
Korn—Software Verification with Horn Clauses
(Competition Contribution)

Gidon Ernst(�)?

LMU Munich, Munich, Germany
gidon.ernst@lmu.de

Abstract. Korn is a software verifier that infers correctness certificates
and violation witnesses sutomatically using state-of-the-art Horn-clause
solvers, such as Z3 and Eldarica. The solvers are used in a portfolio
together with cheap random sampling where the latter can be very effec-
tive at finding counterexamples. Korn perfomend best in the Recursive

sub-category of SV-COMP 2023.

Keywords: Software Verification · Horn Clauses · Loop Contracts

1 Verification Approach

Korn is a verifier for C programs that is based on a translation into systems
of constrained Horn clauses [5,12]. Therein, each program location is abstracted
by a second-order predicate over the program variables which are active at that
point. The system of Horn clauses has a (second-order) solution if and only if
the program is correct. Horn clauses encodings are a convenient intermediate
representation that is linear in the size of the program and that is inherently
modular, such that loops, procedure contracts, and non-local control flow like
gotos and labels can be easily abstracted (see Sect. 3 wrt. category Recursive).

Korn uses state-of-the-art solvers to determine the satisfiability of the gen-
erated Horn clause system (cf. Sect. 2), specifically for SV-COMP it uses Z3 [6]
and Eldarica [15]. Both solvers generate evidence for correctness of a given pro-
gram in terms of models that describe how the unknown predicates need to be
instantiated. Moreover, Eldarica can generate counterexample traces, and Korn
instruments the Horn clause system to get the concrete values returned by the
__VERIFIER_nondet_*() functions on an error path. For these reasons, Korn
tends to produce detailed correctness and violation witnesses.

The different solvers have different strengths and weaknesses. To that end,
Korn implements a portfolio approach with several sequential stages. The con-
figuration for SV-COMP 2023 [2] is as follows, where the specific timeouts for
the individual tools are chosen heuristically based on prior experiments:

1. Initially, 10s of random sampling with small values is performed. It picks
for each input value uniformly between number 0, and values of 2, 5, and
10 bits respectively, possibly with a sign. Absense of too large values avoids

? Jury Member

c© The Author(s) 2023

https://doi.org/10.1007/978-3-031-30820-8_36
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 559–564, 2023.

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30820-8_36
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_36&domain=pdf

G. Ernst

very long running loops when the counter is nondeterministic. There is no
particular justification for the sampling scheme, but it is effective.

2. Next, Z3 is executed on the verification problem, translated from C to Horn
clauses for 20s. Usually, Z3 finds solutions very quickly if it succeeds at all,
specifically on those benchmarks where Z3 succeeds but not Eldarica.

3. Finally, Eldarica is executed for the remaining time. From past experience, it
should be slightly better in comparison to Z3 in the long run on this specific
set of tasks [10]. The generated invariants from Eldarica tend to be simpler
and avoid the existential quantifiers often introduced by Z3, which improves
witness generation. To prevent spurious counterexamples, Korn reports a
violations only if it can be confirmed by executing the program natively.

Korn is overall similar to SeaHorn [13] but it operates on the C source level
instead of LLVM. Korn aims at a rather different design point, namely to fa-
vor simplicity over features, therefore offering a good platform for experiments.
Eldarica has its own C frontend that supports a different set of features, re-
cently published as TriCera [11]. Here the main distinction is that Korn uses
a large block encoding, such that the verification conditions closely reflect the
structure of the program. Korn offers a second verification approach with loop
contracts [16,14,7]. This was the original motivation to develop the tool, and
neither SeaHorn nor TriCera supports this feature, albeit it was not used for
SV-COMP because it offers no advantages [10] and because the encoding of loop
contracts into loop invariants would require quantifiers in the witnesses format.

2 Software Architecture

Korn is mainly written in the JVM language Scala.1 The front-end uses a cus-
tom parser, generated with jFlex and Beaver. The random sampler relies on na-
tive execution which links the benchmark task with a C file __VERIFIER_random.c
that implements the _VERIFIER_nondet_* functions. Verification conditions are
generated in the fragment of SMT-LIB of the HORN logic.2 Korn can invoke
any compliant solver as a backend either using its standard input or a file to
communicate the verification task. There is explicit support for Z3 [12], Eldar-
ica [15] to pass e.g. timeouts with tool-specific options or to produce models
resp. counterexamples. Currently, Korn use the theories of integers and arrays.

In order to produce SV-COMP correctness witnesses, Korn can read the
models generated by the backend-solvers, and translate them back into C ex-
pressions. The correctness witnesses produced currently are derived from the
invariants that are reported back by the Horn solvers (get-model resp. -ssol
flag of Eldarica). Violation witnesses are either read off the output of Eldarica
(-cex flag), or from the output of the random sampler, as a sequence of nonde-
terministic choices. When a counterexample is found, a test harness is compiled
to confirm whether reach_error() is in fact called.
1 https://scala-lang.org
2 https://chc-comp.github.io/format.html

560

https://scala-lang.org
https://chc-comp.github.io/format.html

Korn—Software Verification with Horn Clauses (Competition Contribution)

3 Discussion: Strengths and Weaknesses

Korn supports a substantial fraction of the C language, with the greatest lim-
itation being the lack of support for dynamic data structures (see website for a
detailed account), which means that currently any task which requires a memory
model is out of scope. The translation supports most control structures, includ-
ing goto and labels. With respect to solving verification tasks, Korn inherits
the strenths and limitations of the underlying solvers. Tasks that for which in-
variants and procedure contracts are expressible in linear integer arithmetic are
typically proved quickly by the solvers, whereas they struggle on tasks with ar-
rays and quantified invariants. Honoring these aspects, Korn participated in
four categories, ControlFlow, Loops, Recursive, XCSP for property ReachSafety.

The theoretical approach used by Korn is sound and complete relative to
the solver capabilities. Korn produced no incorrect result in SV-COMP 2023,
but there are circumstances which could lead to wrong verdicts. With respect to
C semantics, Korn currently makes the following trade-offs:

– Integer types are treated as unbounded and arithmetic overflows are not
modeled at all. This affects a single task, nla-digbench/geo1-u.c, which
contains an error caused by an unsigned integer overflow. This error is fortu-
nately caught by random sampling— Korn would otherwise wrongly prove
this task safe. We aim to experiment with a bitvector encoding eventually,
which would allow Korn to tackle tasks involving bitwise operations.

– Arrays are currently modeled as value types. Benchmarks in which tracking
aliases is relevant may not be solved correctly, but that does not occur in
the categories in which Korn participates.

– By confirming counterexamples via native execution, each bug reported is
necessarily a true bug. This safety net catches two incorrect error verdicts on
loops-crafted/theatreSquare.c and recursive/Primes.c, the reason for this
unsoundness is under investigation. However, counterexample confirmation
prevents Korn from rightfully reporting 50 error verdicts found by Z3 in
category XCSP which are missed by Eldarica († in Sect. 1). It is unclear how
to get usable counterexample traces from Z3 to resolve this dilemma.

– Differently from most other SV-COMP tools, Korn fixes the evaluation
order of function arguments to be right-to-left which matches the order typ-
ically used by C compilers. This is not faithful to C semantics as Korn
potentially misses bugs due to side-effects for some specific evaluation order.

The random sampler is very effective—in SV-COMP 2023 it discovered all
210 violations reported by Korn, of which 204 are found within 2 seconds.
Sampling of small non-zero values is crucial, e.g., Ackermann02.c falsifies with
input vector [2,0]; using all zero inputs still finds 57 of these 210 violations.

A key strength of Horn clause encodings is that they are inherently mod-
ular. This means that loops and recursion are abstracted by invariants resp.
pre-/postcondition pairs. The latter enable Korn to significantly outperform
all other tools in category Recursive. Plausible explanations are that classic
state-space exploration techniques struggle to abstract call stacks or maybe that

561

Table 1. Comparison of official results (number of tasks solved) in comparison to result
of the best-scoring other tool in that category and post-competition experiments after
fixing an issue with the submitted Korn verifier archive which did not run Eldarica at
all. # Tasks is the number of tasks supported by Korn vs. category size. The result
marked by † is without counterexample confirmation. The official results can be found
at https://sv-comp.sosy-lab.org/2023/results/results-verified/

SV-COMP 2023 Post-Comp.

tasks best scoring competitor Korn

Category supp./all tool true false true false true false

ControlFlow 19/ 22 CVT-ParPort 15 7 12 7 12 7
Loops 641/ 685 VeriAbs 386 185 80 178 288 178
Recursive 57/ 59 UAutomizer 20 18 27 25 27 25
XCSP 109/ 114 CBMC 54 50 46 0 46 † 50

techniques developed for loops like k-induction have simply not been adapted
well to recursive procedures. For Horn clause encodings on the other hand both
abstractions are uniform and solvers are largely agnostic to the purpose of pred-
icates. As a downside of enforcing modular proofs, Korn is currently unable to
compete in category Arrays, where finding the quantified invariants is hard but
state-space exploration succeeds on tasks with fixed loop bounds.

Unfortunately, in the 2023 competition, Eldarica did not run at all due to
some unknown problem with the verifier archive, such that Korn terminated
way too early and missed out on many results. Table 1 presents results from
re-running the evaluation on the competition hardware. This produces 208 ad-
ditional proofs from Eldarica in category Loops with a hypothetical score of 755
wrt. 323 in SV-COMP 2023, albeit the actual score would be lower than that
because usually not all witnesses are confirmed.

4 Software Project, Configuration & Participation

The implementation of Korn is available at https://github.com/gernst/korn

under the MIT license, installation instructions are part of the README. The
SV-COMP 2023 submission was packaged from commit 8e968dd and shows ver-
sion 0.4. The included solvers are Z3 4.11.2 64 bit (default configuration) and
Eldarica v2.0.8 (using -portfolio). The command line in SV-COMP 2023 is

./run -write -model -witness witness.graphml -confirm \

-random 10 -timeout 20 -z3 -timeout 900 -eld:portfolio <file.c>

Participation: ControlFlow, Loops, Recursive, XCSP for ReachSafety.

Contributors. Korn is developed and maintained by the author. G. Alexan-
dru [1] and J. Blau have contributed insights to approach of loop contracts [7].

G. Ernst562

https://sv-comp.sosy-lab.org/2023/results/results-verified/
https://github.com/gernst/korn
https://github.com/gernst/korn/commit/8e968dd9e1498d358270d1e78d473befca8e63a8

Data Availability Statement

The tool archive packaged for SV-COMP 2023 is part of the official tools arti-
fact [4] and also available separately [9]. The official competition results [3] are
complemented with our post-competition evaluation, based on commit 92e6732

and are available at [8].

References

1. Alexandru, G.: Specifying loops with contracts (2019), Bachelor’s Thesis, LMU
Munich

2. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: Proc. TACAS (2). LNCS , Springer (2023)

3. Beyer, D.: Results of the 12th Intl. Competition on Software Verification (SV-
COMP 2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7627787

4. Beyer, D.: Verifiers and validators of the 12th Intl. Competition on Software Verifi-
cation (SV-COMP 2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7627829

5. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Fields of Logic and Computation II, pp. 24–51. Springer
(2015)

6. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified Horn
clauses. In: International Static Analysis Symposium. pp. 105–125. Springer (2013)

7. Ernst, G.: Loop verification with invariants and summaries. In: Proc. of Verifica-
tion, Model-Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 13182.
Springer (2022)

8. Ernst, G.: Korn post-competition evaluation. Zenodo (2023).
https://doi.org/10.5281/zenodo.7647533

9. Ernst, G.: Korn tool archive as submitted to SV-COMP 2023. Zenodo (2023).
https://doi.org/10.5281/zenodo.7647511

10. Ernst, G.: A complete approach to loop verification with invariants and summaries
(2020), https://arxiv.org/abs/2010.05812, draft

11. Esen, Z., Rümmer, P.: TriCera: Verifying C Programs Using the Theory of Heaps.
In: Formal Methods in Computer-aided Design (FMCAD). p. 380 (2022)

12. Gurfinkel, A., Bjørner, N.: The science, art, and magic of Constrained Horn
Clauses. In: 2019 21st International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing (SYNASC). pp. 6–10. IEEE (2019)

13. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Computer Aided Verification. pp. 343–361. Springer (2015)

14. Hehner, E.C.: Specified blocks. In: Working Conference on Verified Software: The-
ories, Tools, and Experiments. pp. 384–391. Springer (2005)

15. Hojjat, H., Rümmer, P.: The Eldarica Horn solver. In: 2018 Formal Methods in
Computer Aided Design (FMCAD). pp. 1–7. IEEE (2018)

16. Tuerk, T.: Local reasoning about while-loops. VSTTE 2010, 29 (2010)

Korn—Software Verification with Horn Clauses (Competition Contribution) 563

https://github.com/gernst/korn/commit/92e6732645d488a8a7036435f5336d7181c18689
https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7627829
https://doi.org/10.5281/zenodo.7647533
https://doi.org/10.5281/zenodo.7647511
https://arxiv.org/abs/2010.05812

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

G. Ernst564

http://creativecommons.org/licenses/by/4.0/

	Korn—Software Verification with Horn Clauses (Competition Contribution)
	1 Verification Approach
	2 Software Architecture
	3 Discussion: Strengths and Weaknesses
	4 Software Project, Configuration & Participation
	Data Availability Statement
	References

