VeriFuzz 1.4: Checking for (Non-)termination
(Competition Contribution)

Ravindra Metta@®, Prasanth Yeduru®, Hrishikesh Karmarkar®, and
Raveendra Kumar Medicherla* ®)

TCS Research, Tata Consultancy Services, Pune, India
{r .metta,prasanth.yeduru,hrishikesh.karmarkar,raveendra. kumar}@tcs .com

Abstract. In VeriFuzz 1.4, we implemented two new techniques for
checking Non-termination and Termination. VeriFuzz 1.4 won the Ter-
mination category of SV-COMP 2023.

1 Approach for Non-termination and Termination

VeriFuzz 1.2.0 [4,10,11] is a framework to automatically generate test cases, and
lacks the ability to prove properties such as termination. Given a program P and
termination as the property, a tool needs to either provide a witness for Non-
termination of P, or give a true verdict if P always terminates. Therefore, we
developed two techniques: one for proving Non-termination and one for checking
termination with a high confidence, which are described below.

1.1 Technique for Non-termination Checking

For SV-COMP 2023, we implemented a variant of FuzzNT [7], a sound technique
for proving Non-termination arising due to infinite loops. FuzzNT takes as input
a C program P and a corpus of test inputs T generated using the Coverage
Guided Fuzzer of VeriFuzz 1.2. Each test input ¢t € T' is a sequence of values to
be supplied to P via nondet() calls. We illustrate the key steps of FuzzNT using
the program P (Listing 1.1), adopted from the code that caused the SSL non-
termination [13]. Note that P terminates on the test input ¢t = (1: j = 129,4 :
i==1,5:7j=05,4:4==3). Given such a test input, FuzzNT transforms P into
a Path Specific Program (PSP) P’ (Listing 1.2), by replacing each nondet() call
in P with the corresponding value in the test input, if any, as described in [7].
If multiple values in the test input correspond to a nondet() call in P, FuzzNT
picks the first value among them to replace the nondet() call. For example, in ¢,
both i == 1 and ¢ == 3 correspond to the nondet() call on Line 4 in Listing 1.1.
So, as shown on Line 4 of Listing 1.2, this nondet() call is replaced with i == 1.
Notice that P’ has only one feasible execution path, which does not terminate. P’
is then supplied to an abstract interpretation based safety checker, which checks
if P’ does not terminate. If the check succeeds, then P’ is non-terminating and

* Jury member

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 594-599, 2023.
https://doi.org/10.1007/978-3-031-30820-8_42

Check for
updates


https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0001-7368-2389
http://orcid.org/0000-0002-5502-5761
http://orcid.org/0000-0002-9132-8356
http://orcid.org/0000-0002-9162-4825
https://doi.org/10.1007/978-3-031-30820-8_42
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_42&domain=pdf

VeriFuzz 1.4: Checking for (Non-)termination (Competition Contribution) 595

Listing 1.1. Program P Listing 1.2. Program P’
1 i=1; j=nondet(); Li=1; j=129;
> while(j'!'=1) { > while(j!=1) {
: i=i+1; 3 i=i+1;
4 if (i==nondet()) exit(0); : if (i==1) exit(0);

j=nondet(); } 5 j=5; %}

hence P is also non-terminating, and a proof of Non-termination is generated
for P in the form of a witness automaton. These steps are repeated until either
a non-terminating execution is discovered, or test inputs are exhausted.

1.2 Variant of FuzzNT implemented in VeriFuzz 1.4

The version of FuzzNT in [7] uses Frama-C [14] for the abstract interpretation
based Non-termination check. However, we noticed that Frama-C’s abstract in-
terpretation does not precisely model termination semantics of standard library
functions like abort(). This leads to Frama-C incorrectly identifying some termi-
nating programs as non-terminating. Further, we could not bundle Frama-C with
FuzzNT due to the installation dependencies and it is unavailable in the Com-
petition Environment of SV-COMP 2023. Therefore, we implemented a variant
of FuzzNT using the C Bounded Model Checker [5], as described below.

Given a program P, we begin by checking if P terminates as described in
Section 1.3. If this check could not identify the termination of P, then we generate
PSPs for P using VeriFuzz 1.2 (described in Section 1.1). Next CBMC is run on
each generated PSP, say P’, with a small loop unwind bound, say k, and check for
CBMC’s built-in unwinding assertion, which checks if all loops within P’ iterate
at most k times. If this check succeeds, then P’ is a terminating program. If this
check fails, then there exists an input for which some loop in P’ iterates more
than k times. We then iteratively increase k and repeat the termination check
until a large enough £ such as 10,000. In our experiments, we observed that
while CBMC does not scale to such a large unwinding of P, it does scale to large
unwindings of the PSPs of P, as they admit much fewer behaviours than P. If
the check fails even at 10,000 for P, it is likely to be non-terminating. We then
generate a witness automaton for P using P’, classifying P as non-terminating.

1.3 Technique for termination

To check if a given a program P terminates on all inputs, we designed an un-
sound, but high confidence, incremental verification technique based on Bounded
Model Checking (CBMC). This technique works in two phases. Phase-1 is the
same as CBMC’s own termination check. In this, we begin by unwinding all the
loops in P for a small number of iterations, such as 2. Then, using CBMC’s
built-in loop unwinding assertion check, we verify if all loops terminate within
this small unwinding, say k. If this check is successful, then all loops in P ter-
minate within k iterations and hence P itself terminates, and we return TRUE



596 R. Metta et al.

to declare P to be terminating. If the check fails for any loop, then that loop
can iterate more than k times. So, we increment k, and repeat the check. This
approach suffers from two limitations. (1) As k grows larger, BMC suffers from
scalability issues, and (2) if P has a feasible non-terminating path, then the check
for a higher k repeats forever. To overcome these limitations, we stop Phase-1
and return UNKNOWN as soon as k reaches a threshold value (pre-configured
for SV-COMP 2023). We then proceed to Phase-2, described below.

In Phase-2, we try to find a small model for the termination property of P,
by guessing a small range R of the inputs (viz. nondet() calls), such that if P
terminates for all inputs in R, then P is highly likely to terminate for all its
inputs. To guess this R, we learnt a Decision Tree (DT) model on a training
data of less than 10% of SV-COMP benchmarks, based on program features
and sample execution traces. We are working on formalizing this approach via
ranking functions [6].

We then run the incremental verification from Phase-1, but by bounding the
nondet() values to those in R. This bounding allows CBMC’s backend solvers
such as Z3 to scale to a larger loop unwind K (~ 100,000 in our experiments).
If all loops in P terminate within at most K iterations given the R-bounding,
then we assume that P is highly likely to terminate on all inputs even without
R-bounding. Therefore, if this bounded value check concludes that P terminates,
then we return TRUE to declare P to be terminating, else we return UNKNOWN
and invoke the non-termination check described in Section 1.2.

2 Software Architecture

)

. Phase-2 UNKNOWN
PESE- Bounded-Value VeriFuzz 1.2
Term-Check

Term-Check

PO

TRUE

TRUE

FALSE, WITNESS

Path
Specific
Programs

'

Termination

Non
Termination

UNKNOWN

Fig. 1. VeriFuzz 1.4 architecture

Figure 1 shows the architecture of VeriFuzz 1.4. Here P is the input program,
and ¢ is the termination property. The process-blocks Phase-1 Term-Check and
Phase-2 Bounded-Value Term-Check, together constitute our two phased ter-
mination check described in Section 1.3. If both Phase-1 and Phase-2 return
UNKNOWN, we then execute the Non-termination check described in Section
1.2. That is, we first generate PSPs using VeriFuzz 1.2, and search for a likely
non-terminating PSP, say P’. If we find such a P’, we generate a witness au-
tomaton and return FALSE (to report non-termination). Else, all the above



VeriFuzz 1.4: Checking for (Non-)termination (Competition Contribution) 597

steps must have returned UNKNOWN, and VeriFuzz 1.4 is unable to decide if
P is terminating or non-terminating, and hence returns UNKNOWN.

In Figure 1, VeriFuzz 1.2 is built using PRISM [8] program analysis frame-
work, AFL [16], and CBMC v5.67.0 [1] with Z3 4.8.15 [12] and Glucose Syrup [2]
as the backend SMT and SAT solvers respectively. The DT model used in Phase-2
of the termination check (see Section 1.3) is trained offline using booster trees [3].
The rest of VeriFuzz 1.4 is implemented in C++ and Python.

3 Strengths and Weaknesses

Out of 1043 Termination tasks in SV-COMP 2023, our two phase technique
correctly solved 865. Some of these, such as termination-crafted/easy2-2.c and
termination-dietlibc/atoi.c, contain loops that iterate arbitrarily large number
of times. Hence, while BMC fails to conclude their termination, our approach
succeeds as it limits the number of loop iterations by restricting the inputs to a
small range. Tasks, such as termination-restricted-15/Sunset.c, terminate within
the value ranges guessed during Phase-2, but do not terminate for some inputs
that lie outside the ranges. Thus, we wrongly reported them to be terminating.

Out of 766 Non-termination tasks, our Non-termination technique correctly
solved 351. Of these, tasks such as systemc/pipeline.cil-1.c , have complex control
and data dependencies, which could not be solved by approaches such as those in
UAutomizer [9] and Symbiotic [15]. But, the PSPs of these programs, generated
by our technique, were much simpler to check for non-termination and hence
our technique succeeded on them. However, within the given time limits, if all
the PSPs we generated happen to be terminating, then our technique fails to
identify the non-termination. Our results on tasks locks/test_locks_14-2.c and
termination-restricted-15/Ex02.c demonstrate this behaviour. Another weakness
is that our technique currently does not handle programs with recursion.We are
currently developing new techniques that address these weaknesses.

4 Tool Configuration and Setup

VeriFuzz 1.4 is available at git@gitlab.com:sosy-lab/sv-comp/archives-2023.git.
To install and run the tool, follow the instructions in the README.txt. The
benchexec tool-info module is verifuzz.py and the benchmark definition file is
verifuzz.xml. A sample run command is as follows: ./scripts/verifuzz.py
—-propertyFile termination.prp example.c. In SV-COMP 2023, VeriFuzz
opts to participate in Termination, ReachSafety, and Overflow categories.

5 Software Project and Contributors

VeriFuzz is developed and maintained by the authors at TCS Research. We thank
everyone who has contributed to the development of VeriFuzz and the tools AFL,
PRISM, CBMC, Glucose Syrup, and Z3. Contact: verifuzz.tool@tcs.com.


git@gitlab.com:sosy-lab/sv-comp/archives-2023.git

598 R. Metta et al.

6 Data-Availability Statement

VeriFuzz 1.4 is available as part of SV-COMP 2023 verifier repository at https://
gitlab.com/sosy-lab/sv-comp/archives-2023/- /blob /main /2023 /verifuzz.zip. For
any queries, please contact the authors at verifuzz.tool@tcs.com.

References

1. C Bounded Model Checker. https://github.com/diffblue/cbmc

2. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools
pp. 1840001:1-1840001:25 (2018). https://doi.org/10.1142/50218213018400018

3. Chen T., G.C.: Xgboost: A scalable tree boosting system. In: KDD. pp. 785-794
(2016). https://doi.org/10.1145/2939672.2939785

4. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: Verifuzz: Program aware
fuzzing - (competition contribution). In: TACAS. pp. 244-249 (2019).
https://doi.org/10.1007/978-3-030-17502-3_22

5. Clarke E., Kroening D., L.F.: A tool for checking ansi-c programs. In: TACAS. pp.
168-176 (2004). https://doi.org/10.1007/978-3-540-24730-2_15

6. Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. In: ES-
EC/FSE. pp. 633-645 (2022). https://doi.org/10.1145/3540250.3549120

7. Karmarkar, H., Medicherla, R., Metta, R., Yeduru, P.: FuzzNT: Check-
ing for program non-termination. In: ICSME. pp. 409-413 (2022).
https://doi.org/10.1109/ICSME55016.2022.00049

8. Khare, S., Saraswat, S., Kumar, S.: Static program analysis of large
embedded code base: an experience. In: ISEC. pp. 99-102 (2011).
https://doi.org/10.1145/1953355.1953368

9. Matthias, H.: Uautomizer (2022), https://gitlab.com/sosy-lab/sv-comp/
archives-2022 /raw /svcomp22 /2022 /uautomizer.zip

10. Metta, R., Medicherla, R.K., Chakraborty, S.: BMC+Fuzz: Efficient
and Effective Test Generation. In: DATE. pp. 1419-1424 (2022).
https://doi.org/10.23919/DATE54114.2022.9774672

11. Metta, R., Medicherla, R.K., Karmarkar, H.: VeriFuzz: Good Seeds
for Fuzzing (Competition Contribution). In: FASE. pp. 341-346 (2022).
https://doi.org/10.1007/978-3-030-99429-7_20

12. Moura, L.M.d., Bjgrner, N.: Z3: An Efficient SMT Solver. In: TACAS. pp. 337-340
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

13. OpenSSL: Fix possible infinite loop in BN_mod_sqrt(). https://github.com/
openssl/openssl/commit/3118eb64934499d93db3230748a452351d1d9a65 (2022)

14. Patrick, B., et al.: The dogged pursuit of bug-free C programs: the
Frama-C software analysis platform. Commun. ACM pp. 56-68 (2021).
https://doi.org/10.1145/3470569

15. Viktor, M.: 2LS (2022), https://github.com/diffblue/2ls

16. Zalewski, M.: American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/


https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/verifuzz.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/verifuzz.zip
https://github.com/diffblue/cbmc
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1109/ICSME55016.2022.00049
https://doi.org/10.1145/1953355.1953368
https://gitlab.com/sosy-lab/sv-comp/archives-2022/raw/svcomp22/2022/uautomizer.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2022/raw/svcomp22/2022/uautomizer.zip
https://doi.org/10.23919/DATE54114.2022.9774672
https://doi.org/10.1007/978-3-030-99429-7_20
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/openssl/openssl/commit/3118eb64934499d93db3230748a452351d1d9a65
https://github.com/openssl/openssl/commit/3118eb64934499d93db3230748a452351d1d9a65
https://doi.org/10.1145/3470569
https://github.com/diffblue/2ls
http://lcamtuf.coredump.cx/afl/

VeriFuzz 1.4: Checking for (Non-)termination (Competition Contribution) 599

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	VeriFuzz 1.4: Checking for (Non-)termination (Competition Contribution)
	1 Approach for Non-termination and Termination
	1.1 Technique for Non-termination Checking
	1.2 Variant of FuzzNT implemented in VeriFuzz 1.4
	1.3 Technique for termination

	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Configuration
and Setup
	5 Software Project and Contributors
	6 Data-Availability Statement
	References




