
Goblint: Autotuning Thread-Modular
Abstract Interpretation
(Competition Contribution)

Simmo Saan1(B)? , Michael Schwarz2 , Julian Erhard2 ,
Manuel Pietsch2, Helmut Seidl2 , Sarah Tilscher2, and Vesal Vojdani1

1 University of Tartu, Tartu, Estonia
{simmo.saan,vesal.vojdani}@ut.ee

2 Technische Universität München, Garching, Germany
{m.schwarz,julian.erhard,m.pietsch,helmut.seidl,sarah.tilscher}@tum.de

Abstract. The static analyzer Goblint is dedicated to the analysis
of multi-threaded C programs by abstract interpretation. It provides
multiple techniques for increasing analysis precision, e.g., configurable
context-sensitivity and a wide range of numerical analyses. As a rule
of thumb, more precise analyses decrease scalability, while not always
necessary for solving the task at hand. Therefore, Goblint has been
enhanced with autotuning which, based on syntactical criteria, adapts
analysis configuration to the given program such that relevant precision
is obtained with acceptable effort.

1 Verification Approach

Goblint is a static analysis framework for C programs based on abstract in-
terpretation [6]. It features scalable thread-modular analysis of concurrent pro-
grams on top of flow- and context-sensitive interprocedural analysis. The analysis
is specified as a side-effecting constraint system [2], which can conveniently ex-
press flow-insensitive invariants as well as flow-sensitive information per program
point [16] and is solved using a local generic solver [15]. Here, we detail some
recent SV-COMP–related advances in Goblint. The previous competition tool
paper [11] provides further details on the general approach.

New abstract domains have been added to enhance precision. In addition to
interval analysis of integer variables, Goblint now performs interval analysis of
floating-point variables following Miné [9], and maintains congruence informa-
tion [7]. Furthermore, the Apron library [8] has been integrated for relational
analysis. Goblint includes novel approaches to relational analysis of concurrent
programs [14], inferring relations between jointly-protected global variables.

In the previous tool paper, we suggested dynamically tailoring Goblint to
the program under analysis. This can increase precision, by activating analyses
that are more expensive yet offer crucial precision, and also decrease resource
? Jury member

c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 547–552, 2023.
https://doi.org/10.1007/978-3-031-30820-8_34

https://orcid.org/0000-0003-4553-1350
https://orcid.org/0000-0002-9828-0308
https://orcid.org/0000-0002-1729-3925
https://orcid.org/0000-0002-2135-1593
https://orcid.org/0000-0003-4336-7980
https://doi.org/10.1007/978-3-031-30820-8_34
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_34&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


S. Saan et al.

usage, by deactivating redundant analyses. To this end, we have implemented
analysis configuration autotuning based on cheap syntactic heuristics on the
program, before the analysis begins. The particular features have been chosen
according to how expert users might configure Goblint for a given program.
Measurements of program size (e.g. number of functions, loops, variables) are
taken into account to limit slowdown on larger programs.

Goblint provides a multitude of concurrency-related analyses (e.g. races,
symbolic locking patterns, thread joins [14, 16]) that have no use in single-
threaded programs which abound in SV-COMP. Hence, all such analyses are
now automatically deactivated for programs that never create any threads.

Goblint implements a wide variety of numerical abstract domains, but most
are not necessary for every program, thus, offering many possibilities for auto-
tuning. Interval information is omitted in calling contexts of recursive functions
to avoid an explosion of contexts in which they are to be analyzed. While the
congruence domain is generally active on small programs, for medium-sized pro-
grams it is only enabled for functions involving the modulo operator, either
directly or indirectly (up to fixed depth in the call stack). If the program uses
enums, then an integer domain for sets of enumeration values is activated. Oc-
tagon analysis is enabled for those local variables which occur most often in
linear expressions and conditions. Interval and octagon widening thresholds are
extracted from conditional expressions containing constants. Such thresholds are
especially useful for flow-insensitive analysis of global variables in multi-threaded
programs, since no narrowing is performed on flow-insensitive invariants.

Loop unrolling is a well-known technique to increase the precision of static
analysis. Goblint now unrolls loops up to their static bounds or feasible unrolled
code size. Loops which contain memory allocation, thread creation, or error
function calls, are prioritized since unique heap locations and threads are key to
maintaining analysis precision.

Schwarz et al. [13] enhanced Goblint with a suite of concurrent value analy-
ses and evaluated their precision. Following their observations, we use the cheap
yet sufficiently precise Protection-Based Reading. Data-race detection was made
more precise using may-happen-in-parallel analysis [14], to filter out spurious
races with threads that have already been joined or have not yet been created.

2 Software Architecture

Goblint is implemented in OCaml and uses an updated fork of CIL [10] as
its parser frontend for the C language. It depends on Apron [8] for relational
analyses. No other major libraries or external tools are required.

Goblint employs a modular architecture [1] where a combination of anal-
yses can be selected at runtime. Analyses are defined through their abstract
domains and transfer functions, which can communicate with other analyses
using predefined queries and events. The combined analyses together with the
control-flow graphs of the functions yield a side-effecting constraint system [2],

548



Goblint: Autotuning Thread-Modular Abstract Interpretation

which is solved using a local generic solver [15]. The solution is post-processed
to determine the verdict and construct a witness.

3 Strengths and Weaknesses

Goblint focuses on sound static analysis which is confirmed by the competi-
tion: our tool does not produce any incorrect results. A major limitation of our
approach is that, due to over-approximation, the tool can only prove the absence
of bugs, but not their presence. Thus, when Goblint flags a potential violation,
it answers “unknown” in the competition.

In SV-COMP 2023, NoDataRace became an official category and existing
ConcurrencySafety reachability tasks were newly included into it. This is where
Goblint really shines: it proves 652 out of 783 programs race-free, thereby
winning the category. Overall, the strengths and weaknesses of Goblint w.r.t.
categories remain the same as described in our previous tool paper. Therefore, we
describe here the impact of autotuning, based on our own preliminary compar-
ative evaluation. Unlike official SV-COMP evaluation, we used a 1 GB memory
limit, which is sufficient for most tasks Goblint can solve, and no witness val-
idators.

As noted above, the majority of SV-COMP programs across all categories
are single-threaded, thus, the greatest improvement comes from disabling all
concurrency analyses in those cases. This yields a notable reduction in runtime
and memory usage as shown in table 1, improving overall efficiency without
compromising precision.

The second greatest improvement is due to the use of relational analysis
with octagons. Although this incurs a runtime penalty, it increases the number
of correct verdicts notably. The improvement is especially visible in NoOver-
flows, where it yields 104 additional correct results. We also confirmed that the
automatic selection of octagon variables is better than tracking all variables: our
selection yields more correct verdicts (due to fewer timeouts) while successfully
avoiding an unnecessarily large performance penalty.

Autotuning along the other axes is not as impactful. Nevertheless, each leads
to Goblint being able to solve tasks it could not otherwise. Hence, a small in-
crease in score is achieved, justifying their use. Although disabling unnecessary

Table 1. Reduction in resource usage due to disabling all concurrency analyses for
single-threaded programs, as reported by BenchExec using ordinary least squares
(OLS) regression.

unreach-call no-overflows

Tasks CPU time Memory CPU time Memory

Correct only 16% 4% 5% 0%
All 5% 8% 16% 6%

549



concurrency analyses reduces resource usage, overall this performance improve-
ment is canceled out by the simultaneous use of expensive analyses enabled by
autotuning, such as octagons. Thus, Goblint can solve more tasks while re-
taining the same level of overall efficiency observed in previous editions of the
competition [3].

Many future opportunities for autotuning exist: Goblint implements a num-
ber of concurrent value analyses offering different tradeoffs between time and pre-
cision [13, 14], but only used the fastest and least precise of these in SV-COMP.
If appropriate heuristics for using the more involved analyses are identified, au-
totuning could enable these when they are likely to yield a benefit. Autotuning
could be extended to supply a sequence of configurations, increasing in precision,
for a portfolio of analyses, instead of relying on the autotuning to immediately
pick the most appropriate configuration. While the current autotuning in Gob-
lint is hand-crafted, machine learning may provide additional improvements.

4 Tool Setup and Configuration

Goblint version svcomp23-0-g4f5dcf38f participated in SV-COMP 2023 [4,
12]. It is available in both binary (Ubuntu 22.04) and source code form at our
GitHub repository under the svcomp23 tag.3 The only runtime dependency is
Apron [8]. Instructions for building from source can be found in the README.

Both the tool-info module and the benchmark definition for SV-COMP are
named goblint. They correspond to running the tool as follows:

./goblint --conf conf/svcomp23.json \
--set ana.specification property.prp input.c

Goblint participated in the following categories: ReachSafety, Concurrency-
Safety, NoOverflows, SoftwareSystems and Overall, while opting-out from Mem-
Safety, Termination and SoftwareSystems-*-MemSafety.

5 Software Project and Contributors

Goblint development takes place on GitHub,4 while related publications are
listed on its website.5 It is an MIT-licensed joint project of the Technische Uni-
versität München (Chair of Formal Languages, Compiler Construction, Software
Construction) and University of Tartu (Laboratory for Software Science).

Acknowledgements. This work was supported by Deutsche Forschungsgemein-
schaft (DFG) – 378803395/2428 ConVeY and the Estonian Centre of Excel-
lence in IT (EXCITE), funded by the European Regional Development Fund.
We would like to thank everyone who has contributed to Goblint over the
years, especially the students who contributed various autotunable analyses.
3 https://github.com/goblint/analyzer/releases/tag/svcomp23
4 https://github.com/goblint/analyzer
5 https://goblint.in.tum.de

S. Saan et al.550

https://github.com/goblint/analyzer/releases/tag/svcomp23
https://github.com/goblint/analyzer
https://goblint.in.tum.de


Data Availability. All data of SV-COMP 2023 are archived as described in the
competition report [4] and available on the competition web site. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduc-
tion. The version of Goblint as used in the competition is archived together
with other participating tools [5] and individually [12] on Zenodo.

Bibliography

[1] Apinis, K.: Frameworks for analyzing multi-threaded C. Ph.D. thesis, Tech-
nische Universität München (2014)

[2] Apinis, K., Seidl, H., Vojdani, V.: Side-Effecting Constraint Systems: A
Swiss Army Knife for Program Analysis. In: APLAS ’12, pp. 157–172,
Springer (2012), doi: 10.1007/978-3-642-35182-2_12

[3] Beyer, D.: Progress on software verification: SV-COMP 2022. In: TACAS
’22, pp. 375–402, Springer (2022), doi: 10.1007/978-3-030-99527-0_20

[4] Beyer, D.: Competition on software verification and witness validation: SV-
COMP 2023. In: Proc. TACAS (2), LNCS , Springer (2023)

[5] Beyer, D.: Verifiers and validators of the 12th Intl. Competition on Soft-
ware Verification (SV-COMP 2023). Zenodo (2023), doi: 10.5281/zenodo.
7627829

[6] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL ’77, pp. 238–252 (1977), doi: 10.1145/512950.512973

[7] Granger, P.: Static analysis of arithmetical congruences. International Jour-
nal of Computer Mathematics 30(3-4), 165–190 (1989), doi: 10.1080/
00207168908803778

[8] Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains
for static analysis. In: CAV ’09, pp. 661–667 (2009), doi: 10.1007/
978-3-642-02658-4_52

[9] Miné, A.: Relational abstract domains for the detection of floating-point
run-time errors. In: ESOP ’04, pp. 3–17, Springer (2004), doi: 10.1007/
978-3-540-24725-8_2

[10] Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate lan-
guage and tools for analysis and transformation of C programs. In: CC ’02,
pp. 213–228, Springer (2002), doi: 10.1007/3-540-45937-5_16

[11] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vo-
jdani, V.: Goblint: Thread-modular abstract interpretation using side-
effecting constraints. In: TACAS ’21, pp. 438–442 (2021), doi: 10.1007/
978-3-030-72013-1_28

[12] Saan, S., Schwarz, M., Erhard, J., Pietsch, M., Seidl, H., Tilscher, S., Vo-
jdani, V.: Goblint at SV-COMP 2023 (Nov 2022), doi: 10.5281/zenodo.
7467093, tool artifact

[13] Schwarz, M., Saan, S., Seidl, H., Apinis, K., Erhard, J., Vojdani, V.: Im-
proving thread-modular abstract interpretation. In: SAS ’21, pp. 359–383,
Springer (2021), doi: 10.1007/978-3-030-88806-0_18

Goblint: Autotuning Thread-Modular Abstract Interpretation 551

https://sv-comp.sosy-lab.org/2023/
http://dx.doi.org/10.1007/978-3-642-35182-2_12
http://dx.doi.org/10.1007/978-3-030-99527-0_20
http://dx.doi.org/10.5281/zenodo.7627829
http://dx.doi.org/10.5281/zenodo.7627829
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1080/00207168908803778
http://dx.doi.org/10.1080/00207168908803778
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-540-24725-8_2
http://dx.doi.org/10.1007/978-3-540-24725-8_2
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1007/978-3-030-72013-1_28
http://dx.doi.org/10.1007/978-3-030-72013-1_28
http://dx.doi.org/10.5281/zenodo.7467093
http://dx.doi.org/10.5281/zenodo.7467093
http://dx.doi.org/10.1007/978-3-030-88806-0_18


[14] Schwarz, M., Saan, S., Seidl, H., Erhard, J., Vojdani, V.: Clustered relational
thread-modular abstract interpretation with local traces. In: ESOP ’23,
Springer (2023)

[15] Seidl, H., Vogler, R.: Three improvements to the top-down solver. Math-
ematical Structures in Computer Science p. 1–45 (2022), doi: 10.1017/
S0960129521000499

[16] Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static
Race Detection for Device Drivers: The Goblint Approach. In: ASE ’16, pp.
391–402, ACM (2016), doi: 10.1145/2970276.2970337

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.
The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

S. Saan et al.552

http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1145/2970276.2970337
http://creativecommons.org/licenses/by/4.0/

	Goblint: Autotuning Thread-Modular Abstract Interpretation
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	Bibliography




