
Ultimate Taipan and Race Detection in Ultimate

(Competition Contribution)

Daniel Dietsch? , Matthias Heizmann , Dominik Klumpp(�) ,
Frank Schüssele , and Andreas Podelski

University of Freiburg, Freiburg im Breisgau, Germany
klumpp@informatik.uni.freiburg.de

Abstract. Ultimate Taipan integrates trace abstraction with alge-
braic program analysis on path programs. Taipan supports data race
checking in concurrent programs through a reduction to reachability
checking. Though the subsequent verification is not tuned for data race
checking, the results are encouraging.

1 Verification Approach

Ultimate Taipan [6,7] verifies programs using an approach based on trace ab-
straction [8]. The program is represented as a control flow automaton: Letters
correspond to program statements, accepting states correspond to error loca-
tions, and accepted words are error traces. The verification consists of proving
that all error traces are infeasible (they cannot be executed). To this end, Taipan
picks an error trace from the control flow automaton, and computes the corre-
sponding path program, i.e., the projection of the program on the statements in
the trace. Taipan then uses symbolic interpretation with fluid abstractions [6],
a variant of algebraic program analysis, to prove correctness of this path pro-
gram. If this fails, the algorithm falls back to an interpolation-based method
to prove correctness of the trace itself. In either case, the resulting predicates
are used to build a Floyd/Hoare-automaton [8] that accepts a regular language
of infeasible traces. This automaton is subtracted from the program’s control
flow automaton, yielding a refined abstraction. Taipan repeats this procedure
in a loop until it finds a feasible error trace (the program is incorrect) or the
abstraction is empty (all error traces are infeasible, the program is correct).

For concurrent programs, Taipan performs a näıve sequentialization, and
considers the interleaving product of all threads as a (nondeterministic) sequen-
tial program. Verification then proceeds on this program as it would for any
other sequential program. Note that this also affects the notion of path program,
i.e., path programs are also just sequential programs.

Taipan is part of the Ultimate framework, and uses the same front-end
as other Ultimate tools. C programs are first translated to the intermediate
verification language Boogie [10], the resulting Boogie program is converted into
a control flow automaton, which is then verified. The translation from C to

? Jury Member: Daniel Dietsch

c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 582–587, 2023.
https://doi.org/10.1007/978-3-031-30820-8 40

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-8947-5373
http://orcid.org/0000-0003-4252-3558
http://orcid.org/0000-0003-4885-0728
http://orcid.org/0000-0002-5656-306X
http://orcid.org/0000-0003-2540-9489
mailto:klumpp@informatik.uni.freiburg.de
https://doi.org/10.1007/978-3-031-30820-8_40
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_40&domain=pdf

Boogie models heap and stack memory through Boogie arrays (associative maps),
where pointers correspond to indices. To simplify the subsequent verification, any
variables, arrays and structures that are guaranteed to never be accessed through
a pointer are instead translated to corresponding Boogie variables.

2 From Data Races to Reachability

Since SV-COMP’22, Taipan can check for data races in concurrent programs.
A program written in C contains a data race if there are two different threads,
(i) one thread writes to a memory location and the other thread writes to or reads
from the same memory location, (ii) at least one of the accesses is not atomic,
and (iii) neither access happens-before the other. The C standard [9], section
5.1.2.4, gives the precise definition. Data races constitute undefined behaviour.

Ultimate supports data race checking through a reduction to reachability.
This reduction is implemented as part of our translation from C to our custom
Boogie dialect. Contrary to C, data races do not constitute undefined behaviour
in our Boogie dialect. The semantics prescribes that “simple” Boogie statements
– (nondeterministic) assignments and assume statements – execute atomically.
We consider all interleavings of these atomic statements, i.e., we assume se-
quential consistency. Hence the correctness of the generated Boogie programs is
well-defined, even if the input C program has undefined behaviour. Any verifi-
cation algorithm for concurrent programs can be applied to the resulting Boogie
program, including the algorithm implemented by Taipan.

The reduction to reachability proceeds as follows. For every global variable
x, we introduce a fresh Boolean global variable race x, which tracks read and
write accesses to x. By comparing the current value of race x to some value it
previously held, we can detect if x has been accessed since. We call an atomic
Boogie statement that represents a C statement or an evaluation step for a C
expression an action. Let <read(x)> denote an action that reads the value of x,
and let <write(x)> denote an action that assigns a new value to x. Our trans-
lation wraps such actions in data race detection code as shown in the following
listings, where tmp is a boolean, thread-local variable.

race_x := true;
<read(x)>
assert race_x == true;

havoc tmp; // nondeterministic assignment
race_x := tmp;
<write(x)>
assert race_x == tmp;

For an action a, we call the sequence of Boogie statements that results from
this wrapping block(a). Note that a is always contained in block(a). Our trans-
lation ensures that if an action a is part of an atomic block (delimited by
VERIFIER atomic *), then the entire block(a) falls inside that atomic block.

For two actions a and b, we say that block(b) can interrupt block(a) if there
exists a program execution that executes block(a) up to and including the action
a, then fully executes block(b), and then continues to execute the remaining
assert statement of block(a). Hence, a block(a) can interrupt block(b) or vice
versa if and only if at least one of the actions a or b is not atomic, and neither
happens-before [9] the other.

Ultimate Taipan and Race Detection in Ultimate 583

For an action a, the assert statement in block(a) cannot fail, unless there is
an action b such that (i) block(b) can interrupt block(a), and (ii) a and b both
access the same variable x. For instance, let a be an action that writes to x,
and let b be an action that reads from x. In the following example, block(b) can
interrupt block(a) and the last assert statement can fail because false can be
chosen as value of tmp.

Thread 1: havoc tmp; race x:=tmp; a assert race x==tmp;

Thread 2: race x:=true; b assert race x==true;

Based on the definition of data races we distinguish three cases for the actions
a and b:

two reads: The assert statements cannot fail for any interleaving because
both blocks set race x to the same value. The fact that this value is true

has no significance; it only matters that the value is fixed.
a read r and a write w: If block(w) can interrupt block(r), the assert state-

ment for r can fail if block(w) assigns tmp (and consequently, race x) to
false. Similarly, if block(r) can interrupt block(w), the assert statement for
w can fail (again, if tmp has value false).

two writes w1, w2: If some block(wi) can interrupt block(w3−i), the assert state-
ment for w3−i can fail (the blocks may assign different values to race x).

From this case distinction we conclude that in the translated Boogie program, an
assert statement added for data race detection can fail if and only if the original
C program contains a data race.

Our encoding is independent of the synchronization mechanisms used to rule
out data races. Whether the program uses VERIFIER atomic *, pthread mu-
texes, or directly implements locking mechanisms, no special handling is needed.
Our implementation supports not only (primitive) global variables, but also data
on the heap (accessed through pointers) as well as off-heap structures and ar-
rays. In such cases, instead of a Boolean variable race x, more complicated data
structures are needed. We mirror the data layout with Boolean fields: For every
data array, there exists a corresponding Boolean array, for every structure, there
is a corresponding structure with Boolean-valued fields, etc.

This handling of complex data types also allows us to deal with aliasing issues:
Ultimate models memory as an associative array mem : [Pointer]Int, with
pointers as indices. Our race detection encoding creates a corresponding boolean-
valued associative array race mem : [Pointer]Boolean. The instrumentation for
an access to a memory location through a pointer p then manipulates the entry
race mem[p]. If pointers p and q point to the same memory location ` at runtime,
then race mem[p] and race mem[q] refer to the same array entry. Hence, if there
is a data race on `, one of the generated assert statements can fail.

3 Strengths and Weaknesses

Our encoding of data races is independent of the subsequent verification algo-
rithm. We have employed this encoding since SV-COMP 2022 [2], for Taipan

D. Dietsch et al.584

as well as in the Ultimate tools Automizer and GemCutter (Ultimate
Kojak currently does not support concurrency).

We inherit limitations of the respective verification algorithms. Taipan is un-
able to prove correctness of programs with an unbounded (or very high) number
of threads. The NoDataRace category contains many such programs. Overall,
the Ultimate tools perform competitively in the NoDataRace-Main category,
with Automizer, GemCutter and Taipan reaching 4th, 5th and 6th place,
respectively. In comparison with last year’s performance in the demo category
(4th, 1st and 2nd place), a major factor seems to be the large number of new
correct benchmarks, where we do not perform as well yet. Perhaps some tuning
of the subsequent verification algorithms to the detection of data races can lead
to improvements in the future.

The presented encoding of data races as reachability is compositional, and
independent of the number of threads that are running concurrently: We always
add a single assertion per access, in contrast to some other methods [4].

One limitation of our implementation is that, from a feasible trace that ends
in an assertion violation, it is not always immediately clear which accesses have a
data race. In order to support violation witnesses for data races in future editions
of SV-COMP, a more detailed analysis of the trace will be needed.

Our performance suffers in some cases due to a large amount of instrumen-
tation, e.g. in benchmarks where large structs are copied: Currently, we handle
each byte in the struct separately. In the future, we hope to improve the imple-
mentation to (i) handle reads and writes of large memory chunks more efficiently,
(ii) detect more situations in which a concurrent access can be easily ruled out,
and no instrumentation is needed, and (iii) making parts of the generated data
race detection code atomic, thus reducing the number of interleavings.

4 Architecture, Setup, Configuration, and Project

Ultimate Taipan is part of Ultimate1, a program analysis framework written
in Java and licensed under LGPLv32. Taipan version 0.2.2-2329fc70 requires
Java 11 and Python 3.6. The submitted .zip archive contains the Linux version
of Taipan, binaries of the required SMT solvers3, and a Python wrapper script.
Taipan is invoked with

./Ultimate.py --spec <p> --file <f> --architecture <a> --full-output

where <p> is an SV-COMP property file, <f> is an input C file, <a> is the data
model (32bit or 64bit), and --full-output enables verbose output to stdout.
A violation or correctness witness may be written to the file witness.graphml.
The benchmarking tool BenchExec [3] supports Taipan through the tool-info
module ultimatetaipan.py4. Taipan participates in all categories, as declared in
its SV-COMP benchmark definition file utaipan.xml5.

1
ultimate.informatik.uni-freiburg.de and github.com/ultimate-pa/ultimate

2
www.gnu.org/licenses/lgpl-3.0.en.html

3
Z3 (github.com/Z3Prover/z3), CVC4 (cvc4.github.io/) and Mathsat (mathsat.fbk.eu)

4
github.com/sosy-lab/benchexec/blob/main/benchexec/tools/ultimatetaipan.py

5
gitlab.com/sosy-lab/sv-comp/bench-defs/-/blob/main/benchmark-defs/utaipan.xml

Ultimate Taipan and Race Detection in Ultimate 585

https://ultimate.informatik.uni-freiburg.de
https://github.com/ultimate-pa/ultimate
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://github.com/Z3Prover/z3
https://cvc4.github.io/
https://mathsat.fbk.eu
https://github.com/sosy-lab/benchexec/blob/main/benchexec/tools/ultimatetaipan.py
https://gitlab.com/sosy-lab/sv-comp/bench-defs/-/blob/main/benchmark-defs/utaipan.xml

Data Availability Ultimate Taipan can be found in the archive of all verifiers
and validators participating in SV-COMP’23 [1]. Additionally, the .zip archive
containing only Taipan is available online6 and on Zenodo [5].

References

1. Beyer, D.: Verifiers and validators of the 12th Intl. Competition on Software Verifi-
cation (SV-COMP 2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7627829

2. Beyer, D.: Progress on software verification: SV-COMP 2022. In: TACAS (2).
Lecture Notes in Computer Science, vol. 13244, pp. 375–402. Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0 20

3. Beyer, D., Löwe, S., Wendler, P.: Reliable Benchmarking: Requirements
and Solutions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

4. Coto, A., Inverso, O., Sales, E., Tuosto, E.: A prototype for data race detection in
cseq 3 - (competition contribution). In: TACAS (2). Lecture Notes in Computer
Science, vol. 13244, pp. 413–417. Springer (2022). https://doi.org/10.1007/978-3-
030-99527-0 23

5. Dietsch, D., Heizmann, M., Klumpp, D., Schüssele, F., Podelski, A.: Ulti-
mate Taipan SV-COMP 2023 Competition Contribution. Zenodo (Dec 2022).
https://doi.org/10.5281/zenodo.7480186

6. Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schüssele, F.: Ultimate Taipan
with Symbolic Interpretation and Fluid Abstractions - (Competition Contribu-
tion). In: TACAS (2). Lecture Notes in Computer Science, vol. 12079, pp. 418–422.
Springer (2020). https://doi.org/10.1007/978-3-030-45237-7 32

7. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants from counterexamples.
In: SAS. Lecture Notes in Computer Science, vol. 10422, pp. 128–147. Springer
(2017). https://doi.org/10.1007/978-3-319-66706-5 7

8. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of Trace Abstraction. In:
SAS. Lecture Notes in Computer Science, vol. 5673, pp. 69–85. Springer (2009).
https://doi.org/10.1007/978-3-642-03237-0 7

9. ISO: ISO/IEC 9899:2011 Information technology — Programming languages — C.
International Organization for Standardization, Geneva, Switzerland (2011)

10. Leino, K.R.M.: This is Boogie 2 (June 2008), https://www.microsoft.com/en-us/
research/publication/this-is-boogie-2-2/

6
gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/utaipan.zip

D. Dietsch et al.586

https://doi.org/10.5281/zenodo.7627829
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-99527-0_23
https://doi.org/10.1007/978-3-030-99527-0_23
https://doi.org/10.5281/zenodo.7480186
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-642-03237-0_7
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/utaipan.zip

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Ultimate Taipan and Race Detection in Ultimate 587

http://creativecommons.org/licenses/by/4.0/

	Ultimate Taipan and Race Detection in Ultimate
	1 Verification Approach
	2 From Data Races to Reachability
	3 Strengths and Weaknesses
	4 Architecture, Setup, Configuration, and Project
	References

