
Ultimate Automizer and the
CommuHash Normal Form

(Competition Contribution)

, Max Barth , Daniel Dietsch , Leonard Fichtner,
Jochen Hoenicke , Dominik Klumpp , Mehdi Naouar ,

Tanja Schindler , Frank Schüssele , and Andreas Podelski

Abstract. The verification approach of Ultimate Automizer utilizes
SMT formulas. This paper presents techniques to keep the size of the
formulas small. We focus especially on a normal form, called CommuHash
normal form that was easy to implement and had a significant impact
on the runtime of our tool.

1 Verification Approach

Ultimate Automizer (in the following calledAutomizer) is a software verifier
that combines a CEGAR scheme and trace abstraction [6] to check safety and
liveness properties.

Automizer’s algorithm begins by transforming an input program to a pro-
gram automaton whose transitions are labelled with formulas representing the
effects of a statement (or multiple statements), whose accepting states corre-
spond to error locations of the input program, and whose structure is equal to
the structure of the control-flow graph of the input program. This program au-
tomaton recognizes a language, where every word is a sequence of statements
that leads to an error location. If the language is empty, we can conclude that the
program is safe. If the language is not empty, our algorithm picks a word from
the language and checks whether it is feasible (i.e., the sequence of statements
corresponds to an execution of the program) or infeasible. If the word is feasible
we have found an actual counterexample. If it is infeasible we compute a proof
of infeasibility for this sequence of statements. Afterwards we generalize this se-
quence of statements to a new automaton that accepts sequences of statements
whose infeasibility can be shown by the very same proof. We then subtract the
automaton with the language of infeasible words from the program automaton
and obtain a new automaton that represents a smaller language, with which
we continue the refinement loop. An important benefit of this approach is that
because we perform the refinement step purely with automata operations, we
never have to mix infeasibility proofs from different iterations.

This basic approach has not changed since the last competition. In the next
section we explain improvements for the handling of SMT formulas.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 577–581, 2023.
https://doi.org/10.1007/978-3-031-30820-8 39

University of Freiburg, Freiburg im Breisgau, Germany

heizmann@informatik.uni-freiburg.de

Matthias Heizmann(B)

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0003-4252-3558
http://orcid.org/0009-0002-7716-3898
http://orcid.org/0000-0002-8947-5373
http://orcid.org/0000-0002-6314-1041
http://orcid.org/0000-0003-4885-0728
http://orcid.org/0009-0002-1557-2223
http://orcid.org/0000-0002-7462-8445
http://orcid.org/0000-0002-5656-306X
http://orcid.org/0000-0003-2540-9489
mailto:heizmann@informatik.uni-freiburg.de
https://doi.org/10.1007/978-3-031-30820-8_39
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_39&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


M. Heizmann et al.

2 SMT formulas in Ultimate

The Ultimate program analysis framework on which Ultimate Automizer is
built upon, uses SMT formulas to represent the effect of program statements and
to represent sets of states. We call formulas that represent sets of states state
assertions. State assertions play a major role in the verification approach of
Automizer. The infeasibility proof that we infer for each infeasible sequence of
states is a sequence of state assertions and in the generalization step of the overall
verification algorithm we have to check thousands of Hoare triples of the form
{φ}st{ψ}, where φ and ψ are state assertions from infeasibility proofs. In order
to check these Hoare triples, we reduce the validity problem for Hoare triples
to a satisfiability problem for SMT formulas and let an SMT solver decide the
satisfiability. The costs for the overall verification algorithm would be dominated
by the costs for these satisfiability checks if we would not take additional actions
to keep the size of the SMT formulas low.

We infer the sequence of state assertions by Craig interpolation or by a sym-
bolic execution (via strongest post and weakest precondition) that is supported
by unsatisfiable cores [3]. In the latter case the state assertions are usually quan-
tified and we try to get rid of these quantifiers by applying several quantifier
elimination techniques. These quantifier elimination techniques make the formu-
las simpler for SMT solvers but increase their size.

Our most powerful technique for reducing the size of formulas is an algo-
rithm [4] that removes subformulas if the removal does not change the models
of the formula. This algorithm however is itself costly because it calls an SMT
solver for each subformula.

In order to also reduce the size of formulas without additional SMT solver
calls, we utilize the following optimizations whenever we construct a formula.

– We apply the laws for annulment (e.g., X∨true becomes true), identity (e.g.,
X ∧X becomes X), idempotency (e.g., x + 0 becomes x), double negation
(e.g., ¬¬X becomes X), and complement (e.g., X ∧ ¬X becomes false).

– We compute the result for all operations on literals (e.g., 5 ≤ 7%2 becomes
false).

– We represent all integer and bitvector terms as polynomials. All terms that
cannot be converted to polynomials become “variables” of the polynomial
(e.g., 2 · select(a, k) + 3 · (x%256) + 4).

– For inequalities over integers and equalities over bitvectors and integers, we
move monomials to the side of the relation where it can occur with a positive
coefficient. (e.g., 2x− 3y = 0 becomes 2x = 3y).

– We work only with inequalities that open to the right. I.e., we transform >
to <, ≥ to ≤, sgt to slt, sge to sle, ugt to ult, and uge to ule.

3 The CommuHash Normal Form

An effect of the quantifier elimination techniques and the optimizations men-
tioned above is that we construct formulas in many places of our code. A side-
effect of this is that we get formulas that have subformulas that differ only in the

578



Ultimate Automizer and the CommuHash Normal Form 579

order of the parameters of a commutative operator. E.g., we saw formulas like,
e.g., i = k∨k ̸= i or a[i+k] = a[k+ i]. For both formulas the logical equivalence
to true would have been detected if the operands of the commutative operations
+ and = would not have occurred in different orders. To minimize this problem
we define a normal form that we call CommuHash Normal Form (CHNF). This
normal form utilizes the fact that in Ultimate every formula has a 32-bit hash
code. We say that an SMT formula is in CommuHash Normal Form if for every
subformula with a commutative operator the operands are sorted according to
their hash code in ascending order. To ensure that every formula is in CHNF
Ultimate sorts the parameters whenever we construct a term whose operand
is one of the following SMT operators: =, distinct, and, or, xor, +, *,

bvadd, bvmul, bvand, bvor, bvxor.
In order to evalutate the effect of the CommuHash Normal Form we con-

ducted an experiment in which we compared the default version of Ultimate
Automizer to a version in which we disabled the sorting of parameters. We ran
both versions on the benchmarks of the MemSafety category. In this category
we typically have to deal with large formulas because the state assertions of
proofs have to encode alias information about the program’s pointers. We ran
both versions on all 3440 benchmarks of the category. The CPU was an AMD
Ryzen Threadripper 3970X, the time limit was 90s, the memory limit was 8000
MB and for each benchmark two CPU cores were used. In each run there were
no incorrect results. The run without CHNF produced 1347 correct results, the
run with CHNF produced 1439 correct results. Figure 1 shows a comparison of
the runtimes for each benchmark in which at least one setting produced a result.
We see that on average the run with CHNF needs less time. In fact on average
the speedup is 31%.

20 40 60 80

without CHNF

20

40

60

80

C
H

N
F

Fig. 1: Comparison of the runtime with and without CHNF



4 Project, Setup and Configuration

Automizer is a part of the open-source program analysis framework Ulti-
mate1. Both are written in Java and licensed under LGPLv3. We use version
0.2.3 of Automizer [5] for SV-COMP, which requires Java 11 and Python 3.6.
The release 0.2.3 contains binaries for Automizer and the SMT solvers Z3,
CVC4, and Mathsat, as well as the Python wrapper script Ultimate.py. The
Python script provides an interface to the competition environment, in particu-
lar to the BenchExec2 tool-info module ultimateautomizer.py. Automizer
also participates as witness validator and can validate violation [2] or correct-
ness witnesses [1]. We participate in all categories 3 as verifier, but our witness
validator does not yet support concurrency witnesses. Hence, our validator does
not participate in ConcurrencySafety 4.

Automizer can be run by calling

./Ultimate.py --spec prop.prp --file input.c --architecture

32bit|64bit --full-output [--validate witness.graphml]

where prop.prp is the SV-COMP property file, input.c is the C file that
should be analyzed, 32bit or 64bit is the architecture of the input file, and
--full-output enables writing of verbose output to stdout. The witness that
should be validated is specified with --validate. If Automizer generates a
result, a witness is written to the file witness.graphml. Automizer’s output
is always written to the file Ultimate.log.

References

1. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchanging
verification results between verifiers. In: Zimmermann, T., Cleland-Huang, J., Su,
Z. (eds.) Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-
18, 2016. pp. 326–337. ACM (2016), https://doi.org/10.1145/2950290.2950351

2. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Nitto, E.D., Harman, M.,
Heymans, P. (eds.) Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,
2015. pp. 721–733. ACM (2015), https://doi.org/10.1145/2786805.2786867

3. Dietsch, D., Heizmann, M., Musa, B., Nutz, A., Podelski, A.: Craig vs. newton in
software model checking. In: Bodden, E., Schäfer, W., van Deursen, A., Zisman,
A. (eds.) Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. pp. 487–
497. ACM (2017), https://doi.org/10.1145/3106237.3106307

1 https://github.com/ultimate-pa/ultimate
2 https://github.com/sosy-lab/benchexec
3 Specified by uautomizer.xml at https://github.com/sosy-lab/sv-comp.
4 Specified by uautomizer-validate-*-witnesses.xml.

M. Heizmann et al.580

https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/3106237.3106307
https://github.com/ultimate-pa/ultimate
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/sv-comp


4. Dillig, I., Dillig, T., Aiken, A.: Small formulas for large programs: On-line constraint
simplification in scalable static analysis. In: Cousot, R., Martel, M. (eds.) Static
Analysis - 17th International Symposium, SAS 2010, Perpignan, France, September
14-16, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6337, pp. 236–
252. Springer (2010), https://doi.org/10.1007/978-3-642-15769-1_15

5. Heizmann, M., Dietsch, D., Klumpp, D., Schüssele, F., Podelski, A.: Ultimate Au-
tomizer SV-COMP 2023 Competition Contribution (Dec 2022), https://doi.org/
10.5281/zenodo.7480181

6. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification
- 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-
19, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8044, pp. 36–52.
Springer (2013), https://doi.org/10.1007/978-3-642-39799-8_2

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Ultimate Automizer and the CommuHash Normal Form 581

https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.5281/zenodo.7480181
https://doi.org/10.5281/zenodo.7480181
https://doi.org/10.1007/978-3-642-39799-8_2
http://creativecommons.org/licenses/by/4.0/

	Ultimate Automizer and the CommuHash Normal Form (Competition Contribution) 
	1 Verification Approach
	2 SMT formulas in Ultimate
	3 The CommuHash Normal Form
	4 Project, Setup and Configuration
	References




