
Software Testing: 5th Comparative Evaluation:
Test-Comp 2023

Dirk Beyer(B)

LMU Munich, Munich, Germany

Abstract. The 5th edition of the Competition on Software Testing (Test-
Comp 2023) provides again an overview and comparative evaluation
of automatic test-suite generators for C programs. The experiment was
performed on a benchmark set of 4 106 test-generation tasks for C programs.
Each test-generation task consisted of a program and a test specification
(error coverage, branch coverage). There were 13 participating test-suite
generators from 6 countries in Test-Comp 2023.

Keywords: Software Testing · Test-Case Generation · Competition ·
Program Analysis · Software Validation · Software Bugs · Test Validation
· Test-Comp · Benchmarking · Test Coverage · Bug Finding · Test Suites ·
SV-Benchmarks · BenchExec · TestCov · CoVeriTeam

1 Introduction

In its 5th edition, the International Competition on Software Testing (Test-
Comp, https://test-comp.sosy-lab.org, [7,8,9,10,11]) again compares automatic
test-suite generators for C programs, in order to showcase the state of the art
in the area of automatic software testing. This competition report is an up-
date of the previous reports, referring to the rules and definitions, presents
the competition results, and give some interesting data about the execution of
the competition experiments. We use BenchExec [24] to execute the bench-
marks and the results are presented in tables and graphs on the competition
web site (https://test-comp.sosy-lab.org/2023/results) and are available in the ac-
companying archives (see Table 3).

Competition Goals. In summary, the goals of Test-Comp are the following [8]:

• Establish standards for software test generation. This means, most prominently,
to develop a standard for marking input values in programs, define an exchange
format for test suites, agree on a specification language for test-coverage
criteria, and define how to validate the resulting test suites.

This report extends previous reports on Test-Comp [7,8,9,10,11].
Reproduction packages are available on Zenodo (see Table 3).
(B) dirk.beyer@sosy-lab.org

© The Author(s) 2023
L. Lambers and S. Uchitel (Eds.): FASE 2023, LNCS 13991, pp. 309–323, 2023.
https://doi.org/10.1007/978-3-031-30826-0_17

https://orcid.org/0000-0003-4832-7662
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/software/coveriteam
https://test-comp.sosy-lab.org
https://github.com/sosy-lab/benchexec
https://test-comp.sosy-lab.org/2023/results
https://doi.org/10.1007/978-3-031-30826-0_17
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30826-0_17&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

Dirk Beyer

• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage criteria,
and to make those publicly available for researchers to be used in performance
comparisons when evaluating a new technique.

• Provide an overview of available tools for test-case generation and a snapshot
of the state-of-the-art in software testing to the community. This means to
compare, independently from particular paper projects and specific techniques,
different test generators in terms of effectiveness and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the participants the opportunity to publish about
the development work that they have done.

• Educate PhD students and other participants on how to set up performance
experiments, package tools in a way that supports reproduction, and how to
perform robust and accurate research experiments.

• Provide resources to development teams that do not have sufficient computing
resources and give them the opportunity to obtain results from experiments
on large benchmark sets.

Related Competitions. In the field of formal methods, competitions are re-
spected as an important evaluation method and there are many competitions [5].
We refer to the report from Test-Comp 2020 [8] for a more detailed discussion
and give here only the references to the most related competitions [5,13,46,48].

2 Definitions, Formats, and Rules

Organizational aspects such as the classification (automatic, off-site, reproducible,
jury, training) and the competition schedule is given in the initial competi-
tion definition [7]. In the following, we repeat some important definitions that
are necessary to understand the results.

Test-Generation Task. A test-generation task is a pair of an input program (pro-
gram under test) and a test specification. A test-generation run is a non-interactive
execution of a test generator on a single test-generation task, in order to generate a
test suite according to the test specification. A test suite is a sequence of test cases,
given as a directory of files according to the format for exchangeable test-suites.1

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test-suite generator on the benchmark suite. One test run for a test-suite
generator gets as input (i) a program from the benchmark suite and (ii) a test
specification (cover bug, or cover branches), and returns as output a test suite (i.e.,
a set of test cases). The test generator is contributed by a competition participant
as a software archive in ZIP format. The test runs are executed centrally by the
competition organizer. The test-suite validator takes as input the test suite from

1 https://gitlab.com/sosy-lab/software/test-format

310

https://gitlab.com/sosy-lab/software/test-format

Software Testing: 5th Comparative Evaluation: Test-Comp 2023

Test
Generator

Program
under Test

Test
Specification

Test Suite
(Test Cases)

Test
Validator

Bug
Report

Coverage
Statistics

Fig. 1: Flow of the Test-Comp execution for one test generator (taken from [8])

Table 1: Coverage specifications used in Test-Comp 2023 (similar to 2019–2022)

Formula Interpretation

COVER EDGES(@CALL(reach_error)) The test suite contains at least one test
that executes function reach_error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

the test generator and validates it by executing the program on all test cases:
for bug finding it checks if the bug is exposed and for coverage it reports the
coverage. We use the tool TestCov [23] 2 as test-suite validator.

Test Specification. The specification for testing a program is given to the
test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2023).

The definition init(main()) is used to define the initial states of the program
under test by a call of function main (with no parameters). The definition FQL(f)
specifies that coverage definition f should be achieved. The FQL (FShell query
language [36]) coverage definition COVER EDGES(@DECISIONEDGE) means that all
branches should be covered (typically used to obtain a standard test suite for qual-
ity assurance) and COVER EDGES(@CALL(foo)) means that a call (at least one) to
function foo should be covered (typically used for bug finding). A complete specifi-
cation looks like: COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))).

Table 1 lists the two FQL formulas that are used in test specifications of
Test-Comp 2023; there was no change from 2020 (except that special function
__VERIFIER_error does not exist anymore).

Task-Definition Format 2.0. Test-Comp 2023 used again the task-definition for-
mat in version 2.0.

2 https://gitlab.com/sosy-lab/software/test-suite-validator

311

https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp23/c/properties/coverage-error-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp23/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/software/test-suite-validator

Dirk Beyer

License and Qualification. The license of each participating test generator
must allow its free use for reproduction of the competition results. Details on
qualification criteria can be found in the competition report of Test-Comp 2019 [9].

3 Categories and Scoring Schema

Benchmark Programs. The input programs were taken from the largest and
most diverse open-source repository of software-verification and test-generation
tasks 3, which is also used by SV-COMP [13]. As in 2020 and 2021, we se-
lected all programs for which the following properties were satisfied (see is-
sue on GitLab 4 and report [9]):

1. compiles with gcc, if a harness for the special methods 5 is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Error

Coverage).

This selection yielded a total of 4 106 test-generation tasks, namely 1 173 tasks
for category Error Coverage and 2 933 tasks for category Code Coverage. The
test-generation tasks are partitioned into categories, which are listed in Ta-
bles 6 and 7 and described in detail on the competition web site.6 Figure 2
illustrates the category composition.

Category Error-Coverage. The first category is to show the abilities to discover
bugs. The benchmark set consists of programs that contain a bug. We produce for
every tool and every test-generation task one of the following scores: 1 point, if the
validator succeeds in executing the program under test on a generated test case that
explores the bug (i.e., the specified function was called), and 0 points, otherwise.

Category Branch-Coverage. The second category is to cover as many branches
of the program as possible. The coverage criterion was chosen because many test
generators support this standard criterion by default. Other coverage criteria
can be reduced to branch coverage by transformation [35]. We produce for every
tool and every test-generation task the coverage of branches of the program (as
reported by TestCov [23]; a value between 0 and 1) that are executed for the
generated test cases. The score is the returned coverage.

Ranking. The ranking was decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on the run time,
which is the total CPU time over all test-generation tasks. Opt-out from categories
was possible and scores for categories were normalized based on the number of
tasks per category (see competition report of SV-COMP 2013 [6], page 597).
3 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
4 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/774
5 https://test-comp.sosy-lab.org/2023/rules.php
6 https://test-comp.sosy-lab.org/2023/benchmarks.php

312

https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/774
https://test-comp.sosy-lab.org/2023/rules.php
https://test-comp.sosy-lab.org/2023/benchmarks.php

Software Testing: 5th Comparative Evaluation: Test-Comp 2023

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

XCSP

Hardware

BusyBox-MemSafety

DeviceDriversLinux64-ReachSafety

Cover-Error

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

XCSP

Combinations

BusyBox-MemSafety

DeviceDriversLinux64-ReachSafety

SQLite-MemSafety

MainHeap

Cover-Branches

C-Overall

Fig. 2: Category structure for Test-Comp 2023; compared to Test-Comp 2022,
sub-category Hardware was added to main category Cover-Error

4 Reproducibility

We followed the same competition workflow that was described in detail in
the previous competition report (see Sect. 4, [10]). All major components that
were used for the competition were made available in public version-control

313

Dirk Beyer

(a) Test-Generation Tasks

(e) Test-Generation Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Tester Archives

(f) Test Suite

Fig. 3: Benchmarking components of Test-Comp and competition’s execution flow
(same as for Test-Comp 2020)

Table 2: Publicly available components for reproducing Test-Comp 2023

Component Fig. 3 Repository Version

Test-Generation Tasks (a) gitlab.com/sosy-lab/benchmarking/sv-benchmarks testcomp23
Benchmark Definitions (b) gitlab.com/sosy-lab/test-comp/bench-defs testcomp23
Tool-Info Modules (c) github.com/sosy-lab/benchexec 3.16
Test-Generator Archives (d) gitlab.com/sosy-lab/test-comp/archives-2023 testcomp23
Benchmarking (e) github.com/sosy-lab/benchexec 3.16
Test-Suite Format (f) gitlab.com/sosy-lab/software/test-format testcomp23
Continuous Integration (f) gitlab.com/sosy-lab/software/coveriteam 1.0

Table 3: Artifacts published for Test-Comp 2023

Content DOI Reference

Test-Generation Tasks 10.5281/zenodo.7627783 [15]
Competition Results 10.5281/zenodo.7701122 [14]
Test-Suite Generators 10.5281/zenodo.7701118 [16]
Test Suites (Witnesses) 10.5281/zenodo.7701126 [17]
BenchExec 10.5281/zenodo.7612021 [52]
CoVeriTeam 10.5281/zenodo.7635975 [21]

repositories. An overview of the components that contribute to the reproducible
setup of Test-Comp is provided in Fig. 3, and the details are given in Table 2.
We refer to the report of Test-Comp 2019 [9] for a thorough description of all
components of the Test-Comp organization and how we ensure that all parts
are publicly available for maximal reproducibility.

In order to guarantee long-term availability and immutability of the test-
generation tasks, the produced competition results, and the produced test suites,
we also packaged the material and published it at Zenodo (see Table 3).

The competition used CoVeriTeam [20] 7 again to provide participants access
to execution machines that are similar to actual competition machines. The

7 https://gitlab.com/sosy-lab/software/coveriteam

314

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/tree/testcomp23/c
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/tree/testcomp23/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/3.16/benchexec/tools
https://gitlab.com/sosy-lab/test-comp/archives-2023/tree/testcomp23/2023
https://github.com/sosy-lab/benchexec/tree/3.16
https://gitlab.com/sosy-lab/software/test-format/-/tree/testcomp23
https://gitlab.com/sosy-lab/software/coveriteam/tree/1.0
https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7701122
https://doi.org/10.5281/zenodo.7701118
https://doi.org/10.5281/zenodo.7701126
https://github.com/sosy-lab/benchexec
https://doi.org/10.5281/zenodo.7612021
https://gitlab.com/sosy-lab/software/coveriteam
https://doi.org/10.5281/zenodo.7635975
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam

Software Testing: 5th Comparative Evaluation: Test-Comp 2023

Table 4: Competition candidates with tool references and representing jury members;
new indicates first-time participants, ∅ indicates hors-concours participation

Tester Ref. Jury member Affiliation

CoVeriTest [19,39] Marie-Christine Jakobs TU Darmstadt, Germany
ESBMC-kind new [33,32] Rafael Sá Menezes U. of Manchester, UK
FuSeBMC [3,4] Kaled Alshmrany U. of Manchester, UK
FuSeBMC_IA new [1,2] Mohannad Aldughaim U. of Manchester, UK
HybridTiger [26,47] (hors concours) –
KLEE [27,28] (hors concours) –
Legion [42,43] (hors concours) –
Legion/SymCC [43] Gidon Ernst LMU Munich, Germany
PRTest [22,41] Thomas Lemberger QAware GmbH, Germany
Symbiotic [29,30] Marek Trtík Masaryk U., Brno, Czechia
TracerX [37,38] Joxan Jaffar National U. of Singapore, Singapore
VeriFuzz [45] Raveendra Kumar M. Tata Consultancy Services, India
WASP-C new [44] Filipe Marques INESC-ID, Lisbon, Portugal

competition report of SV-COMP 2022 provides a description on reproducing
individual results and on trouble-shooting (see Sect. 3, [12]).

5 Results and Discussion

This section represents the results of the competition experiments. The report
shall help to understanding the state of the art and the advances in fully au-
tomatic test generation for whole C programs, in terms of effectiveness (test
coverage, as accumulated in the score) and efficiency (resource consumption
in terms of CPU time). All results mentioned in this article were inspected
and approved by the participants.

Participating Test-Suite Generators. Table 4 provides an overview of the
participating test generators and references to publications, as well as the team
representatives of the jury of Test-Comp 2023. (The competition jury consists
of the chair and one member of each participating team.) An online table with
information about all participating systems is provided on the competition web
site.8 Table 5 lists the features and technologies that are used in the test generators.

There are test generators that did not actively participate (e.g., tester archives
taken from last year) and that are not included in rankings. Those are called
hors-concours participations and the tool names are labeled with a symbol (∅).

Computing Resources. The computing environment and the resource limits
were the same as for Test-Comp 2020 [8], except for the upgraded operating system:
Each test run was limited to 8 processing units (cores), 15GB of memory, and
15min of CPU time. The test-suite validation was limited to 2 processing units,

8 https://test-comp.sosy-lab.org/2023/systems.php

315

https://cpachecker.sosy-lab.org/
http://esbmc.org/
https://github.com/kaled-alshmrany/FuSeBMC
https://github.com/Mohannad-Aldughaim/FuSeBMC_IA
https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp20
https://klee.github.io
https://github.com/Alan32Liu/Legion/tree/TestComp2020-ASE2020v3
https://github.com/gernst/legion-symcc
https://gitlab.com/sosy-lab/software/prtest
https://github.com/staticafi/symbiotic
https://tracer-x.github.io/
https://github.com/wasp-platform/wasp
https://test-comp.sosy-lab.org/2023/systems.php

Dirk Beyer

Table 5: Technologies and features that the test generators used

Tester B
ou

n
d
ed

M
od

el
C
h
ec
ki
n
g

C
E
G
A
R

E
vo

lu
ti
on

ar
y
A
lg
or
it
h
m
s

E
xp

li
ci
t-
V
al
u
e
A
n
al
ys
is

F
lo
at
in
g-
P
oi
nt

A
ri
th
m
et
ic
s

G
u
id
an

ce
by

C
ov
er
ag
e
M
ea
su
re
s

P
re
d
ic
at
e
A
b
st
ra
ct
io
n

R
an

d
om

E
xe
cu

ti
on

S
ym

b
ol
ic

E
xe
cu

ti
on

T
ar
ge
te
d
In
p
u
t
G
en

er
at
io
n

A
lg
or
it
h
m

S
el
ec
ti
on

P
or
tf
ol
io

CoVeriTest 3 3 3 3 3

ESBMC-kind new 3 3 3

FuSeBMC 3 3 3 3 3

FuSeBMC_IA new 3 3 3 3 3

HybridTiger 3 3 3 3

KLEE 3 3 3

Legion 3 3 3 3 3 3

Legion/SymCC 3 3 3 3 3 3

PRTest 3 3

Symbiotic 3 3 3 3 3

TracerX 3 3 3 3

VeriFuzz 3 3 3 3 3 3

WASP-C new 3 3 3

7GB of memory, and 5min of CPU time. The machines for running the experiments
are part of a compute cluster that consists of 168 machines; each test-generation
run was executed on an otherwise completely unloaded, dedicated machine, in
order to achieve precise measurements. Each machine had one Intel Xeon E3-
1230 v5 CPU, with 8 processing units each, a frequency of 3.4GHz, 33GB of
RAM, and a GNU/Linux operating system (x86_64-linux, Ubuntu 22.04 with
Linux kernel 5.15). We used BenchExec [24] to measure and control computing
resources (CPU time, memory, CPU energy) and VerifierCloud9 to distribute,
install, run, and clean-up test-case generation runs, and to collect the results. The
values for time and energy are accumulated over all cores of the CPU. To measure
the CPU energy, we use CPU Energy Meter [25] (integrated in BenchExec [24]).
Further technical parameters of the competition machines are available in the
repository which also contains the benchmark definitions. 10

9 https://vcloud.sosy-lab.org
10 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp22

316

https://cpachecker.sosy-lab.org/
http://esbmc.org/
https://github.com/kaled-alshmrany/FuSeBMC
https://github.com/Mohannad-Aldughaim/FuSeBMC_IA
https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp20
https://klee.github.io
https://github.com/Alan32Liu/Legion/tree/TestComp2020-ASE2020v3
https://github.com/gernst/legion-symcc
https://gitlab.com/sosy-lab/software/prtest
https://github.com/staticafi/symbiotic
https://tracer-x.github.io/
https://github.com/wasp-platform/wasp
https://github.com/sosy-lab/benchexec
https://vcloud.sosy-lab.org
https://github.com/sosy-lab/benchexec
https://vcloud.sosy-lab.org
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp22

Software Testing: 5th Comparative Evaluation: Test-Comp 2023

Table 6: Quantitative overview over all results; empty cells mark opt-outs; new indicates
first-time participants, ∅ indicates hors-concours participation

Tester

C
ov
er
-E
rr
or

11
73

ta
sk
s

C
ov
er
-B

ra
n
ch
es

29
33

ta
sk
s

O
ve
ra
ll

41
06

ta
sk
s

CoVeriTest 581 1509 2073
ESBMC-kind new 289
FuSeBMC 936 1678 2813
FuSeBMC_IA new 908 1538 2666
HybridTiger 463 1170 1629
KLEE 721 999 1961
Legion 838
Legion/SymCC 349 1027 1329
PRTest 222 770 927
Symbiotic 644 1430 2128
TracerX 1400
VeriFuzz 909 1546 2673
WASP-C new 570 1103 1770

One complete test-generation execution of the competition consisted of
50 445 single test-generation runs in 25 run sets (tester × property). The to-
tal CPU time was 315 days and the consumed energy 89.9 kWh for one complete
competition run for test generation (without validation). Test-suite validation
consisted of 53 378 single test-suite validation runs in 26 run sets (validator × prop-
erty). The total consumed CPU time was 19 days. Each tool was executed several
times, in order to make sure no installation issues occur during the execution. In-
cluding preruns, the infrastructure managed a total of 254 445 test-generation runs
(consuming 3.0 years of CPU time). The prerun test-suite validation consisted of
338 710 single test-suite validation runs in 152 run sets (validator × property) (con-
suming 63 days of CPU time). The CPU energy was not measured during preruns.

New Test-Suite Generators. To acknowledge the test-suite generators that
participated for the first time in Test-Comp, we list the test generators that
participated for the first time. ESBMC-kind new, FuSeBMC_IA new, and WASP-
C new participated for the first time in Test-Comp 2023, and Legion/SymCC
participated first in Test-Comp 2022. Table 8 reports also the number of sub-
categories in which the tools participated.

317

https://cpachecker.sosy-lab.org/
http://esbmc.org/
https://github.com/kaled-alshmrany/FuSeBMC
https://github.com/Mohannad-Aldughaim/FuSeBMC_IA
https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp20
https://klee.github.io
https://github.com/Alan32Liu/Legion/tree/TestComp2020-ASE2020v3
https://github.com/gernst/legion-symcc
https://gitlab.com/sosy-lab/software/prtest
https://github.com/staticafi/symbiotic
https://tracer-x.github.io/
https://github.com/wasp-platform/wasp
http://esbmc.org/
https://github.com/Mohannad-Aldughaim/FuSeBMC_IA
https://github.com/wasp-platform/wasp
https://github.com/wasp-platform/wasp
https://github.com/gernst/legion-symcc

Dirk Beyer

Table 7: Overview of the top-three test generators for each category (measurement
values for CPU time and energy rounded to two significant digits)

Rank Tester Score CPU CPU
Time Energy
(in h) (in kWh)

Cover-Error
1 FuSeBMC 936 72 0.96
2 VeriFuzz 909 4.5 0.049
3 FuSeBMC_IA new 908 37 0.48

Cover-Branches
1 FuSeBMC 1678 720 9.2
2 VeriFuzz 1546 730 9.1
3 FuSeBMC_IA new 1538 470 6.0

Overall
1 FuSeBMC 2813 790 10
2 VeriFuzz 2673 730 9.2
3 FuSeBMC_IA new 2666 500 6.5

Table 8: New test-suite generators in Test-Comp 2022 and Test-Comp 2023;
column ‘Sub-categories’ gives the number of executed categories

Tester Language First Year Sub-categories

ESBMC-kind new C 2023 14
FuSeBMC_IA new C 2023 30
WASP-C new C 2023 30

Legion/SymCC C 2022 16

Quantitative Results. The quantitative results are presented in the same
way as last year: Table 6 presents the quantitative overview of all tools and all
categories. The head row mentions the category and the number of test-generation
tasks in that category. The tools are listed in alphabetical order; every table
row lists the scores of one test generator. We indicate the top three candidates
by formatting their scores in bold face and in larger font size. An empty table
cell means that the test generator opted-out from the respective main category
(perhaps participating in subcategories only, restricting the evaluation to a specific
topic). More information (including interactive tables, quantile plots for every
category, and also the raw data in XML format) is available on the competition
web site 11 and in the results artifact (see Table 3). Table 7 reports the top three
test generators for each category. The consumed run time (column ‘CPU Time’)
is given in hours and the consumed energy (column ‘Energy’) is given in kWh.

11 https://test-comp.sosy-lab.org/2023/results

318

https://github.com/kaled-alshmrany/FuSeBMC
https://github.com/Mohannad-Aldughaim/FuSeBMC_IA
https://github.com/kaled-alshmrany/FuSeBMC
https://github.com/Mohannad-Aldughaim/FuSeBMC_IA
https://github.com/kaled-alshmrany/FuSeBMC
https://github.com/Mohannad-Aldughaim/FuSeBMC_IA
http://esbmc.org/
https://github.com/Mohannad-Aldughaim/FuSeBMC_IA
https://github.com/wasp-platform/wasp
https://github.com/gernst/legion-symcc
https://test-comp.sosy-lab.org/2023/results

Software Testing: 5th Comparative Evaluation: Test-Comp 2023

2019 2020 2021 2022 2023
0

5

10

15

9

4
2

1 3

6
9

11 10

Year

E
va
lu
at
ed

te
st

ge
ne

ra
to
rs

Fig. 4: Number of evaluated test generators for each year (top: number of first-time
participants; bottom: previous year’s participants)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500

M
in

.
n
u
m

b
e
r

o
f

te
st

 t
a
sk

s

Cumulative score

CoVeriTest
FuSeBMC

FuSeBMC-IA
HybridTiger

KLEE
Legion/SymCC

PRTest
Symbiotic

VeriFuzz
WASP-C

Fig. 5: Quantile functions for category Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by test-generation runs below a
certain number of test-generation tasks (y-coordinate). More details were given
previously [9]. The graphs are decorated with symbols to make them better
distinguishable without color.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [24] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The web site 11 and the results
artifact (Table 3) include such a plot for each category; as example, we show
the plot for category Overall (all test-generation tasks) in Fig. 5. We had 11 test
generators participating in category Overall, for which the quantile plot shows
the overall performance over all categories (scores for meta categories are nor-
malized [6]). A more detailed discussion of score-based quantile plots for testing
is provided in the Test-Comp 2019 competition report [9].

319

Dirk Beyer

6 Conclusion

The Competition on Software Testing took place for the 5th time and provides
an overview of fully-automatic test-generation tools for C programs. A total of
13 test-suite generators was compared (see Fig. 4 for the participation numbers and
Table 4 for the details). This off-site competition uses a benchmark infrastructure
that makes the execution of the experiments fully-automatic and reproducible.
Transparency is ensured by making all components available in public repositories
and have a jury (consisting of members from each team) that oversees the process.
All test suites were validated by the test-suite validator TestCov [23] to measure
the coverage. The results of the competition are presented at the 26th International
Conference on Fundamental Approaches to Software Engineering at ETAPS 2023.

Data-Availability Statement. The test-generation tasks and results of the com-
petition are published at Zenodo, as described in Table 3. All components and data
that are necessary for reproducing the competition are available in public version
repositories, as specified in Table 2. For easy access, the results are presented also
online on the competition web site https://test-comp.sosy-lab.org/2023/results.

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) — 418257054 (Coop).

References

1. Aldughaim, M., Alshmrany, K.M., Gadelha, M.R., de Freitas, R., Cordeiro, L.C.:
FuSeBMC_IA: Interval analysis and methods for test-case generation (competition
contribution). In: Proc. FASE. LNCS 13991, Springer (2023)

2. Aldughaim, M., Alshmrany, K.M., Mustafa, M., Cordeiro, L.C., Stancu, A.: Bounded
model checking of software using interval methods via contractors. arXiv/CoRR
2012(11245) (December 2020). https://doi.org/10.48550/arXiv.2012.11245

3. Alshmrany, K., Aldughaim, M., Cordeiro, L., Bhayat, A.: FuSeBMC v.4: Smart seed
generation for hybrid fuzzing (competition contribution). In: Proc. FASE. pp. 336–
340. LNCS 13241, Springer (2022). https://doi.org/10.1007/978-3-030-99429-7_19

4. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC:
An energy-efficient test generator for finding security vulnerabili-
ties in C programs. In: Proc. TAP. pp. 85–105. Springer (2021).
https://doi.org/10.1007/978-3-030-79379-1_6

5. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

6. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

7. Beyer, D.: Competition on software testing (Test-Comp). In:
Proc. TACAS (3). pp. 167–175. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_11

320

https://gitlab.com/sosy-lab/software/test-suite-validator/
https://test-comp.sosy-lab.org/2023/results
http://gepris.dfg.de/gepris/projekt/418257054
https://doi.org/10.48550/arXiv.2012.11245
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-030-17502-3_11

Software Testing: 5th Comparative Evaluation: Test-Comp 2023

8. Beyer, D.: Second competition on software testing: Test-Comp
2020. In: Proc. FASE. pp. 505–519. LNCS 12076, Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_25

9. Beyer, D.: First international competition on software testing (Test-Comp
2019). Int. J. Softw. Tools Technol. Transf. 23(6), 833–846 (December 2021).
https://doi.org/10.1007/s10009-021-00613-3

10. Beyer, D.: Status report on software testing: Test-Comp 2021.
In: Proc. FASE. pp. 341–357. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_17

11. Beyer, D.: Advances in automatic software testing: Test-Comp
2022. In: Proc. FASE. pp. 321–335. LNCS 13241, Springer (2022).
https://doi.org/10.1007/978-3-030-99429-7_18

12. Beyer, D.: Progress on software verification: SV-COMP 2022. In:
Proc. TACAS (2). pp. 375–402. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_20

13. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: Proc. TACAS (2). LNCS , Springer (2023)

14. Beyer, D.: Results of the 5th Intl. Competition on Software Testing (Test-Comp
2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7701122

15. Beyer, D.: SV-Benchmarks: Benchmark set for softwware verification
and testing (SV-COMP 2023 and Test-Comp 2023). Zenodo (2023).
https://doi.org/10.5281/zenodo.7627783

16. Beyer, D.: Test-suite generators and validator of the 5th Intl. Com-
petition on Software Testing (Test-Comp 2023). Zenodo (2023).
https://doi.org/10.5281/zenodo.7701118

17. Beyer, D.: Test suites from test-generation tools (Test-Comp 2023). Zenodo (2023).
https://doi.org/10.5281/zenodo.7701126

18. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

19. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based
testing. In: Proc. FASE. pp. 389–408. LNCS 11424, Springer (2019).
https://doi.org/10.1007/978-3-030-16722-6_23

20. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

21. Beyer, D., Kanav, S., Wachowitz, H.: Coveriteam Release 1.0. Zenodo (2023).
https://doi.org/10.5281/zenodo.7635975

22. Beyer, D., Lemberger, T.: Software verification: Testing vs. model
checking. In: Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017).
https://doi.org/10.1007/978-3-319-70389-3_7

23. Beyer, D., Lemberger, T.: TestCov: Robust test-suite execution and
coverage measurement. In: Proc. ASE. pp. 1074–1077. IEEE (2019).
https://doi.org/10.1109/ASE.2019.00105

24. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

25. Beyer, D., Wendler, P.: CPU Energy Meter: A tool for energy-aware algorithms
engineering. In: Proc. TACAS (2). pp. 126–133. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_8

321

https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/s10009-021-00613-3
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.7701122
https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7701118
https://doi.org/10.5281/zenodo.7701126
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.5281/zenodo.7635975
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-45237-7_8

Dirk Beyer

26. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel,
S., Beyer, D.: Facilitating reuse in multi-goal test-suite generation for soft-
ware product lines. In: Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015).
https://doi.org/10.1007/978-3-662-46675-9_6

27. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

28. Cadar, C., Nowack, M.: Klee symbolic execution engine in 2019 (competition
contribution). Int. J. Softw. Tools Technol. Transf. 23(6), 867 – 870 (December
2021). https://doi.org/10.1007/s10009-020-00570-3

29. Chalupa, M., Novák, J., Strejček, J.: Symbiotic 8: Parallel and targeted test
generation (competition contribution). In: Proc. FASE. pp. 368–372. LNCS 12649,
Springer (2021). https://doi.org/10.1007/978-3-030-71500-7_20

30. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for mem-
ory safety checking. In: Proc. SPIN. pp. 115–132. Springer (2018).
https://doi.org/10.1007/978-3-319-94111-0_7

31. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

32. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: Esbmc v6.0: Ver-
ifying C programs using k -induction and invariant inference (competition con-
tribution). In: Proc. TACAS (3). pp. 209–213. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_15

33. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (February 2017). https://doi.org/10.1007/s10009-015-0407-9

34. Godefroid, P., Sen, K.: Combining model checking and testing.
In: Handbook of Model Checking, pp. 613–649. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_19

35. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Software Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

36. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you
specify your test suite. In: Proc. ASE. pp. 407–416. ACM (2010).
https://doi.org/10.1145/1858996.1859084

37. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: TracerX: Dynamic symbolic
execution with interpolation (competition contribution). In: Proc. FASE. pp. 530–534.
LNCS 12076, Springer (2020). https://doi.org/10.1007/978-3-030-45234-6_28

38. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Tracer: A symbolic execution
tool for verification. In: Proc. CAV. pp. 758–766. LNCS 7358, Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_61

39. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive time scheduling (compe-
tition contribution). In: Proc. FASE. pp. 358–362. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_18

40. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252

41. Lemberger, T.: Plain random test generation with PRTest (competition contri-
bution). Int. J. Softw. Tools Technol. Transf. 23(6), 871–873 (December 2021).
https://doi.org/10.1007/s10009-020-00568-x

42. Liu, D., Ernst, G., Murray, T., Rubinstein, B.: Legion: Best-first concolic testing
(competition contribution). In: Proc. FASE. pp. 545–549. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_31

322

https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/978-3-030-45234-6_28
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1007/978-3-030-45234-6_31

Software Testing: 5th Comparative Evaluation: Test-Comp 2023

43. Liu, D., Ernst, G., Murray, T., Rubinstein, B.I.P.: Legion: Best-first concolic testing.
In: Proc. ASE. pp. 54–65. IEEE (2020). https://doi.org/10.1145/3324884.3416629

44. Marques, F., Santos, J.F., Santos, N., Adão, P.: Concolic execution for
webassembly (artifact). Dagstuhl Artifacts Series 8(2), 20:1–20:3 (2022).
https://doi.org/10.4230/DARTS.8.2.20

45. Metta, R., Medicherla, R.K., Karmarkar, H.: VeriFuzz: Fuzz centric test generation
tool (competition contribution). In: Proc. FASE. pp. 341–346. LNCS 13241, Springer
(2022). https://doi.org/10.1007/978-3-030-99429-7_20

46. Panichella, S., Gambi, A., Zampetti, F., Riccio, V.: SBST tool competition 2021. In:
Proc. SBST. pp. 20–27. IEEE (2021). https://doi.org/10.1109/SBST52555.2021.00011

47. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking
and domination-based partitioning for efficient multi-goal test-suite generation
(competition contribution). In: Proc. FASE. pp. 520–524. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_26

48. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: A competi-
tor’s perspective, part 2. IEEE Security and Privacy 14(1), 76–81 (2016).
https://doi.org/10.1109/MSP.2016.14

49. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Proc. IJCAR, pp. 367–373. LNCS 8562, Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6_28

50. Sutcliffe, G.: The CADE ATP system competition: CASC. AI Magazine 37(2),
99–101 (2016)

51. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

52. Wendler, P., Beyer, D.: sosy-lab/benchexec: Release 3.16. Zenodo (2023).
https://doi.org/10.5281/zenodo.7612021

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

323

https://doi.org/10.1145/3324884.3416629
https://doi.org/10.4230/DARTS.8.2.20
https://doi.org/10.1007/978-3-030-99429-7_20
https://doi.org/10.1109/SBST52555.2021.00011
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1109/MSP.2016.14
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.5281/zenodo.7612021
http://creativecommons.org/licenses/by/4.0/

	Software Testing: 5th Comparative Evaluation: Test-Comp 2023
	1 Introduction
	2 Definitions, Formats, and Rules
	3 Categories and Scoring Schema
	4 Reproducibility
	5 Results and Discussion
	6 Conclusion
	References

