ble > NZR!

PIChecker: A POR and Interpolation based
Verifier for Concurrent Programs
(Competition Contribution)*

Check for
updates

Jie Su @ Zuchao Yang &) Hengrui Xing ‘&, Jiyu Yang &,
Cong Tian @®&)** and Zhenhua Duan

ICTT and ISN Lab, Xidian University, Xi’an 710071, China
{jsu_3,mujueke,morui, jiyuy2024}@stu.xidian.edu.cn,
{ctian,zhhduan}@mail .xidian.edu.cn

Abstract. PIChecker is a tool for verifying reachability properties of
concurrent C programs. It moderates the trace-space explosion problem,
aggravated by thread alternation, through utilizing the PC-DPOR and
C-Intp techniques. The PC-DPOR technique constructs a constrained
dependency graph to refine dependencies between transitions. With this
basis, the inherent imprecision of the dependence over-approximation can
be overcome. Thereby, many redundant equivalent traces are prevented
from being explored. On the other hand, the C-Intp technique performs
conditional interpolation to confine the reachable regions of states, so
that infeasible conditional branches which occur more frequently in con-
current verification tasks could be pruned automatically. We have imple-
mented the above techniques on top of the open-source program analysis
framework CPAchecker.

Keywords: Partial-Order Reduction - Interpolation - Concurrent Pro-
gram - Model Checking

1 Verification Approach

Program synthesis[11] and verification[5] are two ways to improve the quality of
software. In this paper, we propose a tool, namely PIChecker, that utilizes the
PC-DPOR [9] and C-Intp [8] techniques to verify the reachability properties of
concurrent programs. These techniques work in two different ways, equivalent
trace class partitioning and infeasible conditional branch pruning, to reduce the
search space in model checking.

The PC-DPOR technique addresses the problem that the coarse dependency
approximation of transitions used in many POR [6] approaches significantly in-
creases the number of equivalent trace classes to be explored. In order to reduce

* This research is supported by the National Natural Science Foundation of China
(No. 62192734, No. 61732013 and No. 62172322).
** The corresponding author.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 571-576, 2023.
https://doi.org/10.1007/978-3-031-30820-8_38

https://orcid.org/0000-0002-5098-8040
https://orcid.org/0000-0002-7214-3989
https://orcid.org/0000-0001-9081-6174
https://orcid.org/0000-0003-1355-8137
https://orcid.org/0000-0002-5429-4580
https://orcid.org/0000-0002-3119-3242
https://doi.org/10.1007/978-3-031-30820-8_38
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_38&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

572 J. Su et al.

unnecessary exploration, the PC-DPOR technique constructs a constrained de-
pendency graph (CDG) to refine the dependencies between transitions, where the
edges in a CDG represent the dependency constraints that transitions from dif-
ferent threads depend on each other. The first configuration in Fig. 1 combines
this technique with BDD-based reachability analysis to explore the reachable
state-space of a concurrent program. At each state s, if there are isolated transi-
tions which have no connection with the nodes of other threads in the CDG, then
only one reachable successor state s’ corresponding to an isolated transition will
be explored (i.e., the enabled transitions of other threads will be pruned). We
have proved that the prioritized exploration strategy for isolated transition still
provides full coverage of all program behaviors[9]. This prioritized exploration
continues until a checking state without any successor of isolated transition is
reached. Thereafter, the dependency between any two different transitions ¢ and
t' at a checking state can be dynamically determined by checking whether their
dependency constraint holds at the checking state. If the constraint does not
hold (i.e., t is independent of ¢’ at the current checking state), then only one of
the execution orders t - ¢’ and ¢’ - ¢ will be explored. With the basis of CDG, the
inherent imprecision of traditional dependence over-approximation is overcome
and many redundant equivalent traces can be saved from being explored.

On the other hand, the C-Intp technique focuses on pruning the infeasible
conditional branches that may be explored in traditional abstraction-refinement
iterations [7] when predicates are insufficient. At each state s, besides the reach-
ability check of error locations, the C-Intp technique also inspects whether there
exists any path that contains infeasible conditional branches. If so, the C-Intp
technique will treat such a path as another form of spurious path, and additional
constraints, namely conditional interpolants, will be generated by performing
conditional interpolation on these additional spurious paths. Thereafter, infea-
sible conditional branches can be pruned by introducing these constraints into
the reachable regions of states. In order to improve the efficiency of satisfiability
checking and Craig interpolation [4] steps performed by C-Intp, the generated
conditional interpolants are utilized to shorten the interpolation paths. To do
so, the shortest C-Intp formula chains which contain only the formulas that
affect decision-making are constructed at each choice point to perform the inter-
polations. With the conditional interpolants and shorter interpolation paths, a
sufficient amount of predicates can be generated efficiently, and more attention
can be paid to the analysis of feasible paths.

2 Software Architecture

PIChecker is developed on top of CPAchecker with the PC-DPOR and C-Intp
extensions. By taking the strength of the CPA concept, PIChecker uses differ-
ent configurations as shown in Fig. 1 to cover as many concurrent programs as
possible. Within the verification time-bound, the verification for a given pro-
gram starts by executing the first configuration that combines the PC-DPOR
technique and BDD-based reachability analysis. If a counterexample is reported,

PIChecker: A Verifier for Concurrent Programs 573

%

false

BDD + PC-DPOR true
¥ Time Limit: 900s

spurious
unknown

CEGAR + C-Intp
(MathSAT5)
Time Limit: None

LError—Path Check

false true

unknown

feasible

CEGAR + C-Intp
(SMTInterpol)
Time Limit: None

false true

unknown
¥ +

false + witness true + witness

Fig. 1. The verification flow that combines the PC-DPOR and C-Intp strategies.

the feasibility of this error path will be checked since the BDD-based reachabil-
ity analysis in CPAchecker currently only supports the representation of integer
variable values and other states in waitlist will continue to be explored if the
counterexample is spurious. If the execution of the first configuration terminates
unexpectedly within 900s, the verification will continue by using the other two
CEGAR + C-Intp based configurations with different back-end solvers. In that
case, the second configuration with the MathSAT5 will be chosen firstly. If its
execution also aborts abnormally because the MathSAT5 solver fails to perform
interpolation on the shortest C-Intp formula chains generated by the C-Intp ap-
proach, the last configuration with the SMTInterpol solver will finally be utilized
if the time cost is still within the bound.

3 Strengths and Weakness

Compared to CPAchecker which conservatively approximates the independence
of transitions by checking whether a transition only accesses local variables [2],
the use of CDG in PIChecker can improve the precision of estimating the depen-
dencies of enabled transitions at reachable states. Therefore, the exploration of
more traces in the same equivalent class can be avoided by utilizing PIChecker.
In addition, different from most of the abstraction-refinement approaches that
generate only a few number of predicates at the end of each iteration, the two CE-
GAR + C-Intp based configurations can effectively generate a sufficient amount
of conditional interpolants within a single round of iteration by performing the
conditional interpolation technique at conditional branches. Thus, the explo-
ration of many infeasible conditional branches can be avoided. For the sake of
clarifying the improvement from PIChecker more clearly, a comparison between
PIChecker and CPAchecker, on checking the unreach-call property under the
category ConcurrencySafety in SV-COMP 2023, is made. The results indicate

574 J. Su et al.

that PIChecker succeeds to verify 394 out of 665 verification tasks, which is
more than 375 of CPAchecker. Further, for the 372 tasks that can be verified
by the both tools, the average time and memory costs of PIChecker (37.49s,
672.15MB) only account for 56.58% and 61.71% of the corresponding overheads
consumed by CPAchecker (66.27s, 1089.19MB), respectively.

In order to guarantee the correctness of verification results, some conser-
vative strategies are adopted by the three configurations. For example, when
the program statement corresponding to a transition contains non-deterministic
function calls (e.g., 'x = __VERIFIER nondet_int();’), the PC-DPOR technique
conservatively considers it to be dependent on other transitions if they access the
same shared variables. These strategies may significantly reduce the verification
efficiency.

4 Tool Setup and Configuration

PIChecker is built on the CPAchecker codebase and is publicly available!. It con-
tains all the dependent libraries and requires a Java 11 Runtime Environment.
In SV-COMP 2023, PIChecker only participates in the ConcurrencySafety cat-
egory and checks the unreach-call property”. Before verifying a program, all
files from the submitted archive must be extracted into the same folder. Execut-
ing PIChecker on a task can be done in the same way as executing any other
CPAchecker configuration by running: scripts/cpa.sh -svcomp23-pichecker
—timelimit <TIME LIMIT> [-spec <SPEC_FILE>] <SOURCE_FILE>. The exper-
imental statistics and verification results are written in output/Statistics.txt.
Moreover, human readable counterexamples output/Counterexample.%d.txt
will be generated if the reachability property does not hold. For more instruc-
tions, please refer to README.md and INSTALL.md.

5 Software Project and Contributors

Based on the open-source tool CPAchecker [3], PIChecker has been developed
by Jie Su, Zuchao Yang, Hengrui Xing, Jiyu Yang from the ICTT Lab in Xi-
dian University under the supervision of Cong Tian and Zhenhua Duan. We
thank Dirk Beyer and his team for their original contributions to CPAchecker.
PIChecker is licensed under the Apache 2.0, and it also contains the copyright
of CPAchecker.

Data Availability Statement. All data of SV-COMP 2023 are archived as
described in the competition report[1] and available on the competition web
site. This includes the verification tasks, results, witnesses, scripts, and in-
structions for reproduction. The version of PIChecker used in the competition
is archived on Zenodo [10] and also in its own artifact at GitLab.

! PIChecker repository: https://gitlab.com/Lapulatos/pichecker.git
2 The benchmark definition of PIChecker: https://gitlab.com/sosy-lab/sv-comp/
bench-defs/-/blob/main/benchmark-defs/pichecker.xml

https://sv-comp.sosy-lab.org/2023/
https://sv-comp.sosy-lab.org/2023/
https://gitlab.com/Lapulatos/pichecker.git
https://gitlab.com/Lapulatos/pichecker.git
https://gitlab.com/sosy-lab/sv-comp/bench-defs/-/blob/main/benchmark-defs/pichecker.xml
https://gitlab.com/sosy-lab/sv-comp/bench-defs/-/blob/main/benchmark-defs/pichecker.xml

PIChecker: A Verifier for Concurrent Programs 575

References

10.

11.

. Beyer, D.: Competition on software verification and witness validation: SV-COMP

2023. In: Proc. TACAS (2). LNCS , Springer (2023)

Beyer, D., Friedberger, K.: A Light-Weight Approach for Verifying Multi-Threaded
Programs with CPAchecker. arXiv preprint arXiv:1612.04983 (2016). https://
doi.org/10.4204/EPTCS.233.6

Beyer, D., Keremoglu, M.E.: CPACHECKER: A Tool for Configurable Software
Verification. In: Proceedings of the 23rd International Conference on Computer
Aided Verification. pp. 184-190. CAV’11, Springer Berlin Heidelberg, Berlin, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22110-1_16

. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory

and proof theory. The Journal of Symbolic Logic 22(3), 269-285 (1957)

Fetzer, J.H.: Program verification: The very idea. Communications of the ACM
31(9), 1048-1063 (1988)

Godefroid, P.: Partial-order methods for the verification of concurrent systems: an
approach to the state-explosion problem. Springer (1996)

Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 58-70. POPL’02, Association for Computing Machinery,
New York, NY, USA (2002). https://doi.org/10.1145/503272.503279

Jie, S., Cong, T., Zhenhua, D.: Conditional Interpolation: Making Concurrent Pro-
gram Verification More Effective. In: Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. pp. 144-154. ESEC/FSE’21, Association for Comput-
ing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3468264.
3468602

Jie, S., Cong, T., Zuchao, Y., Jiyu, Y., Bin, Y., Zhenhua, D.: Prioritized Constraint-
Aided Dynamic Partial-Order Reduction. In: Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. ASE’22; Associa-
tion for Computing Machinery, New York, NY, USA (2022). https://doi.org/
10.1145/3551349.3561159

Jie, S., Zuchao, Y., Hengrui, X., Jiyu, Y., Cong, T., Zhenhua, D.: PIChecker for
SV-COMP 2023 (Dec 2022). https://doi.org/10.5281/zenodo.7471378
Mengfei, Y., Bin, G., Zhenhua, D., Zhi, J., Naijun, Z., Yunwei, D.: Intelligent
program synthesis framework and key scientific problems for embedded software.
Chinese Space Science and Technology 42(4), 1 (2022)

https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/3468264.3468602
https://doi.org/10.1145/3468264.3468602
https://doi.org/10.1145/3468264.3468602
https://doi.org/10.1145/3468264.3468602
https://doi.org/10.1145/3551349.3561159
https://doi.org/10.1145/3551349.3561159
https://doi.org/10.1145/3551349.3561159
https://doi.org/10.1145/3551349.3561159
https://doi.org/10.5281/zenodo.7471378
https://doi.org/10.5281/zenodo.7471378

576 J. Su et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	PIChecker: A POR and Interpolation based Verifier for Concurrent Programs(Competition Contribution)
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weakness
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

