
Bubaak:
Runtime Monitoring of Program Verifiers?

(Competition Contribution)

Marek Chalupa(�) ?? and Thomas A. Henzinger

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
mchalupa@ista.ac.at

Abstract. The main idea behind Bubaak is to run multiple program
analyses in parallel and use runtime monitoring and enforcement to ob-
serve and control their progress in real time. The analyses send informa-
tion about (un)explored states of the program and discovered invariants
to a monitor. The monitor processes the received data and can force
an analysis to stop the search of certain program parts (which have al-
ready been analyzed by other analyses), or to make it utilize a program
invariant found by another analysis.
At SV-COMP 2023, the implementation of data exchange between the
monitor and the analyses was not yet completed, which is why Bubaak
only ran several analyses in parallel, without any coordination. Still,
Bubaak won the meta-category FalsificationOverall and placed very well
in several other (sub)-categories of the competition.

1 Verification Approach

Runtime monitoring (RM) [1] is a lightweight approach to observing the execu-
tions of software systems and analyzing their behavior. The system, for simplicity
take a single program, is executed and observed to obtain a trace of events. The
observed events carry information about (a subset of) actions that have been
performed by the program like accesses to memory, calls of functions, or writing
a text to the standard output. The trace is analyzed by the monitor that outputs
verdicts, be it verdicts about some correctness property of the program or, e.g.,
information about resource consumption. Runtime enforcement [12] goes a step
further and allows the monitor to alter the behavior of the program upon seeing
some event or detecting a certain (usually faulty) behavior of the program.

RM is traditionally applied as a complementary method to static analysis
to find bugs in computer programs. In Bubaak, we use RM to do monitoring
and enforcement of the verifiers instead of the analyzed program itself. The
verifiers are manually modified to emit events about their internal actions, for
example, that they have reached some part of the analyzed code or that they
have discovered an invariant. The monitor gathers and analyzes these events and
can decide to command a verifier to stop a search of some parts of a program or
to take into account an invariant found by another verifier.
? This work was supported by the ERC-2020-AdG 10102009 grant.

?? Jury member

c© The Author(s) 2023

https://doi.org/10.1007/978-3-031-30820-8_32
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 535–540, 2023.

http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0002-2985-7724
https://doi.org/10.1007/978-3-031-30820-8_32
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_32&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


M. Chalupa and T. A. Henzinger

2 Bubaak at SV-COMP 2023

At SV-COMP 2023 [2], the verifiers that we used are based on forward and
backward symbolic execution.

(Forward) symbolic execution (SE) [14] is well-known for being efficient in
searching for bugs. It aims to explore every feasible execution path of the an-
alyzed program by building the so-called symbolic execution tree. Such an ap-
proach must fail if the SE tree is infinite or very large, in which case we talk
about the path explosion problem. There are ways how to prune the SE tree from
paths that are known to exclude buggy behavior, e.g., using interpolation [13].

Backward symbolic execution (BSE) [11] is a form of SE that searches the
program backwards from error locations towards the initial locations. It has
been shown [11] that BSE is equivalent to k-induction [16], another popular but
incomplete verification technique. The incompleteness of BSE (k-induction) is
caused by the lack of information about reachable states. This deficiency can
be tackled by providing (often trivial) invariants that supplement the missing
information [5]. These invariants can be computed externally before running
BSE, or they can be computed on the fly [5,4,11]. One of the on-the-fly methods
is loop folding and the resulting technique is called BSELF [11].

SE and BSE(LF) are well suited for analyzing safety properties, but are not
suited for analyzing the termination of programs. To analyse this property, we
have developed a new algorithm that has not been published yet and that we
dubbed TIIP : termination with inductive invariants with progress. This algo-
rithm runs SE, searching for non-terminating executions by remembering and
comparing program states visited at loop headers. At the same time, it tries to
incrementally (using a procedure similar to loop folding) compute an inductive
invariant with progress for each visited loop. This invariant, if found, gives a
pre-condition for the loop termination.

At SV-COMP 2023, we run in parallel two SE instances and one BSELF
instance when checking properties unreach-call and no-overflow, SE and TIIP
when checking termination, and just SE for memory safety properties. Using
multiple SE instances at the same time makes sense because we use different
verifiers (see Section 3) and their SE implementations support different features.

Because all the algorithms that we use are based on symbolic execution, the
enforcement done by the monitor would effectively do a pruning of SE and BSE
trees. Unfortunately, we have not managed to sufficiently debug this pruning
and therefore it was disabled in the competition. As a result, Bubaak at SV-
COMP 2023 only runs analyses in parallel without any coordination.

3 Software Architecture

The high-level scheme of Bubaak for SV-COMP 2023 is shown in Figure 1.
Bubaak takes as input C files and the property file. Internally, it compiles and
links the input files into a single llvm bitcode file [7] which is also instrumented
using UBSan sanitizer [18] if the checked property is no-overflow. Then, ver-
ifiers are spawned according to the given property. All verifiers run in parallel

536



Bubaak: Runtime Monitoring of Program Verifiers

Fig. 1. The setup of Bubaak at SV-COMP 2023. The colors indicate the properties
that were checked by the different tools and algorithms.

(when there is more of them). At SV-COMP 2023, we used Slowbeast for SE,
BSELF, and TIIP, and BubaaK-LEE as another instance of SE1.

Slowbeast [17] is a symbolic executor written in Python. It supports check-
ing properties unreach-call and no-verflow with SE, BSE, and BSELF, and ter-
mination with TIIP. The tool has no or only a very limited support for properties
no-data-race, valid-memsafety, and valid-memcleanup.

BubaaK-LEE is a fork of symbolic executor Klee [9] which is implemented
in C++ and the current version is a merge of the upstream Klee and JetKLEE
(the fork of Klee used in the tool Symbiotic [10]) with additional modifica-
tions. These modifications mostly concern modeling standard C functions but
include also partial support for 128-bit wide integers and support for global vari-
ables with external linkage. BubaaK-LEE implements SE without any SE tree
pruning and can check for all SV-COMP properties except for no-data-race.

Both symbolic executors use Z3 [15] as the SMT solver. The features they
support differ significantly, though. For example, Slowbeast supports, apart
from BSE(LF) and TIIP, symbolic floating-point computations, threaded pro-
grams, and incremental solving, while it does not support symbolic pointers and
addresses which are features supported by BubaaK-LEE.

The monitor is currently a part of the control scripts written in Python and
at SV-COMP 2023 it monitors only the standard (error) output of the tools as
monitoring anything else is redundant until the implementation of data exchange
between verifiers and the monitor is finished. The only enforcement that it does
at SV-COMP 2023 is terminating the analysis entirely.

Differences to Symbiotic The tool Symbiotic [10] also uses Slowbeast
and a fork of Klee, and therefore a discussion on differences between Bubaak
and Symbiotic is in place. The version of Slowbeast used in Symbiotic
is outdated while Bubaak uses the most up-to-date version (at the time of
writing the paper) where a substantial part of the code has been rewritten and
that contains new features including the implementation of TIIP. The relation
between BubaaK-LEE and JetKLEE is mentioned earlier in this section.

Other differences between Bubaak and Symbiotic exist: Bubaak does not
use any pre-analyses, slicing, and instrumentation (apart from the instrumenta-

1 Because these verifiers do not compete at SV-COMP 2023 on their own, this does
not make Bubaak a meta-verifier.

Monitor

Slowbeast

BubaaK-LEE

Slowbeast

Slowbeast

SE

TIIP

SE

BSELF

valid-memsafety/cleanup

termination

unreach-call

no-overflow

observe
enforce

C
files

prp

true
false
unknown

537



Table 1. Number of benchmarks decided by individual verifiers per property.

Property Total BubaaK-LEE Slowbeast

unreach-call 3263 2952 311
valid-memsafety/cleanup 3401 3401 0
termination 1417 739 678
no-overflow 4716 4399 317

tion by UBSan for the property no-overflow, but there Symbiotic uses its own
instrumentation), and it runs the verifiers in parallel, while Symbiotic uses a
sequential composition [10].

4 Strengths and Weaknesses

The combination of SE and BSELF has been previously shown to be promis-
ing [11] because SE can quickly analyse many programs and BSELF then solves
hard safe instances were SE found no bug or was unable to enumerate all paths.
Running TIIP in parallel with pure SE has similar advantages. Still, all of SE,
BSELF, and TIIP can be computationally very demanding as the number of
executions they must search may be enormous and/or their exploration may
involve lots of non-trivial queries to the SMT solver.

Running multiple verifiers in parallel reduces the wall-time while eating CPU
time rapidly, which may be a disadvantage in SV-COMP. A remedy for this
should be finishing the data exchange support between verifiers, which will allow
to avoid burning CPU time on duplicate tasks.

5 Results of Bubaak at SV-COMP 2023

The results of Bubaak were highly influenced by bugs in the implementation.
The tool had 41 wrong answers, 31 of these caused by a mistake in parsing
of the output of BubaaK-LEE (25 for the property valid-memcleanup and 6
for the property termination). The rest of wrong answers (10) were caused by
miscellaneous bugs. After normalizing scores, these 41 wrong answers resulted
in loosing almost 10000 points in the overall score.

Also, BSELF did not decide a single benchmark because of a mistake in
command line arguments when invoking it. Therefore, running Slowbeast was
useful mainly in the category Termination where TIIP was able to solve roughly
half of the decided benchmarks (in the rest of cases, BubaaK-LEE success-
fully enumerated all execution paths). The numbers of decided benchmarks are
summarized in Table 1.

Overall, Bubaak won the category Falsification-Overall which confirms that
SE is very good in finding bugs. The tool also scored silver in the category
SoftwareSystems where it was also the leading tool in several sub-categories.

M. Chalupa and T. A. Henzinger538



Data Availability Statement. The version of Bubaak that competed at SV-COMP
2023 is available at Zenodo [3,6]. The source code of Bubaak is available at github [8].

References

1. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to run-
time verification. In: RV’18, pp. 1–33. Springer International Publishing (2018).
https://doi.org/10.1007/978-3-319-75632-5_1

2. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: Proc. TACAS (2). LNCS , Springer (2023)

3. Beyer, D.: Verifiers and validators of the 12th Intl. Competition on Software Verifi-
cation (SV-COMP 2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7627829

4. Beyer, D., Dangl, M.: Software verification with PDR: an implementation of the
state of the art. In: TACAS’20. LNCS, vol. 12078, pp. 3–21. Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5_1

5. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: CAV’15. LNCS, vol. 9206, pp. 622–640. Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_42

6. Bubaak artifact. Zenodo (2022). https://doi.org/10.5281/zenodo.7468631
7. llvm. https://llvm.org, accessed 2023-02-17
8. Bubaak repository. https://gitlab.com/mchalupa/bubaak (2022)
9. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic genera-

tion of high-coverage tests for complex systems programs. In: OSDI’08. pp. 209–
224. USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/
full_papers/cadar/cadar.pdf

10. Chalupa, M., Mihalkovič, V., Řechtáčková, A., Zaoral, L., Strejček, J.: Symbiotic 9:
String analysis and backward symbolic execution with loop folding - (competition
contribution). In: TACAS’22. LNCS, vol. 13244, pp. 462–467. Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_32

11. Chalupa, M., Strejček, J.: Backward symbolic execution with loop
folding. In: SAS’21. LNCS, vol. 12913, pp. 49–76. Springer (2021).
https://doi.org/10.1007/978-3-030-88806-0_3

12. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and re-
action. In: Lectures on Runtime Verification - Introductory and Advanced Topics,
LNCS, vol. 10457, pp. 103–134. Springer (2018). https://doi.org/10.1007/978-3-
319-75632-5_4

13. Jaffar, J., Navas, J.A., Santosa, A.E.: Unbounded symbolic execution for
program verification. In: Runtime Verification, pp. 396–411. Springer (2012).
https://doi.org/10.1007/978-3-642-29860-8_32

14. King, J.C.: Symbolic execution and program testing. Communications of ACM
19(7), 385–394 (1976). https://doi.org/10.1145/360248.360252

15. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS’08. LNCS,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3_24

16. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: FMCAD’00. LNCS, vol. 1954, pp. 108–125. Springer (2000).
https://doi.org/10.1007/3-540-40922-X_8

17. Slowbeast repository. https://gitlab.com/mchalupa/slowbeast (2022)
18. UBSan, https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html, ac-

cessed 2023-02-17

Bubaak: Runtime Monitoring of Program Verifiers 539

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.5281/zenodo.7627829
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-319-21690-4_{4}{2}
https://doi.org/10.5281/zenodo.7468631
https://llvm.org
https://gitlab.com/mchalupa/bubaak
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-030-99527-0_{3}{2}
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-642-29860-8_32
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-40922-X_8
https://gitlab.com/mchalupa/slowbeast
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html


Open Access This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

M. Chalupa and T. A. Henzinger540

http://creativecommons.org/licenses/by/4.0/

	Bubaak: Runtime Monitoring of Program Verifiers 
	1 Verification Approach
	2 Bubaak at SV-COMP 2023
	3 Software Architecture
	4 Strengths and Weaknesses
	5 Results of Bubaak at SV-COMP 2023
	References




