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Abstract. Much work has been done to give semantics to probabilistic
programming languages. In recent years, most of the semantics used
to reason about probabilistic programs fall in two categories: semantics
based on Markov kernels and semantics based on linear operators.
Both styles of semantics have found numerous applications in reasoning
about probabilistic programs, but they each have their strengths and
weaknesses. Though it is believed that there is a connection between
them there are no languages that can handle both styles of programming.
In this work we address these questions by defining a two-level calculus
and its categorical semantics which makes it possible to program with
both kinds of semantics. From the logical side of things we see this lan-
guage as an alternative resource interpretation of linear logic, where the
resource being kept track of is sampling instead of variable use.
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1 Introduction

Probabilistic primitives have been a standard feature of programming languages
since the 70s. At first, randomness was mostly used to program so called random
algorithms, i.e. algorithms that require access to a source of randomness. Re-
cently, however, with the rise of computational statistics and machine learning,
randomness is also used to program statistical models and inference algorithms.

Programming languages researchers have seen this rise in interest as an op-
portunity to further study the interaction of probability and programming lan-
guages, establishing it as an active subfield within the PL community.

One of the main goals of this subfield is giving semantics to programming lan-
guages that are both expressive in the regular PL sense as well as in its abilities
to program with randomness. One particular difficulty is that the mathematical
machinery used for probability theory, i.e. measure theory, does not interact well
with higher-order functions [2].

Currently, there are two classes of models of probabilistic programming —
in its broad sense — that have found numerous applications: models based on
linear logic and models based on Markov kernels. Since each kind of semantics
has peculiarities that make them more or less adequate to give semantics to
expressive programming languages, it is an important theoretical question to
understand how these classes of models are related.
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Linear Logic for Probabilistic Semantics The models of linear logic that
have been used to give semantics to probabilistic languages are usually based on
categories of vector spaces where programs are denoted by linear operators. We
highlight two of them:

– Ehrhard et. al [11,10,9] have defined models of linear logic with probabilistic
primitives and have used the translation of intuitionistic logic into linear logic
A → B =!A ( B, where !A is the exponential modality, to give semantics
to a stochastic λ-calculus.

– Dahlqvist and Kozen [8] have defined an imperative, higher-order, linear
probabilistic language and added a type constructor ! to accommodate non-
linear programs.

The main advantage of models based on linear logic is that programs are
denoted by linear operators between spaces of distributions, a formalism that
has been extensively used to reason about stochastic processes, as illustrated
by Dahlqvist and Kozen who have used results from ergodic theory to reason
about a Gibbs sampling algorithm written in their language, and by Clerc et al.
who have shown how Bayesian inference can be given semantics using adjoint of
linear operators [7].

Unfortunately, these insights are hard to realize in practice, since languages
based on linear logic enforce that variables must be used exactly once, making it
hard to use it as a programming language. The usual way linear logic deals with
this limitation is through the ! modality which allows variables to be reused.

The problem with the exponential modality, when it comes to probabilistic
programming, is that they are usually difficult to construct, do not have any clear
interpretation in terms of probability, making the linear operator formalism not
applicable anymore and, more operationally, through its connections with call-
by-name (CBN) semantics [18], makes it mathematically hard to reuse sampled
values.

Ehrhard et al. have found a way around this problem by introducing a call-
by-value (CBV) let operator that allows samples to be reused [11,24]. In the
discrete case this operator is elegantly defined by a categorical argument which
is unknown to scale to the continuous case, which they deal with by making use
of an ad-hoc construction that is unclear if it can be generalized to other models
of linear logic. Therefore, our current understanding of models of linear logic
does not provide a uniform way of reusing samples.

The difference between CBV and CBN can be illustrated by the program
let x = coin in x + x, where coin is a primitive that outputs 0 or 1 with equal
probability. In the CBN semantics each use of x corresponds to a new sample
from coin, whereas in the CBV semantics the coin is only sampled once.

A subtler problem of probabilistic models based on linear logic is that they
are ill-equipped to program with joint distributions. For instance, the language
proposed by Ehrhard et. al can be easily extended with product types which,
under their semantics, would make the type R×R be interpreted asMR×MR,
whereMR is the set of distributions over R – which is isomorphic to the set of
independent distributions over R2. Dahlqvist and Kozen deal with this issue by
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adding primitive types Rn to their language which are interpreted as the set of
joint distributions over Rn. However, since they are not defined using the type
constructors provided by the semantic domain, programs of type Rn can only be
manipulated by primitives defined outside the language.

Markov Kernel Semantics Markov kernels are a generalization of transition
matrices, i.e. functions that map states to probability distributions over them.
They are appealing from a programming languages perspective because their
programming model is usually captured by monads and Kleisli arrows, a common
abstraction in programming languages semantics, and have been extensively used
to reason about probabilistic programs [1,22,3]. By being related to monadic
programming they differ from their linear operator counterpart by being able
to naturally capture a call-by-value semantics which, as we argued above, is the
most natural one for probabilistic programming.

Unfortunately, even though these semantics can be generalized to contin-
uous distributions, they are notoriously brittle when it comes to higher-order
programming. Only recently, with the introduction of quasi Borel spaces [15]
and its probability monad, it is possible to give a kernel-centric semantics to
higher-order probabilistic programming with continuous distributions.

However, due to quasi Borel spaces being a different foundation to proba-
bility theory, it is unclear which theorems and theories can be generalized to
higher-order. For instance, martingale theory has been used in Computer Sci-
ence to reason about termination of probabilistic programs [6,20,16]. In order to
generalize these ideas to higher-order functions it would be necessary to define
a quasi Borel version of martingales and prove appropriate versions of the main
theorems from martingale theory, a non-trivial task.

Our Work: Combining both Kinds of Semantics Though both styles
of semantics provide insights into how to interpret probabilistic programming
languages (PPL), it is still too early to claim that we have a “correct” semantics
which subsumes all of the existing ones. Both approaches mentioned above have
their advantages and drawbacks.

In this work we shed some light into how both semantics relate to one another
by showing that it is possible to use both styles of semantics to interpret a linear
calculus that has higher-order functions, looser linearity restrictions, a uniform
way of dealing with sample reuse and better syntax for programming joint dis-
tributions while still being close to their kernel and linear operator counterparts.
Interestingly, we identify the joint distribution problem described above to be
a consequence of linear logic requiring the non-linear product to be cartesian.
In order to tackle this problem we build on categorical semantics of linear logic
and on recent work on Markov categories, a suitable categorical generalization
of Markov kernels defined using semicartesian products.

We bridge the gap between these semantics by noting that the regular re-
source interpretation of linear logic, i.e. A( B being equivalent to “by using one
copy of A I get one copy of B” is too restrictive an interpretation for probabilistic
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programming. Instead, we should think of usage as being equivalent to sampling.
Therefore the linear arrow A( B should be thought of as “by sampling from A
once I get B”, which is the computational interpretation of Markov kernels.

We realize this interpretation through a multilanguage approach: we have one
language that programs Markov kernels, a second language that programs linear
operators and add syntax that transports programs from the former language
into the latter one. To justify the viability of our categorical framework we show
how existing probabilistic semantics are models to our language and show how,
under mild conditions, this semantics can be generalized to commutative effects.

Our contributions are:

• We define a multi-language syntax that can program both Markov kernels
as well as linear operators.(§3)
• We define its categorical semantics and prove certain interesting equations

satisfied by it. (§4)
• We show that our semantics is already present in existing models for discrete

and continuous probabilistic programming. (§5)
• We show how our semantics can be generalized to commutative effects. (§6)

2 Mathematical Preliminaries

We are assuming that the reader is familiar with basic notions from category
theory such as categories, functors and monads.

Probability Theory

Transition matrices are one of the simplest abstractions used to model stochastic
processes. Given two countable sets A and B, the entry (a, b) of a transition
matrix is the probability of ending up in state b ∈ B whenever you start from
the initial state a ∈ A and every row adds up to 1.

Definition 1. The category CountStoch has countable sets as objects and
transition matrices as morphisms. The identity morphism is the identity ma-
trix and composition is given by matrix multiplication.

Though transition matrices are conceptually simple, they can only model
discrete probabilistic processes and, in order to generalize them to continuous
probability we must use measurable sets and Markov kernels.

Definition 2. A measurable set is a pair (A,ΣA), where A is a set and ΣA ⊆
P(A) is a σ-algebra, i.e. it contains the empty set and it is closed under com-
plements and countable unions.

Definition 3. A function f : (A,ΣA) → (B,ΣB) is called measurable if for
every B ∈ ΣB, f−1(B) ∈ ΣA.
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Definition 4. Let (A,ΣA) be a measurable space. A probability distribution
(A,ΣA) is a function µ : ΣA → [0, 1] such that µ(∅) = 0, µ(A) = 1 and
µ(]i∈NAi) =

∑
i∈N µ(Ai).

Given two measurable sets (A,ΣA) and (B,ΣB) it is possible to define a
σ-algebra over A×B generated by the sets X×Y which we denote by ΣA⊗ΣB ,
where X ∈ ΣA and Y ∈ ΣB . Furthermore, every pair of distributions µA and
µB over A and B respectively, can be lifted to a distribution µA⊗µB over A×B
such that (µA ⊗ µB)(X × Y ) = µA(X)µB(Y ), for X ∈ ΣA and Y ∈ ΣB .

Definition 5. Let (A,ΣA) and (B,ΣB) be two measurable spaces. A Markov
kernel is a function f : A×ΣB → [0, 1] such that

– For every a ∈ A, f(a,−) is a probability distribution.
– For every B ∈ ΣB, f(−,B) is a measurable function.

Definition 6. The category Kern has measurable sets as objects and Markov
kernels as morphisms. The identity arrow is the function idA(a,A) = 1 if a ∈ A
and 0 otherwise and Composition is given by (f ◦ g)(a, C) =

∫
f(−, C)d(g(a,−)).

Markov Categories

The field of categorical probability was developed in order to get a more concep-
tual understanding of Markov kernels. One of its cornerstone definitions is that
of a Markov category which are categories where objects are abstract sample
spaces, morphisms are abstract Markov kernels and every object has “contrac-
tion” and “weakening” morphisms which correspond to duplicating and discard-
ing a sample, respectively, without adding any new randomness.

Definition 7 (Markov category [12]). A Markov category is a semicartesian
symmetric monoidal category (C,⊗, 1) in which every object A comes equipped
with a commutative comonoid structure, denoted by copyX : X → X ⊗ X and
deleteX : X → 1, where copy satisfies

copyX⊗Y = (idX ⊗ bY,X ⊗ idY ) ◦ (copyX ⊗ copyY ),

where bY,X is the natural isomorphism Y ⊗X ∼= X ⊗ Y . The category being
semicartesian means that the monoidal product comes equipped with projection
morphisms π1 : A⊗B → A and π2 : A⊗B → B, but it is not Cartesian because
the equation (π1 ◦ f, π2 ◦ f) = f does not hold in general which, intuitively,
corresponds to the fact that joint distributions might be correlated.

Theorem 1 ([12]). CountStoch is a Markov category.

The monoidal product is given by the Cartesian product and the monoidal
unit is the singleton set. The copyX morphism is the matrix X ×X ×X → [0, 1]
which is 1 in the positions (x, x, x) and 0 elsewhere, and the deleteX morphism
is the constant 1 matrix indexed by X.
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Theorem 2 ([12]). Kern is a Markov category.

This category is the continuous generalization ofCountStoch and the monoidal
product is the Cartesian product with the product σ-algebra and the monoidal
unit is the singleton set {∗}. The copyX morphism is the Markov kernel copyX :
X × ΣX ⊗ ΣX → [0, 1] such that copyX(x, S × T ) = 1 if x ∈ S ∩ T and 0 oth-
erwise. Its delete morphism is simply the function that given any element in X,
returns the function which is 1 on the measurable set {∗} and 0 on the empty
measurable set.

Linear Logic and Monoidal Categories

We recall the categorical semantics of the multiplicative fragment of linear logic
(MLL):

Definition 8 ([21]). A category C is an MLL model if it is symmetric monoidal
closed (SMCC), i.e. the functors A⊗− have a right adjoint A( −.

We denote the monoidal product as ⊗ and the space of linear maps between
objects X and Y as X ( Y , ev : ((X ( Y ) ⊗ X) → Y is the counit of the
monoidal closed adjunction and cur : C(X⊗Y,Z)→ C(X,Y ( Z) is the linear
curryfication map. We use the triple (C,⊗,() to denote such models.

Definition 9. Let (C,⊗C, 1C) and (D,⊗D, 1D) be two monoidal categories. We
say that a functor F : C → D is lax monoidal if there is a morphism ε : 1D →
F (1C) and a natural transformation µX,Y : F (X) ⊗D F (Y ) → F (X ⊗C Y )
making the diagrams in Figure 8 (in Appendix B) commute.

If ε and µX,Y are isomorphisms we say that F is strong monoidal.
One key observation of this paper is that there are many lax monoidal func-

tors between Markov categories and models of linear logic that can interpret
probabilistic processes.

3 Syntax

In this section we will design a syntax that reflects the fact that linearity cor-
responds to sampling, not variable usage. We achieve this by making use of a
multi-language semantics that enables the programmer to transport programs
defined in a Markov kernel-centric language (MK) to a linear, higher-order, lan-
guage (LL).

Our thesis is that in the context of probabilistic programming, linear logic,
through its connection with linear algebra, departs from its usual Computer
Science applications of enforcing syntactic invariants and, instead, provides a
natural mathematical formalism to express ideas from probability theory, as
shown by Dahlqvist and Kozen [8].

Therefore, since many probabilistic programming constructs, such as Bayesian
inference and Markov kernels, can be naturally interpreted in linear logic terms,
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τ := 1 | τ × τ

M,N := x | unit | let x =M in N | (M,N) | π1M | π2N | f(M)

Γ := · | x : τ , Γ

Fig. 1: Syntax MK

we believe that our calculus allows the user to benefit from the insights lin-
earity provides to PPL while unburdening them from worrying about syntactic
restrictions by making it possible to also program using kernels.

We use standard notation from the literature: Γ ` t : τ means that the
program t has type τ under context Γ , t{x/u} means substitution of u for x in
t and t{−→x /−→u } is the simultaneous substitution of the term list −→u for a variable
list −→x in t.

Both languages will be defined in this section and, for presentation’s sake,
we are going to use orange to represent MK programs and purple to represent
LL programs.

3.1 A Markov Kernel Language

We need a language to program Markov kernels. Since we are aiming at gener-
ality, we are assuming the least amount of structure possible. As such we will be
working with the internal language of Markov categories, as presented in Fig-
ure 1 and Figure 41. Note that we are implicitly assuming a set of primitives for
the functions f .

By construction, every Markov category can interpret this language, as we
show in Figure 6, with types being interpreted as

J1K = 1

Jτ1×τ2K = Jτ1K× Jτ2K

and the contexts are interpreted using × over the interpretation of the types.
However, as it stands, it is not very expressive, since it does not have any prob-
abilistic primitives nor does it have any interesting types since 1× 1 ∼= 1.

When working with concrete models (c.f. Section 5) we can extend the lan-
guage with more expressive types as well as with concrete probabilistic primi-
tives. For instance, in the context of continuous probabilities we could add a R
datatype and a · ` uniform : R uniform distribution primitive.

Note that even though this language does not have any explicit sampling op-
erators, this is implicitly achieved by the let operator. For instance, the program
1 c.f. Appendix A.
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τ := 1 | τ ( τ | τ ⊗ τ

t, u := x | unit | λx. t | t u | t⊗ u | let x⊗ y = t in u

Γ := · | x : τ , Γ

Fig. 2: Syntax LL

let x = uniform in x+ x samples from a uniform distribution, binds the result to
the variable x and adds the sample to itself (Fig. 2).

3.2 A Linear Language

Our second language is a linear simply-typed λ-calculus, with the usual typing
rules shown in Figure 5 in Appendix A, which can be interpreted in every sym-
metric monoidal closed category as shown in Figure 7, also in Appendix A, with
types interpreted by

J1K = 1

Jτ1⊗τ2K = Jτ1K⊗ Jτ2K
Jτ1(τ2K = Jτ1K ( Jτ2K

and the contexts are interpreted using ⊗ over the interpretation of the types.
Once again, we are aiming at generality instead of expressivity. In a concrete
setting it would be fairly easy to extend the calculus with a datatype N for
natural numbers and probabilistic primitives such as · ` coin : N that flips a fair
coin.

The idea behind the particular linear logic models that we are interested in is
that, by integration, Markov kernels can be seen as linear operators between vec-
tor spaces of probability distributions. As such, an LL program x : N `LL t : N
will be denoted by a linear function between distributions over the natural num-
bers. Therefore, from a programming point of view, variables are placeholders
for probability distributions, i.e. computations, not values, and sampling occurs
when variables are used.

3.3 Combining Languages

The main drawback of the linear calculus above is that the syntactic linearity
restriction makes it hard to program with it, while the main drawback of the
Markov language is that it does not have higher-order functions. In this section
we will show how we can combine both language so that we get a calculus with
looser linearity restrictions while still being higher-order.
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τ := 1 | τ × τ
τ := 1 | Mτ | τ ( τ | τ ⊗ τ

M,N := x | unit | let x =M in N | f(M)

| (M,N) | π1M | π2M

t, u := x | unit | λx. t | t u | t⊗ u | let x⊗ y = t in u

| sample ti as xi in M

Fig. 3: Syntax LL+MK

As we will show in Section 5, when looking at concrete models for these
languages we can see that the semantic interpretations of variables in both lan-
guages are completely different: in the MK language variables should be thought
of as values, i.e. the values that were sampled from a distribution, whereas in the
LL language, variables of ground type are distributions. In order to bridge these
languages we must use the observation that Markov kernels — i.e. open MK
terms — have a natural resource-aware interpretation of being “sample-once”
stochastic processes and, by integration, can be seen as linear maps between
measure spaces — i.e. open LL terms. The combined syntax for the language is
depicted in Figure 3.

We now have a language design problem: we want to capture the fact that
every open MK program is, semantically, also an open LL term. The naive typing
rule is:

x1 : τ1, · · · , xn : τn `MK M : τ

x1 :Mτ1, · · · , xn :Mτn `LL MK(M) :Mτ

The problem with this rule is that it breaks substitution: the variables in the
premise are MK variables whereas the ones in the conclusion are LL variables.

We solve this problem by making the syntax reflect a common idiom of PPLs:
compute distributions (elements ofMτ), sample from it and then use the result
in a non-linear continuation. This is captured by the following syntax:

sample t1, · · · , tn as x1, · · · , xn in M

Note that we are sampling from LL programs ti (possibly an empty list), out-
putting the results to MK variables xi and binding them to an MK program M .
When clear from the context we simply use sample ti as xi in M . Its correspond-
ing typing rule is:

Sample
x1 : τ1 · · ·xn : τn `MK M : τ Γi `LL ti :Mτi 0 ≤ i < n

Γ1, · · · , Γn `LL sample ti as xi in M :Mτ
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As the typing rule suggests, its semantics should be some sort of composi-
tion. However, since we are composing programs that are interpreted in different
categories, we must have a way of translating MK programs into LL programs
— as we will see in Section 4 this translation will be functorial. The operational
interpretation of this rule is that we have a set of distributions {ti} defined using
the linear language — possibly using higher-order programs — we sample from
them, bind the samples to the variables {xi} in the MK program M where there
are no linearity restrictions. Note that the rule above looks very similar to a
monadic composition, though they are semantically different (cf. Section 4).

With this new syntax we can finally program in accordance with our new
resource interpretation of linear logic, allowing us to write the program

sample coin as x in (x = x),

which flips a coin once and tests the result for equality with itself, making it
equivalent to true.

This combined calculus enjoys the expected syntactic properties2.

Theorem 3. Let Γ, x : τ1 `LL t : τ and ∆ `LL u : τ1 be well-typed terms, then
Γ,∆ `LL t{x/u} : τ

Proof. The proof can be found in Appendix D.

The following example illustrates how we can use the MK language to dupli-
cate and discard linear variables.

Example 1. The program which samples from a distribution t and then returns
a perfectly correlated pair is given by:

· `LL sample t as x in (x, x) :M(τ × τ)

Similarly, the program that samples from a distribution t and does not use its
sampled value is represented by the term

· `LL sample t as x in unit :M1

Example 2. Suppose that we have a Markov kernel given by an open MK term
x : N `M : N. If we want to encapsulate it as a linear program of type MN (
MN we can write:

· `LL λmeas.(sample meas as x in M) :MN (MN

Example 3. As we explain in the introduction, Dahlqvist and Kozen must add
many primitives to their language to work around their linearity restrictions.
For instance, in order to write projection functions Rn → Rm, n > m they must
add projection primitives to the language.
2 To avoid visually polluting the proofs we will drop the color code in Theorem 3 and
Theorem 7
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By having compositional type constructors that can represent joint distribu-
tions , i.e.M(τ × τ), it is possible to write the program sample t as x in (π1 x, π3 x)
which samples from a distribution over triples and returns only the first and third
components by only using the syntax of products in MK.

Unfortunately there are some aspects of this language that still are restrictive.
For instance, imagine that we want to write an LL program that receives two
“Markov kernels” MN(MN and a distribution over N as inputs, samples from
the input distribution, feeds the result to the Markov kernels, samples from them
and adds the results. Its type would be

(MN(MN)((MN(MN)(MN(MN

Even though the program only requires you to sample once from each distri-
bution, it is still not possible to write it in the linear language.

We will show in Section 4 how the type constructorM actually corresponds
to an applicative functor [19], and the limitation above is actually a particular
case of a fundamental difference between programming with applicative functors
compared to programming with monads.

Remark 1. We now have two languages that can interpret probabilistic prim-
itives such as coin. However, every primitive M in the MK language can be
easily transported to an LL program by using an empty list of LL programs:
sample _ as _ in M . Therefore it makes sense to only add these primitives to
the MK language.

4 Categorical Semantics

As it is the case with categorical interpretations of languages/logics, types and
contexts are interpreted as objects in a category and every well-typed pro-
gram/proof gives rise to a morphism.

In our case, MK types τ are interpreted as objects JτK in a Markov category
(M,×) and well-typed programs Γ `MK M : τ are interpreted as an M mor-
phism JΓ K → JτK, as shown in Figure 6. Similarly, LL types τ are interpreted
as objects JτK in a model of linear logic (C,⊗,() and well-typed programs
Γ `LL t : τ are interpreted as a C morphism JΓ K→ JτK, as shown in Figure 7.

To give semantics to the combined language is not as straightforward. The
sample rule allows the programmer to run LL programs, bind the results to MK
variables and use said variables in an MK continuation. The implication of this
rule in our formalism is that our semantics should provide a way of translating
MK programs into LL programs. In category theory this is usually achieved by
a functorM : M→ C.

However, we can easily see that functors are not enough to interpret the
sample rule. Consider what happens when you apply M to an MK program
x : τ1, y : τ2 `MK N : τ :

M JNK :M(τ1 ⊗ τ2)→Mτ
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To precompose it with two LL programs outputtingMτ1 andMτ2 we need
a mediating morphism µτ1,τ2 :Mτ1⊗Mτ2 →M(τ1×τ2). Furthermore, if N has
three or more free variables, there would be several ways of applying µ. Since
from a programming standpoint it should not matter how the LL programs
are associated, we require that µτ1,τ2 makes the lax monoidality diagrams to
commute. Therefore, assuming lax monoidality of µ we can interpret the sample
rule:

Sample

τ1 × · · · × τn
N−→ τ Γi

ti−→Mτi

Γ
t1⊗···⊗tn−−−−−−→Mτ1 ⊗ · · · ⊗Mτn

µ−→M(τ1 × · · · × τn)
MN−−−→Mτ

In case it only has one MK variable, the semantics is given by JtK ;M JNK
and in case it does not have any free variables the semantics is ε;M JNK.

The equational theory of the LL languages is the well-known theory of the
simply-typed λ-calculus and the MK equational theory has been described, in
graphical notation, by Fritz [12]. Something which is not obvious is understand-
ing how they interact at their boundary. This is where M being a functor be-
comes relevant, since from functoriality it follows the two program equivalences:

Theorem 4. Let t, M and N be well-typed programs,

J(λy. sample y as z in N) (sample t as x in M)K =
Jsample t as x in (let y =M in N)K

Proof.

J(λy. sample y as z in N) (sample t as x in M)K =
JtK ;M JMK ;M JNK = JtK ;M(JMK ; JNK) =
Jsample t as x in (let y =M in N)K

Theorem 5. Let t be a well-typed program,

Jsample t as x in xK = JtK

Proof. Jsample t as x in xK = JtK ;M(JxK) = JtK ;M(id) = JtK ; id = JtK

Furthermore, we also have a modularity property that can be easily proven:

Theorem 6. Let t, M and N be well-typed programs. If JMK = JNK then

Jsample t as x in MK = Jsample t as x in NK

The expected compositionality of the semantics also holds:

Theorem 7. Let x1 : τ1, · · · , xn : τn ` t : τ and Γi ` ti : τi be well-typed terms.r
Γ1, · · · , Γn ` t{−→xi/

−→
ti } : τ

z
= (

q
Γ1 ` t1 : τ1

y
⊗· · ·⊗

q
Γn ` tn : τn

y
); JΓ1, · · · , ΓnK `

t : τ .
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Proof. The proof can be found in Appendix D.

Subst
Γ ` u1 : τ ′ Γ ` u2 : τ ′ Γ, x : τ ′ ` t : τ Γ ` u1 ≡ u2 : τ ′

Γ ` t{x/u1} ≡ t{x/u2} : τ

From this theorem we can conclude:

Corollary 1. The Subst rule shown above is sound with respect to the categorical
semantics.

Lax monoidal functors, under the name applicative functors, are widely used
in programming languages research[19]. They are often used to define embedded
domain-specific languages (eDSL) within a host language. This suggests that
from a design perspective the Markov kernel language can be thought of as an
eDSL inside a linear language.

We have just shown thatM being lax monoidal is sufficient to give semantics
to our combined language, but what would happen if it had even more structure?
If it were also full it would be possible to add a reification command3:

MΓ `LL t :Mτ

Γ `MK reify(t) : τ

whereMΓ is notation for every variable in Γ being of the formMτ ′, for some
τ ′. The semantics for the rule would be taking the inverse image of M. As we
will show in the next section, there are some concrete models where M is full
and some other models where it is not. Computationally, fullness of M can be
interpreted as every program of type Mτ ( Mτ ′ being equal to a Markov
kernel.

A property which is easier to satisfy is faithfulness, which is verified by both
models in the next section. In this case the translation of the MK language into
the LL language would be fully-abstract in the following sense:

Theorem 8. Let x : τ1 ` M : τ2 and x : τ1 ` N : τ2 be two well-typed MK
programs. If M is faithful then Jsample y as x in MK = Jsample y as x in NK
implies JMK = JNK.

Proof. Jsample y as x in MK = Jsample y as x in NK =⇒ idMτ1 ;M JMK =
idMτ1 ;M JNK =⇒ JMK = JNK.

5 Concrete Models

In this section we show how existing models for both discrete as well as contin-
uous probabilities fit within our formalism.

3 The proposed rule breaks the substitution theorem, but it is possible to define a
variant for it where this is not the case.
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5.1 Discrete Probability

For the sake of simplicity we will denote the monoidal product of CountStoch
as ×.

The probabilistic coherence space model of linear logic has been extensively
studied in the context of semantics of discrete probabilistic languages[9].

Definition 10 (Probabilistic Coherence Spaces [9]). A probabilistic co-
herence space (PCS) is a pair (|X|,P(X)) where |X| is a countable set and
P(X) ⊆ |X| → R+ is a set, called the web, such that:

– ∀a ∈ X ∃εa > 0 εa · δa ∈ P(X), where δa(a′) = 1 iff a = a′ and 0 otherwise,
and we use the notation εa = ε(a);

– ∀a ∈ X ∃λa ∀x ∈ P(X) xa ≤ λa;
– P(X)⊥⊥ = P(X), where P(X)⊥ = {x ∈ X → R+ | ∀v ∈ P(X)

∑
a∈X xava ≤

1}.

We can define a category PCoh where objects are probabilistic coherence
spaces and morphisms X ( Y are matrices f : |X| × |Y | → R+ such that for
every v ∈ P(X), (f v) ∈ P(Y ), where (f v)b =

∑
a∈|A| f(a,b)va.

Definition 11. Let (|X|,P(X)) and (|Y |,P(Y )) be PCS, we define X ⊗ Y =
(|X| × |Y |, {x⊗ y |x ∈ P(X), y ∈ P(Y )}⊥⊥), where (x⊗ y)(a, b) = x(a)y(b)

Lemma 1. Let X be a countable set, the pair (X, {µ : X → R+ |
∑
x∈X µ(x) ≤

1}) is a PCS.

Proof. The first two points are obvious, as the Dirac measure is a subprobability
measure and every subprobability measure is bounded above by the constant
function µ1(x) = 1.

To prove the last point we use the — easy to prove — fact that PX ⊆ PX⊥⊥.
Therefore we must only prove the other direction. First, observe that, if µ ∈ {µ :
X → R+ |

∑
x∈X µ(x) ≤ 1}, then we have

∑
µ(x)µ1(x) =

∑
1µ(x) =

∑
µ(x) ≤

1, µ1 ∈ {µ : X → R+ |
∑
x∈X µ(x) ≤ 1}⊥.

Let µ̃ ∈ {µ : X → R+ |
∑
x∈X µ(x) ≤ 1}⊥⊥. By definition,

∑
µ̃(x) =∑

µ̃(x)µ1(x) ≤ 1 and, therefore, the third point holds.

This lemma can be used to give semantics to probabilistic primitives. For
instance, a fair coin is interpreted as a function coin : N→ [0, 1] which is .5 at 0
and 1 and 0 elsewhere and is an element of P(N).

Lemma 2. Let X → Y be a CountStoch morphism. It is also a PCoh mor-
phism.

Theorem 9. There is a lax monoidal functor M : CountStoch→ PCoh.

Proof. The functor is defined using the lemmas above. Functoriality holds due
to the functor being the identity on arrows. The lax monoidal structure is given
by ε = id1 and µX,Y = idX×Y
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Lemma 3. If µ ∈ {x ⊗ y |x ∈ M(X), y ∈ M(Y )}⊥ then for every x ∈ X and
y ∈ Y , µ(x, y) ≤ 1.

Proof. If there were such indices such that µ(x1, y1) > 1 then
∑∑

µ(x, y)(δx1⊗
δy1)(x, y) > µ(x1, y1)(δx1

⊗δy1)(x1, y1) = µ(x1, y1) > 1, which is a contradiction.

Lemma 4. Let X and Y be two countable sets, then

MX ⊗MY =

X × Y, {µ : X × Y → R+ |
∑
x∈X

∑
y∈Y

µ(x, y) ≤ 1}

 =

M(X × Y ).

Proof. By the lemma above it follows that if we have a joint probability distri-
bution µ̃ over X × Y and an element µ ∈ {x⊗ y |x ∈M(X), y ∈M(Y )}⊥ then∑∑

µ(x, y)µ̃(x, y) ≤
∑∑

µ̃(x, y) ≤ 1.

Theorem 10. Both ε and µX,Y are isomorphisms.

Proof. Since ε is the identity morphism, it is trivially an isomorphim. The mor-
phisms µX,Y being an isomorphism is a direct consequence of the lemmas above.

Theorem 11. The functor M is full.

Both results above can be directly used to enhance the syntax of the combined
language. From Theorem 10 we can conclude that elements of typeM(τ1 × τ2),
by projecting their marginal distributions, can be manipulated as if they had
type Mτ1 ⊗Mτ2. Something to note is that when we do this marginalization
process we lose potential correlations between the elements of the pair.

5.2 Continuous Probability

In order to accommodate continuous distributions we can use regularly ordered
Banach spaces, whose detailed definition goes beyond the scope of this paper.

Definition 12 ([8]). The category RoBan has regularly ordered Banach spaces
as objects and regular linear functions as morphisms.

Theorem 12. There is a lax monoidal functor M : Kern→ RoBan.

Proof. The functor acts on objects by sending a measurable space to the set of
signed measures over it, which can be equipped with a RoBan structure. On
morphisms it sends a Markov kernel f to the linear functionM(f)(µ) =

∫
fdµ.

The monoidal structure of RoBan satisfies the universal property of ten-
sor products and, therefore, we can define the natural transformation µX,Y :
M(X)⊗M(Y )→M(X×Y ) as the function generated by the bilinear function
M(X);M(Y ) (M(X × Y ) which maps a pair of distributions to its product
measure. The map ε is, once again, equal to the identity function.

The commutativity of the lax monoidality diagrams follows from the universal
property of the tensor product: it suffices to verify it for elements µA⊗µB⊗µC .
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In RoBan the uniform distribution over the interval [0, 1] is an element of
MR, meaning that it can soundly interpret a · `LL uniform :MR primitive.

Even thoughM looks very similar to the discrete case, it follows from a well-
known theorem from functional analysis that the functor is not strong monoidal,
meaning that there are joint probability distributions (elements of M(A × B))
that cannot be represented as an element of the tensor productM(A)⊗M(B)
and, as such, programs of type M(A×B) must be manipulated in MK language,
as shown in Example 3.

6 Beyond Probability

We have seen that this new resource interpretation is present in different models
of linear logic models for probabilistic programming. In this section we show
that this model can be generalized to commutative effects, i.e. effects where the
program equation Commutativity below holds. Categorically, these effects are
captured by monoidal monads4. Due to length issues, we will not fully detail the
definition of monoidal monads, but we suggest the interested reader to read Seal
[23].

Commutativity
Γ ` t1 : τ1 Γ ` t2 : τ2 Γ, x : τ1, y : τ2 ` u : τ

let x1 = t1 in (let x2 = t2 in u) ≡ let x2 = t2 in (let x1 = t1 in u) : τ

Definition 13 ([23]). Let (C,⊗, I) be a monoidal category and (T, η, µ) a monad
over it. The monad T is called monoidal if it comes equipped with a natural trans-
formation κX,Y : TX ⊗ TY → T (X ⊗ Y ) making certain diagrams commute

For probability monads the transformation κ corresponds to forming the
product probability distribution and, more generally, this can be thought of a
program that runs both of its (effectful) inputs and pairs the outputs.

Every monad give rise to the interesting categories CT and CT which are,
respectively, the Kleisli category and Eilenberg-Moore category. The objects of
CT are the same as C and morphisms between A and B are C morphisms
A → TB, with the identity morphism being equal to the unit η of the monad
and composition is given by f ; g = f ;Tg;µ.

The objects of the category CT are pairs (X,x), where X is a C object and
x : TX → X is a C morphism such that µ;x = Tx;x and η;x = idX , and
morphisms between objects (X,x) and (Y, y) are C morphisms f : X → Y such
that x; f = Tf ; y.

For every monad T there is a canonical inclusion functor ι : CT → CT which
maps X to (TX, µ) and f : X → Y to Tf ;µY .

Theorem 13 ([5]). The functor ι is full and faithful.
4 Monoidal monads are equivalent to commutative monads, which is the nomenclature
usually used in the context of programming languages semantics.
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As we explain in Appendix C, assuming enough structure on the category C
we can show that the triple (CT ,C

T , ι) is a model to the MK+LL language and
we can bring our new resource interpretation of linear logic to other commmu-
tative effects.

An illustrative example is the powerset monad P : Set → Set which is
monoidal and since Set has the necessary structure, the triple (CP ,C

P ,P) is a
model to our language and can be used to give semantics to non-deterministic
computation.

In the context of commutative effects other than randomness, the syntax
sample t as x in M does not make as much sense, in which case we can use the
syntax observe ti as xi in M instead. Once again, operationally, the programs ti
are fully executed, the values are bound to xi in M which is then executed.

Furthermore, other effects have other relevant effectful operations and, there-
fore, we can assume that there is a set of operations in the MK language that are
interpreted in the Kleisli category and can be transported to LL using observe,
similar to how it was done in the probabilistic case.

For the non-deterministic case we can assume the existence of typing rules
for non-deterministic choice and failure:

Choice
Γ `MK t1 : τ Γ `MK t2 : τ

Γ `MK t1 ⊕ t2 : τ

Null

Γ `MK 0τ : τ

satisfying the expected equations and interpreted using set-theoretic union and
the empty set, respectively.

A similar connection between linear logic and monoidal monads has been
made by Benton and Wadler[4], where they want to relate Moggi’s monadic
λ-calculus with linear logic by showing that if a monad is monoidal and the
category has equalizers and coequalizers, then the Eillenberg-Moore category is
a model of linear logic.

7 Related Work

Semantics of Probabilistic Programming Ehrhard et al. [11,10] have de-
fined a model of linear logic CLin which can be used to interpret a higher-order
probabilistic programming language. They have used the call-by-name transla-
tion of intuitionistic logic into linear logic A→ B =!A( B to give semantics to
their language. The authors extend their language with a call-by-value let syntax
which makes it possible to reuse sampled values. In order to give semantics to
this new language they introduce a new category CLinm which can interpret
this new operator, at the cost of complicating their model.

Because there is an analogous proof of Theorem 12 with the category CLin
replacing RoBan, we can use their original, simpler, model to interpret our
language, while not needing to use the linear logic exponential to interpret non-
linear programs.
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Dahlqvist and Kozen [8] have defined a category of partially ordered Banach
spaces and shown that it is a model of intuitionistic linear logic. An important
difference from their approach and the one mentioned above is that they embrace
variable linearity as part of their syntax. As we argued in this paper, we believe
that the syntactic restriction of linearity they have used is not adequate for the
purposes of probabilistic programming. They deal with this limitation by adding
primitives to their languages which, by using the results of Section 5, could be
programmed using the MK language.

Quasi Borel spaces [15] are a conservative extension of Meas that are Carte-
sian closed and have a commutative probability monad. The drawback of this
model is that it is still not as well understood as its measure-theoretic coun-
terpart, and there are theorems from probability theory used to reason about
programs that may not hold in the category of quasi Borel spaces QBS.

Recently, Geoffroy [13] has made progress in connecting linear logic and quasi
Borel Spaces by showing that a certain subcategory of the Eillenberg-Moore
category for the probability monad in QBS is a model of classical linear logic,
which we see as an instance of our model where the MK language can have
higher-order functions as well.

Call-by-Push-Value The idea of having two distinct type systems that are
connected by a functorial layer is reminiscent of Call-by-Push-Value (CBPV)
[17], which has a type system for values and a type system for computations that
are connected by an adjunction. In recent work, Ehrhard and Tasson [24] use the
Eilenberg-Moore adjunction of the linear logic exponential ! to give semantics to
a calculus that can interpret lazy and eager probabilistic computation, allowing
for the interpretation of an eager let operator which is operationally similar to
our sample construct. However, the existence of the let operator depends on
properties of the ! that are unknown to hold for continuous distributions, while
our semantics can naturally deal with continuous distributions as we have shown
in Section 5.

Furthermore, the exponential which lies at the center of their approach is,
semantically, hard to work with and does not have any clear connections to
probability theory, making it unlikely that their semantics can be seen as a
bridge between the Markov and linear semantics, which is the case for the models
presented in Section 5.

Goubault-Larrecq [14] has defined a CBPV domain semantics to a language
that mixes probability and non-determinism, a long-standing challenge in the
theory of programming languages. His focus is in understanding how to make
probability interact with non-determinism in a sound way. He studies the full-
abstraction of his semantics but does not deal with connections to linear logic.
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A Typing Rules and Denotational Semantics LL and MK

Var

Γ , x : τ ` x : τ

Unit

Γ ` unit : 1

Let
Γ `M : τ1 Γ , x : τ1 ` N : τ

Γ ` let x =M in N : τ

Primitive
Γ `M : τ1 f : τ1 → τ2

Γ ` f(M) : τ2

Pair
Γ `M : τ1 Γ ` N : τ2

Γ ` (M,N) : τ1 × τ2

Proj1
Γ `M : τ1 × τ2
Γ ` π1M : τ1

Proj2
Γ `M : τ1 × τ2
Γ ` π2M : τ2

Fig. 4: Typing rules MK

Axiom

x : τ ` x : τ

Unit

· ` unit : 1

Abstraction
Γ , x : τ1 ` t : τ2

Γ ` λx. t : τ1 ( τ2

Application
Γ1 ` t : τ1 ( τ2 Γ2 ` u : τ1

Γ1, Γ2 ` t u : τ2

Tensor
Γ1 ` t : τ1 Γ2 ` u : τ2

Γ1, Γ2 ` t⊗ u : τ1 ⊗ τ2

LetTensor
Γ1 ` t : τ1 ⊗ τ2 Γ2, x : τ1, y : τ2 ` u : τ

Γ1, Γ2 ` let x⊗ y = t in u : τ

Fig. 5: Typing rules LL

Var

Γ × τ delete×idτ−−−−−−→ 1× τ ∼= τ

Pair
Γ

M−→ τ1 Γ
N−→ τ2

Γ
copy−−→ Γ × Γ M×N−−−−→ τ1 × τ2

Proj
Γ

M−→ τ1 × τ2

Γ
M ;(idτ1×delete)
−−−−−−−−−−→ τ1 × 1 ∼= τ1

Let
Γ

M−→ τ1 Γ × τ1
N−→ τ

Γ
copy−−→ Γ × Γ (idΓ×M);N−−−−−−−−→ τ

Primitive
Γ

M−→ τ1 τ1
f−→ τ2

Γ
M−→ τ1

f−→ τ2

Fig. 6: Denotational semantics for MK
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Axiom

τ
idτ−−→ τ

Tensor
Γ1

t1−→ τ1 Γ2
t2−→ τ2

Γ1, Γ2
t1⊗t2−−−−→ τ1 ⊗ τ2

LetTensor
Γ1

t−→ τ1 ⊗ τ2 Γ2 ⊗ τ1 ⊗ τ2
u−→ τ

Γ1 ⊗ Γ2
(id⊗t);u−−−−−→ τ

Abstraction
Γ ⊗ τ1

t−→ τ2

Γ
cur(JtK)−−−−→ τ1 ( τ2

Application
Γ1

t−→ τ1 ( τ2 Γ2
u−→ τ1

Γ1 ⊗ Γ2
(t⊗u);ev−−−−−→ τ2

Fig. 7: Denotational semantics for LL

B Commutative Diagrams

(F (X)⊗D F (Y ))⊗D F (Z) F (X)⊗D (F (Y )⊗C F (Z))

F (X ⊗C Y )⊗D F (Z) F (X)⊗D F (Y ⊗C Z)

F ((X ⊗C Y )⊗C Z) F (X ⊗C (Y ⊗C Z))

µ⊗id

µ

α

id⊗µ

µ

Fα

1 ⊗D F (X) F (1) ⊗D F (X) F (X) ⊗D 1 F (X) ⊗D F (1)

F (X) F (1 ⊗C X) F (X) F (X ⊗C 1)

ε⊗id

lD

F (lC)

µ

id⊗ε

µ

F (rD)

rD

Fig. 8: Lax monoidal diagrams

C Monoidal Monads and Their Algebras

An important theorem from the categorical probability literature is that Markov
categories are an abstraction of programming in the Kleisli category of monoidal
affine monads, where affinity means that T1 ∼= 1.

Theorem 14 ([12]). Let (C,×, 1) be a cartesian category and T : C → C a
monoidal (affine) monad. The Kleisli category CT is a Markov category.
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The monoidal product of CT is × with unit 1, the copy operation is given
by ∆X ; ηX : X → T (X ×X) and the deletion operation is given by T1 ∼= 1 and
1 being terminal.

Furthermore, under certain conditions, the Eilenberg-Moore category CT for
monoidal monads is symmetric monoidal closed. The monoidal unit is given by
TI, the monoidal product is given by the coequalizer depicted in Figure 9 and
the closed struture is given by the equalizer depicted in Figure 10.

Theorem 15. Let C be a symmetric monoidal closed category with equalizers,
reflexive co-equalizers and T : C → C a monoidal monad. The category CT is
also symmetric monoidal closed.

T (TX ⊗ TY ) TT (X ⊗ Y ) T (X ⊗ Y ) X ⊗T YTκ µ

T (x⊗y)

Fig. 9: Symmetric Monoidal Structure in CT

X (T Y X ( Y TX ( TY TX ( Ys idTX(y

x(idY

Fig. 10: Closed Structure in CT

Even though, in general, in order to define the monoidal product one requires
a coequalizer, for our purposes we are only interested in products of the form
TA ⊗T TB which, luckily, are easier to characterize, since the equality TX ⊗T
TY = T (X ⊗ Y ) holds [23].

In this case the lax monoidal transformations µX,Y : TX⊗T TY → T (X⊗Y )
and ε : FI → FI are simply the identity morphisms. Besides, by using the uni-
versal properties of coequalizers it is possible to show the equality α̃TX,TY,TZ =
αX,Y,Z , where α̃ is the associator for the monoidal product ⊗T .

Theorem 16. Let C be a symmetric monoidal category with reflexive co-equalizers
and T : C→ C a monoidal monad. The triple (ι, µ, ε) is a lax monoidal functor.

Proof. The proof follows by unfolding the definitions.
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D Proofs

Theorem 3. Let Γ, x : τ1 ` t : τ and ∆ ` u : τ1 be well-typed terms, then
Γ,∆ ` t{x/u} : τ

Proof. The proof follows by structural induction on the typing derivation Γ, x :
τ1 ` t : τ :

– Axiom: Since t = x then t{x/u} = u and τ1 = τ .
– Abstraction: By hypothesis, Γ, x : τ1, y : τ2 ` t : τ3. Since we can assume

wlog that x 6= y and that y /∈ ∆, λy. t{x/u} = λy. t{x/u}. Therefore we
can show that Γ,∆ ` λy. t{x/u} : τ2 ( τ3 by applying the rule Abstraction
and by the induction hypothesis.

– Application: t1 t2{x/u} = t1{x/u} t2{x/u}. Since the language LL is linear,
only one of t1 or t2 will have x as a free variable. By symmetry we can assume
that t1 has x as a free variable and we can prove Γ,∆ ` t1{x/u} t2 : τ by
applying the rule Application and by the induction hypothesis.

– Sample: It is easy to prove that (sample t as y in M){x/u} =
sample (t{x/u}) as y in M

Theorem 7. Let x1 : τ1, · · · , xn : τn ` t : τ and Γi ` ti : τi be well-typed terms.r
Γ1, · · · , Γn ` t{−→xi/

−→
ti } : τ

z
= (

q
Γ1 ` t1 : τ1

y
⊗· · ·⊗

q
Γn ` tn : τn

y
); JΓ1, · · · , ΓnK `

t : τ .

Proof. The proof follows by induction on the typing derivation of t.

– Axiom: Since t = x then t{x/t0} = t0 and Jt{x/t0}K = Jt0K = Jt0K ; id =
Jt0K ; JxK.

– Unit: Since t = x then t{x/t0} = t0 and Jt{x/t0}K = Jt0K = Jt0K ; id =
Jt0K ; JxK.

– Tensor: We know that t = t1 ⊗ t2. Furthermore, from linearity we know that
each free variable appears either in t1 or in t2.Without loss of generality we can
assume that (t1⊗t2){x1, · · · , xn/u1, · · · , un} = (t1{x1, · · · , xk/u1, · · · , uk})⊗
(t2{xk+1, · · · , xn/uk+1, , · · · , un}). We can conclude this case from the induc-
tion hypothesis and functoriality of ⊗.

– LetTensor: This case follows from the functoriality of ⊗ and the induction
hypothesis.

– Abstraction: This case follows from unfolding the definitions, using the in-
duction hypothesis and by naturality of cur.

– Application: Analogous to the Tensor case
– Sample: This case is analogous to the Tensor case.
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