
Java Ranger: Supporting String and Array
Operations in Java Ranger (Competition

Contribution)?

??Soha Hussein? ? ?1(�) , Qiuchen Yan1(�), Stephen McCamant1(�),
Vaibhav Sharma1(�) , and Michael W. Whalen1(�)

University of Minnesota, Minneapolis, MN, USA
{soha,yanxx297,smccaman,vaibhav,mwwhalen}@umn.edu

Abstract. Java Ranger is a path-merging tool for Java Programs. It
identifies branching regions of code and summarizes them by generating
a disjunctive logical constraint that describes the behavior of the code
region. Previously, Java Ranger showed that a reduction of 70% of ex-
ecution paths is possible when used to merge branching regions of code
that support numeric constraints.
In this paper, we describe the support of two additional features since
participation in SV-COMP 2020: symbolic array and symbolic string
operations. Finally, we present a preliminary evaluation of the effect of
the structure of the disjunctive constraint on the solver’s performance.
Results suggest that certain constraint structures can speed up the per-
formance of Java Ranger.

1 Introduction

Path-merging [1,7,8] is a technique that speeds up the execution of Dynamic
Symbolic Execution (DSE) by collapsing paths within code regions into a dis-
junctive logical constraint. Java Ranger (JR) [12] is a path-merging tool for
Java Programs. It summarizes symbolic branches during execution. JR gener-
ates the disjunctive logical constraint for a code region predicated on a symbolic
branch by using a sequence of transformations. For example, JR alternates be-
tween substituting values for local variables in its summary and inlining method
summaries to eliminate dynamically dispatched method invocations. See [11] for
more information.

2 Path Merging Extensions and Results

Despite handling many of the Java language features, in SV-COMP 2020 [10]
JR did not support symbolically executing string functions. It also did not sum-

? The research described in this paper has been supported in part by the National
Science Foundation under grant 1563920, and Google Summer of Code.

?? Jury member
? ? ? Lecturer on a Leave of Absence Ain Shams University, Cairo, Egypt

soha.hussien@cis.asu.edu.eg

c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 553–558, 2023.
https://doi.org/10.1007/978-3-031-30820-8 35

http://orcid.org/0000-0002-5071-6811
http://orcid.org/0000-0001-9877-8926
http://orcid.org/0000-0003-3824-1435
https://doi.org/10.1007/978-3-031-30820-8_35
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_35&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

S. Hussein et al.

marize arrayload and arraystore statements that exist outside a code region
predicated on a symbolic branch. For example, if a and i are symbolic integers,
JR could summarize a region of the form: if(a) {myval = arr[i]...} But not:
myval = arr[i]. More precisely, the newly introduced features to JR include:

1. Summarizing Array Creation of Symbolic Size: to support the creation
of symbolic-sized single and multi-dimensional arrays, we bound the symbolic
size to several values, and we executed the program on each concrete value.

2. Summarizing ArrayLoad and ArrayStore: to support the arrayload
and the arraystore of a symbolic index, we create a disjunctive constraint
that describes possible valuations. This constraint is then pushed on the
path condition. For example: for a symbolic index i and an array arr of size
3, we encode arrayload of the form myval = arr[i] as

myval := ite(i == 0, arr[0], ite(i == 1, arr[1], arr[2])

Similarly, we encode the arraystore of the form arr[i] = myval as

arr[0]new := ite(i == 0,myval, arr[0]old)
∧ arr[1]new := ite(i == 1,myval, arr[1]old)
∧ arr[2]new := ite(i == 2,myval, arr[2]old)

where arr[i]old, and arr[i]new indicate the old and the new values of the
array arr at index i.

3. Symbolically Executing Symbolic Strings: We added support to some
basic string operations for the String package and the StringBuilder

package; this includes but is not limited to charAt, concat, contains,

endsWith, equals, indexOf, length, replace, startsWith, isEmpty

and substring.

2.1 Run Configuration

In addition to JR configurations used in SV-COMP 2020 [10], we used the below
configurations for turning on the added features.:

– symbolic.jrarrays=true: to enable the above array features.
– symbolic.strings=true: to enable executing symbolic string
– symbolic.string dp=z3str3: to use Z3’s default string theory.
– symbolic.string dp timeout ms=3000: for timeout on the string queries.

554

Supporting String and Array Operations in Java Ranger

2.2 Results

JR 2020 JR 2023
number of tasks 587
total correct 429 475
correct true 220 200
correct false 209 275
total incorrect 97 0
incorrect true 97 0
incorrect false 0 0
Score -2455 400

Table 1: results of JR’s version participating in
2020 versus the improved 2023 version

To understand the value of
the JR’s extensions above, we
evaluated the old JR tool [9]
from SV-COMP 2020, which
had no support for symbolic
arrays nor symbolic strings,
to JR’s version participating
in 2023. We ran both versions
on the verification tasks used
in SV-COMP 2023. Results in
Tb. 1 show an increased num-
ber of correctly solved tasks
from 429 to 475, but more im-
portantly, a significant reduc-
tion in incorrect results from
97 to zero. These improved
scores show the importance and significance of the added support.

Unfortunately, however, because the current version of JR has no support
for witness generation, all correctly reached false verdicts were not included in
the SV-COMP 2023 score [2], which resulted in JR scoring 400 points instead of
675. In the future, we plan to extend JR to support witness generation.

3 Formula Structure in Path-Merged String Constraints

 public static void loopCharAt(String arg) {
 int counter = 0;
 for (int i = 0; i < arg.length(); i++) {
 char myChar = arg.charAt(i);
 if (myChar == 'B') counter++;
 }
 assert (counter != 121);
 }

Fig. 1: loopCharAt Example

Fig. 1 shows loopCharAt: an
SV-COMP 2023 verification
task [3] (from an example
of Avgerinos et al. [1]) that
can dramatically benefit from
path-merging. The task ac-
cepts a symbolic string arg,
and checks each character to
see if it is the letter ‘B’. If
so it increments counter. The
assertion fails if the value of
the counter can be 121. For
a symbolic string of length n,
this code has 2n execution paths, since each character can be B or not B in-
dependently. But applying path merging to the if statement leads to a single
execution path for a given length string. While JR sees this expected asymptotic
benefit (one path per string length), reaching the assertion failure takes more
than 2 hours, well beyond the competition time limit. Most time is spent in
the solver, so we investigated whether changing the syntax of the query could
improve performance.

555

 0

 0.5

 1

 1.5

 2

 20 40 60 80 100 120 140

se
c

n

Average running time by size and query type

+ str.to_code

QF_BV

+ ite -> OR of AND

QF_SLIA, clean

+ length inequalities

+ temp. variables

Fig. 2: Average running time by size and query type

Each query generated from the satisfiability of the assert statement asks
whether an n-character string can contain 121 (or more generally, k) B charac-
ters; this query is satisfiable if 0 ≤ k ≤ n. We used a script to generate variations
of the query for different values of n and k, and different semantically equiva-
lent ways of expressing the constraints. We then measured the time to solve the
queries using Z3 4.8.15 with the seq string solver, on an Intel i7-3770 worksta-
tion running Ubuntu 20.04. The choice of k appeared to have little effect on
performance, so we report the results of averaging over runs with 0 ≤ k ≤ n+ 1.
Figure 2 shows how the running time grows with n, and that the query style has
a large impact on performance.

We describe the query styles in order of increasing overhead. Because no
complex string operations are needed, an equivalent query can be expressed in a
simple bit-vector (QF BV) logic. This was by far the fastest, and the only style
where the running time appears to grow linearly with n. The remaining styles
use a logic of strings and integers (QF SLIA), and we started with the constraint
style that seemed most natural to write by hand (“clean”) and sequentially added
complexities to make the constraints increasingly similar to those JR produces.
All these QF SLIA styles appear to slow down as a cubic polynomial in n, as
illustrated by the best-fit lines. Two features of JR’s queries had little effect on
performance: expressing the string length with a series of inequalities (in JR
these come from the loop), and introducing a temporary variable corresponding
to each update of the counter. A modest but measurable slowdown came from
expressing the effect of the merged region with OR and AND operations, instead
of the functional if-then-else operator. A final dramatic slowdown came from
constraining the value of each character via its character code (= (str.to code

(str.at s 0)) 66) (natural because Java’s char is an integer type) instead
of as a one-character string (= (str.at s 0) "B"). These results suggest that
this verification task could become feasible in 15 minutes if either JR or solvers
can transform the slow-to-solve forms into fast-to-solve ones.

S. Hussein et al.556

4 Data-Availability Statement

Java Ranger is developed at the University of Minnesota. It is continuously main-
tained on GitHub [6]. Readers interested in the reproducibility of Java Ranger
results in the competition an artifact can be found here [5,4].

References

1. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing symbolic execution
with veritesting. In: ICSE. pp. 1083–1094. ACM, New York, NY, USA (2014)

2. Beyer, D.: Results of the 12th Intl. Competition on Software Verification (SV-
COMP 2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7627787

3. Beyer, D.: SV-Benchmarks: Benchmark set for software verification
and testing (SV-COMP 2023 and Test-Comp 2023). Zenodo (2023).
https://doi.org/10.5281/zenodo.7627783

4. Beyer, D.: Verifiers and validators of the 12th Intl. Competition on Software Verifi-
cation (SV-COMP 2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7627829

5. Hussein, S., Yan, Q., Sharma, V., McCamant, S., Whalen, M., Visser, W.: Java
ranger artifact for sv-comp2023 (2023). https://doi.org/10.5281/zenodo.7467038

6. Java Ranger, https://github.com/vaibhavbsharma/java-ranger, accessed: 2022-12-
17

7. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: PLDI. pp. 193–204. ACM, New York, NY, USA (2012)

8. Sen, K., Necula, G., Gong, L., Choi, W.: MultiSE: Multi-path symbolic execution
using value summaries. In: ESEC/FSE. pp. 842–853. ACM (2015)

9. Sharma, V., Hussein, S., Whalen, M., McCamant, S., Visser, W.:
Artifact for sv-comp2020 verifiers including java ranger’s (2020).
https://doi.org/10.5281/zenodo.3630205

10. Sharma, V., Hussein, S., Whalen, M.W., McCamant, S., Visser, W.: Java Ranger
at SV-COMP 2020 (competition contribution). In: Biere, A., Parker, D. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp. 393–397.
Springer International Publishing, Cham (2020)

11. Sharma, V., Hussein, S., Whalen, M.W., McCamant, S., Visser, W.: Java Ranger:
Statically summarizing regions for efficient symbolic execution of Java. In:
ESEC/FSE. p. 123–134. ACM, New York, NY, USA (2020)

12. Sharma, V., Whalen, M.W., McCamant, S., Visser, W.: Veritesting challenges in
symbolic execution of Java. SIGSOFT Softw. Eng. Notes 42(4), 1–5 (Jan 2018)

Supporting String and Array Operations in Java Ranger 557

https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7627829
https://doi.org/10.5281/zenodo.7467038
https://github.com/vaibhavbsharma/java-ranger
https://doi.org/10.5281/zenodo.3630205

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

S. Hussein et al.558

http://creativecommons.org/licenses/by/4.0/

	Java Ranger: Supporting String and Array Operations in Java Ranger (Competition Contribution)
	1 Introduction
	2 Path Merging Extensions and Results
	2.1 Run Configuration
	2.2 Results

	3 Formula Structure in Path-Merged String Constraints
	4 Data-Availability Statement
	References

