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Abstract. This paper presents a similar approach for existential first-
order characterizations of the languages recognizable by finite automata,
by Parikh automata, and by multi-counter machines over the alphabet
{0, 1, ..., k − 1}n for some k ≥ 2. The set of k-FA-recognizable relations
coincides with the set of relations, which are existentially definable in
the structure ⟨N; 0, 1,+,&k,=⟩, where &k corresponds to the bitwise
minimum of base k. In order to obtain an existential first-order descrip-
tion of k-Parikh automata languages, we extend this structure with the
predicate EqNZBk(x, y) which is true if and only if x and y have the
same number of non-zero bits in k-ary encoding. Using essentially the
same ideas, we encode computations of k-multi-counter machines and
thus show that every recursively enumerable relation over the natural
numbers is existentially definable in the aforementioned structure sup-
plemented with concatenation z = x ⌢k y ⇌ z = x + klk(x)y, where
lk(x) is the bit-length of x in base k. This result gives us another proof
of DPR-theorem.

Keywords: Bitwise minimum · Büchi arithmetic · Parikh automata ·
Existential definability · Recursively enumerable sets · DPR-theorem ·
Concatenation

1 Introduction

In a recent paper [11], Haase and Różycki considered definability problems in
k-Büchi arithmetic, an extension of Presburger arithmetic with a relation Vk such
that Vk(x, y) if and only if x is the largest power of k that divides y. They proved
that there are relations which are definable in k-Büchi arithmetic (k-definable)
and not definable by any existential formula of the corresponding language. By
a slight modification of a theorem of Villemaire [24, Corollary 2.4], they show
that every k-definable relation can actually be expressed via some ∃∀-formula,
whereas Villemaire constructs a ∃∀∃-formula.

Büchi arithmetic of base k ≥ 2 can be considered as a first-order characteri-
zation of the languages, recognizable by finite-state automata over the alphabet
{0, 1, ..., k − 1}n (called k-FA-recognizable). Interpreting the words of this lan-
guage as tuples (x1, ..., xn) of natural numbers in base k encoding, we obtain the
Büchi-Bruyère theorem [3,5], which states that every relation R ⊆ Nn is k-FA-
recognizable if and only if it is k-definable. A second-order version of this theorem
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(which was proved independently by Büchi [5], Elgot [9], and Trakhtenbrot [22])
says that every relation is 2-FA-recognizable iff it is weak monadic second-order
(WMSO-)definable in the structure ⟨N;S⟩, where S is a unary function sym-
bol for the successor function over the natural numbers. The WMSO-theory of
⟨N;S⟩ is usually denoted by WS1S.

Coming back to the Villemaire’s result, we see that his encoding of k-FA
via ∃∀∃-formulas of the language of k-Büchi arithmetic uses a unique bounded
universal quantifier. A similar construction often appears in logical descriptions
of abstract machines. For example, Klaedtke and Rueß considered in [16] various
definability and decidability properties for WMSO-formulas with successor S
and cardinality constraints of the form |X1| + ... + |Xr| < |Y1| + ... + |Ys|; the
corresponding WMSO-theory of N was denoted by WS1Scard. They introduced
Parikh automata, an extension of finite automata, and obtained an analogue of
Büchi’s Theorem, namely every relation recognizable by a Parikh automaton over
the alphabet {0, 1}n is existentially WMSO-definable in N with S and cardinality
constraints, and vice versa. Here, only second-order variables are existentially
quantified, while the formula, which describes a computation of a given Parikh
automaton, still contains a universally quantified first-order variable (see [16,
Theorem 10], where the universal quantifier ∀x can be bounded by the maximal
element of the existentially quantified second-order variable U).

Note that while WS1S is decidable, WS1Scard is already undecidable, and
its decidable fragments [16, Theorem 16] were obtained as a consequence of
decidability of the emptiness problem for Parikh automata. Translating these
undecidability results into first-order context, Bès showed [2, Proposition 3.8] in
particular that the graph of multiplication function is definable in the structure
⟨N; 0, 1,+, V2,EqNonZeroBits ,=⟩, where EqNonZeroBits(x, y) is true iff x and
y have the same number of non-zero bits in their binary representations. This
implies undecidability of the first-order theory of this structure, but it is not
known, for example, whether the existential first-order theory is decidable. In
the concluding section [2], Bès remarks that “it would be interesting to study
the expressive power of fragments of FO arithmetic which include predicates like
EqNonZeroBits”. We will further shorten the name of this predicate to EqNZB .

The Davis-Putnam-Robinson theorem (DPR-theorem) [8] was a milestone in
the undecidability proof of the Hilbert’s Tenth Problem. This theorem states
that every relation R ⊆ Nn is recursively enumerable (r.e.) if and only if it
is existentially first-order definable in the structure ⟨N; 0, 1,+, ·, exp,=⟩ (these
relations are also called exponential diophantine). As the starting point, the proof
uses the result of Davis [7], which states that every r.e. set is ∃∀∃-definable in the
structure ⟨N; 0, 1,+, ·,=⟩ with one bounded universal quantifier. It is important
for us that elimination of this quantifier in the proof of DPR-theorem involves
multiplication, factorial, binomial coefficients, and does not seem useful when we
try to eliminate bounded universal quantifier in weaker structures. However in
1976, Matiyasevich presented an alternative proof of DPR-theorem [19] by purely
existential encoding of computations of Turing machines, which thus gives us
another approach for eliminating bounded universal quantifier [20, Section 6.1].



178 M. Starchak

It is easy to modify the final steps of Matiyasevich’s proof in order to obtain
an existential formula of the language with 0, 1, addition, bitwise minimum &,
and concatenation ⌢, where t = x ⌢ y ⇌ t = x+2l(x)y and l(x) is the bit-length
of x. Kummer’s lemma [18] then plays a crucial role, since it gives an exponential
diophantine representation of bitwise minimum (see also an exponential diophan-
tine representation of masking relation ≼ in [14]). Note that it is not difficult
to define & in the structure ⟨N; 0, 1,+, V2,=⟩ by a formula with one bounded
universal quantifier, whereas there is an existential formula that defines V2 in
⟨N; 0, 1,+,&,=⟩. This suggests the question whether every 2-FA-recognizable
relation is existentially first-order definable in ⟨N; 0, 1,+,&,=⟩.

In Theorem 1, we show that every relation is actually k-FA-recognizable if
and only if it is existentially definable in the structure ⟨N; 0, 1,+,&k,=⟩, where
&k corresponds to the binary bitwise minimum operation of base k. The same
approach is applied in Theorem 2 to obtain an existential first-order charac-
terization of the languages, recognizable by Parikh automata over the alphabet
{0, 1, ..., k − 1}n. In this case, the structure must be extended by the binary
predicate EqNZBk, which is true for those pairs of natural numbers (x, y) such
that x and y have the same number of non-zero bits of base k.

Applying essentially the same ideas as in Theorem 1, we are able to show in
Theorem 3 that every relation R ⊆ Nn is recognizable by multi-counter machines
over the alphabet {0, 1, ..., k − 1}n if and only if it is existentially definable in the
structure ⟨N; 0, 1,+,&k,⌢k,=⟩, where z = x ⌢k y ⇌ z = x + klk(x)y and lk(x)
is the bit-length of x in base k. Since such machines recognize exactly r.e. sets,
this provides yet another [14,19,20] proof of DPR-theorem by purely existential
arithmetization of abstract machines.

2 Definitions and the main example

This section recalls some basic definitions from logic and automata theory, which
will be used in the sequel. Then we illustrate the main idea of the existential
characterisations constructed in Sections 3 and 4.

2.1 Definability and automata

First-order definability. The domain of all the structures considered in this
paper will be the set of natural numbers N = {0, 1, 2, ...}, and we will consider
existential definability in some extensions of ⟨N; 0, 1,+,=⟩.

Denote by Lσ the first-order language of some signature σ. An Lσ-formula
φ is existential if it has the form ∃xψ(x, y), where ψ(x, y) is a quantifier-free
Lσ-formula. Here, x denotes a list of variables x1, ..., xn. We say that an n-ary
relation R over N is first-order (FO-)definable in the structure ⟨N;σ⟩ if there
exists an Lσ-formula φ(x) such that for every a ∈ Nn we have R(a) if and
only if φ(a). When the formula φ(x) is existential, the corresponding relation
is called existentially first-order (∃FO-)definable, and similarly for the case of
quantifier-free formulas, universal formulas and other quantifier prefixes. We will
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subsequently write the prefix “FO” in the cases where we also discuss second-
order definability, and in general it will be omitted.

In this paragraph, we focus on definability in the structure ⟨N; 0, 1,+, Vk,=⟩,
where k ≥ 2 is an integer, and Vk is a binary relation such that Vk(x, y) if
and only if x is the largest power of k dividing y. Büchi arithmetic of base k
is the first-order theory of this structure. The relations definable in this struc-
ture are called k-definable. Recall that for every multiplicatively independent
integer l ≥ 2 (i.e., ka ̸= lb for every positive integers a, b), Vl is not definable
in ⟨N; 0, 1,+, Vk,=⟩ [23,24] (see also a generalization of this result by Bès [1]).
In the following, we consider some fixed base k. Let &k be the binary bitwise
minimum operation of base k, where we assume that the natural number of
smaller bit-length is supplemented with a sufficient number of leading zeros. For
example, we have 120202&3 21201201 = 100201. It is not difficult to prove the
following lemma.

Lemma 1. Every relation is k-definable if and only if it is definable in the
structure ⟨N; 0, 1,+,&k,=⟩.

Proof. In order to define bitwise minimum, for every j ∈ [0..k − 1] we use the
relation Xk,j(x, y), which is defined as “x is a power of k and the coefficient of
this power of k in the representation of y in base k equals j”. There is a simple
existential formula for this relation in [4,11,24]:

Xk,j(x, y) ⇌ Vk(x, x)∧∃z∃t∃u(y = z+jx+t∧z < x∧(t = 0∨(Vk(u, t)∧x < u))),

where x < y ⇌ ∃z(y = x+ z+1). Therefore, the graph of bitwise minimum can
be expressed by a formula with a universal quantifier

z = x&ky ⇌ ∀t
∧

(i,j)∈[0..k−1]2

(
Xk,i(t, x) ∧Xk,j(t, y) ⇔ Xk,min(i,j)(t, z)

)
.

For the converse, by using monus z = x− y ⇌ (z = 0∧ x < y)∨ (x = z+ y),
define the set of powers of k by the formula Pk(x) ⇔ (kx−1)&k x = x∧¬x = 0.
Finally, we have Vk(x, y) ⇔ Pk(x) ∧

∨
j∈[1..k−1]

(kx− 1)&k y = jx. ⊓⊔

We see that Xk,j(x, y) can be defined in ⟨N; 0, 1,+,&k,=⟩ by the quantifier-
free formula Pk(x) ∧ y&kx = jx. Let λk(x) be the greatest power of k less
or equal to x when x > 0, and λk(0) = 1. Formally, we have the definition
y = λk(x) ⇔ (x = 0∧y = 1)∨(Pk(y)∧y ≤ x∧x < y). Now an analogue of bitwise
negation can be defined as follows: ∼k (y, x) = (kλk(y)− 1)− x&k(kλk(y)− 1).
Here, ∼k (y, x) has the same bit-length as y, and we assume that &k has a
higher precedence than + or monus. For our purposes, it is useful to include in
the signature a binary function symbol for bitwise maximum

z = x|ky ⇔ (x < y ∧ z =∼k (y,∼k (y, x)&k ∼k (y, y))∨
(y ≤ x ∧ z =∼k (x,∼k (x, x)&k ∼k (x, y)).
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We will write x
kn with some fixed natural number n for the function whose graph

is quantifier-free definable by the formula y = x
kn ⇔ kny ≤ x ∧ x < kn(y + 1).

The function 1k(y) gives a natural number of the same bit-length with y, but
with all k-ary digits equal to one: x = 1k(y) ⇔ (k − 1)x = kλk(y) − 1. For
notational convenience, let us introduce a binary predicate symbol ≼k such that
x ≼k y ⇌ x&ky = x. The following lemma summarizes these definability results
and will be implicitly used in the next sections.

Lemma 2. The predicates Pk, Vk, Xk,j, <, ≤ and the graphs of functions −,
λk, ∼k, 1k, |k, and ·

kn for every fixed n ≥ 1 are ∃-definable in the structure
⟨N; 0, 1,+,&k,=⟩.

The existential encoding of k-automata in Subsection 2.2 uses a ∃-definable
function, which echoes a construction that was applied by Matiyasevich [19] in
his arithmetization of Turing machines. For every a ∈ [1..k − 1] the function
Θk,a(x) substitutes 1 for every digit of x equal to a, and 0 otherwise. Then, the
graph of this function is defined as follows:

y = Θk,a(x) ⇔ ∃x1...∃xk−1

( ∧
1≤i<j≤k−1

xi&kxj = 0 ∧

(x1 + ...+ xk−1) ≼k 1k(x)∧

x1 + 2x2 + ...+ (k − 1)xk−1 = x ∧ y = xa

)
.

(1)

Note that each digit in the k-ary representation of every quantified variable in
(1) is either 0 or 1. Moreover, if we denote 1̄k(x) ⇌ x&k1k(x) then the sum
x1 + ... + xk−1 is exactly 1̄k(x). In the case of digit zero, the function Θk,0 has
an extra parameter that specifies the number of leading zeros, which must be
replaced by ones:

y = Θk,0(t, x) ⇔ y = 1k(t)− 1̄k(x). (2)

In particular, when λk(t) < λk(x), we always have Θk,0(t, x) = 0 and otherwise
we obtain, for example, Θ3,0(100000, 1020) = 110101.

Remark 1. In Subsection 2.2 and Section 3 it is convenient to write Θk,a(t, x)
instead of Θk,a(x) when a ∈ {1, ..., k − 1}. In Section 4 there is no need to
consider auxiliary zeros, and we use Θk,a with a single parameter assuming that
Θk,0(x) ⇌ Θk,0(x, x).

We conclude this paragraph by defining a set of natural numbers 1̄k(N) =
{1̄k(x) | x ∈ N}. This definition will be useful in the next paragraph.

Second-order definability. Similarly to Bès [2], let us denote by F the set
of finite subsets of N and also define a function codk : Fn → Nn which maps
every tuple (X1, ..., Xn) ∈ Fn to the tuple of non-negative integers codk(X) =
(
∑

i∈X1

ki, ...,
∑

i∈Xn

ki). We see that the image of codk is 1̄k(N). This function estab-

lishes a connection between first-order definability and weak monadic second-
order (WMSO-)definability in ⟨N;S⟩ in the following way.
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Recall that WMSO-language LWMSO
σ allows to quantify over finite subsets of

the domain, and its signature σ has auxiliary binary predicate symbol ∈ for the
membership relation x ∈ X. Again, let the domain of our structures be the set of
natural numbers N. Then a relation R ⊆ Fn is WMSO-definable in the structure
⟨N;σ⟩ if there exists a LWMSO

σ -formula φ(X1, ..., Xn) such that R(A) ⇔ φ(A)
for every A ∈ Fn. As was explicitly shown by Villemaire [23, Theorem 3.3],
every relation R ⊆ Fn is WMSO-definable in the structure ⟨N;S⟩ if and only if
cod2(R) is FO-definable in ⟨N; 0, 1,+, V2,=⟩.

Note that codk is bijective only in the case k = 2 when we have 1̄2(N) = N.
In the case when k > 2, we can transfer FO-definability results for exten-
sions of k-Büchi arithmetic to their WMSO-definability analogues using the
function codk : N → Fk−1 which maps every x ∈ N to the tuple codk(x) =
(cod−1

k (Θk,1(x)), ..., cod
−1
k (Θk,k−1(x))). This function can obviously be extended

such that codk : Nn →
(
Fk−1

)n. We use codk to establish a relationship be-
tween ∃FO-definability in ⟨N; 0, 1,+,&k,EqNZBk,=⟩ and ∃WMSO-definability
in ⟨N;S⟩ extended with cardinality constraints of the form |X1| + ... + |Xr| <
|Y1|+ ...+ |Ys|. Section 3 focuses on the existential definability in these structures
and recognizability by Parikh automata [16]. We say that R ⊆ Fn is existentially
(∃)WMSO-definable in the structure ⟨N;σ⟩ if there exists an LWMSO

σ -formula
∃Y φ(X,Y ), where φ(X,Y ) may include arbitrary first-order quantifiers, such
that for every A ∈ Fn we have R(A) if and only if ∃Y φ(A, Y ).

The following lemma shows that it is sufficient to extend ⟨N;S⟩ with the
relation EqCard(X,Y ) ⇌ |X| = |Y | to reason about ∃WMSO-definability in N
with successor S and cardinality constraints.

Lemma 3. Every cardinality constraint |X1| + ... + |Xr| < |Y1| + ... + |Ys| is
existentially WMSO-definable in the structure ⟨N;S,EqCard⟩.

Proof. Let us first define the graph of ∩ using a formula with one universal
first-order quantifier ∀x(x ∈ Z ⇔ x ∈ X ∧ x ∈ Y ) (and analogously, the graphs
of union Z = X ∪ Y and difference Z = X \ Y ) and the empty set X = ∅ ⇔
∀x(¬x ∈ X).

Now it is not difficult to see that

|X1|+ ...+ |Xr| < |Y1|+ ...+ |Ys| ⇔ ∃U∃V ∃X ′
1...∃X ′

r∃Y ′
1 ...∃Y ′

s

(
∧

1≤i<j≤r

X ′
i ∩X ′

j = ∅ ∧
∧

1≤i≤r

EqCard(Xi, X
′
i)∧∧

1≤i<j≤s

Y ′
i ∩ Y ′

j = ∅ ∧
∧

1≤i≤s

EqCard(Yi, Y
′
i ) ∧⋃

1≤i≤r

X ′
i = U ∧

⋃
1≤i≤s

Y ′
i = V ∧ U ∩ V = U ∧ ¬(V \ U = ∅)

)
.

(3)

⊓⊔

The following fact is an analogue of Villemaire’s theorem [23]. Note that
when k = 2 the function cod2 is exactly cod−1

2 .
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Proposition 1. (i) If a relation R ⊆ Fn is existentially WMSO-definable in
the structure ⟨N;S,EqCard⟩ then codk(R) is existentially FO-definable in
⟨N; 0, 1,+,&k,EqNZBk,=⟩.

(ii) If a relation R ⊆ Nn is ∃FO-definable in ⟨N; 0, 1,+,&k,EqNZBk,=⟩ then
codk(R) is ∃WMSO-definable in ⟨N;S,EqCard⟩.

The proof of this proposition is rather straightforward and follows along similar
lines as the proof of Villemaire’s theorem. Only notice that in order to deal with
universal FO-quantifiers in (i), we apply Corollary 1 from Subsection 2.2.

Klaedtke and Rueß show in [16] that every relation R ⊆ Fn is existentially
WMSO-definable in the structure ⟨N;S,EqCard⟩ if and only if it is recogniz-
able by some Parikh automaton over the alphabet {0, 1}. By reduction to the
emptiness problem for Parikh automata, they show that satisfiability of exis-
tential WMSO-formulas in the structure ⟨N;S,EqCard⟩ is decidable. The next
paragraph gives the necessary definitions.

Automata languages. Büchi-Bruyère’s theorem [4,5] states that every rela-
tion is first-order definable in the structure ⟨N; 0, 1,+, Vk,=⟩ if and only if it is
recognizable by a finite k-automaton. Haase and Różycki [11] prove that this
statement is however not true if we consider existential first-order definability in
⟨N; 0, 1,+, Vk,=⟩. We first recall some automata-theoretic definitions and then
show that substituting &k for Vk yields the desired existential description of
k-recognizable sets.

Let Σ be some alphabet and Σ∗ denote the set of words of finite length over
Σ with a unique empty word ϵ of length 0. Then a (non-deterministic) finite Σ-
automaton (Σ-FA) is a 4-tuple A = (Q, q0, F, δ), where Q = {q0, ..., qs} is a finite
set of states with initial state q0 and the set F ⊆ Q of finial states; δ : Q×Σ → 2Q

is the transition function, where 2Q is the power set of Q. A configuration of A
is a pair (q, x), where q ∈ Q is a current state and x ∈ Σ∗ is an unused part of an
input word. A transition relation → over configurations of A is defined such that
(q, ax) → (q′, x) if and only if q′ ∈ δ(q, a). A sequence of transitions between
configurations is called a computation of A. We say that x = x0x1 · · ·xt ∈ Σt+1

is accepted by a given Σ-FA A if there is an accepting computation of A for
x, that is, a sequence (q0, x0x1...xt) → (q′, x1...xt) → · · · → (q′′, xt) → (qf , ϵ)
for some qf ∈ F . The set of all words x ∈ Σ∗ accepted by Σ-FA A defines the
language recognizable by this automaton. This language is denoted by L(A).

A finite k-automaton (k-FA) is defined as a Σn
k -FA, where every letter

from Σn
k is an n-tuple of digits from Σk = {0, 1, ..., k − 1}. To each language

L ⊆ (Σn
k )

∗ there corresponds a relation RL over Nn in the following way:
RL = {

∑t
i=0 xik

i | x0 · · ·xt ∈ L}. An n-ary relation R over N is called k-FA-
recognizable if there exists a k-FA A such that for every a ∈ Nn we have
R(a) ⇔ RL(A)(a). For technical convenience, the notion of k-recognizability
is commonly defined [4,23,24] for deterministic k-FA (k-DFA), where for every
state q and letter a ∈ Σn

k it holds that |δ(q, a)| ≤ 1. Since Σ-FA and Σ-DFA
recognize the same class of languages [17], i.e. the class of regular languages
over the alphabet Σ, this restriction does not change the class of recognizable
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relations. In our logical characterization of k-FA-recognizable relations we will
not benefit from such restrictions on the transition function.

The definition of Σ-FA can be extended by adjoining to every letter of Σ a
vector v ∈ D, where D is a finite subset of Nm, and imposing certain restrictions
on the accepting sequences of transitions to obtain Parikh finite automata (Σ-
PFA). That is, for some m > 0 and a finite set D ⊆ Nm, a Σ-PFA is a pair (A, φ),
denoted by Aφ, where A is a (Σ × D)-FA and φ(x1, ..., xm) is an existential
L⟨0,1,+,=⟩-formula. It is convenient to think of a configuration of Σ-PFA as an
(m+2)-tuple (q, x, y1, ..., ym) where the pair (q, x) is the same as in the definition
of configurations of Σ-FA, and (y1, ..., ym) is a vector from Nm. A transition
relation between two configurations of Σ-PFA Aφ is now defined as follows:
(q, ax, y1, ..., ym) → (q′, x, y1+d1, ..., ym+dm) if and only if q′ ∈ δ(q, a, d1, ..., dm).
A word x = x0x1 · · ·xt ∈ Σt+1 is accepted by Aφ if there is a computation
(q0, x0x1 · · ·xt, 0, ..., 0) → (q′, x1 · · ·xt, y

′
1, ..., y

′
m) → · · · → (q′′, xt, y

′′
1 , ..., y

′′
m) →

(qf , ϵ, y1, ..., ym) for some qf ∈ F and the formula φ(y1, ..., ym) is true. We denote
by L(Aφ) the language recognizable by Σ-PFA Aφ.

In order to deal with definability over the natural numbers, we again con-
sider Σn

k -PFA, which we call a k-Parikh finite automata (k-PFA). The k-PFA-
recognizable relations R ∈ Nn are defined analogously. The prefixes Σ- and
k- will be sometimes omitted when the exact alphabet Σ or value of k is not
significant.

The original definition of Parikh automata [16] uses semi-linear sets C ⊆ Nt

instead of existential formulas of Presburger arithmetic, but it is well-known [10]
that these definitions of PFA are equivalent. The main result by Klaedtke and
Rueß [15, Theorems 12 and 15] states that every relation R ⊆ Fn is ∃WMSO-
definable in the structure ⟨N;S,EqCard⟩ if and only if the relation cod−1

2 (R) is
2-PFA-recognizable. The “only if” part of this WMSO-characterization follows
from the fact that the class of languages recognizable by PFA is closed under
union, intersection, left and right quotients [15, Property 4] and that EqCard
with its negation are recognizable by 2-PFA. Since it is easy to construct k-PFA
for the predicate EqNZBk and for its negation, the following proposition can be
proved in a similar way.

Proposition 2. If some relation R ⊆ Nn is existentially FO-definable in the
structure ⟨N; 0, 1,+,&k,EqNZBk,=⟩ then it is k-PFA-recognizable.

Based on Parikh’s theorem [21], Klaedtke and Rueß proved decidability of
the emptiness problem for PFA, and thus decidability of the existential WMSO-
theory of ⟨N;S,EqCard⟩. They also proved that the universality problem for
Parikh automata is undecidable. In contrast to finite automata, deterministic
Parikh automata, where for every (q, a) ∈ Q×Σn

k there exists at most one pair
(q′, d) ∈ Q × D such that q′ ∈ δ(q, (a, d)), are less powerful than PFA. The
paper by Cadilhac, Finkel and McKenzie [6] provides some explicit examples
of languages recognizable by PFA but not by any deterministic PFA. These
authors continued the study of other properties of PFA and, in particular, proved
undecidability of the regularity property for PFA. This result will be used in
Section 3.
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2.2 Existential characterization of k-FA-recognizable languages

In this section we illustrate the main idea of the existential characterisation from
Section 3. Our aim now is to prove the following theorem.

Theorem 1. For an integer k ≥ 2 every relation is k-FA-recognizable if and
only if it is existentially definable in the structure ⟨N; 0, 1,+,&k,=⟩.
Proof. Let A = (Q, q0, F, δ) be a k-FA. We are going to prove existential defin-
ability of the relation RL(A) in the structure ⟨N; 0, 1,+,&k,=⟩ by encoding the
existence of an accepting computation of A when the input word is the k-ary
representation of x = x1, ..., xn. To this end, let us first introduce new variables
q = q0, ..., qs for every state qi ∈ Q; for a state p ∈ Q, we denote by ν(p) its
number from [0..s]. The following restriction on q expresses the fact that at each
step of a computation the automaton A has a unique state from Q:

Kk(t, q) ⇌
∧

0≤i<j≤s

qi&kqj = 0∧q0+...+qs = 1k(t)∧1 ≼k q0∧
∨
p∈F

t ≼k qν(p). (4)

Here t will be another existentially quantified variable that will be a power
of k. This variable corresponds to a configuration (p, ϵ) for some p ∈ F , and
formula (4) also requires that the computation starts in the state q0. It is obvious
that t must be greater than xi for every i ∈ [1..n]; this restriction will appear in
the resulting formula below.

In order to express the fact that each step of a computation is performed
in accordance with the transition function δ : Q × Σn

k → 2Q, we introduce a
predicate ∆(p,a). For every pair (p, a) ∈ Q×Σn

k , we have

∆(p,a)(t, q, x) ⇌

(
qν(p)&k &k

i∈[1..n]
Θk,ai(t, xi)

)
≼k

(
|
k

p̃∈δ(p,a)

qν(p̃)

k

)
, (5)

where, by definition, |
k

y∈∅
y = 0. From this formula we see that at each step of an

accepting computation there are either no configurations with the state p and
a word starting with the letter a = (a1, ..., an), or in the next configuration the
state will be from δ(p, a). By combining formulas (4) and (5), we conclude that

RL(A)(x) ⇔ ∃t∃q
(
Pk(t)∧

∧
i∈[1..n]

xi < t∧Kk(t, q)∧
∧

(p,a)∈Q×Σn
k

∆(p,a)(t, q, x)
)
. (6)

It remains to use formulas (1) and (2), Büchi-Bruyère’s theorem and Lemmas 1
and 2. ⊓⊔
Corollary 1. If a relation is definable in the structure ⟨N; 0, 1,+,&k,=⟩ then
it is existentially definable in this structure.

This result for k = 2 can be transferred to the second-order case similarly
to Proposition 1. Thus, we obtain a corollary, which was essentially proved by
Elgot [9, Theorem 5.3 (b)].
Corollary 2. If a relation R ∈ Fn is WMSO-definable in the structure ⟨N;S⟩
then it is existentially WMSO-definable in this structure.
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3 First-order characterization of Parikh automata

The aim of this section is to prove the converse statement to Proposition 2
and thus obtain an existential first-order characterization of Parikh automata
languages. Parikh map over the natural numbers can be defined as a function
Φk : N → Nk such that Φk(x) = (#k,0(x), ...,#k,k−1(x)), where every function
#k,i counts the number of occurrences of the digit i in k-ary representation of x.
For such counting functions we have the following lemma.

Lemma 4. Let R(x1, ..., xn) be a relation that is existentially definable in the
structure ⟨N; 0, 1,+,=⟩, and let a be some vector from {0, ..., k−1}n. Then the re-
lation R(#k,a1

(x1), ...,#k,an
(xn)) is ∃-definable in ⟨N; 0, 1,+,&k,EqNZBk,=⟩.

Proof. It is sufficient to define the relations #k,a(x) = d for integers d ≥ 0 and
#k,a(x) + #k,b(y) = #k,c(z) by some existential formulas. For the first relation
we have the formula EqNZBk(Θk,a(x), k

d − 1), and for the second one there is
the following first-order analogue to formula (3):

#k,a(x) + #k,b(y) = #k,c(z) ⇔ ∃x′∃y′(EqNZBk(x
′ + y′, Θk,c(z))∧

x′&ky
′ = 0 ∧ EqNZBk(Θk,a(x), x

′) ∧ EqNZBk(Θk,b(y), y
′)).

It remains to use existential definability of the graph of Θk,i in the structure
⟨N; 0, 1,+,&k,=⟩.

Note that every function #k,i can be represented in terms of Subsection 2.1
as #k,i(x) = |cod−1

k (Θk,i(x))|, and thus this lemma can also be proved using
Lemma 3 and the first part of Proposition 1. ⊓⊔

Let D be some finite subset of Nm, and let M(D) be the maximum inte-
ger occurring in D. The same as Klaedtke and Rueß [16], we encode vectors
from D of a given k-Parikh automaton by introducing M(D) + 1 new variables
yi,0,...,yi,M(D) for each coordinate yi. For every i ∈ [1..m], these variables will
be pairwise disjoint (i.e. yi,j1&kyi,j2 = 0 for j1 ≠ j2) and their representation in
base k will contain only zeros and ones. For this reason, we use only #k,1 in our
encoding and denote #k ⇌ #k,1.

Theorem 2. For every integer k ≥ 2 a relation R ⊆ Nn is k-PFA-recognizable
if and only if it is ∃-definable in the structure ⟨N; 0, 1,+,&k,EqNZBk,=⟩.

Proof. The “if” direction of this theorem is Proposition 2. In the proof of the
“only if” direction, suppose we are given a k-Parikh automaton Aφ for some
finite set D ∈ Nm, where A = (Q, q0, F, δ) is a FA over the language Σn

k ×D and
φ is an existential L⟨0,1,+,=⟩-formula. We are going to construct an existential
L⟨0,1,+,&k,EqNZBk,=⟩-formula ψ such that RL(Aφ)(a) if and only if ψ(a) for every
a ∈ Nn. Again, ψ(x) will encode the existence of an accepting computation of
Aφ when the input word is the k-ary representation of x.

The sequence of states from an accepting computation of A can be encoded
using the predicate Kk(t, q), defined by the existential L⟨0,1,+,&k,=⟩-formula (4).
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We modify formula (5) so that it works with the alphabet Σn
k×D. To this end,

let us introduce m(M(D) + 1) variables y = y1,0,...,y1,M(D),...,ym,0,...,ym,M(D)

such that for every i ∈ [1..m] it holds that θk(t, yi,0, ..., yi,M(D)), where

θk(t, y0, ..., yM ) ⇌
∧

0≤i<j≤M

yi&kyj = 0 ∧ y0 + ...+ yM = 1k(t).

Now for every (p, a, d) ∈ Q×Σn
k ×D we have:

∆(p,a,d)(t, q, x, y) ⇌
(
qν(p)&k &k

i∈[1..n]
Θk,ai

(t, xi)&k &k
j∈[1..m]

yj,dj

)
≼k(

|
k

p̃∈δ(p,a,d)

qν(p̃)

k

)
.

Recall that the expression with bitwise maximums |
k

evaluates to zero when
δ(p, a, d) = ∅.

By combining all the parts of the existential definition of RL(Aφ), we get the
following analogue to formula (6):

RL(Aφ)(x) ⇔ ∃t∃q∃y
(
Pk(t) ∧

∧
i∈[1..n]

xi < t ∧Kk(t, q)∧

∧
i∈[1..m]

θk(t, yi,0, ..., yi,M(D)) ∧
∧

(p,a,d)∈Q×Σn
k×D

∆(p,a,d)(t, q, x, y)∧

φ
( ∑
c∈[1..M(D)]

c#k(y1,c), ...,
∑

c∈[1..M(D)]

c#k(ym,c)
))

.

It remains to apply Lemma 4 to obtain the desired existential formula. ⊓⊔

This result gives us the following statement concerning decidability of frag-
ments of the first-order theory of the structure ⟨N; 0, 1,+,&k,EqNZBk,=⟩.

Corollary 3. The existential theory of ⟨N; 0, 1,+,&k,EqNZBk,=⟩ is decidable
and the ∀∃-theory of this structure is undecidable.

Proof. The first part of the corollary is just a variation on the automata-theoretic
techniques that were formalized by Hodgson [12]. It follows from the decidability
of the emptiness problem for PFA. Undecidability of the universality problem,
combined with Theorem 2, imply undecidability already for the problem of de-
ciding ∀∃-formulas with a single universal quantifier. ⊓⊔

Haase and Różycki [11, Conclusion] ask whether the property of ∃-definability
is decidable for the relations definable in the structure ⟨N; 0, 1,+, Vk,=⟩. Using
Theorem 1, this problem can be reformulated so that we consider only existen-
tially definable sets, but now the signatures are different. Namely, the question is
whether we can decide if a set ∃-definable in the structure ⟨N; 0, 1,+, Vk,&k,=⟩
is ∃-definable in ⟨N; 0, 1,+, Vk,=⟩. A similar question can be answered in the
negative for the structure with &k and EqNZBk.
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Proposition 3. The problem of deciding whether a set existentially definable
in the structure ⟨N; 0, 1,+,&k,EqNZBk,=⟩ is ∃-definable in ⟨N; 0, 1,+,&k,=⟩
is undecidable.

This follows from Theorems 1 and 2, and from undecidability of the regu-
larity property for Parikh automata, which was proved by Cadilhac, Finkel and
McKenzie [6, Proposition 7].

Parikh automata are closely related to multi-counter machines (MCM): they
recognize exactly the same languages as reversal-bounded MCM [15, Section A.3]
(see also [6, Subsection 3.3]). Recall that a MCM is reversal-bounded (the notion
was introduced by Ibarra [13]) if there exists a pair of integers (r, s) such that in
every accepting computation the value of each counter increases and decreases
at most r times and the input head reverses at most s times. Theorem 2 now
gives an existential first-order characterization of this restricted version of MCM.
It is clear that the model of PFA is more suitable for our logical descriptions.
However, as we will see in the next section, the behaviour of MCM can be
described in a similar way when the structure is extended with concatenation.

4 Multi-counter machines and DPR-theorem

4.1 Two-way multi-counter machines

Same as Ibarra [13], we define a two-way multi-counter machine M over an
alphabet Σ (Σ-MCM ) with two special symbols ⊢,⊣ as a tuple (m,Q, q0, F, δ).
Here, m ≥ 0 is the number of the counters of M, the triple (Q, q0, F ) has
its standard meaning, and δ is a function from Q × (Σ ∪ {⊢,⊣}) × {0, 1}m to
2Q×{−1,0,1}m+1

. Every computation of M starts with an input x ∈ Σ∗ written
on the tape between the delimiters: ⊢ x ⊣, and the input head of M reading
the left delimiter ⊢. A configuration of M on an input ⊢ x ⊣ is given by an
(m + 3)-tuple (q,⊢ x ⊣, i, y1, ..., ym) denoting the fact that M is in state q, the
read-only input head scans the i-th symbol of the input, and y1,...,ym are some
non-negative integer values of the counters. The relation → over configurations
is defined such that (q,⊢ x ⊣, i, y1, ..., ym) → (q′,⊢ x ⊣, i+∆, y1+d1, ..., ym+dm)
if and only if (q′, ∆, d1, ..., dm) ∈ δ(q, a, [y1 > 0], ..., [ym > 0]), where a is the i-th
symbol of the input and [y > 0] returns 1 if y > 0, and 0 otherwise. A natural
restriction on δ prevents the cases when: (1) [yj > 0] = 0 and dj = −1; (2) i = 0
and ∆ = −1; (3) the i-th symbol of the input is ⊣ and ∆ = 1.

We say that x ∈ Σ∗ is accepted by a given Σ-MCM if for the input word
⊢ x ⊣ there is a computation (q0,⊢ x ⊣, 0, 0, ..., 0) → ... → (qf ,⊢ x ⊣, 0, 0, ..., 0)
for some qf ∈ F . The set of all the words x ∈ Σ∗ accepted by a Σ-MCM M
defines the language recognized by this machine, which we denote by L(M). In
order to properly relate Σ-MCM with definability over N, we again assume that
Σ = Σn

k for k ≥ 2. Every x ∈ Σ∗ is now an element of Nn in the inverse base k
representation. An n-ary relation R over N is called k-MCM-recognizable if there
exists a Σn

k -MCM M such that for every a ∈ Nn we have R(a) ⇔ RL(M)(a).
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Two-way multi-counter machines can simulate Turing machines (see e.g. [17]),
and thus every relation R over Nn is r.e. iff it is k-MCM-recognizable. The aim
of this section is to use the same arguments as in the cases of k-FA and k-PFA in
order to obtain an existential characterization of r.e. relations, and Theorem 3
gives us the desired result. The proof will be in some sense intermediate between
the arithmetization of Turing machines by Matiyasevich [19] and the encoding of
register machines by Jones and Matiyasevich in [14], but here we emphasize the
role of concatenation in existential characterizations of multi-counter languages.

4.2 The role of concatenation in DPR-theorem

Matiyasevich’s proof [19] implicitly gives us a description of every r.e. set via
∃-formulas of the first-order language with 0, 1, addition, bitwise multiplication
&2, concatenation ⌢2, and equality. Here, t = x ⌢k y ⇌ t = x + klk(x)y =
x+kλk(x)y, where lk(x) is the length of x in k-ary notation. This section aims to
prove this theorem using the ideas from Subsection 2.2. Informally speaking, the
main difference between the case of k-MCM and k-FA is that we now consider
bytewise multiplication instead of bitwise from Theorem 1. Suppose a given
k-MCM accepts x ∈ Σn

k and let M be the maximum value of all the counters
of some accepting computation for x. If u is a power of k which is greater than
the maximum of kM and all the xi, then lk(u) will be the size of the byte in our
encoding. Every non-negative integer can be represented as a sequence of bytes
of size lk(u), which will be called u-bytes.

First, we introduce some auxiliary devices, which are required in our con-
struction. Define the predicate ∆k(u, t, x), which is true when u is a power of
k greater than k2, the variable x has the same u-byte-length as t and has the
following form

x = 1000...0 ∗ ∗︸ ︷︷ ︸
lk(u)

...0..010..0︸ ︷︷ ︸
lk(u)

...000...001︸ ︷︷ ︸
lk(u)

,

where ∗ ∗ is either 10 or 01, and for every two consecutive u-bytes b1, b2 in x
the only 1 in b2 is either in the same place or one bit left/right of its position
in b1. Moreover, the two most significant bits in every u-byte are equal to zero.
We will use this predicate to describe a position of the input head and values
of the counters in configurations of a given k-MCM. Before we proceed with
the existential definition of this relation, we need to introduce some auxiliary
functions. The first one performs the right shift by lk(z) bits and can be defined
via the formula y = x

z ⇔ ∃v∃u(λk(z) = u∧λk(v) ≤ u∧x = u ⌢k y−u+v). The
second function is Copyk(u, t, x) which maps to zero when λk(u) < λk(x), and
otherwise gives us the sequence of u-bytes of the same u-byte-length as t such
that each u-byte is equal to x. The following lemma gives the desired definition,
and then we immediately prove existential definability of ∆k(u, t, x).

Lemma 5. The function Copyk is ∃-definable in ⟨N; 0, 1,+,&k,⌢k,=⟩.
Proof. We start with the predicate Cpyk(x, y) which is true whenever y has the
form x ⌢k ... ⌢k x. Its definition is rather standard:

Cpyk(x, y) ⇔ y = x ∨ ∃z(y = x ⌢k z ∧ y = z ⌢k x).
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The predicate Ik(u, x) ⇔ x = 1∨∃y(Cpyk(λk(u), y)∧x = ky+1) is an another
special case of Copyk which is true when x is a sequence of u-bytes, each of which
is equal to 1. Then, the minimum power of k of the same u-byte-length as x can
be expressed as y = Λk(u, x) ⇔ ∃v (Ik(u, v) ∧ v ≤ x ∧ v ⌢k u > x ∧ y = λk(v)).

It is now clear that

y = Copyk(u, t, x) ⇔ λk(u) < λk(x) ∧ y = 0 ∨ Λk(u, y) = Λk(u, t) ∧(
λk(u) = λk(x) ∧ Cpyk(x, y) ∨ λk(u) > λk(x) ∧ ∃y′∃y′′

(
Cpyk(x+ λk(u), y

′) ∧ Cpyk(λk(u), y
′′) ∧ λk(y

′) = λk(y
′′) ∧ y = y′ − y′′

))
.

In this formula, the variables y′ and y′′ are introduced in order to supplement
every u-byte with a sufficient number of leading zeros. ⊓⊔

Lemma 6. The relation ∆k is ∃-definable in ⟨N; 0, 1,+,&k,⌢k,=⟩.

Proof. We are going to prove the correctness of the following definition:

∆k(u, t, x) ⇔ ∃z1∃z2∃x1∃x2∃x3

(
Pk(u) ∧ k3 ≤ u∧

z1 = Copyk(u, t, 1) ∧ λk(z1) = λk(x) ∧ x&k(ku− 1) = 1 ∧ x ≼k 1k(z1)∧ (7)

x1 =
(kx)

u
∧ x2 =

x

u
∧ x3 =

x

ku
∧ x = λk(x) + x&kx1 + x&kx2 + x&kx3∧ (8)

x1&kx2 = 0 ∧ x2&kx3 = 0 ∧ x2&kx3 = 0∧ (9)

z2 = Copyk(u, t, u) ∧ x&k(z2 +
z2
k
) = 0

)
. (10)

Conjunction (7) expresses that x is a sequence of the same number of u-bytes as t
that starts and ends with the u-byte 000...01, and in every u-byte there can only
be zeros and ones. Condition (10) specifies that the two most significant bits in
every u-byte of x are equal to zero. Next, the variables x1, x2, x3 correspond to
the right shifts of x one u-byte plus D ∈ {−1, 0,+1}. Let us prove that in every
u-byte there is a unique 1 and that it has the same position plus D ∈ {−1, 0,+1}
compared to the previous u-byte.

From (8), we see that in every u-byte of x there is at least one 1. Indeed, if
x ≠ u then the first u-byte of x1, or x2, or x3 must contain 1 (the least significant
bit); thus, the second u-byte of x is also non-zero, etc. This 1 in every u-byte
is in the desired position since the values x&kx1, x&kx2, x&kx3 describe the
three cases in which the position in the next u-byte is the same plus −1, 0, +1,
respectively.

Now we prove that there are no other non-zero bits in every u-byte of x.
Assume for a contradiction that there is a u-byte in x with more than one 1.
Then, there are two consecutive u-bytes (which are depicted on the next page)
such that the left u-byte has the only 1, and the right one has at least two 1.
This pair exists because the most significant u-byte of x equals 1. From the
representation of x in (8), we see that the bits a, b, f , g are all equal to zero.
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Next, since by (9) x1, x2 and x3 are pairwise disjoint, among c, d and e there is
only one 1. This contradicts our assumption.

x = ...0..000.. 010 ..000..0︸ ︷︷ ︸
lk(u)

0.. ∗ a ∗ .. ∗ b cde f ∗ .. ∗ g ∗ ..∗︸ ︷︷ ︸
lk(u)

...

x1 = ...0.. 0 0 0 .. 0 100 0 .. 0 0 0 ..0︸ ︷︷ ︸
lk(u)

0..0c de0 00..0︸ ︷︷ ︸
lk(u)

...

x2 = ...0.. 0 0 0 .. 0 010 0 .. 0 0 0 ..0︸ ︷︷ ︸
lk(u)

0..00 cde 00..0︸ ︷︷ ︸
lk(u)

...

x3 = ...0.. 0 0 0 .. 0 001 0 .. 0 0 0 ..0︸ ︷︷ ︸
lk(u)

0..00 0cd e0..0︸ ︷︷ ︸
lk(u)

...

It remains to prove that for every u and x such that ∆k(u, t, x) there exist
non-negative integers from the definition above. This is obvious for z1 and z2;
the existence of x1, x2, x3 follows from the fact that there are at least two zeros
between every pair of 1 in x. ⊓⊔

In our proof we check whether or not the u-bytewise minimum of two natural
numbers equals zero. In order to express this property, let us introduce a function
Uk which modifies x as follows. If x can be split into consecutive u-bytes where
the most significant bit is equal to zero, then Uk(u, x) replaces every non-zero
u-byte by 1. Otherwise, this function maps to zero. For example, when x =
10 000 011 000 010 we have U2(100, x) = 1 000 001 000 001 and U2(1000, x) = 0.

Lemma 7. The function Uk is ∃-definable in ⟨N; 0, 1,+,&k,⌢k,=⟩.

Proof. Let us first define a predicate Uk, which (in comparison with the function
Uk) is also true for the cases when y has u-bytes equal 1 while the corresponding
u-bytes of x are equal to zero. In Uk there are also no restrictions on the most
significant bits of u-bytes. We have the definition

Uk(u, x, y) ⇔ ∃t∃t′∃v
(
Cpyk(λk(u), t) ∧ t′ ≼k t ∧ v = kt′ − (kt′)

u
∧ x ≼k v∧

y = v&kCopyk(u, x, 1)
)
.

The k-ary representation of v is a sequence of u-bytes which are either zero or
equal to ku−1; moreover, for every unit in x there is (k−1) in v. Then we select
the desired 1 in y via a bitwise multiplication of v by a sequence of u-bytes of
the same u-byte-length as x, where all bytes are equal to 1.

In order to exclude extra non-zero u-bytes from y, we consider the difference
kx− y. Recall that the definition of Uk requires zeroness of the most significant
bit in every u-byte. Thus, we have

y = Uk(u, x) ⇔ x&kCopyk(u, x, u) > 0 ∧ y = 0 ∨
x&kCopyk(u, x, u) = 0 ∧ Uk(u, x, y)∧(k − 1)y ≼k (kx− y).

(11)
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Consider the case when the most significant bits in u-bytes of x are all zero.
The least significant bit in every u-byte of kx now equals 0, and the fact that
there is a unique y that satisfies the definition can be illustrated as follows:

...∗... ∗ 1 0 ... 0 0︸ ︷︷ ︸
lk(u)

...∗... ∗ 0︸ ︷︷ ︸
lk(u)

0 0 ... 0 0︸ ︷︷ ︸
lk(u)

...

...0 ... 0 0 0 ... 0 1︸ ︷︷ ︸
lk(u)

...0 ... 0 1︸ ︷︷ ︸
lk(u)

0 0 ... 0 1︸ ︷︷ ︸
lk(u)

...

...∗... ∗ 0(k − 1)...(k − 1)(k − 1)︸ ︷︷ ︸
lk(u)

...∗... ∗ (k − 2)︸ ︷︷ ︸
lk(u)

(k − 1) (k − 1)...(k − 1)(k − 1)︸ ︷︷ ︸
lk(u)

...

These three lines represent the numbers kx, y, and (kx − y), respectively. The
left column demonstrates the general “correct” case. The middle and the right
columns show why the existence of an extra non-zero u-byte in y contradicts
definition (11). ⊓⊔

We are now able to prove the main result of this section.

Theorem 3. For every integer k ≥ 2 a relation is k-MCM-recognizable if and
only if it is ∃-definable in the structure ⟨N; 0, 1,+,&k,⌢k,=⟩. Therefore, every
relation R ⊆ Nn is r.e. iff it is ∃-definable in this structure.

Proof. For a given k-MCM M = (m,Q, q0, F, δ) and an input vector x ∈ Nn in
k-ary notation, we are going to encode the existence of an accepting sequence
of transitions between configurations of M. First choose a variable u such that
Pk(u) ∧

∧
i∈[1..n]

k4xi ≤ u; this choice specifies the size of bytes in our encoding.

We multiply by k4 since in u-byte there must be two bits for delimiters ⊢,⊣ and
at least two auxiliary zeros from the definition of ∆k.

A sequence of states is encoded similarly to formula (4), that is,

Kk(u, t, q) ⇌
∧

0≤i<j≤s

qi&kqj = 0 ∧ q0 + ...+qs = Copyk(u, t, 1)∧

1 ≼kq0 ∧
∨
p∈F

Λk(u, t) ≼k qν(p),

where q = q0, ..., qs and t corresponds to the number of steps of an accepting
computation of M. Here we also require q0 to be the initial state and the most
significant u-byte of t corresponds to a final configuration.

We now define a predicate CM that encodes a sequence of configurations
of M. Similar to Matiyasevich [19], in this definition for every xi ∈ x a se-
quence of copies of xi is decomposed into disjoint variables θi,0,...,θi,k−1 such
that every u-byte of θi,a equals Θk,a(xi). Let θ denote the list of variables
θ1,0, ..., θ1,k−1, θ2,0, ..., θn,k−1, θ⊢, θ⊣, where the extra variables θ⊢, θ⊣ encode the
positions of the delimiters. The variable h stores the positions of the input head
of M, and the list of variables y = y1, ..., ym corresponds to the values of the
counters at each step of computation.
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It is convenient to introduce a function bk, which gives the smallest power of
k greater than every xi ∈ x. The graph of this function can be defined as

y = bk(x) ⇔
∨

i∈[1..n]

y = kλk(xi) ∧
∧

i∈[1..n]

y ≥ kλk(xi).

This function will be applied to encode the positions of the right delimiter ⊣.
The following formula describes a sequence of configurations of M.

CM(u, t, q, x, θ, h, y) ⇌ Pk(u) ∧
∧

i∈[1..n]

k4xi ≤ u ∧ u ≤ t ∧Kk(u, t, q)∧

θ⊢ = Copyk(u, t,1) ∧
∧

i∈[1..n]

(
θi,0 = Copyk(u, t, kΘk,0(xi + bk(x))∧

∧
a∈[1..k−1]

θi,a = Copyk(u, t,kΘk,a(xi))
)
∧ θ⊣ = Copyk(u, t, kbk(x))∧

∆k(u, t, h) ∧
∧

i∈[1..m]

∆k(u, t, yi).

It is easy to see that θ⊢, θ⊣ are disjoint with the other variables from θ. For
notational convenience, we subsequently assume that θi,⊢ ⇌ θ⊢ and θi,⊣ ⇌ θ⊣
for every i ∈ [1..n], and the letters for the delimiters be the vectors (⊢, ...,⊢) and
(⊣, ...,⊣) of length n.

We now proceed to the encoding of the fact that a given sequence of con-
figurations is actually a sequence of transitions in M. For a letter (a1, ..., an) ∈
Σn

k ∪ {⊢,⊣}, a state p ∈ Q, and a tuple c ∈ {0, 1}m such that the values of the
counters from Yc = {i ∈ [1..m] | ci = 0} are equal to zero and from [1..m] \ Yc

are non-zero, the following formula is an analogue to definition (5):

∆(p,a,c)(u, t, q, θ, h, y) ⇌
(
qν(p)&k &k

i∈[1..n]
Uk(u, (θi,ai

&kh))&k

&k
i∈Yc

yi&k &k
i∈[1..m]\Yc

Uk(u, yi − Copyk(u, t, 1)&kyi)
)
≼k

|
k

(p̃,d,d)∈δ(p,a,c)

(qν(p̃)
u

&k Uk(u, h&k
(kdh)

u
)&k &k

i∈[1..m]
Uk(u, yi &k

(kdiyi)

u
)
)
.

The key difference with (5) is that now in order to compare two consecutive
configurations we shift by one u-byte instead of one bit. It is obvious that the
predicate ∆(p,a,c) makes sense when it is complemented with CM. In this case,

for example, Uk(u, h&k
(kdh)

u ) highlights the configurations for which in the fol-
lowing configuration the position of the input head shifts by d. Indeed, we obtain
a sequence of u-bytes, each of which is equal to one if and only if the position
of the unique 1 in the next u-byte is the same plus d, otherwise this u-byte is
equal to zero.
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It remains to define the relation RL(M) that corresponds to the language
recognizable by M. To this end, we have to consider every tuple (p, a, c) in Q×
(Σn

k ∪ {⊢,⊣})× {0, 1}m and apply already defined predicates CM and ∆(p,a,c).

RL(M)(x) ⇔ ∃u∃t∃q∃θ∃h∃y
(
CM(u, t, q, x, θ, h, y) ∧∧
(p,a,c)∈Q×(Σn

k∪{⊢,⊣})×{0,1}m

∆(p,a,c)(u, t, q, θ, h, y)
)
.

This completes the proof. ⊓⊔

Since by [14,19] the bitwise minimum operation &2 is existentially definable
in ⟨N; 0, 1,+, ·, exp,=⟩, we obtain DPR-theorem as a corollary.

Corollary 4 (DPR-theorem). Every relation R ⊆ Nn is r.e. if and only if it
is ∃-definable in the structure ⟨N; 0, 1,+, ·, exp,=⟩.

Let us fix k = 2 and omit mentioning k in ⌢k and EqNZBk. Since we have
z = x&2y ⇔ z ≼ y ∧ y ≼ x+ y − z (see [14]), bitwise minimum is ∃-definable in
⟨N; 0, 1,+,≼,⌢,=⟩. Next, exponential diophantiness of ≼ follows from the fact
that x ≼ y iff

(
y
x

)
≡ 1(mod 2), where

(
y
x

)
is a binomial coefficient. Factorial

representation of binomial coefficients and Legendre’s formula imply that

x ≼ y ⇔ s2(y) = s2(x) + s2(y − x),

where s2(x) is the number of 1’s in base 2 expansion of x. Therefore, the masking
relation is definable by the formula x ≼ y ⇔ EqNZB(y, x ⌢ (y−x)) and we have
the following result.

Corollary 5. Every relation R ⊆ Nn is r.e. if and only if it is ∃-definable in
the structure ⟨N; 0, 1,+,EqNZB ,⌢,=⟩.

5 Conclusion

The purpose of this paper is to emphasize similarities in existential first-order
characterizations of the languages recognizable by various abstract machines.
Such descriptions in Sections 3 and 4 allowed us (in some sense) to answer the
question of Bès [2, Open Problems] concerning the expressive power of fragments
of FO-arithmetic with the predicate EqNZB .

Let us mention one natural question which is related to Theorems 1 and 3.
Villemaire proves [23,24] that multiplication is definable in ⟨N; 0, 1,+, Vk, Vl,=⟩
when k and l are multiplicatively independent. Bès strengthens this result [1]
by showing that the same is true when Vl is replaced by any l-recognizable
relation Rl that is not definable in ⟨N; 0, 1,+,=⟩. It would be interesting to see
whether multiplication is existentially definable in ⟨N; 0, 1,+,&k,&l,=⟩, and
more generally, to study ∃-definability in the structures ⟨N; 0, 1,+,&k, Rl,=⟩.
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their useful suggestions and comments.
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