oversimplified manner.

We solve the PNP system in two spatial dimensions, see Fig. 12.1. Note that the
computational domain consists of an intracellular domain,Ωi , a cell membrane,Ωm,
an extracellular space, Ωe, and a K+ channel, Ωc . The initial conditions are given in
Table 12.2, and the solutions are presented in Figs. 12.2–12.4.

In Fig. 12.2, we have plotted the membrane potential (v = φi − φe) as a function
of time during the PNP simulation, and we see that the value starts at 0 and gradually
approaches a typical resting potential value of about −80 mV. In Fig. 12.3 and
Fig. 12.4, we show how the PNP model solution varies in space at the end of the
simulation (at t = 50 ns) in the part of the domain that is located in the 5 nm closest
to the membrane. The upper panel focuses on the intracellular side and the lower
panel focuses on the extracellular side of the membrane. In Fig. 12.3, we plot the
full 2D solution, and in Fig. 12.4, we plot the solution along lines in the x-direction
at y = 0 nm and y = 25 nm. We observe that a boundary layer is formed close to the
membrane with slightly different values of the ion concentrations and potential than
in the bulk intracellular and extracellular spaces.
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Fig. 12.3 Solutions at the end of the simulation (t = 50 ns) of the PNP model simulation in the
5 nm closest to the membrane on the intracellular side (upper panel) and the extracellular side
(lower panel).
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Fig. 12.4 Solutions at the end of the simulation (t = 50 ns) of the PNP model simulation in the
5 nm closest to the membrane on the intracellular side (upper panel) and the extracellular side
(lower panel). We show the solutions along lines in the x-direction for y = 0 nm and y = 25 nm.

12.2 Comments and Further Reading

1. The PNP equations modeling the electrical potential and ionic concentrations
close to biological membranes have been studied by several authors; see, e.g.,
[4, 5, 10, 11, 14]. But the PNP equations are also used to model lithium ion
batteries, see, e.g., [12, 17].

2. The model, methods and setup in this chapter was motived by the paper [10].
3. A simplified version of the PNP equations are referred to as the KNP

(Kirchhoff-Nernst-Planck) equations. In these equations, electroneutrality is
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assumed everywhere, meaning that ρ ≡ 0 in the entire domain. That is,
the charges sum to zero everywhere. Numerical approximations of the KNP
equations can be found in, e.g., [2, 3, 13, 15].

4. Above, we mentioned that one single computational block (∆x3 = (0.25 mm)3)
for a standard mesh used to solve the bidomain model is large enough to
cover almost 1000 cardiomyocytes. In the PNP model we use the resolution
∆x = 0.5 nm and thus the volume of one block is 0.125 nm3. The volume
of a sodium atom is ≈ 0.0244 nm3 so one computational block covers about
five sodium atoms. The next scale, following bidomain/EMI/PNP, is therefore
simulation based on representation of individual atoms. If a cell with a volume
of 16 pL is represented by a uniformmesh at atomic (sodium atom) resolution, it
will require about 6.5× 1014 blocks, which is a lot! A reasonably well-equipped
PC today has 16 GB memory and can therefore work with a vector (in Matlab)
of ∼ 2×109 real numbers. Thus, about 325,000 of these PCs are needed to store
one real number per atom in a cardiomyocyte of 16 pL. So, it will probably take
some time before atomic scale simulations can be used to simulate whole cells.
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