
Chapter 2 
Auctions for Trading Queueing Positions 

1 Introduction 

A queue constitutes a “miniature social system” in which the underlying fabric 
that ties individuals to society also guides the relationships between those in a 
queue (Mann 1969). In particular, the behavioral protocol of queueing collectively 
endorses the notion of “property rights” (Gray 2009), a fundamental part of the 
social fabric. An individual’s position in a queue is considered by its occupant as 
her property that she temporarily owns. Tampering with one’s position in a queue 
amounts to taking away someone’s property and may be met with strong objection: 
Any attempt to cut in line may be disapproved since this infringes on the “bumped” 
customers’ perceived property rights over their waiting positions. This is one of 
the reasons why the first-in, first-out (FIFO) queue discipline is predominant in 
many services systems. The FIFO rule ensures “a direct correspondence between 
inputs (time spent waiting) and outcomes (preferential service)” and thus manifests 
a basic principle of distributive justice (Mann 1969). However, the FIFO rule 
disregards queue occupants’ heterogeneous time-sensitivities. The system would be 
more efficient if more time-sensitive customers jump ahead and get served faster. To 
that end, service providers often sell priorities to customers. For instance, EE, one of 
the largest telecommunications companies in the UK, once launched a new service 
feature called “Priority Answer” that allowed customers to pay £0.50 to jump the 
queue for a service call. This new feature soon created a huge uproar and irked many 
customers who complained they were not being treated fairly. 

What goes awry with Priority Answer is that the proceeds go to the service 
provider, yet a longer wait is inflicted on the non-paying customers. The misalign-
ment would be resolved if the monetary transfer were among customers themselves: 
impatient customers may be willing to pay to acquire the position of less impatient 
customers who are potentially willing to give away their spots for monetary gains. 
This calls for a two-sided marketplace where customers consensually trade their 
waiting spots. Such a marketplace enables waiting customers to voluntarily swap 
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positions at mutually agreed prices. Since such swaps do not influence the positions 
of any other customers on the wait list, no customers are forcibly pushed back 
without being compensated. Thus, customers can have the best of both worlds: their 
proprietary entitlements to waiting positions are preserved as in the FIFO system 
while their diverging priority preferences are accommodated, improving system 
efficiency. 

We study in Yang et al. (2017) how trading in a queue can be organized by simple 
auctions in an environment where customers are privately informed about their 
waiting costs. We design the optimal mechanisms from three different perspectives: 
social welfare, the service provider’s revenue, and the revenue of the trading plat-
form (which we refer to as the intermediary) that mediates trading. While the first 
two perspectives are common in the queueing literature, they implicitly rely on the 
assumption that the trading platform is and can be managed by the service provider, 
which may not necessarily be true in practice. Instead, the service provider may be 
inclined to delegate the trading platform to an intermediary for technological reasons 
and reputational concerns. First and foremost, the infrastructure that facilitates trade 
hinges on technology (e.g., mobile apps) that typically falls beyond the expertise 
of the service provider. Therefore, if a specialized intermediary is responsible 
for developing, deploying and maintaining the platform on behalf of the service 
provider, the service provider will not be distracted from its core competencies. In 
the restaurant industry, for example, dining reservation platforms (intermediaries) 
are typically not fully integrated with restaurants (service providers): examples 
include OpenTable which charges restaurants for each reservation, and a similar 
dining app, Reserve, which alternatively charges customers for each booking. 
Second, if the service provider were to operate and conceivably profit from a 
resale market of waiting positions (either directly by collecting fees for trading or 
indirectly via surcharges in service fees), there might be a backlash from customers 
given the sensitive nature of queue-jumping (as in the case of Priority Answer). To 
the extent that this results in a loss of goodwill, the service provider would rather 
be detached from the trading platform and leave it to a third-party intermediary to 
arbitrate swaps of waiting positions. This begs the question of what is the optimal 
mechanism to collect fees from trading customers for an intermediary, who has the 
potential of raising sizable revenues once the technology is scaled up. 

The problem of trading waiting positions in a queue has been studied by 
several papers in the extant literature. Rosenblum (1992) assumes that customers’ 
waiting costs are public information in their trading model and that future values 
of transactions are ignored. Our model relaxes these two strong assumptions: 
customers are privately informed of their own waiting costs and take into account the 
expected values of future transactions when they trade. Gershkov and Schweinzer 
(2010) formulate a mechanism design problem of rescheduling a fixed number 
of players in a clearing system where there is no arrival process and trading is 
completed before service starts. Since all customers are present at time zero, it is 
not clear how the initial property rights are formed, so they study different initial 
allocations and show that an efficient mechanism can be implemented if the initial 
schedule is random ordering but not if it is deterministic like FIFO. El Haji and
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Onderstal (2019) experimentally examine how human subjects trade in a queueing 
environment similar to Gershkov and Schweinzer (2010). They provide evidence 
that organizing such a time-trading market can achieve a nontrivial amount of 
efficiency gains. Our model incorporates the operational dynamics of a queueing 
system where the order of arrivals naturally gives rise to the initial allocation. 
It allows us to study how trading impacts customers’ endogenous queue-joining 
behaviors. While Gershkov and Schweinzer (2010) and El Haji and Onderstal 
(2019) mostly focus on the efficiency of the time-trading mechanisms, our work 
also incorporates the perspectives of the revenue maximizing service provider and 
intermediary. 

2 Model Setup 

Consider a congested service facility, modeled as an .M/M/1 queueing system, that 
faces a population of delay-sensitive customers. Customers arrive at the system 
according to an exogenous Poisson process with rate . � (market size). Each 
customer requests one unit of service. The service times are i.i.d. samples from an 
exponential distribution with mean . 1/μ. Let .ρ

.= �/μ. Customers have a common 
valuation V for service. For a customer with delay cost rate c, who experiences 
waiting time w, defined as the entire duration in the system, and money m after 
receipt of service, her utility is .V − c · w + m. For simplicity, we normalize 
initial money wealth for all customers at zero, but assume that they are not budget-
constrained, so .m > 0 means a customer is a net receiver; .m < 0, a net payer. 
Customers differ in their delay cost rate c. Each customer’s delay cost per unit time 
is an i.i.d. draw from a continuous distribution with a strictly increasing cumulative 
distribution function F and a finite, strictly positive and continuously differentiable 
probability density function f over the support .c ∈ � � [c, c] and .0 ≤ c < c < ∞. 
Customers are risk-neutral and expected utility maximizers. To exclude the case 
where no customers have a positive net value even if served immediately, we assume 
.V > c/μ. 

Upon arrival, customers decide whether to join the service facility to obtain 
service, or balk. In case they do not join, they obtain the reservation utility, which we 
normalize to zero. The inter-arrival time distribution, the service time distribution, 
the delay cost distribution f and the service value V are common knowledge. The 
type of each individual customer (delay cost rates c) is her private information. 
Customers do not observe the system state upon arrival but can estimate the expected 
waiting time and the expected monetary transfer.



12 2 Auctions for Trading Queueing Positions

3 Baseline Auction 

In this section, we study an auction-based trading mechanism that is budget-
balanced among customers: all monetary transfers are internal within customers. 
This auction is the building block for subsequent results about the social planner, 
service provider and intermediary in Sects. 4 and 5. 

3.1 Trading Rules 

Auction Format In the baseline auction, upon arrival, a customer decides whether 
to join the queue or not. If the customer does not join, she earns a reservation utility 
of 0. If the customer joins, she submits a sealed bid b that can either be “No,” or 
a price for one unit of time. We allow customers to bid “No” to reflect that trading 
is voluntary and that customers can always preserve their FIFO property right. The 
bid b represents the least amount she wants to receive for expecting to wait one 
additional unit of time and also the greatest amount she is willing to pay for one 
unit of the expected waiting time reduced. The queue is reorganized in such a way 
that the arriving customer swaps positions consecutively with those who place bids 
strictly lower than hers. In each transaction, the customer who jumps ahead (the 
buyer) compensates the one who moves back (the seller) by the seller’s bid price 
times the expected waiting time exchanged. The existing customers who submitted 
bids strictly higher or those who submitted “No” are not affected in their waiting 
position. Nor are customers who bid the same amount as the buyer. Any customers 
with equal bids are served FIFO amongst themselves. Note that this auction follows 
a “pay-as-you-overtake” paradigm, since customers’ realized payment as buyers 
depends on the actual number of customers they overtake. For simplicity, trading is 
instantaneous (transactions do not take any time) and preemptive-resume (customers 
at the server can suspend their service and sell their spot; service is resumed when 
this customer reaches the server again). Customers submit a bid before observing 
the queue length and commit to the bid throughout their stay in the system.1 

Illustration 1 Consider an arriving customer who joins and participates in trading 
by submitting a price b′. Assume that there are four other existing customers in the 
system. Among them, the first, the second and the fourth customer participate in 
trading with bids b1, b2 and b4 (with b1 ≥ b′ > b2 > b4), respectively. The third 
bids “No” and thus does not participate in trading. Thus, before the new arrival, the 
system can be represented by (b1, b2, F, b4), where F stands for a FIFO customer 
who bids “No”. Adding the arriving customer (customer 5) who bids b′ to the tail of

1 After submitting their bid, customers could see the queue length, but this would be technically 
irrelevant to the bidding game since the trading process goes on autopilot once bids are collected 
from customers. 
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the queue, we have (b1, b2, F, b4, b
′), which is not (yet) ordered. Then, the auction 

swaps customer 5 and customer 4, yielding (b1, b2, F, b′, b4). Customer 5 makes a 
payment of b4/μ to customer 4. Next, the auction swaps customer 5 and customer 2, 
yielding (b1, b

′, F, b2, b4). Notice that the expected wait time of the FIFO customer 
does not change. Customer 5 makes a payment of 2b2/μ to customer 2 (because 
the latter moves back by two positions). Customer 5 does not swap positions with 
customer 1 since customer 1 bids weakly higher and they are served FIFO. Thus, 
the trading process is completed. The total payment customer 5 makes to the other 
customers is thus (b4 + 2b2)/μ. Similarly, customer 5 expects a compensation of b′
per unit of time if she ever moves back and swaps positions with other, later arriving 
customers who make a higher bid than b′. 

3.2 Auction Equilibrium 

Strategy We focus on pure strategies specified by two functions; the joining 
function .J : � �→ {join, balk. } specifies which customer types join or balk, and 
the bid function .b : {c|J (c) =join.} �→ R+ ∪{No} specifies the bid of each customer 
type (either a price for one unit of time or “No”). Thus the effective arrival rate to 
the system is .λ � �

∫ c

c
1{J (c) =join.}dF(c), where .1{X} is the indicator function 

of condition X. 

Waiting Time and Utility Given the bid function b(·) and the joining function 
J (·), let  W : R+ �→ R+ denote the mapping from a customer’s bid to her expected 
waiting time. Since trading does not affect any joining customer who bids “No,” it is 
immediate that these customers’ expected waiting time is equal to the mean waiting 
time of an M/M/1 system: W(No|b, J ) = 1 

μ−λ . Note that this waiting time depends 
on the endogenously determined λ, the aggregate arrival rate of the system, and is 
not impacted by any individual, infinitesimal customer’s action. Since customers 
submit their bid up front and make a commitment during their wait, they take into 
account all future transactions in the expected utility (note that this is one of the 
key distinctions from Rosenblum 1992). We assume that customers do not discount 
future payments. Let Pp : R+ �→ R+ be the function that maps a customer’s 
bid to the total expected amount of money she pays as a buyer upon arrival; and 
Pr : R+ �→ R+ maps a customer’s bid to the total expected amount of money she 
receives as a seller during her stay in the system. 

Thus, given b(·) and J (·), the expected utility of a joining customer of type c 
who bids β is 

. U(c, β|b, J ) =
{

V − cW(β|b, J ) − Pp(β|b, J ) + Pr(β|b, J ), β ∈ R+
V − c

μ−λ
, β = No.

(2.1)
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Customer Equilibrium A symmetric pure-strategy Nash equilibrium is defined by 
the following conditions: 

.b(c) ∈ arg maxβ∈R+∪{No}U(c, β|b, J ), ∀c ∈ {c|c ∈ �, J (c) = join}. (2.2a) 

U(c, b(c)|b, J ) ≥ 0, ∀c ∈ {c|c ∈ �, J (c) = join}. (2.2b) 

U(c,  β|b, J ) ≤ 0, ∀c ∈ {c|c ∈ �, J (c) = balk}, 
∀β ∈ R+ ∪ {No}. (2.2c) 

Condition (2.2a) states that for all the joining customers, the best response of the 
equilibrium bid function should be itself. Condition (2.2b) ensures that all joining 
customers get nonnegative expected utility and (2.2c) specifies that the balking 
customers in equilibrium have no incentive to join the system since their expected 
utility would not turn positive regardless of what she bids. 

An equilibrium is said to achieve efficiency or be an efficient schedule if b(c) is 
strictly increasing in c whenever J (c)  =join. If this holds, customers are effectively 
prioritized by the cμ rule. 

It is immediate that there is a trivial equilibrium: all joining customers submit 
“No”. Thus, nobody participates in trading and customers are served FIFO. This 
equilibrium holds in all auction settings in this paper. We analyze other equilibria 
that realize gains from trade. We indicate the equilibrium in the baseline auction by 
means of a superscript B. 

Theorem 1 (Full Trading, Separating Equilibrium) Under the baseline auction, 
there exists an equilibrium in which 

(i) JB (c) =join for c ∈ [c, c̃] (and balk otherwise) with c̃ ≤ c, i.e., λB = �F(c̃); 
(ii) the equilibrium bid function is strictly increasing and given by 

. bB(c; c̃) = c +
∫ c̃

c
(F (c̃) − F(s))2We(s; c̃)ds

(F (c̃) − F(c))2We(c; c̃)
, c ∈ [c, c̃]

where We (c; c̃) = 1 
μ[1−ρ(F (c̃)−F(c))]2 is the time customer c expects to wait 

given c̃; 
(iii) the equilibrium expected utility of the joining customers, U(c,  bB (c; c̃)), is  

convex decreasing in c. Either c̃ uniquely solves U(c̃, bB (c̃; c̃)) = 0 or c̃ = c 
if there is no solution. 

We illustrate Theorem 1 in Fig. 2.1. Unless otherwise stated, we use the parameters 
in Table 2.1 for numerical illustrations throughout the paper. 

Theorem 1 suggests that customers follow a threshold policy in their joining 
decisions, and they balk if their waiting cost is high, i.e., c is greater than the cutoff 
value c̃. We henceforth use W(c̃) � 1 

μ−�F(c̃) to denote the expected FIFO waiting 
time. In this equilibrium, however, all the joining customers participate in trading.
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Fig. 2.1 The baseline auction. Note. The solid curves are the bidding function in (a), the expected 
waiting time in (b), and the expected utility under the auction. The dashed lines are a 45-degree 
line in (a), and the expected utility if customers are served FIFO under arrival rate λB in (c). In this 
example, c̃ = c = 1. (a) Biding function. (b) Waiting time. (c) Utility 

Table 2.1 Model primitives 
for numerical illustrations 

V � μ F 
5 0.9 1 U [0, 1] 

Most importantly, the equilibrium bid function is strictly increasing and the expected 
waiting time is strictly decreasing in c, implying that the budget-balanced baseline 
auction implements an efficient schedule: any two customers with different waiting 
costs trade waiting spots with one another so that customers are prioritized in 
decreasing order of their waiting cost. The resulting expected wait time is illustrated 
in Fig. 2.1b. 

Achieving allocative efficiency via a budget-balanced trading mechanism under 
private information is a nontrivial result under individual rationality in trading (cf. 
Myerson and Satterthwaite 1983). As illustrated in Fig. 2.1c, under this equilibrium, 
trading makes all the joining customers better off, i.e., their expected utility exceeds 
the utility they would get if they bid “No” and wait FIFO. The intuition is the 
following. Prior to trading, all customers expect FIFO waiting time, so the initial 
waiting time allocation is the same. This is analogous to having equal shares before 
partnership dissolution (cf. Cramton et al. 1987). When trading starts, customers
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may buy from existing customers, and may also sell to future arriving customers. 
The countervailing incentives as both buyers and sellers offset each other, making 
an efficient schedule possible. 

We also highlight that one favorable feature of the budget-balanced auction is that 
it has very simple rules that do not require knowledge of customer valuations like 
V and F . An efficient schedule is automatically achieved by customers themselves. 
While the auction, in principle, allows for an arriving customer to overtake another 
customer who chooses not to participate in trading (without influencing her expected 
waiting time, e.g., customer 5 overtakes the FIFO customer in Illustration 1), this 
case never happens in equilibrium as all joining customers trade, i.e., any customer 
who is overtaken gets compensated at an agreed-upon price in equilibrium. 

As illustrated in Fig. 2.1a, all the joining customers overbid, i.e., bB (c) > c, 
except that customer c̃ bids truthfully, i.e., limc→c̃ b

B (c) = c̃ (c̃ = c in this 
example). This is a consequence of the auction rule that the seller’s bid dictates 
the trading price in each transaction. Thus, customers have an incentive to inflate 
their bid as a seller to gain more revenue. As illustrated in Fig. 2.1c, customers’ 
expected utility is downward sloping in their waiting costs, implying that the more 
impatient a customer is, the less she gains from joining the system; whereas the 
convexity of the curve implies that customers with extreme waiting costs (either 
very high or very low) have the most gains from trading relative to being served 
FIFO whereas customers with medium waiting cost reap the least relative gains. 
Customers with very low waiting cost favor trading since they are most willing to 
sell spots for money, i.e., Pp(bB (c)) = 0 and Pr(b

B (c)) > 0; while those with high 
waiting cost benefit from trading since they are most willing to pay to skip the line, 
i.e., Pr(b

B (c̃)) = 0 and Pp(bB (c̃)) > 0. Both incentives are weak for customers 
in the middle. In particular, there is one type of customers, cm, who expects exactly 
the same waiting time as if she were served FIFO, i.e., We (cm; c̃) = W(c̃). Because 
of the convexity of the utility curve, cm is also the type of customers whose gain 
in trading relative to FIFO is the smallest. Still, she strictly prefers trading to FIFO 
since Pr(b

B (cm)) > Pp(bB (cm)), i.e., the amount she expects to receive exceeds 
the amount she expects to pay. In a nutshell, two types of customers warrant special 
attention: the one with the least patience who would be the most sensitive to joining; 
and the one with moderate patience who would be the most sensitive to trading. 

4 Social Welfare and Service Provider’s Revenue 

In this section, we study how social welfare and the service provider (SP)’s revenue 
can be maximized using the trading mechanism proposed in Sect. 3.



4 Social Welfare and Service Provider’s Revenue 17

4.1 Social Optimization 

Definition 1 The maximum social welfare SW is determined by: 

.SW = max
c̃∈�:�F(c̃)<μ

�F(c̃)V − �

∫ c̃

c

cWe(c; c̃)dF (c). (2.3) 

The socially optimal arrival rate λSW = �F(c̃SW ), where c̃SW is the maximizer of 
(2.3). 

Definition 1 formalizes the concept of the social optimum in a centralized system 
where the social planner can dictate the arrival rate and scheduling policy. First, it 
is socially optimal to serve customers with the smallest waiting costs for any arrival 
rate and scheduling policy; thus, the social optimum requires a threshold joining 
policy, which coincides with the equilibrium structure of the baseline auction. 
Second, for any arrival rate, it is socially optimal to prioritize customers by the 
cμ rule, which is achieved by the equilibrium structure of our trading mechanism. 
It is natural to ask whether the baseline auction as a decentralized mechanism 
implements the social optimum. Proposition 1 indicates the answer is negative in 
general. 

Proposition 1 λB ≥ λSW with equality if and only if λB = λSW = �. The social 
planner can achieve SW by running the baseline auction with an admission fee 
pSW = ∫ c̃SW 

c c
[
1 − F(c)  

F(c̃SW )

] [
− ∂We (c;c̃SW ) 

∂c

]
dc. 

Although the baseline auction achieves the “right” service order (efficiency), it 
does not attain the socially optimal arrival rate in general: in particular, customers 
with high waiting cost who should otherwise balk in social optimum join the system 
under the trading mechanism. This runs counter to the well-known result for the 
typical priority auction as in Kleinrock (1967) which is shown to be self-regulating 
in both the arrival rate and service order (Hassin 1995). The problem with the trading 
mechanism is that unlike in the priority auction, customers do not fully internalize 
the negative externalities inflicted on others. They do pay for the cost imposed on 
the existing customers if they jump over them; in fact, they are over-penalized in our 
auction since the trading price overstates the seller’s waiting cost. However, they 
are not held accountable for the cost imposed on future arrivals; worse still, they 
can even earn rents on their waiting spots for future customers to buy. The inability 
to achieve the maximum social welfare is similarly found in the bilateral trading 
model in Myerson and Satterthwaite (1983), but takes a different form. There, 
maximizing social welfare is synonymous with achieving ex-post efficiency due to 
a fixed number of traders (one buyer and one seller). Their system is afflicted by the 
lack of ex-post efficiency, hence a loss in social welfare. Our queueing system attains 
efficiency for a given arrival rate, but customers’ joining decisions are endogenous, 
precisely because of which, the system suffers from over-joining, again engendering 
a loss in social welfare. Fundamentally, this loss in social welfare is symptomatic of
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Table 2.2 Comparisons of different mechanisms 

Baseline Socially optimal SP revenue maximizing FIFO pricing 

Social welfare 2.942 3.106 2.921 2.121 

SP’s revenue 0 2.121 2.381 2.011 

Admission fee 0 2.592 3.439 3.505 

Arrival rate 0.9 0.818 0.692 0.574 

Percentage loss in SW 5.29% 0.00% 5.95% 31.72% 

the presence of property rights: customers take the FIFO waiting time as their initial 
property and thus do not internalize the externalities inflicted on those who arrive 
later. 

Like Naor (1969), an intuitive remedy to over-joining is to charge an admission 
fee pSW . This fee can be interpreted as what the service provider charges for 
accessing the service facility, and thus it applies to all joining customers regardless 
of their trading decision. It is important to recognize that the admission fee 
only alters customers’ joining incentives, but not their trading incentives since it 
decreases their utility if they trade just as much as it does the utility obtained 
from waiting FIFO. To the extent that all money flows are viewed as internal 
transfers, Proposition 1 shows that an appropriate admission fee can restore the 
social optimum. Charging a single admission fee and running the baseline auction 
for trading, this mechanism is outcome equivalent to the aforementioned priority 
auction that regulates both the arrival rate and service order (Hassin 1995), but 
customers’ perception can be quite different. In our mechanism, the service provider 
charges a flat fee for admission and customers sort out the right service order 
by themselves through trading. Moreover, joining customers can also opt out of 
the auction and maintain their FIFO position, but it just so happens that they all 
voluntarily trade in equilibrium. The second and third column in Table 2.2 illustrate 
that charging the admission fee can reduce the arrival rate and eliminate the 5.39% 
social welfare loss in the baseline auction. 

4.2 Service Provider’s Revenue Maximization 

Given the admission fee p and the baseline auction, the service provider’s long-run 
average revenue is .pλ(p), where .λ(p) is the arrival rate under p. We show this 
structure raises the optimal revenue for the service provider under some technical 
assumptions we will introduce presently. Thus, finding the revenue-maximizing 
optimal mechanism reduces to pinning down the optimal admission fee. 

Before we proceed, we define virtual type functions and assume they are 
monotone.
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Definition 2 Denote by .fr(·) and .fp(·, c̃) the receivers’ and payers’ virtual type 
functions, respectively: 

. fr(c) � c + F(c)

f (c)
, fp(c; c̃) � c − F(c̃) − F(c)

f (c)
.

ASSUMPTION 1 .
dfr (c)

dc
> 0 and .

dfp(c;c̃)
dc

> 0 for all .c ∈ [c, c̃] and .c̃ ∈ [c, c]. 
Assuming monotone virtual type functions is common in the mechanism design 

literature. Monotone virtual types are satisfied by many common probability 
distributions, such as the uniform, normal, logistic and power function distributions, 
and the gamma and Weibull distributions with shape parameters greater than or 
equal to 1; any log-concave distribution has this property (Bagnoli and Bergstrom 
2005). 

The service provider is not bound by the form of mechanism we introduce (a flat 
admission fee plus the baseline auction). For example, it could revise the auction 
rule so as not to induce strict priority. Proposition 2 indicates, nevertheless, that 
it is optimal under Assumption 1 for the service provider to appeal to the same 
mechanism structure as the social planner does. The only difference is that the 
service provider should set a higher admission fee. 

Proposition 2 The service provider maximizes revenue by setting a price . pM >

pSW and running the baseline auction. 

Given the mechanism structure, if the service provider’s only lever were the 
admission fee, then it should be intuitive that the service provider would set a 
higher fee than is socially optimal. Naor (1969) has a similar result in a different 
queueing context. As a monopolist, the service provider would command a higher 
price than the efficient level to maximize its own revenue. Proposition 2 reveals 
that even if the service provider has more levers, it should stick to mechanisms that 
implement strict priority. The monotone virtual types in Assumption 1 guarantee 
that the service provider has the same incentive as the social planner in prioritizing 
customers. Otherwise, the service provider would prefer pooling, i.e., serving a class 
of customers by the FIFO rule despite differences in their waiting costs (cf. Katta 
and Sethuraman 2005). 

Note that as one of the many implementations of the service-provider’s optimal 
direct mechanism, the proposed trading mechanism in Proposition 2 is outcome 
equivalent to a priority auction with an optimally determined reserve price (cf. 
Lui 1985). Yet unlike the priority auction, there is no price discrimination by the 
service provider: all the payments generated in the baseline auction are transfers 
among customers; still, the same optimal revenue is achieved. We highlight that our 
proposed trading mechanism, albeit not the unique implementation of the optimal 
mechanism, is rather simple and that the flat admission fee is only for accessing the 
service facility, not for gaining priority, so it does not have the unfair connotation 
like the Priority Answer feature offered by EE.
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Table 2.2 illustrates the service provider’s optimal trading mechanism in column 
four, and the optimal pricing of a FIFO queue in column five. The FIFO price, . pF , 
is defined by 

.(pF , c̃F ) = arg max
(p,c̃)

p�F(c̃), s.t. V − p − c̃W(c̃) = 0. (2.4) 

Denote the FIFO revenue by .�F = pF �F(c̃F ). While it is immediate that the 
trading mechanism outperforms FIFO pricing in its revenue performance (2.381 vs. 
2.011), it is not clear how the admission fees in the two scenarios, .pM and . pF , 
compare. Since the exclusive source of revenue in both scenarios is the admission 
fee, one might expect the service provider who shifts from FIFO to trading to 
increase this price to extract more revenue. This intuition is correct if the full market 
is already captured by FIFO pricing, i.e., .c̃F = c, but in general, the direction of the 
service provider’s price adjustment is ambiguous. Table 2.2 shows a possibility that 
the service provider decreases the price (from 3.505 to 3.439) and achieves a higher 
revenue through a higher throughput. A lower price might be more palatable to 
customers and make them more receptive of the trading platform. 

5 Trading Through an Intermediary 

In this section, we study a setting in which the service provider delegates trading 
to a revenue-maximizing intermediary. The key distinction between the service 
provider and the intermediary is that the intermediary can only charge customers 
for using the trading platform (e.g., a trade participation fee), but not for access 
to the service facility (e.g., an admission fee). Since a high trade participation fee 
will make trading less attractive and eventually deter some customers from trading 
altogether, the intermediary’s fee-structure will potentially affect customers’ trading 
incentives. 

5.1 Baseline Auction with a Trade Participation Fee 

We start by considering a benchmark trading mechanism where an arriving customer 
must pay the intermediary an upfront trade participation fee H ; then, the baseline 
auction is run as before. We refer to this as an “H auction.” The intermediary’s 
revenue is .HλT (H), where .λT (H) is the arrival rate of the customers who trade 
given H . By definition, trading customers are a subset of joining customers, i.e., 
.λT (H) ≤ λ for any H . 

Recall that in the baseline auction (where .H = 0), all joining customers 
are strictly better off by participating in trading. Thus, the equilibrium structure 
identified in Proposition 1 remains valid if H is slightly positive. It is easy to see
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that if the trade participation fee H is too high, then trading will no longer be 
favored over FIFO. Hence, there exists a threshold value . H such that the equilibrium 
structure identified in Theorem 1 is preserved and all joining customers voluntarily 
trade (.λT (H) = λ) if and only if .H ≤ H . 

Definition 3 . H is such that .λT (H) = λ if and only if .H ≤ H . 

For convenience, we refer to the auction where .H = H as the “. H auction.” In 
our running numerical example, at .H = H = 1.342, .U(c) in Fig. 2.1c would be  
tangent to the FIFO line, and the intermediary’s revenue is 1.208. If .H > H , some  
customers with medium waiting costs (since they benefit the least from trading) will 
find trading too costly and thus refuse to trade by submitting “No,” and this would 
lead to .λT (H) < λ. The revenue-maximizing intermediary’s is in a conundrum. 
On one hand, if it would like to get all joining customers to trade, its fee is 
bounded above by . H . One the other hand, if the intermediary wants to charge more 
aggressively (above . H ), it must bear the cost of being unable to collect the fee from 
some joining customers: a direct loss of revenues via a decreased trading volume, 
plus, an indirect loss via a lower arrival rate as the non-trading (FIFO) customers 
downgrade the expected utility of those who trade. 

To resolve this conundrum, we enrich the baseline auction with two trade-
restriction prices that enable the intermediary to charge above . H while still inducing 
voluntary trading of all joining customers. We shall show this is the optimal trading 
mechanism for the intermediary. 

5.2 Augmented Auction: Trading Rules and a Motivating 
Example 

Auction Format The augmented auction contains two trade restriction parameters 
. R and . R (.R ≤ R) in addition to the trade participation fee H . The trading rule is 
the same as before except that if both customers’ bids are within the interval .[R,R], 
they are barred from trading with one another and are served FIFO. However, if 
only one of the two customers’ bids are within .[R,R], trade still occurs between the 
two. This auction is referred to as an “.(H,R,R) auction.” 

Illustration 2 Consider the illustrative scenario in Sect. 3 and assume that b4 < 
R < b2 < b′ ≤ b1 < R. As before, the system prior to trading is represented 
by (b1, b2, F, b4, b

′). Only customer 4 and 5 swap positions, and the system after 
trading is represented by (b1, b2, F, b′, b4). Note that despite the fact that b2 < b′, 
customers 2 and 5 do not swap positions since both of their bids fall in [R, R]. 

Table 2.3 shows that when H = 1.510, R = 0.257 and R = 0.425, the 
intermediary’s revenue would be 1.352 in the (H, R, R) auction, 11.9% higher than 
the revenue that would be achieved in the H auction. Note that the trade participation 
fee H in the augmented auction is higher than H , yet all joining customers sign up 
for trading, which can be verified by recognizing the revenue (1.352) is equal to H 
(1.510) times λ (0.896).
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Table 2.3 The intermediary’s optimal (H, R, R) auction and the H auction 

Revenue H R R λ 
Optimal augmented auction 1.352 1.510 0.257 0.425 0.896 

H auction 1.208 1.342 – – 0.9 

5.3 Auction Equilibrium 

To generate insights into how the augmented auction with trade restriction benefits 
the intermediary, we derive the equilibrium for the case when trading is free (.H = 0, 
budget-balanced among customers), and compare that with the budget-balanced 
baseline auction. We indicate the equilibrium in the augmented auction by means 
of a superscript A. With a slight abuse of notation, we use .U(c, β) to denote the 
expected utility of customer c who bids . β in the equilibrium of the augmented 
auction (including the trade participation fee). 

Theorem 2 (Full Trading, Partial Pooling Equilibrium) Under the augmented 
auction with given . R and . R, when .H = 0, there exists an equilibrium in which: 

(i) .JA(c) =join for .c ∈ [c, c̃) (and balk otherwise); 
(ii) the equilibrium bid function is weakly increasing and given by 

. bA(c; cr , cp, c̃) =

⎧
⎪⎪⎨

⎪⎪⎩

c +
∫ cr
c (F (c̃)−F(s))2We(s;c̃)ds+K(R,cr ,cp,c̃)

(F (c̃)−F(c))2We(c;c̃) , c ∈ [c, cr )

R, c ∈ [cr , cp]
bB(c; c̃), c ∈ (cp, c̃]

(2.5) 

where constant .K(R, cr , cp, c̃) = (R − cr)(F (c̃) − F(cr))
2We(cr ; c̃) and 

.cr , cp, c̃ ∈ � with .c ≤ cr ≤ cp ≤ c̃ are a solution to the following equations: 

.[U(cr , R) − U(cr , R)][cr − c][cr − c̃] = 0. (2.6a) 

[U(cp, bA (c+
p ; cr , cp, c̃)) − U(cp, R)][cp − c][cp − c̃] =  0. (2.6b) 

U(c̃, bA (c̃; cr , cp, c̃))[c̃ − c] =  0; (2.6c) 

(iii) the expected waiting time for customer .c ∈ [c, c̃] is 

. WA(c; cr , cp, c̃) =
{

We(c; c̃), ∀ c ∈ [c, cr ) ∪ (cp, c̃]
1

μ(1−ρF(c̃)+ρF(cr ))(1−ρF(c̃)+ρF(cp))
, ∀c ∈ [cr , cp].

(2.7)
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Fig. 2.2 The augmented auction. Note. .H = 0, .R = 0.257, .R = 0.425. . ̃c = 1, cr = 0.148, cp =
0.373. The blue solid curves correspond to the equilibrium properties of the augmented auction; 
the green dashed curve, the baseline auction as in Fig. 2.1. The orange dot-dashed line is the 45-
degree line in (a); the expected utility if customers are served FIFO under the same equilibrium 
arrival rate in (c). .(∗) indicates the subset of customer types in the pooling segment that receive 
a higher expected utility than in the baseline auction. (a) Bidding function. (b) Waiting time. (c) 
Utility 

Comparing Theorem 2 with Theorem 1 shows the effects of the trade restriction 
parameters, . R and . R. While the bid function .bA(·) in (2.5) is still strictly increasing 
in .[c, cr ] ∪ (cp, c̃], it is flat in .[cr , cp]: these customers all bid . R and thus do not 
trade with one another (see Fig. 2.2a). As a result, the waiting time schedule is no 
longer efficient since these customers all expect the same waiting time despite their 
different waiting costs (see Fig. 2.2b). Consequently, there is pooling of customers 
in .[cr , cp], who are served as a single FIFO class. As shown in the expression of 
.WA(·) in (2.7), for any given arrival rate, the expected waiting time for customers in 
.[c, cr )∪ (cp, c̃] is still the efficient waiting time, i.e., trading allows these customers 
to be strictly prioritized over any other joining customer with lower waiting cost. 

Similar to the baseline auction, adding . R and . R to the budget balanced auction 
does not discourage any joining customers from voluntarily participating in trading. 
As shown in Fig. 2.2c, all joining customers are better off by participating in trading 
than submitting “No.” One noticeable difference of customers’ expected utility in
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the augmented auction is that it decreases linearly in c for .c ∈ [cr , cp]. This is by  
the linearity assumption of waiting costs. Customers in the pooling segment . [cr , cp]
differ in their waiting costs but choose to bid the same amount and thus expect to 
wait the same amount of time and pay/receive the same amount of money. 

5.4 Optimal Auction Parameters and Structure 

When .H = 0 in the augmented auction (the intermediary has no revenue), all 
customers strictly prefer trading. A slightly positive H will not alter this preference 
and the equilibrium bidding behavior in the augmented auction insofar as all joining 
customers trade. We show that this is indeed the optimal structure the intermediary 
wants to implement. Furthermore, the .(H,R,R) auction is an optimal mechanism 
for the intermediary given the optimal auction parameters. 

Theorem 3 (Optimality of the Augmented Auction) The .(H ∗, R∗, R∗
) is an 

optimal mechanism for the intermediary with: 

.H ∗ = �(c∗
r , c

∗
p, c̃∗)

�F(c̃∗)
. (2.8a) 

R
∗ = 

c∗
pW(c̃∗) + [ρbR (c∗

p; c∗
r , c

∗
p, c̃∗)(F (c̃∗) − F(c∗

p)) − c∗
p]We (c∗

p; c̃∗) 
ρ(F (c̃∗) − F(c∗

r ))W(c̃∗) 
. 

(2.8b) 

R∗ = 
c∗
r W

e (c∗
r ; c̃∗) − c∗

r W(c̃∗) + ρW(c̃∗)[F(c̃∗) − F(c∗
p)]R∗ 

ρWe(c∗
r ; c̃∗)[F(c̃∗) − F(c∗

r )]
(2.8c) 

where . �(cr , cp, c̃) = −�
∫ cr

c

(
We(c; c̃) − W(c̃)

)
fr(c)dF (c) + �

∫ c̃

cp

(
W(c̃ )

. − We(c; c̃)
)

.fp(c; c̃)dF (c) and .c∗
r , c

∗
p, c̃∗ solve the following optimization 

problem: 

. max
cr ,cp,c̃∈�:cr≤cp≤c̃

�(cr , cp, c̃). (2.9a) 

s.t. 
1 

μ(1 − ρF(c̃) + ρF(cr))(1 − ρF(c̃) + ρF(cp)) 
= W(c̃). (2.9b) 

V −
∫ c̃ 

cp 
We (c; c̃)dc − cpW(c̃) ≥ 0. (2.9c) 

The resulting equilibrium structure is the same as identified in Theorem 2. In  
particular, 

.U
(
c, bA

(
c; c∗

r , c
∗
p, c̃∗))

= V − cW(c̃∗), ∀c ∈
[
c∗
r , c

∗
p

]
. (2.10)
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Theorem 3 determines the optimal parameters .(H ∗, R∗, R∗
) by reverse engineering. 

Instead of characterizing the equilibrium outcome by solving (2.6a)–(2.6c) for  
.cr , cp, c̃ under any given auction parameters .(H,R,R), we first determine what the 
optimal outcome should be by obtaining .c∗

r , c
∗
p, c̃∗ from the optimization problem 

(2.9a)–(2.9c) and then determine the optimal auction parameters .(H ∗, R∗, R∗
) that 

can implement the optimal outcome using (2.8a)–(2.8c), where (2.8b) and (2.8c) are  
obtained from shuffling terms of (2.6a) and (2.6b). 

Combining (2.9b) and .WA(·) in (2.7) implies that in the optimal auction, the 
expected waiting time for customers in .[c∗

r , c
∗
p] is equal to the FIFO waiting time 

.W(c̃) (see Fig. 2.3b). Furthermore, (2.10) suggests that these customers’ expected 
utility is equal to what they would get if they just bid “No” and wait FIFO (see 
Fig. 2.3c). This does not imply they do not trade at all: they still swap positions 
with customers outside the pool by selling their spot to higher bidders and buying 
positions from lower bidders, but on average trading does not realize any gains. The 
fact that they trade is crucial to achieving an efficient expected waiting time for 
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Fig. 2.3 The optimal .(H,R,R) auction. Note. .H = 1.510, .R = 0.257, .R = 0.425. . ̃c =
0.995, cr = 0.147, cp = 0.373. The solid curve corresponds to the equilibrium properties of 
the auction; the dashed curve is the 45-degree line in (a); the efficient waiting time function in (b); 
the expected utility if customers are served FIFO under the same equilibrium arrival rate in (c). (a) 
Bidding function. (b) Waiting time. (c) Utility
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customers outside the pool .[c, c∗
r ) ∪ (c∗

p, c̃∗]. The augmented auction is designed to 
only prohibit trading within the pool. 

In brief, the optimal auction has the following two features: 

(1) All joining customers participate in trading. 
(2) The schedule is efficient in .[c, c∗

r ) ∪ (c∗
p, c̃∗] but customers in .[c∗

r , c
∗
p] expect 

FIFO waiting time. 

Theorem 4 (Optimality of Trade Restriction) The optimal auction should always 
have .R∗ < R

∗
, and thus .c∗

r < c∗
p. 

Theorem 4 shows that the intermediary would like to restrict trading to a certain 
extent to fully exploit its control over the trading channel. As a result, it sets 
.R

∗
strictly above .R∗ so that pooling occurs in the intermediary’s optimal auction 

and the schedule is not efficient. This extends the classical result in Myerson and 
Satterthwaite (1983) about the intermediary’s trade restriction incentives in bilateral 
trading to a queueing context where customers can be both buyers and sellers. 
After all, the intermediary is a monopolist who wants to restrict output under 
the efficient level to command a higher price. Note that if the service provider 
operates the trading platform as in Sect. 4.2, it can simply exercise its monopoly 
power by charging a higher admission fee (which reduces arrivals). By contrast, 
the intermediary’s trade participation fee cannot be forced upon customers even 
after they join the system, so setting a higher fee as an intermediary should be 
done in a more nuanced way that reduces the amount of trading among customers 
and creates a pooling segment. As we argue in Sect. 5.3, trade restriction generates 
value to customers in the middle who are most sensitive to trading by letting them 
avoid undesirable trades. This value added, in turn, passes on to the intermediary 
by enabling it to charge a higher trade participation fee (we shall formally establish 
this in Corollary 1). 

Let .λ∗ = �F(c̃∗) be the optimal effective arrival rate under the . (H ∗, R∗, R∗
)

auction. Let .λFIFO be the effective arrival rate if all joining customers are served 
FIFO. In the FIFO system, a customer of type c receives an expected utility of 
.V − cW(c̃FIFO), where .c̃FIFO satisfies .λFIFO = �F(c̃FIFO). Let .λH be the effective 
arrival rate if the intermediary charges . H in the H auction. Likewise, . ̃cH is defined 
such that .λH = �F(c̃H ). Proposition 3 orders the three arrival rates. 

Proposition 3 .λFIFO ≤ λ∗ ≤ λH . In particular, if not all customers join in the 
optimal auction, i.e., .λ∗ < �, then .λFIFO < λ∗ < λH . 

In the optimal augmented auction, customers with high waiting costs who would 
otherwise balk in a FIFO system may now join and participate in trading because 
this option to trade makes them better off than if they are served FIFO. On the 
other hand, as compared to the . H auction, the pooling segment in the optimal 
mechanism diminishes the appeal of trading for customers with high waiting costs 
since they have to pay more to get the same priority; thus fewer customers join. The 
optimal mechanism has a lower arrival rate than the . H auction, but it raises more
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revenue, which must stem from a higher trade participation fee. This is summarized 
in Corollary 1. 

Corollary 1 The optimal trade participation fee in the augmented auction is strictly 
above . H , i.e., .H ∗ > H . 

Trade restriction resolves the intermediary’s conundrum: it always charges 
strictly above . H , yet all joining customers choose to pay this trade participation 
fee. Combining Theorem 4, Proposition 3 and Corollary 1 shows that the gain 
from charging a higher trade participation fee above . H in the augmented auction 
overshadows the cost of a resulting lower arrival rate for the intermediary. 

5.5 The Value of Trading vs. FIFO 

Now, we turn to the service provider’s pricing decision in the presence of the 
intermediary. In a FIFO queue, the service provider would set a revenue-maximizing 
admission fee, . pF , as formalized in (2.4). We compare this to a setting where the 
service provider invites the revenue-maximizing intermediary to mediate the trading 
platform. The service provider is completely detached from the trading platform 
and does not contract with the intermediary due to technological reasons and 
reputational concerns discussed in Sect. 1. The service provider and the intermediary 
play a sequential game: the service provider first sets an admission fee .pT and then 
the intermediary’s implements its optimal trading mechanism. Corollary 2 shows 
that the service provider is always better off by inviting the intermediary. 

Corollary 2 The intermediary running the trading platform strictly increases the 
service provider’s revenue relative to FIFO. 

Next, we numerically quantify, under a variety of input parameters, how the 
intermediary’s trading mechanism impacts the service provider’s pricing decision in 
Table 2.4. We also compare the service provider’s revenue with the intermediary’s 
trading platform relative to a FIFO queue in Table 2.5. In all numerical trials, we fix 
the service rate to be 1 and the waiting cost to be uniformly distributed between 0 
an 1 as in Table 2.1. We vary the service value V between 2 and 10, and the market 
size . � between 0.1 and 3. Denote the percentage difference between the service 
provider’s FIFO price, . pF , and price under trading, . pT , by . 	p; the percentage 
difference between the service provider’s revenue under FIFO, .�F and revenue 
under trading, . �T , by . 	�. 

. 	p = pT − pF

pF
× 100%, 	� = �T − �F

�F
× 100%.

Table 2.4 shows that it is in general ambiguous how the service provider should 
adjust its price when the intermediary implements the trading platform. Table 2.5 
shows the service provider’s revenue improvement. In terms of its pricing behavior,



28 2 Auctions for Trading Queueing Positions

Table 2.4 Percentage change in price . 	p

.� .V = 2 .V = 3 .V = 4 .V = 5 .V = 6 .V = 7 .V = 8 .V = 9 . V = 10

0.1 . −0.73% 1.16% 0.76% 0.56% 0.45% 0.37% 0.32% 0.28% 0.25% 

0.3 . −1.49% . −1.73% 3.70% 2.66% 2.08% 1.71% 1.45% 1.26% 1.11% 

0.5 . −1.78% . −1.86% . −1.81% . −0.09% 6.39% 5.11% 4.26% 3.65% 3.19% 

0.7 . −1.86% . −1.78% . −1.60% . −1.42% . −1.19% . −0.98% . −0.82% . −0.59% . −0.09% 

0.9 . −1.83% . −1.63% . −1.39% . −1.01% . −0.87% . −0.57% . −0.50% . −0.29% . −0.23% 

1.1 . −1.76% . −1.68% . −1.31% . −0.87% . −0.52% . −0.34% . −0.18% 0.03% 0.13% 

2 . −1.59% . −0.73% . −0.32% 0.00% 0.38% 0.48% 0.65% 0.81% 0.87% 

3 . −0.79% . −0.15% 0.27% 0.50% 0.81% 0.87% 1.10% 1.20% 1.21% 

Table 2.5 Percentage change in revenue . 	�

.� .V = 2 .V = 3 .V = 4 .V = 5 .V = 6 .V = 7 .V = 8 .V = 9 .V = 10 

0.1 1.65% 1.16% 0.76% 0.56% 0.45% 0.37% 0.32% 0.28% 0.25% 

0.3 3.99% 5.21% 3.70% 2.66% 2.08% 1.71% 1.45% 1.26% 1.11% 

0.5 5.55% 6.89% 7.82% 7.32% 6.39% 5.11% 4.26% 3.65% 3.19% 

0.7 6.67% 7.97% 8.80% 9.36% 9.74% 10.01% 10.20% 10.33% 8.18% 

0.9 7.49% 8.71% 9.42% 9.87% 10.15% 10.33% 10.45% 10.51% 10.55% 

1.1 8.11% 9.22% 9.83% 10.18% 10.38% 10.49% 10.54% 10.56% 10.55% 

2 9.64% 10.28% 10.51% 10.56% 10.53% 10.45% 10.35% 10.24% 10.13% 

3 10.28% 10.55% 10.53% 10.40% 10.24% 10.07% 9.90% 9.73% 9.56% 

the numerical instances can be divided into three cases. Case 1: In the top right 
corner of Table 2.4, when the service value is high and the market size is small, the 
service provider’s price goes up. This corresponds to the case when the full market is 
captured in the FIFO queue. As we argued following Corollary 2, trading allows the 
service provider to raise its price. This can be verified by recognizing that in those 
instances the relative price change is equal to the relative revenue change shown 
in Table 2.5 as the arrival rate is unaffected. Case 2: In the bottom right corner of 
Table 2.4, when the service value is high and the market size is also large, the service 
provider’s price rises again. However, in these instances, the system does not capture 
the full market, and the arrival rate is also changed as a result of trading. We observe 
that the revenue change is higher than the price change now, which implies that 
trading allows the service provider to both command a higher price and lure more 
customers. Case 3: In the rest of the instances, the service provider offers a price 
cut, so that the revenue increase is solely attributed to a higher arrival rate. Here 
the FIFO queue does not capture the full market. As Proposition 3 suggests, even if 
the service provider sticks to its original price, it will enjoy a higher revenue since 
more customers join when the trading platform is in place. However, the service 
provider responds by actually decreasing its price to get an even higher arrival rate. 
As we suggest in Sect. 4.2, a lower price might be more favorable to customers from 
a behavioral perspective, and this may facilitate the promotion of the intermediary’s 
trading platform.
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Somewhat strikingly, in our numerical study, when the market is not fully 
captured (cases 2 and 3), the magnitude of the price change is, in fact, quite 
small: less than 2% in all those instances; yet the revenue change is quite 
sizable by comparison (about 10% in many instances). The implication is that the 
intermediary’s trading platform can potentially be a seamless built-in for the service 
provider: the service provider does not need to worry about running the auction 
itself; it does not even need to significantly alter its price as a response of the new 
platform (which is valuable especially when the menu cost is high). The bottom 
line is that the intermediary increases the service provider’s revenue relative to a 
FIFO system, and improves system efficiency. These are the intermediary’s value 
propositions to the service provider with either revenue or welfare considerations. 
Of course, there is a natural double marginalization problem in our setup where 
both the service provider and the intermediary are monopolists. Theoretically, the 
service provider would earn an even higher revenue if it operated the trading 
platform by itself as in Sect. 4.2. Practically, this may not be in the service provider’s 
best interest for technological reasons and reputational concerns previously stated. 
Vertical integration would achieve the maximum joint revenue as in Sect. 4.2, but  
this usually involves efforts expended on negotiation, coordination and contracting. 
In this regard, an intermediary on a separate platform should probably be good 
enough in practice. 

6 Conclusion Remarks 

This chapter analyzes a congested service system in which customers are privately 
informed about their waiting cost and trade their waiting positions on a trading 
platform. We design the optimal mechanisms that maximize social welfare, the 
service provider’s revenue, and the revenue of the intermediary that develops and 
manages the trading platform, respectively. We find that while both the social 
planner and the service provider want customers to trade as much as possible 
(inducing the . cμ rule), the intermediary restricts trading among customers (pooling) 
to maximize its own revenue. In particular, a budget-balanced baseline auction leads 
to a higher arrival rate than is socially desirable and thus an admission fee must be 
levied to maximize social welfare. By comparison, the revenue-maximizing service 
provider would charge a higher admission fee than the social planner would. For 
practical reasons, the service provider may wish to delegate the trading platform to 
a revenue-maximizing intermediary. To that end, we propose an augmented auction 
with a trade participation fee and two trade restriction prices. Compared to the 
baseline auction with a trade participation fee only, the intermediary can charge 
a higher fee in the optimal auction and still have all joining customers voluntarily 
participate in trading. We show that the intermediary’s trading mechanism always 
strictly improves the service provider’s revenue relative to a FIFO system despite 
the intermediary’s revenue-maximizing nature. This is a potentially powerful sales
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argument the intermediary can make to convince the service provider of installing 
the platform. 

One practical concern for introducing the trading marketplace is the rise of 
speculative behavior. One is the arrival of “scalpers” who game the system by selling 
their spots for money without actually receiving the service. These customers are 
typically time-insensitive and ascribe low valuation to the service itself and thus 
would not join the system otherwise. We will study queue-scalping in Chap. 4. 
Another related phenomenon is “line-sitting” whereby real customers hire line-
sitters to wait in line on their behalf and swap in only when line-sitters approach 
the head of the line. We will study line-sitting in Chap. 3. On the one hand, the 
presence of speculators does not violate other customers’ property rights since 
such swaps are still one-to-one substitution. On the other hand, these customers 
are likely to renege before entering the service, appropriating pecuniary gains that 
might otherwise be captured by the service provider. In principle, the up-front trade 
participation fee in the intermediary’s optimal auction should deter some speculative 
customers. Additionally, the platform can act as a gatekeeper that closely monitors 
any suspicious trading activities and bans unscrupulous customers from using the 
trading platform if necessary. This further justifies the importance of the trading 
platform (intermediary) in mediating transactions. 
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