
VeriAbsL: Scalable Verification by Abstraction and
Strategy Prediction (Competition Contribution)

Priyanka Darke1,?(�) , Bharti Chimdyalwar1,
Sakshi Agrawal1, Shrawan Kumar1, R Venkatesh1, and Supratik Chakraborty2

1 TCS Research, Pune, India
priyanka.darke@tcs.com

2 Indian Institute of Technology, Bombay, India

Abstract. We present VeriAbsL, a reachability verifier that performs ver-
ification in three stages. First, it slices the input code using a combination
of two slicers, then it verifies the slices using predicted strategies, and at
last, it composes the result of verifying the individual slices. We introduce
a novel shallow slicing technique that uses variable reference information
of the program, and data and control dependencies of the entry function
to generate slices. We also introduce a novel strategy prediction technique
that uses machine learning to predict a strategy. It uses boolean features to
describe a program to a neural network that predicts a strategy. We use the
portfolio of VeriAbs, a reachabiltiy verifier with manually defined strategies.
In sv-comp 2023, VeriAbsL verified 2273 more programs than VeriAbs, and
4753 programs that VeriAbs could not verify.

1 Verification Approach

It is folklore in automated software verification that no single verification technique
is good enough to verify all programs of interest. This limitation led to the advent
of strategy selection-based verifiers that use predefined verification strategies [4]. A
strategy is a sequence of verification techniques applied to a program, where each
technique is bounded by a heuristically defined time limit. In this paper, we present
a strategy prediction-based reachability verifier for C programs called VeriAbsL. It
verifies a program in stages using a portfolio of two slicing, and ten verification
techniques. First, it slices a program using a sequence of slicers. Then it uses a few
syntactic and semantic features of the slice to predict a strategy and verify the slice.
Lastly, it composes the result of verifying each slice. VeriAbsL uses a sequential
combination of two slicers, a slicer-analyzer [7], and a novel shallow slicer or Sslicer.
Sslicer is applied to programs that could not be sliced by the slicer-analyzer.
The slicer-analyzer is more efficient than Sslicer, but applies to a smaller class
of programs as explained in Section 1.2. Let a program P be sliced into n slices.
A strategy prediction module extracts the features of each slice Pi, 1≤ i≤n, and
predicts a strategy for it using a neural network. The program P is safe if each slice Pi

is safe, and P is unsafe if any slice Pi is unsafe. If program P cannot be sliced, then a

? P. Darke—Jury member
3 Without witness validation.

c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 588–593, 2023.
https://doi.org/10.1007/978-3-031-30820-8 41

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0001-6104-9033
http://orcid.org/0000-0002-7527-7675
https://doi.org/10.1007/978-3-031-30820-8_41
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_41&domain=pdf

strategy is predicted for P itself. Fig. 1 shows the architecture of VeriAbsL. As shown
VeriAbsL uses the portfolio of a strategy selection-based verifier called VeriAbs [7].

(Pj, Tkr)
Sorted

li

l10

l2

l1

f22

f2

f1

Predicted

Strategy

Strategy Prediction

Feature

Vector

Generation

P

P1

P2

Pn

…

S
li
ce

r -

A
n
al

y
ze

r
S

h
al

lo
w

 S
li
ce

r

…

Program Verification Result {S,F,U}

k-Induction CEGLAR

Loop Shrinking k-Path Interval

Analysis

Array Pruning Loop Abstraction

Explicit State

Model Checking

Bounded Model

Checking

Loop Invariant

Generation-1

Loop

Summarization

VeriAbs’s Portfolio

f1

f2

f22

…

1

2

3

17
…

…

l1

l10

Neural Network

…

Tk1

Tk2

…

Tk10

Slice Verification Result

{S,F,U}

Slices Results Composition

Fig. 1. VeriAbsL Architecture (S: Program Safe, F: Property Fails, U: Unknown)

1.1 Strategy Prediction using Machine Learning (ML)

Despite the advantages of sequencing multiple verification techniques in a strategy,
experimental evidence indicates that each strategy works well for only a class of
programs. When a new class is encountered, experts define a new strategy and
update the strategy-selection algorithm of the verifier. This is a tedious task. In order
to automate it, recently ML-based verifiers have been used with partial success [5].
VeriAbsL is one such verifier. It uses a simple ML-based approach explained as follows.

Feature Vector Generation. VeriAbsL uses a feature vector f of 22 boolean fea-
tures that describe a few semantic, or syntactic constructs of the input slice Pj. For
example, a boolean feature fi∈f if set to true can indicate the presence of arrays in
the input code, and false can indicate that no arrays are used. These features are
computed using a light-weight static analysis, and derived from those presented in [8].

Neural Network. VeriAbsL uses a three layered neural network with multi-class
classification, one class for each of the ten techniques in our portfolio. It has 22, 17,
and 10 neurons in the respective layers. It was trained using ReLU for the hidden layer
and softmax for the output layer, as activation functions, and with the mean-squared
error loss function. It translates an input feature vector f representing program slice
Pj into likelihoods of success li, 1≤i≤10, of the corresponding verification techniques
Ti in the portfolio for slice Pj. Each output node of the neural network ni represents
one verification technique Ti and the value li generated by the network at that node
ni is a heuristic measure of the relative likelihood that technique Ti will successfully
verify/disprove the property for slice Pj within 900 seconds.

Strategy Prediction. A strategy (Tk1,...,Tk10), 1≤kr≤10, 1≤r≤10, is created by
sorting the relative likelihoods of success li of each verification technique Ti in the
decreasing order. The techniques Ti are invoked in that order to verify slice Pj.

Experimental Results. The neural network in VeriAbsL was trained on 800 ran-
domly selected sv-comp 2022 ReachSafety benchmarks. At sv-comp 2023 out of
all 6138 benchmarks, VeriAbsL verified 227 more programs in 4.4% lesser time than

VeriAbsL: Scalable Verification by Abstraction and Strategy Prediction 589

VeriAbs4 and verified 475 programs that VeriAbs could not verify3. This was because
VeriAbsL predicted useful techniques early in its strategies, while VeriAbs selected
unsuitable strategies and ran out of time. Further the randomly selected training
data did not contain any benchmarks from three ReachSafety sub-categories namely
Combinations, ProductLines, and Hardware. VeriAbsL verified 72 more programs
than VeriAbs in these 3 sub-categories demonstrating that strategy-prediction in
VeriAbsL generalizes to programs for which it was not trained. VeriAbsL ran out of
time for 248 programs verified by VeriAbs because the randomly selected training
data did not contain any sample corresponding to two techniques, namely Vajra [6]
and Counter-Example Guided Loop Abstraction Refinement (ceglar) [4], needed to
verify the 248 programs. Thus they were always predicted late. Further VeriAbsL
verified 1047 and 543 more benchmarks compared to the other ML-based strategy
prediction tools, Graves [11] and PeSCo [12], respectively.

Strengths and Weaknesses of Strategy Prediction. VeriAbsL can verify more pro-
grams than VeriAbs in spite of the same portfolio because it uses ML for strategy
prediction. Also VeriAbsL demonstrates that a small set of boolean features can be
used successfully to verify programs, while other successful verifiers predict a strategy
using graph based learning methods [12]. Further VeriAbsL does not incorporate a
feedback mechanism that can penalize a technique if it cannot verify a program. Such
a feedback mechanism can improve its efficiency and accuracy.

1.2 Shallow Slicer

Sslicer is a generalization of the slicer-analyzer presented in [7] and like the latter,
aims for a scalable slicing with respect to calls in entry function main. But unlike the
slicer-analyzer, Sslicer allows multiple calls in main to (1) refer to the same global
variable, (2) transitively invoke the same function, or (3) have transitive dependence
on the same data element or control structure in main.

Sslicer partitions the program functions directly or indirectly called from main
into n sets F1...Fn such that the following conditions, termed as partition-independence,
are satisfied: (1) Each partition Fi contains at least one function directly called from
main. (2) Each partition Fi contains functions which are either directly or transitively
called from main. (3) All functions transitively called from function f∈Fi also belong
to Fi, the same partition as f . Thus if T(f) is the set of functions transitively called
from f , then ∀i, 1≤i≤n, ∀f∈Fi, T(f)⊆Fi. (4) No two functions f∈Fi and g∈Fj

belonging to different partitions transitively call the same function or refer to the same
global variable. Let V (Fi) be the set of global variables referred to by functions in set
Fi then ∀i,j | 1≤i≤n, 1≤j≤n, i 6=j =⇒ (V (Fi)∩V (Fj)=∅) (5) Let maini be the
function generated when a program containing only one function, the function main,
is sliced (using known slicing techniques [9]) with respect to calls to functions in set Fi

which are directly called from main. Then functions of no other set Fj, i 6=j, should re-
fer to the variables used inmaini. Thus ∀i,j | 1≤i≤n, 1≤j≤n, i 6=j =⇒ (V (maini)∩
V (Fj)=∅) (6) n is the largest possible natural number satisfying the above conditions.

4 The competition score of VeriAbs is greater than VeriAbsL because of 8 incorrect results
produced due to bugs in the implementation of a technique predicted by VeriAbsL. This
technique was not executed for these 8 programs by VeriAbs.

P. Darke et al.590

A slice Pi corresponding to each set Fi is generated. The set of functions in
slice Pi is given by maini∪Fi. To create the slice, call graph and referred variables
information is computed using call-trees, and a light-weight flow-insensitive pointer
analysis. We assume that function main itself is not a part of any recursive call chain,
and does not specify the assertions directly.

main (){
if(a&&b)f1 ();
f2 ();
if(b) f5 ();

}
f1() { f3 (); }
f2() { f4 (); }
f3() { c++; }
f4() { a++; }
f5() { d++; }

(a) Input Code

main (){
if(a&&b)f1 ();
f2 ();

}
f1() { f3 (); }
f2() { f4 (); }
f3() { c++; }
f4() { a++; }

(b) Slice 1

main (){
if(b) f5 ();

}
f5() { d++; }

(c) Slice 2

Fig. 2. Example
Example. Consider the program presented in Fig. 2a. In this example functions

called from main can be initially partitioned into three sets {f1, f3}, {f2, f4,} and
{f5} as f1 calls f3, f2 calls f4, and f5 does not refer to any function or variable that
other functions refer to. But function f4 refers to variable a. If a program containing
only the body of function main shown in Fig. 2a were to be sliced with respect to the
call to f1 in main then it would refer to variable a. Function f1 belongs to the first
partition and f4 to the second. To satisfy the fifth condition of partition-independence
functions f1 and f4 must belong to a single partition. Thus finally there are two
partitions - {f1, f2, f3, f4}, and {f5}. The slices created for the first and second
partitions are shown in Figures 2b and 2c respectively. Notice that since function
f5 does not refer to variable b in its body, it need not be merged with the other
partition even though the body of sliced main in Fig. 2c refers to variable b.

Experimental Results. We compare the performances of VeriAbsL with (1) slicer-
analyzer, and (2) slicer-analyzer and Sslicer, on all 6138 benchmarks of the Reach-
Safety category of sv-comp 2023. The first configuration generated slices for 671
programs while the second generated slices for 1369 programs showing better applica-
bility. Further, due to Sslicer, VeriAbsL terminated its analysis for 42 more programs,
showing improved scalability, and its portfolio could verify 4 additional programs.

1.3 Software Project, Architecture, and Setup

The Foundations of Computing research group at TCS Research [1] has developed
VeriAbsL. It is written in Perl, Java and Python. It uses TCS’s program analysis frame-
work [10] for static analysis, and TensorFlow libraries [2] for learning. VeriAbsL uses Ve-
riAbs’s portfolio [7], except Vajra [6] because it is not supported on Ubuntu 22.04 LTS.
VeriAbsL participated in the Reach-Safety category at sv-comp 2023, and is available
at [3]. The installation instructions are in VeriAbsL/INSTALL.txt, the BenchExec5

wrapper script for the tool is veriabsl.py, and the benchmark definition file is veri-

absl.xml. On successful verification, VeriAbsL generates a witness in the current work-
ing directory as witness.graphml. A sample command to verify property given in file
reach-safety.prp for a program, given in a.c, of a 32-bit (or 64-bit) architecture is as
follows: VeriAbsL/scripts/veriabs -32|64 --property-file reach-safety.prp a.c

5 https://github.com/sosy-lab/benchexec

VeriAbsL: Scalable Verification by Abstraction and Strategy Prediction 591

2 Data-Availability Statement

VeriAbsL is available as part of sv-comp 2023 verifier repository at https://gitlab.
com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/veriabsl.zip. For any
queries please contact the authors at veriabs.tool@tcs.com.

References

1. Foundations of Computing Group at TCS Research. https://www.tcs.com/

what-we-do/research.
2. TensorFlow. https://www.tensorflow.org/.
3. VeriAbsL Tool Archive. https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/

blob/main/2023/veriabsl.zip.
4. M. Afzal, A. Asia, A. Chauhan, B. Chimdyalwar, P. Darke, A. Datar, S. Kumar, and

R Venkatesh. VeriAbs: Verification by Abstraction and Test Generation. In ASE, pages
1138–1141, 2019.

5. Dirk Beyer. Progress on software verification: SV-COMP 2022. In Dana Fisman and
Grigore Rosu, editors, Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part II, volume 13244 of Lecture Notes in Computer
Science, pages 375–402. Springer, 2022.

6. Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat. Verifying array
manipulating programs with full-program induction. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages
22–39. Springer, 2020.

7. P. Darke, S. Agrawal, and R. Venkatesh. VeriAbs: A Tool for Scalable Verification by
Abstraction (Competition Contribution). In Proc. TACAS (2), LNCS 12652. Springer,
2021.

8. Yulia Demyanova, Thomas Pani, Helmut Veith, and Florian Zuleger. Empirical software
metrics for benchmarking of verification tools. In Jens Knoop and Uwe Zdun, editors,
Software Engineering 2016, pages 67–68, Bonn, 2016. Gesellschaft für Informatik e.V.

9. Mark Harman and Robert M. Hierons. An overview of program slicing. Software
Focus, 2(3):85–92, 2001.

10. S. Khare, S. Saraswat, and S. Kumar. Static program analysis of large embedded code
base: an experience. In ISEC, pages 99–102, 2011.

11. Will Leeson and Matthew B. Dwyer. Graves-cpa: A graph-attention verifier selector
(competition contribution). In Dana Fisman and Grigore Rosu, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 440–445, Cham, 2022.
Springer International Publishing.

12. Cedric Richter, Eyke Hüllermeier, Marie-Christine Jakobs, and Heike Wehrheim.
Algorithm selection for software validation based on graph kernels, 2020.
https://link.springer.com/article/10.1007/s10515-020-00270-x.

13. Cedric Richter and Heike Wehrheim. Pesco: Predicting sequential combinations of
verifiers. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
229–233, Cham, 2019. Springer International Publishing.

P. Darke et al.592

https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/veriabsl.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/veriabsl.zip
https://www.tcs.com/what-we-do/research
https://www.tcs.com/what-we-do/research
https://www.tensorflow.org/
https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/veriabsl.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/veriabsl.zip
https://link.springer.com/article/10.1007/s10515-020-00270-x

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

VeriAbsL: Scalable Verification by Abstraction and Strategy Prediction 593

http://creativecommons.org/licenses/by/4.0/

	VeriAbsL: Scalable Verification by Abstraction and Strategy Prediction (Competition Contribution)
	1 Verification Approach
	1.1 Strategy Prediction using Machine Learning (ML)
	1.2 Shallow Slicer
	1.3 Software Project, Architecture, and Setup

	2 Data-Availability Statement
	References

