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Abstract. Given a machine learning (ML) model and a prediction, ex-
planations can be defined as sets of features which are sufficient for the
prediction. In some applications, and besides asking for an explanation,
it is also critical to understand whether sensitive features can occur in
some explanation, or whether a non-interesting feature must occur in all
explanations. This paper starts by relating such queries respectively with
the problems of relevancy and necessity in logic-based abduction. The
paper then proves membership and hardness results for several families
of ML classifiers. Afterwards the paper proposes concrete algorithms for
two classes of classifiers. The experimental results confirm the scalability
of the proposed algorithms.

Keywords: Formal Explainability · Abduction · Abstraction Refine-
ment.

1 Introduction

The remarkable achievements in machine learning (ML) in recent years [12,32,47]
are not matched by a comparable degree of trust. The most promising ML models
are inscrutable in their operation. As a direct consequence, the opacity of ML
models raises distrust in their use and deployment. Motivated by a critical need
for helping human decision makers to grasp the decisions made by ML models,
there has been extensive work on explainable AI (XAI). Well-known examples
include so-called model agnostic explainers or alternatives based on saliency
maps for neural networks [9,50,58,59]. While most XAI approaches do not offer
guarantees of rigor, and so can produce explanations that are unsound given
the underlying ML model, there have been efforts on developing rigorous XAI
approaches over the last few years [40, 54, 63]. Rigorous explainability involves
the computation of explanations, but also the ability to answer a wide range of
related queries [7, 8, 36].

By building on the relationship between explainability and logic-based ab-
duction [25, 30, 40, 61], this paper analyzes two concrete queries, namely feature
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necessity and relevancy. Given an ML classifier, an instance (i.e. point in feature
space and associated prediction) and a target feature, the goal of feature neces-
sity is to decide whether the target feature occurs in all explanations of the given
instance. Under the same assumptions, the goal of feature relevancy is to decide
whether a feature occurs in some explanation of the given instance. This paper
proves a number of complexity results regarding feature necessity and relevancy,
focusing on well-known families of classifiers, some of which are widely used in
ML. Moreover, the paper proposes novel algorithms for deciding relevancy for
two families of classifiers. The experimental results demonstrate the scalability
of the proposed algorithms.

The paper is organized as follows. The notation and definitions used through-
out are presented in Section 2. The problems of feature necessity and relevancy
are studied in Section 3, and example algorithms are proposed in Section 4.
Section 5 presents experimental results for a sample of families of classifiers,
Section 6 relates our contribution with earlier work and Section 7 concludes the
paper.

2 Preliminaries

Complexity classes, propositional logic & quantification. The paper
assumes basic knowledge of computational complexity, namely the classes of
decision problems P, NP and ΣP

2 [6]. The paper also assumes basic knowledge
of propositional logic, including the Boolean satisfiability (SAT) problem for
propositional logic formulas in conjunctive normal form (CNF), and the use of
SAT solvers as oracles for the complexity class NP. The interested reader is
referred to textbooks on these topics [6, 13].

2.1 Classification Problems

Throughout the paper, we will consider classifiers as the underlying ML model.
Classification problems are defined on a set of features (or attributes) F =
{1, . . . ,m} and a set of classes K = {c1, c2, . . . , cK}. Each feature i ∈ F takes
values from a domain Di. Domains are categorical or ordinal, and each domain
can be defined on boolean, integer/discrete or real values. Feature space is defined
as F = D1 ×D2 × . . .×Dm. The notation x = (x1, . . . , xm) denotes an arbitrary
point in feature space, where each xi is a variable taking values from Di. The set
of variables associated with the features is X = {x1, . . . , xm}. Also the notation
v = (v1, . . . , vm) represents a specific point in feature space, where each vi is a
constant representing one concrete value from Di. A classifier C is characterized
by a (non-constant) classification function κ that maps feature space F into the
set of classes K, i.e. κ : F → K. An instance denotes a pair (v, c), where v ∈ F
and c ∈ K, with c = κ(v).
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2.2 Examples of Classifiers

The results presented in the paper apply to a comprehensive range of widely used
classifiers [28, 62]. These include, decision trees (DTs) [18, 42], decision graphs
(DGs) [44] and diagrams (DDs) [1, 68], decision lists (DLs) [38, 60] and sets
(DSs) [19,41], tree ensembles (TEs) [37], including random forests (RFs) [17,43]
and boosted trees (BTs) [29], neural networks (NNs) [56], naive bayes classifiers
(NBCs) [45, 52], classifiers represented with propositional languages, including
deterministic decomposable negation normal form (d-DNNFs) [23, 35] and its
proper subsets, e.g. sentential decision diagrams (SDDs) [22,66] and free binary
decision diagrams (FBDDs) [23,31,68], and also monotonic classifiers. In the rest
of the paper, we will analyze some families of classifiers in more detail.
d-DNNF classifiers. Negation normal form (NNF) is a well-known proposi-
tional language, where the negation operators are restricted to atoms, or inputs.
Any propositional formula can de reduced to NNF in polynomial time. Let the
support of a node be the set of atoms associated with leaves reachable from
the outgoing edges of the node. Decomposable NNF (DNNF) is a restriction of
NNF where the children of AND nodes do not share atoms in their support.
A DNNF circuit is deterministic (referred to as d-DNNF) if any two children
of OR nodes cannot both take value 1 for any assignment to the inputs. Re-
strictions of NNF including DNNF and d-DNNF exhibit important tractability
properties [23]. Besides, we briefly introduce FBDDs which is a proper subset
of d-DNNFs. An FBDD over a set X of Boolean variables is a rooted, directed
acyclic graph comprising two types of nodes: nonterminal and terminal. A non-
terminal node is labeled by a variable xi ∈ X, and has two outgoing edges, one
labeled by 0 and the other by 1. A terminal node is labeled by a 1 or 0, and has
no outgoing edges. For a subgraph rooted at a node labeled with a variable xi,
it represents a boolean function f which is defined by the Shannon expansion:
f = (xi∧f |xi=1)∨(¬xi∧f |xi=0), where f |xi=1 (f |xi=0) denotes the cofactor [16]
of f with respect to xi = 1 (xi = 0). Moreover, any FBDD is read-once, meaning
that each variable is tested at most once on any path from the root node to a
terminal node.
Monotonic classifiers. Monotonic classifiers find a number of important ap-
plications, and have been studied extensively in recent years [26, 48, 65, 70].
Let 4 denote a partial order on the set of classes K. For example, we assume
c1 4 c2 4 . . . cK . Furthermore, we assume that each domain Di is ordered such
that the value taken by feature i is between a lower bound λ(i) and an upper
bound µ(i). Given v1 = (v11, . . . , v1i, . . . , v1m) and v2 = (v21, . . . , v2i, . . . , v2m),
we say that v1 ≤ v2 if ∀(i ∈ F).(v1i ≤ v2i). Finally, a classifier is monotonic if
whenever v1 ≤ v2, then κ(v1) 4 κ(v2).
Running examples. As hinted above, throughout the paper, we will consider
two fairly different families of classifiers, namely classifiers represented with d-
DNNFs and monotonic classifiers.
Example 1. The first example is the d-DNNF classifier C1 shown in Fig. 1. It
represents the boolean function (x1 ∧ (x2 ∨ x4)) ∨ (¬x1 ∧ x3 ∧ x4). The instance
considered throughout the paper is (v1, c1) = ((0, 1, 0, 0), 0).
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(a) Graphical representation of d-DDNF, i.e. κ1

F1 = {1, 2, 3, 4}
D1i = {0, 1}, i = 1, . . . , 4

K1 = {0, 1}

(b) Definition of F1,D1i,K1

IF x1 = 1 ∧ x2 = 1 THEN 1
ELSE IF x1 = 1 ∧ x4 = 1 THEN 1
ELSE IF x3 = 1 ∧ x4 = 1 THEN 1
ELSE 0

(c) Alternative representation of κ1

Fig. 1: Example of d-DDNF classifier

F2 = {1, 2, 3, 4}
D2i = {0, 1}, i = 1, . . . , 4

K2 = {0, 1}

(a) Definition of F2,D2i,K2

κ2(x) =

{
1 if x1 + x2 + x3 ≥ 2

0 otherwise

(b) Definition of κ2

Fig. 2: Example of a monotonic classifier

Example 2. The second running example is the monotonic classifier C2 shown
in Fig. 2. The instance that is considered throughout the paper is (v2, c2) =
((1, 1, 1, 1), 1).

2.3 Formal Explainability

Prime implicant (PI) explanations [63] represent a minimal set of literals (relat-
ing a feature value xi and a constant vi ∈ Di) that are logically sufficient for
the prediction. PI-explanations are related with logic-based abduction, and so
are also referred to as abductive explanations (AXp’s) [54]. AXp’s offer guaran-
tees of rigor that are not offered by other alternative explanation approaches.
More recently, AXp’s have been studied in terms of their computational com-
plexity [7, 10]. There is a growing body of recent work on formal explana-
tions [3–5, 14, 15, 24, 27, 33, 51, 54, 67].

Formally, given v = (v1, . . . , vm) ∈ F, with κ(v) = c, an AXp is any subset-
minimal set X ⊆ F such that,

WAXp(X ) := ∀(x ∈ F).
[∧

i∈X (xi = vi)
]
→(κ(x) = c) (1)

If a set X ⊆ F is not minimal but (1) holds, then X is referred to as a weak
AXp. Clearly, the predicateWAXpmaps 2F into {⊥,>} (or {false, true}). Given
v ∈ F, an AXp X represents an irreducible (or minimal) subset of the features
which, if assigned the values dictated by v, are sufficient for the prediction c,



Feature Relevancy & Necessity 171

i.e. value changes to the features not in X will not change the prediction. We
can use the definition of the predicate WAXp to formalize the definition of the
predicate AXp, also defined on subsets X of F :

AXp(X ) := WAXp(X ) ∧ ∀(X ′ ( X ).¬WAXp(X ′) (2)
The definition of WAXp(X ) ensures that the predicate is monotone. Indeed, if
X ⊆ X ′ ⊆ F , and if X is a weak AXp, then X ′ is also a weak AXp, as the
fixing of more features will not change the prediction. Given the monotonicity
of predicate WAXp, the definition of predicate AXp can be simplified as follows,
with X ⊆ F :

AXp(X ) := WAXp(X ) ∧ ∀(j ∈ X ).¬WAXp(X \ {j}) (3)
This simpler but equivalent definition of AXp has important practical signifi-
cance, in that only a linear number of subsets needs to be checked for, as opposed
to exponentially many subsets in (2). As a result, the algorithms that compute
one AXp are based on (3) [54].
Example 3. From Example 1, and given the instance ((0, 1, 0, 0), 0), we can con-
clude that the prediction will be 0 if features 1 and 3 take value 0, or if features
1 and 4 take value 0. Hence, the AXp’s are {1, 3} and {1, 4}. It is also apparent
that the assignment x2 = 1 bears no relevance on the fact that the prediction is
0.
Example 4. From Example 2, we can conclude that any sum of two variables as-
signed value 1 suffices for the prediction. Hence, given the instance ((1, 1, 1, 1), 1),
the possible AXp’s are {1, 2}, {1, 3}, and {2, 3}. Observe that the definition of
κ2 does not depend on feature 4.

Besides abductive explanations, another commonly studied type of explana-
tions are contrastive or counterfactual explanations [8, 36, 39, 55]. As argued in
related work [36], the duality between abductive and contrastive explanations
implies that for the purpose of the queries studied in this paper, it suffices to
study solely abductive explanations.

3 Feature Relevancy & Necessity: Theory

This section investigates the complexity of feature relevancy and necessity6. We
are interested in membership results, which allow us to devise algorithms for
the target problems. We are also interested in hardness results, which serve to
confirm that the running time complexities of the proposed algorithms are within
reason, given the problem’s complexity.

3.1 Defining Necessity, Relevancy & Irrelevancy

Throughout this section, a classifier C is assumed, with features F , domains Di,
i ∈ F , classes K, a classification function κ : F → K, and a concrete instance
(v, c), v ∈ F, c ∈ K.
6 For the sake of brevity, we opt to only present sketches of some of the proofs.
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Definition 1 (Feature Necessity, Relevancy & Irrelevancy). Let A denote the set
of all AXp’s for a classifier given a concrete instance, i.e. A = {X ⊆ F |AXp(X )},
and let t ∈ F be a target feature. Then, (i) t is necessary if t ∈ ∩X∈AX ; (ii) t is
relevant if t ∈ ∪X∈AX ; and (iii) t is irrelevant if t ∈ F \ ∪X∈AX .

Throughout the remainder of the paper, the problem of deciding feature
necessity is represented by the acronym FNP, and the problem of deciding feature
relevancy is represented by the acronym FRP.
Example 5. As shown earlier, for the d-DNNF classifier of Fig. 1, and given the
instance (v1, c1) = ((0, 1, 0, 0), 0), there exist two AXp’s, i.e. {1, 3} and {1, 4}.
Clearly, feature 1 is necessary, and features 1, 3 and 4 are relevant. In contrast,
feature 2 is irrelevant.
Example 6. For the monotonic classifier of Fig. 2, and given the instance (v2, c2) =
((1, 1, 1, 1), 1), we have argued earlier that there exist three AXp’s, i.e. {1, 2},
{1, 3} and {2, 3}, which allows us to conclude that features 1, 2 and 3 are relevant,
but that feature 4 is irrelevant. In this case, there are no necessary features.

The general complexity of necessity and (ir)relevancy has been studied in
the context of logic-based abduction [25, 30, 61]. Recent uses in explainability
are briefly overviewed in Section 6.

3.2 Feature Necessity

Proposition 2. If deciding WAXp(X ) is in complexity class C, then FNP is in
the complexity class co-C.

Given the known polynomial complexity of deciding whether a set is a weak
AXp for several families of classifiers [54], we then have the following result:
Corollary 3. For DTs, XpG’s7, NBCs, d-DNNF classifiers and monotonic clas-
sifiers, FNP is in P.

3.3 Feature Relevancy: Membership Results

Proposition 4 (Feature Relevancy for DTs [36]). FRP for DTs is in P.
Proposition 5. If deciding WAXp(X ) is in P, then FRP is in NP.

The argument above can also be used for proving the following results.
Corollary 6. For XpG’s, NBCs, d-DNNF classifiers and monotonic classifiers,
FRP is in NP.
Proposition 7. If deciding WAXp(X ) is in NP, then FRP is in ΣP

2 .
Corollary 8. For DLs, DSs, RFs, BTs, and NNs, FRP is in ΣP

2 .
Additional results. The following result will prove useful in designing algo-
rithms for FRP in practice.
Proposition 9. Let X ⊆ F , and let t ∈ X denote some target feature such
that, WAXp(X ) holds and WAXp(X \ {t}) does not hold. Then, for any AXp
Z ⊆ X ⊆ F , it must be the case that t ∈ Z.
7 Explanation graphs (XpG’s) have been proposed to enable the computation of ex-
planations for decision graphs, and (multi-valued) decision diagrams [36].



Feature Relevancy & Necessity 173

3.4 Feature Relevancy: Hardness Results

Proposition 10 (Relevancy for DNF Classifiers [36]). Feature relevancy for a
DNF classifier is ΣP

2 -hard.
Proposition 11. Feature relevancy for monotonic classifiers is NP-hard.
Proof. We say that a CNF is trivially satisfiable if some literal occurs in all
clauses. Clearly, SAT restricted to nontrivial CNFs is still NP-complete. Let Φ
be a not trivially satisfiable CNF on variables x1, . . . , xk. Let N = 2k. Let Φ̃ be
identical to Φ except that each occurrence of a negative literal xi (1 ≤ i ≤ k) is
replaced by xi+k. Thus Φ̃ is a CNF on N variables each of which occur only posi-
tively. Define the boolean classifier κ (on N+1 features) by κ(x0, x1, . . . , xN ) = 1
iff xi = xi+k = 1 for some i ∈ {1, . . . , k} or x0 ∧ Φ̃(x1, . . . , xN ) = 1. To show
that Φ is monotonic we need to show that a ≤ b⇒ κ(a) ≤ κ(b). This follows by
examining the two cases in which κ(a) = 1: if ai = ai+k ∧ a ≤ b, then bi = bi+k,
whereas, if a0 ∧ Φ̃(a1, . . . , aN ) = 1 and a ≤ b, then b0 ∧ Φ̃(b1, . . . , bN ) = 1 (by
positivity of Φ̃), so in both cases κ(b) = 1 ≥ κ(a).

Clearly κ(1N+1) = 1. There are k obvious AXp’s of this prediction, namely
{i, i + k} (1 ≤ i ≤ k). These are minimal by the assumption that Φ is not
trivially satisfiable. This means that no other AXp contains both i and i+ k for
any i ∈ {1, . . . , k}. Suppose that Φ(u) = 1. Let Xu be {0}∪ {i | 1 ≤ i ≤ k ∧ ui =
1} ∪ {i + k | 1 ≤ i ≤ k ∧ ui = 0}. Then Xu is a weak AXp of the prediction
κ(1) = 1. Furthermore Xu does not contain any of the AXp’s {i, i+k}. Therefore
some subset of X is an AXp and clearly this subset must contain feature 0. Thus
if Φ is satisfiable, then there is an AXp which contains 0.

We now show that the converse also holds. If X is an AXp of κ(1N+1) = 1
containing 0, then it cannot also contain any of the pairs i, i + k (1 ≤ i ≤ k),
otherwise we could delete 0 and still have an AXp. We will show that this implies
that we can build a satisfying assignment u for Φ. Consider first v = (v0, . . . , vN )
defined by vi = 1 if i ∈ X (0 ≤ i ≤ N) and vi+k = 1 if neither i nor i+k belongs
to X (1 ≤ i ≤ k), and vi = 0 otherwise (1 ≤ i ≤ N). Then κ(v) = 1 by definition
of an AXp, since v agrees with the vector 1 on all features in X . We can also
note that v0 = 1 since 0 ∈ X . Since X does not contain i and i+ k (1 ≤ i ≤ k),
it follows that vi 6= vi+k. Now let ui = 1 iff i ∈ X ∧ 1 ≤ i ≤ k. It is easy to verify
that Φ(u) = Φ̃(v) = κ(v) = 1.

Thus, determining whether κ(1N+1) = 1 has an AXp containing the feature
0 is equivalent to testing the satisfiability of Φ. It follows that FRP is NP-hard
for monotonic classifiers by this polynomial reduction from SAT.
Proposition 12. Relevancy for FBDD classifiers is NP-hard.
Proof. Let ψ be a CNF formula defined on a variable set X = {x1, . . . , xm} and
with clauses {ω1, . . . , ωn}. We aim to construct an FBDD classifier G (represent-
ing a classification function κ) based on ψ and a target variable in polynomial
time, such that: ψ is SAT iff for κ there is an AXp containing this target variable.

For any literal lj ∈ ωi, replace lj with lij . Let ψ′ = {ω′1, . . . , ω′n} denote the
resulting CNF formula defined on the new variables {x11, . . . , x1m, . . . xn1 , . . . , xnm}.
For each original variable xj , let I+j and I−j denote the indices of clauses con-
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taining literal xj and ¬xj , respectively. So if i ∈ I+j , then xij ∈ ω′i, if i ∈ I
−
j , then

¬xij ∈ ω′i. To build an FBDD D from ψ′: 1) build an FBDD Di for each ω′i; 2)
replace the terminal node 1 of Di with the root node of Di+1; D is read-once be-
cause each variable xij occurs only once in ψ′. Satisfying a literal xij ∈ ω′i means
xj = 1, while satisfying a literal ¬xkj ∈ ω′k means xj = 0. If both xij and ¬xkj are
satisfied, then it means we pick inconsistent values for the variable xj , which is
unacceptable. Let us define φ to capture inconsistent values for any variable xj :

φ :=
∨

1≤j≤m

((∨
i∈I+j

xij

)
∧
(∨

k∈I−j
¬xkj

))
(4)

If I+j = ∅, then let
(∨

i∈I+j
xij

)
= 0. If I−j = ∅, then let

(∨
k∈I−j

¬xkj
)

= 0.
Any true point of φ means we pick inconsistent values for some variable xj , so
it represents an unacceptable point of ψ. To avoid such inconsistency, one needs
to at least falsify either

∨
i∈I+j

xij or
∨
k∈I−j

¬xkj for each variable xj . To build

an FBDD G from φ: 1) build FBDDs G+
j and G−j for

∨
i∈I+j

xij and
∨
k∈I−j

¬xkj ,
respectively; 2) replace the terminal node 1 of G+

j with the root node of G−j , let
Gj denote the resulting FBDD; 3) replace the terminal 0 of Gj with the root
node of Gj+1; G is read-once because each variable xij occurs only once in φ.

Create a root node labeled x00, link its 1-edge to the root of D, 0-edge to
the root of G. The resulting graph G is an FBDD representing κ := (x00 ∧ ψ′) ∨
(¬x00∧φ), κ is a boolean classifier defined on {x00, x11, . . . , xnm} and x00 is the target
variable. The number of nodes of G is O(n×m). Let I = {(0, 0), (1, 1), . . . (n,m)}
denote the set of variable indices, for variable xij , (i, j) ∈ I.

Pick an instance v = {v00 , . . . , vij , . . . } satisfying every literal of ψ′ (i.e. vij = 1

and vkj = 0 for xij ,¬xkj ∈ ψ′) and such that v00 = 1, then ψ′(v) = 1, and so
κ(v) = 1. Suppose X ⊆ I is an AXp of v: 1) If {(i, j), (k, j)} ⊆ X for some
variable xj , where i ∈ I+j and k ∈ I−j , then for any point u of κ such that
uij = vij for any (i, j) ∈ X , we have κ(u) = 1 and φ(u) = 1. Moreover, if u sets
u00 = 1, then κ(u) = 1 implies ψ′(u) = 1, else if u sets u00 = 0, then κ(u) = 1
because of φ(u) = 1. κ(u) = 1 regardless the value of u00, so (0, 0) 6∈ X . 2) If
{(i, j), (k, j)} 6⊆ X for any variable xj , where i ∈ I+j and k ∈ I−j , then for some
point u of κ such that uij = vij for any (i, j) ∈ X , we have φ(u) 6= 1, in this case
κ(u) = 1 implies ψ′(u) = 1, besides, any such u must set u00 = 1, so (0, 0) ∈ X .

If case 2) occurs, then ψ is satisfiable. (a satisfying assignment is xj = 1 iff
∃i ∈ I+j s.t. (i, j) ∈ X ). If case 2) never occurs, then ψ is unsatisfiable. It follows
that FRP is NP-hard for FBDD classifiers by this polynomial reduction from
SAT.
Corollary 13. Relevancy for d-DNNF classifiers is NP-hard.

4 Feature Relevancy: Example Algorithms

This section details two methods for FRP. One method decides feature relevancy
for d-DNNF classifiers, whereas the other method decides feature relevancy for
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Table 1: Encoding for deciding whether there is a weak AXp including feature t.

Conditions Constraints Fml #

Leaf(j), Feat(j, i), Sat(Lit(j), vi) nkj (1.1)

Leaf(j), Feat(j, i),¬Sat(Lit(j), vi), i = k nkj (1.2)

Leaf(j), Feat(j, i),¬Sat(Lit(j), vi), i 6= k nkj ↔¬si (1.3)

NonLeaf(j),Oper(j) = ∨ nkj ↔
∨
l∈children(j) n

k
l (1.4)

NonLeaf(j),Oper(j) = ∧ nkj ↔
∧
l∈children(j) n

k
l (1.5)

κ(v) = 0 ¬n0
1 (1.6)

κ(v) = 0 si↔ni1 (1.7)

st (1.8)

arbitrary monotonic classifiers. Based on Proposition 2 and Corollary 3, existing
algorithm for computing one AXp [35, 36, 52, 53] can be used to decide feature
necessity. Hence, there is no need for devising new algorithms. Additionally, the
weak AXp returned from the proposed methods (if it exist) can be fed (as a
seed) into the algorithms of computing one AXp [35, 53] to extract one AXp in
polynomial time.

4.1 Relevancy for d-DNNF Classifiers

This section details a propositional encoding that decides feature relevancy for
d-DNNFs. The encoding follows the approach described in the proof of Proposi-
tion 9, and comprises two copies (C0 and Ct) of the same d-DNNF classifier C,
C0 encodes WAXp(X ) (i.e. the prediction of κ remains unchanged), Ct encodes
¬WAXp(X \ {t}) (i.e. the prediction of κ changes). The encoding is polynomial
in the size of classifier’s representation.

The encoding is applicable to the case κ(x) = 0. The case κ(x) = 1 can
be transformed to ¬κ(x) = 0, so we assume both d-DNNF C and its negation
¬C are given. To present the constraints included in this encoding, we need to
introduce some auxiliary boolean variables and predicates.
1. si, 1 ≤ i ≤ m. si is a selector such that si = 1 iff feature i is included in a

weak AXp candidate X .
2. nkj , 1 ≤ j ≤ |C| and 0 ≤ k ≤ m. nkj is the indicator of a node j of d-DNNF C

for replica k. The indicator for the root node of k-th replica is nk1 . Moreover,
the semantics of nkj is nkj = 1 iff the sub-d-DNNF rooted at node j in k-th
replica is consistent.

3. Leaf(j) = 1 if the node j is a leaf node.
4. NonLeaf(j) = 1 if the node j is a non-leaf node.
5. Feat(j, i) = 1 if the leaf node j is labeled with feature i.
6. Sat(Lit(j), vi) = 1 if for leaf node j, the literal on feature i is satisfied by vi.
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The encoding is summarized in Table 1. As literals are d-DNNF leafs, the values
of the selector variables only affect the values of the indicator variables of leaf
nodes. Constraint (1.1) states that for any leaf node j whose literal is consis-
tent with the given instance, its indicator nkj is always consistent regardless of
the value of si. On the contrary, constraint (1.3) states that for any leaf node j
whose literal is inconsistent with the given instance, its indicator nkj is consistent
iff feature i is not picked, in other words, feature i can take any value. Because
replica k (k > 0) is used to check the necessity of including feature k in X , we
assume the value of the local copy of selector sk is 0 in replica k. In this case,
as defined in constraint (1.2), even though leaf node j labeled feature k has a
literal that is inconsistent with the given instance, its indicator nkj is consistent.
Constraint (1.4) defines the indicator for an arbitrary ∨ node j. Constraint (1.5)
defines the indicator for an arbitrary ∧ node j. Together, these constraints de-
clare how the consistency is propagated through the entire d-DNNF. Constraint
(1.6) states that the prediction of the d-DNNF classifier C remains 0 since the
selected features form a weak AXp. Constraint (1.7) states that if feature i is
selected, then removing it will change the prediction of C. Finally, constraint
(1.8) indicates that feature t must be included in X .
Example 7. Given the d-DNNF classifier of Fig. 1 and the instance (v1, c1) =
((0, 1, 0, 0), 0), suppose that the target feature is 3. We have selectors s =
{s1, s2, s3, s4}, and the encoding is as follows:
1. (n0

1↔n02 ∨ n03) ∧ (n0
2↔n04 ∧ n05) ∧ (n0

3↔n06 ∧ n07) ∧ (n0
5↔n08 ∨ n09) ∧

(n0
7↔n010 ∧ n011) ∧ (n0

9↔n012 ∧ n013) ∧ (n0
4↔¬s1) ∧ (n0

6↔ 1) ∧ (n0
8↔ 1) ∧

(n0
10↔¬s3) ∧ (n0

11↔¬s4) ∧ (n0
12↔¬s2) ∧ (n0

13↔¬s4) ∧ (¬n0
1) ∧ (s3)

2. (n3
1↔n32 ∨ n33) ∧ (n3

2↔n34 ∧ n35) ∧ (n3
3↔n36 ∧ n37) ∧ (n3

5↔n38 ∨ n39) ∧
(n3

7↔n310 ∧ n311) ∧ (n3
9↔n312 ∧ n313) ∧ (n3

4↔¬s1) ∧ (n3
6↔ 1) ∧ (n3

8↔ 1) ∧
(n3

10↔ 1) ∧ (n3
11↔¬s4) ∧ (n3

12↔¬s2) ∧ (n3
13↔¬s4) ∧ (s3↔n31)

Given the AXp’s listed in Example 3, by solving these formulas we will either
obtain {1, 3} or {1, 4} as the AXp.

4.2 Relevancy for Monotonic Classifiers

This section describes an algorithm for FRP in the case of monotonic classifiers.
No assumption is made regarding the actual implementation of the monotonic
classifier.
Abstraction refinement for relevancy. The algorithm proposed in this sec-
tion iteratively refines an over-approximation (or abstraction) of all the subsets
S of F such that: i) S is a weak AXp, and ii) any AXp included in S also includes
the target feature t. Formally, the set of subsets of F that we are interested in
is defined as follows:

H = {S ⊆ F |WAXp(S) ∧ ∀(X ⊆ S). [AXp(X )→(t ∈ X )]} (5)
The proposed algorithm iteratively refines the over-approximation of set H until
one can decide with certainty whether t is included in some AXp. The refinement
step involves exploiting counterexamples as these are identified. (The approach is
referred to as abstraction refinement FRP, since the use of abstraction refinement
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can be related with earlier work (with the same name) in model checking [20].) In
practice, it will in general be impractical to manipulate such over-approximation
of set H explicitly. As a result, we use a propositional formula (in fact a CNF
formula) H, such that the models of H encode the subsets of features about
which we have yet to decide whether each of those subsets only contains AXp’s
that include t. (Formula H is defined on a set of Boolean variables {s1, . . . , sm},
where each si is associated with feature i, and assigning si = 1 denotes that
feature i is included in a given set, as described below.) The algorithm then
iteratively refines the over-approximation by filtering out sets of sets that have
been shown not to be included in H, i.e. the so-called counterexamples.

Algorithm 1 summarizes the proposed approach8. Also, Algorithms 2 and 3
provide supporting functions. (For simplicity, the function calls of Algorithms 2
and 3 show the arguments, but not the parameterizations.) Algorithm 1 itera-
tively uses an NP oracle (in fact a SAT solver) to pick (or guess) a subset P of
F , such that any previously picked set is not repeated. Since we are interested
in feature t, we enforce that the picked set must include t. (This step is shown in
lines 4 to 7.) Now, the features not in P are deemed universal, and so we need to
account for the range of possible values that these universal features can take.
For that, we update lower and upper bounds on the predicted classes. For the
features in P we must use the values dictated by v. (This is shown in lines 8
and 9, and it is sound to do because we have monotonicity of prediction.) If the
lower and upper bounds differ, then the picked set is not even a weak AXp, and
so we can safely remove it from further consideration. This is achieved by enforc-
ing that at least one of the non-picked elements is picked in the future. (As can
be observed H is updated with a positive clause that captures this constraint,
as shown in line 11.) If the lower and upper bounds do not differ (i.e. we picked
a weak AXp), and if by allowing t to take any value causes the bounds to differ,
then we know that any AXp in P must include t, and so the algorithm reports P
as a weak AXp that is guaranteed to be included in H. (This is shown in line 14.)
It should be noted that P is not necessarily an AXp. However, by Proposition 9,
P is guaranteed to be a weak AXp such that any of the AXp’s contained in P
must include feature t. From [53], we know that we can extract an AXp from a
weak AXp in polynomial time, and in this case we are guaranteed to always pick
one that includes t. Finally, the last case is when allowing t to take any value
does not cause the lower and upper bounds to change. This means we picked a
set P that is a weak AXp, but not all AXp’s in P include the target feature t
(again due to Proposition 9). As a result, we must prevent the same weak AXp
from being re-picked. This is achieved by requiring that at least one of the picked
features not be picked again in the feature set. (This is shown in line 16. As can
be observed, H is updated with a negative clause that captures this constraint.)

As can be concluded from Algorithm 1 and from the discussion above, Propo-
sition 9 is essential to enable us to use at most two classification queries per iter-

8 Arguments can either represent actual arguments or some parameterization; these
are separated by a semi-colon.
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Algorithm 1 Deciding feature relevancy for a monotonic classifier
Input: Instance v, Target feature t; Feature Set F , Monotonic Classifier κ

1: function DecideRelevant(v, t;F , κ)
2: H ← ∅ . H overapproximates H
3: repeat
4: (outc, s)← SAT(H, st) . Pick candidate weak AXp containing t
5: if outc = true then
6: P ← {i ∈ F | si = 1} . P is the candidate weak AXp, and t ∈ P
7: D ← {i ∈ F | si = 0} . D contains the features not included in P
8: vL ← (vL1

, . . . , vLN
), s.t. vLi

← ITE(si, vi, λ(i)) . vL: LB
9: vU ← (vU1 , . . . , vUN

), s.t. vUi ← ITE(si, vi, µ(i)) . vU : UB
10: if κ(vL) 6= κ(vU ) then . More than one value possible?
11: H ← H∪ newPosCl(D, t) . P is not a weak AXp; block set
12: else . P is a weak AXp
13: if κ(vL[vLt

← λ(t)]) 6= κ(vU [vUt
← µ(t)]) then . t needed?

14: reportWeakAXp(P) . t is included in any AXp X ⊆ P
15: return true
16: H ← H∪ newNegCl(P , t) . t unneeded; block set
17: until outc = false
18: return false . If H becomes inconsistent, then no AXp contains t

Table 2: Example algorithm execution for t = 4

s P D κ(vL) κ(vU ) Decision New clause Line
(0, 0, 0, 1) {4} {1, 2, 3} 0 1 New pos clause (s1 ∨ s2 ∨ s3) 11

(1, 0, 0, 1) {1, 4} {2, 3} 0 1 New pos clause (s2 ∨ s3) 11

(1, 1, 0, 1) {1, 2, 4} {3} 1 1 New neg clause (¬s1 ∨ ¬s2) 16

(1, 0, 1, 1) {1, 3, 4} {2} 1 1 New neg clause (¬s1 ∨ ¬s3) 16

(0, 1, 1, 1) {2, 3, 4} {1} 1 1 New pos clause (s1) 11

— — — – – H inconsistent – 17

ation of the algorithm. If we were to use Proposition 5 instead, then the number
of classification queries would be significantly larger.
Example 8. We consider the monotonic classifier of Fig. 2, with instance (v, c) =
((1, 1, 1, 1), 1). Table 2 summarizes a possible execution of the algorithm when
t = 4. Similarly, Table 3 summarizes a possible execution of the algorithm when
t = 1. (As with the current implementation, and for both examples, the cre-
ation of clauses uses no optimizations.) In general, different executions will be
determined by the models returned by the SAT solver.

With respect to the clauses that are added to H at each step, as shown
in Algorithms 2 and 3, one can envision optimizations (shown lines 2 to 7 in both
algorithms) that heuristically aim at removing features from the given sets, and
so produce shorter (and so logically stronger) clauses. The insight is that any
feature, which can be deemed irrelevant for the condition used for constructing
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Algorithm 2 Create new pos. clause
Input: Set D, t; κ, vL, vU

1: function newPosCl(D, t;κ,vL,vU )
2: for all i ∈ D do
3: (vLi

, vUi
)← (vi, vi)

4: if κ(vL) 6= κ(vU ) then
5: D ← D \ {i}
6: else
7: (vLi

, vUi
)← (λ(i), µ(i))

8: ω ← (∨i∈Dsi)
9: return ω

Algorithm 3 Create new neg. clause
Input: Set P, t; κ, vL, vU

1: function newNegCl(P , t;κ,vL,vU )
2: for all i ∈ P \ {t} do
3: (vLi , vUi)← (λ(i), µ(i))
4: if κ(vL) = κ(vU ) then
5: P ← P \ {i}
6: else
7: (vLi

, vUi
)← (vi, vi)

8: ω ← (∨i∈P\{t}¬si)
9: return ω

Table 3: Example algorithm execution for t = 1

s P D κ(vL) κ(vU ) Decision New clause Line
(1, 0, 0, 0) {1} {2, 3, 4} 0 1 New pos clause (s2 ∨ s3 ∨ s4) 11

(1, 1, 0, 0) {1, 2} {3, 4} 1 1 Weak AXp: {1, 2} – 14

the clause, can be safely removed from the set. (In practice, our experiments
show that the time running the classifier is far larger than the time spent using
the NP oracle to guess sets. Thus, we opted to use the simplest approach for
constructing the clauses, and so reduce the number of classification queries.)

Given the above discussion, we can conclude that the proposed algorithm is
sound, complete and terminating for deciding feature relevancy for monotonic
classifiers. (The proof is straightforward, and it is omitted for the sake of brevity.)
Proposition 14. For a monotonic classifier C, defined on set of features F , with
κ mapping F to K, and an instance (v, c), v ∈ F, c ∈ K, and a target feature
t ∈ F , Algorithm 1 returns a set P ⊆ F iff P is a weak AXp for (v, c), with the
property that any AXp X ⊆ P is such that t ∈ X (i.e. P is a witness for the
relevancy of t).

5 Experimental Results

This section reports the experimental results on FRP for the d-DNNF and mono-
tonic classifiers. The goal is to show that FRP is practically feasible. We opt not
to include experiments for FNP as the complexity of FNP is in P. Besides, to the
best of our knowledges, there is no baseline to compare with. The experiments
were performed on a MacBook Pro with a 6-Core Intel Core i7 2.6 GHz processor
with 16 GByte RAM, running macOS Monterey.

d-DNNF classifiers. For d-DNNFs, we pick its subset SDDs as our target
classifier. SDDs support polynomial time negation, so given a SDD C, one can
obtain its negation ¬C efficiently.
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Table 4: Solving FRP for SDDs. Sub-Columns Avg. #var and Avg. #cls show, re-
spectively, the average number of variables and clauses in a CNF encoding. Column
Runtime reports maximum and average time in seconds for deciding FRP.

Dataset SDD %Y CNF Runtime (s)

#Features #Nodes Avg. #var Avg. #cls Max Avg.

Accidents 415 8863 97 26513 78276 56.4 3.5
Audio 272 7224 88 31148 100972 663.1 22.0
DNA 513 8570 91 29155 91288 86.3 11.0
Jester 254 7857 85 35998 121508 362.1 22.7
KDD 306 8109 99 26402 83480 111.2 2.8

Mushrooms 248 7096 91 23874 82112 266.3 15.8
Netflix 292 7039 94 25520 83324 105.7 4.2
NLTCS 183 6661 100 19817 58494 1.4 0.5
Plants 244 6724 97 25356 84782 950.7 20.6
RCV-1 410 9472 90 33438 102500 153.6 11.2
Retail 341 3704 87 10601 28342 1.8 1.1

Monotonic classifiers. For monotonic classifiers, we consider the Deep Lat-
tice Network (DLN) [70] as our target classifier. Since our approach for mono-
tonic classifier is model-agnostic, it could also be used with other approaches for
learning monotonic classifiers [48, 69] including Min-Max Network [21, 64] and
COMET [65].

Prototype implementation. Prototype implementations of the proposed ap-
proaches were implemented in Python 9. The PySAT toolkit 10 was used for
propositional encodings. Besides, PySAT invokes the Glucose 4 11 SAT solver to
pick a weak AXp candidate. SDDs were loaded by using the PySDD 12package.

Benchmarks & training. For SDDs, we selected 11 datasets from Density
Estimation Benchmark Datasets13. [34, 46, 49]. 11 datasets were used to learn
SDD using LearnSDD [11] (with parameter maxEdges=20000 ). The obtained
SDDs were used as binary classifiers. For DLNs, we selected 5 publicly avail-
able datasets: australian (aus), breast_cancer (b.c.), heart_c, nursery [57] and
pima [2]. We used the three-layer DLN architecture: Calibrators → Random
Ensemble of Lattices → Linear Layer. All calibrators for all models used a fixed
number of 20 keypoints. And the size of all lattices was set to 3.

Results for SDDs. For each SDD, 100 test instances were randomly gener-
ated. All tested instances have prediction 0. (We didn’t pick instances predicted
to class 1 as this requires the compilation of a new classifier which may have dif-

9 https://github.com/XuanxiangHuang/frp-experiment
10 https://github.com/pysathq/pysat
11 https://www.labri.fr/perso/lsimon/glucose/
12 https://github.com/wannesm/PySDD
13 https://github.com/UCLA-StarAI/Density-Estimation-Datasets

https://github.com/XuanxiangHuang/frp-experiment
https://github.com/pysathq/pysat
https://www.labri.fr/perso/lsimon/glucose/
https://github.com/wannesm/PySDD
https://github.com/UCLA-StarAI/Density-Estimation-Datasets
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Table 5: Solving FRP for DLN. Column Runtime reports maximum and average time in
seconds for deciding FRP. Column SAT Time (resp. κ(v) Time) reports maximum and
average time in seconds for SAT solver (resp. calling DLN’s predict function) to decide
FRP. Column SAT Calls (resp. κ(v) Calls) reports maximum and average number of
calls to the SAT solver (resp. to the DLN’s predict function) to decide FRP.

Dataset %Y Runtime (s) SAT Time SAT Calls κ(v) Time κ(v) Calls κ(v)Time
Runtime

Max Avg. Max Avg. Max Avg. Max Avg. Max Avg.

aus 61 40.4 8.31 0.02 0.01 291 65 40.0 8.15 424 98 97.8%
b.c. 45 5.4 1.93 0.00 0.00 53 20 5.3 1.89 78 30 98.0%
heart_c 35 31.5 6.67 0.02 0.00 171 54 31.1 6.52 249 80 97.7%
nursery 45 4.3 1.77 0.00 0.00 31 13 4.3 1.75 73 30 98.6%
pima 74 3.7 1.41 0.00 0.00 33 13 3.7 1.39 47 22 98.4%

ferent size). Besides, for each instance, we randomly picked a feature appearing
in the model. Hence for each SDD, we solved 100 queries. Table 4 summarizes
the results. It can be observed that the number of nodes of the tested SDD is in
the range of 3704 and 9472, and the number of features of tested SDD is in the
range of 183 and 513. Besides, the percentage of examples for which the answer
is Y (i.e. target feature is in some AXp) ranges from 85% to 100%. Regarding
the runtime, the largest running time for solving one query can exceed 15 min-
utes. But the average running time to solve a query is less than 25 seconds, this
highlights the scalability of the proposed encoding.

Results for DLNs. For each DLN, we randomly picked 200 tested instances,
and for each tested instance, we randomly pick a feature. Hence for each DLN, we
solved 200 queries. Table 5 summarizes the results. The use of a SAT solver has a
negligible contribution to the running time. Indeed, for all the examples shown,
at least 97% of the running time is spent running the classifier. This should be
unsurprising, since the number of the iterations of Algorithm 1 never exceeds a
few hundred. (The fraction of a second reported in some cases should be divided
by the number of calls to the SAT solver; hence the time spent in each call to the
SAT solver is indeed negligible.) As can be observed, the percentage of examples
for which the answer is Y (i.e. target feature is in some AXp and the algorithm
returns true) ranges from 35% to 74%. There is no apparent correlation between
the percentage of Y answers and the number of iterations. The large number of
queries accounts for the number of times the DLN is queried by Algorithm 1,
but it also accounts for the number of times the DLN is queried for extracting
an AXp from set P (i.e. the witness) when the algorithm’s answer is true. A
loose upper bound on the number of queries to the classifier is 4×NS+2× |F|,
where NS is the number of SAT calls, and |F| is the number of features. Each
iteration of Algorithm 1 can require at most 4 queries to the classifier. After
reporting P, at most 2 queries per feature will be required to extract the AXp
(see Section 2.3). As can be observed this loose upper bound is respected by the
reported results.
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6 Related Work

The problems of necessity and relevancy have been studied in logic-based abduc-
tion since the early 90s [25, 30, 61]. However, this earlier work did not consider
the classes of (classifier) functions that are considered in this paper.

There has been recent work on explainability queries [7, 8,36]. Some of these
queries can be related with feature relevancy and necessity. For example, rel-
evancy and necessity have been studied with respect to a target class [7, 8],
in contrast with our approach that studies a concrete instance, and so can be
naturally related with earlier work on abduction. Recent work [36] studied fea-
ture relevancy under the name feature membership, but neither d-DNNF nor
monotonic classifiers were discussed. Moreover, [36] only proved the hardness
of deciding feature relevancy for DNF and DT classifiers and did not discuss
the feature necessity problem. The results presented in this paper complement
this work. Besides, the complexity results of FRP and FNP in this paper also
complement the recent work [54] which summarizes the progress of formal expla-
nations. [40] focused on the computation of one arbitrary AXp and one smallest
AXp, which is orthogonal to our work. Computing one AXp does not guarantee
that either FRP or FNP is decided, since the target feature t may not appear in
the computed AXp. [53] studied the computation of one formal explanation and
the enumeration of formal explanations in the case study of monotonic classifiers.
However, neither FRP or FNP were identified and studied.

7 Conclusions

This paper studies the problems of feature necessity and relevancy in the context
of formal explanations of ML classifiers. The paper proves several complexity re-
sults, some related with necessity, but most related with relevancy. Furthermore,
the paper proposes two different approaches for solving relevancy for two families
of classifiers, namely classifiers represented with the d-DNNF propositional lan-
guage, and monotonic classifiers. The experimental results confirm the practical
scalability of the proposed algorithms. Future work will seek to prove hardness
results for the families of classifiers for which hardness is yet unknown.
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