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Abstract. Mungojerrie is an extensible tool that provides a frame-
work to translate linear-time objectives into reward for reinforcement
learning (RL). The tool provides convergent RL algorithms for stochas-
tic games, reference implementations of existing reward translations for
ω-regular objectives, and an internal probabilistic model checker for
ω-regular objectives. This functionality is modular and operates on shared
data structures, which enables fast development of new translation tech-
niques. Mungojerrie supports finite models specified in PRISM and
ω-automata specified in the HOA format, with an integrated command
line interface to external linear temporal logic translators. Mungojerrie
is distributed with a set of benchmarks for ω-regular objectives in RL.

1 Introduction

Reinforcement learning (RL) [41] is a sequential optimization approach where
a decision maker learns to optimally resolve a sequence of choices based on
feedback received from the environment. This feedback often takes the form of
rewards and punishments proportional to the fitness of the decisions taken by
the agent (or their effects) as judged by the environment towards some higher-
level objectives. We call such objectives learning objectives. RL is inspired by the
way dopamine-driven organisms latch on to past rewarding actions and hence,
historically, RL adopted a myopic way of looking at the reward sequences in the
form of the discounted-sum of rewards, where the discount factor controls the
weight placed toward future rewards. More recently, other forms of reward aggre-
gation, such as limit-average, have also been considered. A key design challenge
for users of RL is that of translation: given a class of learning objectives and
aggregator functions, design a reward function from the sequence of learner’s
choices to scalar rewards such that an RL agent maximizing the aggregated sum
of rewards converges to an optimal policy for the learning objective.
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Fig. 1. The reinforcement learning loop implemented within Mungojerrie. The inter-
preter assigns reward to the agent based on the state of the model and automaton.

The translation of objectives to reward signals has historically been a largely
manual process. Such translations not only depend on the expertise of the trans-
lator in reward engineering, they also pose obstacles to providing formal guar-
antees on the faithfulness of the translation. Unsurprisingly, specifying reward
manually is prone to error [22,44]. As the practice of model-free RL continues
to produce impressive results [38,31,29], the integration of RL in safety-critical
system design is inevitable. An alternative to manually programming the reward
function is to specify the objective in a formal language and have it “compiled”
to a reward function. We call such a translation a reward scheme.

In designing reward schemes for RL, one strives to achieve an overall trans-
lation that is faithful (maximizing reward means maximizing the probability of
achieving the objective) and effective (RL quickly converges to optimal strate-
gies). While the faithfulness of a reward scheme can be established theoretically,
its effectiveness requires experimental evaluation. Experimenting with reward
schemes requires a framework for specifying learning objectives, environments,
a wide range of RL algorithms, and an interface for connecting reward schemes
with these components. In addition, it may be beneficial to have access to a
probabilistic model checker to evaluate the quality of the policy computed by
RL, and to compare it against ground truth.

Mungojerrie is designed to provide this functionality for learning require-
ments expressible as linear-time objectives (ω-regular languages [32] and
linear temporal logic [27,33]) against finite MDPs and stochastic games.

Features. Mungojerrie is designed with ease of use and extensibility in mind.
Models in Mungojerrie can be specified in PRISM [25], which maintains compati-
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bility with existing benchmarks, or by explicitly constructing the model via calls
to internal functions. Mungojerrie supports reading ω-automata in the Hanoi
Omega Automata (HOA) format [2], and has a command line interface con-
necting Mungojerrie with performant LTL translators (Spot [7] and Owl [24]).
Mungojerrie provides an OpenAI Gym [4] like interface between the RL algo-
rithms (included with the tool) and the learning environment to allow integra-
tion with off-the-shelf RL algorithms. The tool also has methods for performing
probabilistic model checking (including end-component decomposition, stochas-
tic shortest-path, and discounted-reward optimization) of ω-regular objectives
on the same data structures used for learning. Mungojerrie also provides refer-
ence implementations of several reward schemes [11,12,14,19,23] proposed by the
formal methods community. Mungojerrie is packaged with over 100 benchmarks
and outputs GraphViz [8] for easy visualization of small models and automata.

An introductory example. Figure 2 shows an example MDP in which a gam-
bler places bets with the aim of accumulating a wealth of 7 units. In addition
the gambler will quit if her wealth wanes to just one unit more than once. This
objective is captured by the (deterministic) Büchi automaton of Fig. 3. Mungo-
jerrie computes a strategy for the gambler that maximizes the probability of
satisfying her objective. Figure 4 shows the Markov chain that results from fol-
lowing this strategy. This figure was minimally modified from GraphViz output
from Mungojerrie. Note that the strategy altogether avoids the state in which
x = 1; hence it achieves the same probability of success (5/7) as an optimal
strategy for the simpler objective of eventually reaching x = 7 (without going
broke). Mungojerrie computes the strategy of Fig. 4 by RL; it can also verify it
by probabilistic model checking.

2 Overview of Mungojerrie

Models. The systems used in Mungojerrie consist of finite sets of states and
actions, where states are labeled with atomic propositions. There are at most
two strategic players: Max player and Min player. Each state is controlled by
one player. We call models where all states are controlled by Max player Markov
decision processes (MDPs) [34]. Else, we refer to them as stochastic games [5].

Mungojerrie supports parsing models specified in the PRISM language. The
allowed model types are “mdp” (Markov decision process) and “smg” (stochas-
tic multiplayer game) with two players. There should be one initial state. The
interface for building the model is exposed, allowing extensions of Mungojerrie
to connect with parsers for other languages. The authors of [6] used Mungojerrie
in their experiments by extending the tool to support continuous-time MDPs.

Properties. The properties natively supported by Mungojerrie are ω-regular
languages. Starting from the initial state, the players produce an infinite se-
quence of states with a corresponding infinite sequence of atomic propositions:
an ω-word. The inclusion of this ω-word in our ω-regular language determines
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whether or not this particular run satisfies the property. The Max player maxi-
mizes the probability that a run is satisfying, while goal of the Min player is the
opposite.

We specify our ω-regular language as an ω-automaton, which may be nonde-
terministic. For model checking and RL, this nondeterminism must be resolved
on the fly. Automata where this can be done in any MDP without changing
acceptance are said to be Good-for-MDPs (GFM) [13]. Automata where this
can be done in any stochastic game without changing acceptance are said to be
Good-for-Games (GFG) [21]. In general, nondeterministic Büchi automata are
not GFM, but two classes of GFM Büchi automata with limited nondeterminism
have been studied: suitable limit-deterministic Büchi automata [10,37] and slim
Büchi automata [13].

The user of Mungojerrie can either provide the ω-automaton directly or use
one of the supported external translators to generate the automaton from LTL
with a single call to Mungojerrie. Mungojerrie reads automata specified in the
HOA format. Mungojerrie supports providing the ω-automaton directly for test-
ing the effectiveness of different automata for learning (see Section 4). The LTL
translators that can be called from Mungojerrie are the ePMC plugin from
[13], Spot [7], and Owl [24] for generating slim Büchi, deterministic parity,
and suitable limit-deterministic Büchi automata. The user is responsible for the
ω-automata provided directly having the appropriate property, GFM or GFG.

For use in Mungojerrie, the labels and acceptance conditions for the au-
tomaton should be on the transitions. The acceptance conditions supported by

0 mdp
1

2 const i n t Wealth = 5 ; // i n i t i a l gambler ’ s wea l th
3 const double p = 1/2 ; // p r o b a b i l i t y o f w inn ing one bet
4

5 l a b e l ” r i c h ” = x = 7 ;
6 l a b e l ” poor ” = x = 1 ;
7

8 module gambler
9 x : [ 0 . . 7 ] i n i t Wealth ;

10

11 [ b0 ] x=0 ∨ x=7 → t rue ; // ab so r b i n g s t a t e s
12 [ b1 ] x>0 ∧ x<7 → p : ( x ’=x+1) + (1−p ) : ( x ’=x−1) ;
13 [ b2 ] x>1 ∧ x<6 → p : ( x ’=x+2) + (1−p ) : ( x ’=x−2) ;
14 [ b3 ] x>2 ∧ x<5 → p : ( x ’=x+3) + (1−p ) : ( x ’=x−3) ;
15 endmodule

Fig. 2. A Gambler’s Ruin model in the PRISM language. Line 13, for example, says
that when 1 < x < 6, the gambler may bet two units because action b2 is enabled.
The ‘+’ sign does double duty: as addition symbol in arithmetic expressions and as
separator of probabilistic transitions.
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Fig. 4. Optimal gambler strategy for the objective of Fig. 3. Boxes are decision states
and circles are probabilistic choice states. For a decision state, the label gives the value
of x and the state of the automaton. Transitions are labelled with either an action or
a probability, and with the priority (1 for accepting and 0 for non-accepting).

Mungojerrie should be reducible to parity acceptance conditions without al-
tering the transition structure of the automaton. This includes parity, Büchi,
co-Büchi, Streett 1 (one pair), and Rabin 1 (one pair) conditions. Nondetermin-
istic automata must have Büchi acceptance conditions. Generalized acceptance
conditions are not supported in version 1.1.

Reinforcement Learning. The RL algorithms optimize over MDP/Stochas-
tic game environments equipped with a Markovian reward function. The re-
ward function assigns a reward Rt+1 ∈ R dependent on the state and action at
timestep t and the next state at timestep t+1. As the players make their choices
within the environment, the resulting play produces a sequence of states, actions,
and rewards (S0, A0, R1, S1, A1, R2, . . .). The discounted reward aggregator is

discγ(π, ν) = Eπ,ν

[∑
t≥0

γtRt+1

]
,

where π is the strategy for Max player, ν is the strategy for Min player, γ ∈ [0, 1)
is the discount factor, and Rt is the reward at timestep t. We can set γ = 1 when
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with probability 1 we enter an absorbing sink (termination), where we receive no
reward. This is called the episodic setting. Another well-studied RL aggregator
is the limit-average reward defined as

avg(π, ν) = lim sup
n→∞

1

n
Eπ,ν

[ ∑
n≥t≥0

Rt+1

]
.

The limit-average reward aggregator is natural in the continuing setting, where
the agent’s trajectory is never reset and there is no preferred initial state [30].
The objective of RL is to compute the optimal value and policies for a given
aggregator. Mungojerrie includes the stochastic game extensions of Q-learning
[43], Double Q-learning [20], and Sarsa(λ) [40] for RL in finite state and action
models. Mungojerrie also includes Differential Q-learning [42] for average RL
in finite communicating MDPs. We collectively refer to parameters that are set
by hand prior to running an RL algorithm as hyperparameters. Mungojerrie
supports changing all hyperparameters from the command line. As the design of
Mungojerrie separates the learning agent(s) from the reward scheme, extending
Mungojerrie to include another RL algorithm is easy.

Reward Schemes. The user of Mungojerrie can either select one of the reward
schemes included with the tool or extend the tool to include a new reward
scheme. Mungojerrie also allows the use of the reward specified in the PRISM
model (either state- or action-based). The following reward schemes are included
in version 1.1 of Mungojerrie:

– Limit-reachability. The limit-reachability scheme [11] uses a GFM Büchi au-
tomaton. This reward scheme converts accepting edges in the automaton into a
transition to a sink with probability 1−ζ with a reward of +1, where 0 < ζ < 1 is
a hyperparameter. All other transitions produce zero reward. For a sufficiently
large ζ and discount factor γ, strategies that are optimal for the discounted
reward maximize the probability of satisfaction of the Büchi objective.
– Multi-discounted. The multi-discounted reward scheme [3] also uses a GFM
Büchi automaton. This translation converts accepting edges in the automaton
into a transition that gives 1−γB reward with a discount of γB , where 0 < γB < 1
is a hyperparameter. All other transitions yield no reward and are discounted by
the standard discount factor γ. For suitably large γB and γ, discounted reward
optimal strategies maximize the probability of satisfaction of the Büchi objective.
– Dense limit-reachability. The dense limit-reachability reward scheme [12] con-
nects the approaches of [11] and [3]. This reward scheme is identical to [11]
except for giving a +1 reward given every time an accepting transition is seen,
instead of only when the transition to the sink succeeds. Since discounting can
be thought of as a constant stopping probability [41], this reward scheme is the
same in expectation as a scaled version of [3].
– Parity. The parity reward scheme was proposed for stochastic games in [14].
For two-player games, it requires a GFG automaton. This translation utilizes a
deterministic parity automaton with a max odd objective. Transitions of priority
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i go to a sink with probability εk−i, where k is the number of priorities and
0 < ε < 1 is a hyperparameter. The transition to the sink receives a +1 or −1
reward for odd or even priorities, respectively. All other transitions receive a zero
reward. For sufficiently small ε, maximizing the cumulative reward results in a
strategy maximizing the probability of satisfaction of the parity objective.
– Priority tracker. The priority tracker reward scheme was proposed by Hahn et
al. [14]. For MDPs, Hahn et al. introduce a priority tracker gadget that takes a
parity objective with a hyperparameter 0 < ε < 1. The priority tracker consists
of two stages. In stage one, we wait for transients to end by ending the stage with
probability ε on each step. In the second stage, we detect the maximum priority
occuring infinitely often with a set of wait states, where we accept the current
maximum with probability ε on each step. For sufficiently small ε and large
discount γ, maximizing the discounted reward also maximizes the probability of
satisfaction of the parity objective.
– Lexicographic. Hahn et al.[19] proposed this reward scheme for lexicographic
ω-regular objectives. In this reward scheme, there is a tracker gadget that keeps
track of which accepting edges for the GFM Büchi automata have been seen.
When the tracker indicates that at least one accepting edge has been seen, the
learning agent can decide to “cash in” the tracker, which clears the tracker.
When this happens, with probability 1− ζ the learning agent receives a reward
which is the weighted sum of seen accepting edges, scaled by powers of f , and
transitions to a terminating sink, where 0 < ζ < 1 and f ≥ 1 are hyperpa-
rameters. For suitable f , ζ, and γ, maximizing the discounted reward yields the
lexicographically optimal strategy.
– Average. The average reward scheme [23] translates absolute liveness ω-regular
objectives, which means the objective is concerned with eventual satifaction,
to average reward for communicating MDPs. Given a GFM Büchi automaton,
transitions from every state in the automaton back to the initial state are in-
troduced, so called “resets”. A hyperparameter c < 0 is introduced which gives
a penalizing reward to these resets. Accepting edges are then given a reward
of +1. Positional policies that maximize the average reward also maximize the
probability of satisfaction of the objective.
– Reward on accept. This reward scheme was proposed in [35]. The translation of
[35] picks a pair in a Rabin automaton to satisfy, and gives positive and negative
reward for the good and bad states of the pair, respectively. In general, picking
the winning pair ahead of time is not possible [11]. For a Büchi automaton, this
corresponds to giving positive (+1) rewards for accepting edges and zero rewards
otherwise. While this reward scheme was shown to be not faithful [11] for general
objectives, it is included for comparison purposes.

3 Tool Design

The primary design goal of Mungojerrie is to enable extensibility. To accomplish
this, Mungojerrie separates different processing stages as much as possible so that
extensions can reuse other components. We begin by presenting the architecture
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Fig. 5. Architecture of Mungojerrie 1.1.

of Mungojerrie. Afterwards, we take a closer at the novel slim Büchi automata
plugin, which is described here in detail for the first time.

Architecture of Mungojerrie. Mungojerrie begins its execution by parsing
the input PRISM and HOA (see upper part of Fig. 5). The HOA is either read
in from a file or piped from a call to one of the supported LTL translators. In
particular the ePMC plugin from [13], an LTL translator capable of producing
slim Büchi automata, is packaged with the tool. Requested automaton modifica-
tions, such as determinization, are run after this step. If specified, Mungojerrie
creates the synchronous product between the automaton and the model, and
runs model checking or game solving [1,15,16]. The requested strategy and val-
ues are returned. Due to this step, Mungojerrie has been connected to external
linear program solvers. This enabled the extension of Mungojerrie to compute
reward maximizing policies via a linear program for branching Markov decision
processes in [18].
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If learning has been specified, the interpreter takes the automaton and model,
without explicitly forming the product, and provides an interface akin to OpenAI
Gym [4] for the RL agent to interact with the environment and receive rewards.
When learning is complete, the Q-table(s) can be saved to a file for later use,
and the interpreter forms the Markov chain induced by the learned strategy and
passes it to the internal model checker for verification.

LTL formula (1) HOA file (2)

translate (Spot) (3) parse (4)

NTLBA (5)

construct SBA (6) construct LDBA (7)

SBA (8)

LDBA (9)

minimize LDBA (10)

minimized LDBA (11)

construct simulation game (12)

simulation game (13)

game solver (14)

HOA file (15)

ePMC plugin

won lost

Fig. 6. Automata generation block diagram

Slim Büchi Automata Generation. For reward schemes involving LTL, the
ω-regular automata translation is an important part of the design. Certain au-
tomata may be more effective for learning than others. Slim Büchi automata
[13] were designed with learning considerations in mind. The translator that
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produces these automata is packaged with Mungojerrie. We will now describe
its design in detail for the first time.

We have implemented slim Büchi automata generation as a plugin of the
probabilistic model checker ePMC [17]. The process is described in Fig. 6. The
starting point is a transition-labeled Büchi automaton in HOA format [2] (2)
or an LTL formula (1). In case we are given an automaton in HOA format, we
parse this automaton (4) and if we are given an LTL formula, we use the tool
Spot [7] to transform the formula into an automaton (3). In both cases, we end
up with a transition-labeled Büchi automaton (5).

Afterwards, we have two options. The first option is to transform (6) this
automaton into a slim Büchi automaton (8) [13]. These automata can then be
directly composed with MDPs for model checking or used to produce rewards
for learning. The other option is to construct (7) a suitable limit-deterministic
Büchi automaton (SLDBA) (9). Automata of this type consist of an initial part
and a final part. A nondeterministic choice only occurs when moving from the
initial to the final part by an ε transition (a transition without reading a charac-
ter). SLDBA can be directly composed with MDPs. However, SLDBA directly
constructed from general Büchi automata are often quite large, which in turn
also means that the product with MDPs would be quite large as well. Therefore,
we have implemented further optimization steps. We can apply a number of al-
gorithms to minimize (10) this automaton so as to achieve a smaller SLDBA
(11). To do so, we implemented several methods:

– Subsuming the states in the final part with an empty language
– Signature-based strong bisimulation minimization in the final part
– Signature-based strong bisimulation minimization in the initial part
– Language-equivalence of states in the final part
– If we have a state s in the initial part for which we find a state s′ in the final
part where the language of s and s′ are the same, we can remove all transitions
of s and add an ε transition from s to s′ instead. Afterwards, automaton states
that cannot be reached anymore can be removed.

Each of these methods has a different potential for minimization as well as
runtime. We therefore allow to specify which optimizations are to be used and
in which order they are applied.

Once we have optimized the SLDBA, we could directly use it for later compo-
sition with an MDP. Another possibility is to prove that the original automaton
is already good for MDPs. If this is the case, then it is often preferable to use
the original automaton: being constructed by specialized tools such as Spot, it
is often smaller than the minimized SLDBA. The original automaton is good-
for-MDPs if it simulates the SLDBA [13]. If it does, then it is also composable
with MDPs. Otherwise, it is unknown whether it is suitable for MDPs. In this
case, sometimes more complex notions of simulation can be used, but existing
decision procedures are too expensive to implement [36].

To show simulation, we construct (12) a simulation game, which in our case
is a transition-labeled parity game (13) with 3 colors. We solve these games
using (a slight variation of) the McNaughton algorithm [28]. (We are aware
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that specialized algorithms for parity games with 3 colors exist [9]. However, so
far the construction of the arena, not solving the game, turned out to be the
bottleneck here). If the even player is winning, the simulation holds. Otherwise,
more complex notions of simulation can be used, which however lead to larger
parity games being constructed. In case the even player is winning for any of
them, we can use the original automaton, otherwise we have to use the SLDBA.
In any case, we export the result to an HOA file (15). For illustration and
debugging , automata and simulation games can be exported to the GraphViz [8].

4 Case Studies

To showcase how Mungojerrie can be used to experiment with different reward
schemes, we provide three case studies. In the first case study, we demonstrate
how Mungojerrie can be used to compare the effectiveness of two different re-
ward schemes on the same system. In the second case study, we consider the
design space of automata, and demonstrate how Mungojerrie can be used to
compare how different ω-automata change learning effectiveness. This is impor-
tant for considering how to design LTL translators that produce automata that
are effective for learning. In the last case study, we demonstrate how the dif-
ferent outputs of Mungojerrie can be used. For additional experimental results
obtained using Mungojerrie, we refer readers to [11,12,14,19,39,45,23] for case
studies testing ω-regular reward schemes, and [13] for the ePMC plugin. We
also refer readers to [26, Fig. 3] which examined RL for scLTL properties, [6] for
continuous-time MDPs, and [18], which extended Mungojerrie to test model-free
reinforcement learning in branching Markov decision processes.

4.1 Comparing Reward Schemes

To demonstrate how Mungojerrie may be used to compare reward schemes, we
compare the reward scheme of [11] with a modification of it that assigns a +1
reward on every accepting edge, as introduced in [12]. We compare these two
methods on the same problem, where the learner must safely navigate two robots
on a slippery gridworld to a goal. We also fix the problem parameters ζ = 0.99
and γ = 0.99999, and the use of Q-learning. Since we are interested in which
method will converge sooner, we fix the amount of training to be relatively low.
We allow the two parameters specific to Q-learning, the learning rate α and the
exploration rate ε, to be varied in order to find the optimal combination for
each method. We average 10 runs for each grid point. This required 32000 runs,
which took approximately 79 CPU hours (single-core) on a 2.5GHz Intel Xeon
E5-2680 v3. This corresponds to an average of approximately 188000 sampled
transitions per second per core, including model checking time. This sampling
rate is typical of what was observed in other experiments.

Figure 7 shows the probability of satisfaction of the learned strategy as com-
puted by the model checker of Mungojerrie. One can see that under these con-
ditions, the reward scheme from [12] is able to consistently learn probability
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Fig. 7. Probability of satisfaction of learned strategies as computed by the model
checker of Mungojerrie. ‘Hahn et al. 19’ refers to the translation of [11]. ‘Hahn et
al. 20’ refers to the translation of [12] that assigns +1 reward on every accepting edge
with reachability parameter ζ. Each grid point is the average of 10 runs.

1 strategies under certain parameter combinations, while [11] does not. Fig-
ure 8 shows the difference in the estimated probability of satisfaction, found by
taking the value from the initial state of Q-table and renormalizing it appropri-
ately, and the probability of satisfaction of the learned strategy computed by
the model checker of Mungojerrie. One can see that the reward scheme of [11]
sometimes overestimates and sometimes underestimates when it achieves a high
actual probability of satisfaction under these conditions. However, on the same
example, the reward scheme of [12] consistently underestimates everywhere. In
summary, Mungojerrie allowed us to see that, although the reachability reward
scheme of [12] may achieve higher probabilities of satisfaction sooner, it may
take longer for the values in the Q-table to properly converge.

4.2 Comparing Automata

An ω-regular objective may be described by different automata, many of which
may be good-for-MDPs. Mungojerrie can be used to compare the effectiveness
of such automata when used in RL. Consider the two nondeterministic Büchi
automata shown in Fig. 9. Both are equivalent to the LTL formula (FGx) ∨
(GF y), but the one on the right should be better for learning: long transient
sequences of observations that satisfy x∧¬y may convince the agent to commit
to State 1 of the left automaton too soon.

To test this conjecture, we specified a model in PRISM organized in two long
chains. In one of them the agent sees many xs for a while, but eventually only
sees ys. In the other chain the situation is reversed. Which chain is followed is up
to chance. We then used the reward scheme from [3] with Q-learning under the
default hyperparameters in Mungojerrie, γB = 0.99, γ = 0.99999, α = 0.1, and
ε = 0.1. We then trained for 20000 episodes under each automaton, and used
Mungojerrie to compute the probability of satisfaction of the property at periodic



Mungojerrie 539

Fig. 8. Estimated probability of satisfaction of learned strategies minus the probability
of satisfaction computed by the model checker of Mungojerrie. Blue indicates under-
estimation, while red indicates overestimation. Hahn et al. 19 refers to the translation
of [11]. Hahn et al. 20 refers to the translation of [12] that assigns +1 reward on every
accepting edge with reachability parameter ζ. Each grid point is the average of 10 runs.

intervals. Since learning to control the left automaton requires thorough and deep
exploration, we conjectured that optimistic intialization of the Q-table [41] to
the value 0.8 will improve performance. We took the average of 1000 runs for
each combination.

Figure 10 shows the resulting curve. When using the LDBA without opti-
mistic intialization, the learning agent is unable to learn the optimal strategy
under these conditions. While it is worth noting that using the LDBA with-
out optimistic initialization eventually converges to the optimal strategy with
enough training, it is clear that the choice of the automaton can have a signifi-
cant impact on learning performance. Therefore, the design of translations from
LTL to automata has a role to play in producing effective reward schemes.

0 1y

¬y

x ∧ ¬y
x 0 1y

¬y

x ∧ ¬y

x ∧ ¬yy

Fig. 9. Equivalent, but not equally effective, Büchi automata. “LDBA” and “Forgiv-
ing” refer to the automaton the left and right, respectively.
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Fig. 10. Plot of the evolution of the probability of satisfaction of learned strategies as
computed by the model checker of Mungojerrie. “Forgiving” and “LDBA” refer to the
left and right automata in Figure 9, respectively. “(optimistic)” indicates optimistic
initialization of the Q-table was used. Each curve is the average of 1000 runs.
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trapmn, (1)
�, (1)

Fig. 11. A grid-world stochastic game arena (left) and a deterministic parity automa-
ton for the objective (right).

4.3 A Game of Pursuit

Figure 11 describes a stochastic parity game of pursuit in which the Max player
(M) tries to escape from the Min player (m). At each round, each player in turn
chooses a direction to move. If movement in that direction is not obstructed
by a wall, then the player moves either two squares or one square with equal
probabilities. One square of the grid is a trap, which m must avoid at all times,
but M may visit finitely many times. Player M should be at least 5 squares away
from player m infinitely often. This objective is described by the LTL property
(F¬trapmn) ∨ ((FG¬trapmx) ∧ (GF¬close)), where trapmn and trapmx are
true when m and M visit the trap square, respectively, and close is true when
the Manhattan distance between the two players is less than 5 squares. This
objective translates to the deterministic parity automaton in Fig. 11, which
accepts a word if the maximum recurring priority of its run is odd.

Unlike the example of Fig. 2, inspection of the Markov chain induced by
an optimal strategy and manual verification of the optimality of the learned
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Fig. 12. Max player learned strategy for the game of Fig. 11 when the automaton is
in State 0. (Any strategy will do when the automaton is in State 1.) In each 6× 6 box
the rose-colored square is the position of the minimizing player, while the light-blue
square marks the trap.

strategy is impractical. Instead, the model checker of Mungojerrie has verified the
optimality of this strategy from the intial state. For visualization, Mungojerrie
can also save the strategy in CSV format. Postprocessing can then produce a
graphical representation like the one of Fig. 12. The color gradient shows that,
in the main, M ’s strategy is to move away from m.

5 Conclusion

We have introduced Mungojerrie, an extensible tool for experimenting with re-
ward schemes for RL, with a focus on ω-regular objectives. Mungojerrie allows
the specification of models in PRISM [25] and ω-automata in HOA [2]. Mul-
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tiple LTL translators can be called from the tool [7,24], including the ePMC
plugin introduced in [13] for the construction of slim Büchi automata. Mungojer-
rie includes various reward schemes [11,3,12,14,19,23,35] for ω-regular objectives
and model-free RL algorithms [43,20,40,23]. Mungojerrie also includes an inter-
nal probabilistic model checker for the verification of learned strategies against
ω-regular objectives, and for allowing users to verify that developed examples
are as intended. The tool also comes packaged with benchmarks for ω-regular
objectives in RL.

We have discussed Mungojerrie’s design and demonstrated how Mungojerrie
can be used to perform comparisons of reward schemes for ω-regular objectives.
The source and documentation of Mungojerrie are publicly available.
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24. Křet́ınský, J., Meggendorfer, T., Sickert, S.: Owl: A library for ω-words, automata,
and LTL. In: Automated Technology for Verification and Analysis, ATVA. pp. 543–
550 (2018), LNCS 11138

25. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Computer Aided Verification (CAV). pp. 585–591 (Jul 2011),
LNCS 6806

26. Lavaei, A., Somenzi, F., Soudjani, S., Trivedi, A., Zamani, M.: Formal con-
troller synthesis for continuous-space mdps via model-free reinforcement learn-
ing. In: 11th ACM/IEEE International Conference on Cyber-Physical Systems,

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html


544 E. M. Hahn et al.

ICCPS 2020, Sydney, Australia, April 21-25, 2020. pp. 98–107. IEEE (2020).
https://doi.org/10.1109/ICCPS48487.2020.00017,

27. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
*Specification*. Springer (1991)

28. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Inf. Control. 9(5), 521–530 (1966)

29. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep
reinforcement learning. Nature 518 (2015)

30. Naik, A., Shariff, R., Yasui, N., Sutton, R.S.: Discounted reinforcement learning is
not an optimization problem. CoRR abs/1910.02140 (2019), http://arxiv.org/
abs/1910.02140

31. OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B.,
Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J., Tezak,
N., Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W., Zhang, L.: Solving
rubik’s cube with a robot hand. arXiv preprint (2019)
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.
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