
2LS: Arrays and Loop Unwinding
(Competition Contribution)

Viktor Malı́k3?(�) , František Nečas3 , Peter Schrammel1,2 ,
and Tomáš Vojnar3

1Diffblue Ltd., Oxford, UK
2University of Sussex, Sussex, UK

3Brno University of Technology, FIT, Brno, Czech Republic ??

imalik@fit.vut.cz

Abstract 2LS is a C program analyser built upon the CPROVER infrastructure
that can verify and refute program assertions, memory safety, and termination.
Until now, one of the main drawbacks of 2LS was its inability to verify most
programs with arrays. This paper introduces a new abstract domain in 2LS for
reasoning about the contents of arrays. In addition, we introduce an improved
approach to loop unwinding, a crucial component of the 2LS’ verification al-
gorithm, which particularly enables finding proofs and counterexamples for pro-
grams working with dynamic memory.

1 Overview
2LS is a static analysis and verification tool for sequential C programs. At its core, it
uses the kIkI algorithm (k-invariants and k-induction) [2], which integrates bounded
model checking, k-induction, and abstract interpretation into a single, scalable frame-
work. kIkI relies on incremental SAT solving in order to find proofs and refutations of
assertions, as well as to perform (non)termination analysis [3].

One of the core mechanisms of kIkI is incremental loop unwinding. However, the
original unwinding approach that 2LS used was not compatible with the memory model
developed in [6]. Hence, in the first part of this paper, we introduce a new approach to
loop unwinding [9] that supports programs manipulating dynamic memory and hence
allows 2LS to verify programs that could not be handled before.

The abstract interpretation part of kIkI features multiple abstract domains for reas-
oning about various data structures in programs. In particular, the competition version
of 2LS uses the interval domain for numerical values and our custom heap domain for
describing the shape of the heap. A common data structure that 2LS could not handle
in the past are arrays. Therefore, in the second part of this paper, we introduce a new
array abstract domain capable of reasoning about the content of arrays.

Architecture. The architecture of 2LS has been described in previous competi-
tion contributions [10,7,8]. In brief, 2LS is built upon the CPROVER infrastructure [4]
and thus uses GOTO programs as the internal program representation. The analysed
program is first translated into a single static assignment (SSA) form. Then, inductive
invariants in various abstract domains are computed for the program’s loops. Last, the
SSA form and the invariants are bit-blasted into a propositional formula and given to a
SAT solver which is used to reason about the program’s properties.
? Jury member

?? The Czech authors were supported by the Czech Science Foundation project 23-06506S, the
FIT BUT project FIT-S-23-8151, and the Horizon Europe project CHESS (id 101087529).

c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 529–534, 2023.
https://doi.org/10.1007/978-3-031-30820-8 31

http://orcid.org/0000-0002-0608-0748
http://orcid.org/0000-0002-7877-5450
http://orcid.org/0000-0002-5713-1381
http://orcid.org/0000-0002-2746-8792
https://doi.org/10.1007/978-3-031-30820-8_31
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_31&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


V. Malı et al.´

Software Project. 2LS is implemented in C++ and it is maintained by Peter Schram-
mel and Viktor Malı́k with contributions by the community. The competition version
uses Glucose 4.0 as its back-end SAT solver. 2LS competes in all C categories except
Concurrency. See the previous competition report [8] for details on executing 2LS.

2 Loop Unwinding of Heap-Manipulating Programs

Whenever the kIkI algorithm is not able to verify or refute the program’s properties
for the given unwinding level, it incrementally unwinds the loops in order to com-
pute a stronger invariant or to explore additional reachable program states [2]. 2LS’
original unwinder unrolls the loops directly at the level of the program’s SSA form.
However, this approach is not compatible with the encoding of pointer operations that
2LS uses [6]. Hence, for this year’s competition version of 2LS, we introduce a new
approach to loop unwinding which overcomes these limitations and allows to verify
heap-manipulating programs using k-induction and BMC.

Memory model in 2LS. Each call of malloc is replaced by a finite number of so-
called abstract dynamic objects that over-approximate the (possibly unbounded) set of
concrete dynamic objects allocated by that call. Subsequently, the conversion of pointer-
dereferencing operations to the SSA form is based on a static points-to analysis which
computes for each pointer p the set of memory objects that p can be dereferenced into.
Reads and writes to memory through p are then encoded using a case-split of objects
which p can point to in the program location of the given memory operation [6].

The points-to analysis is performed on the GOTO program (control-flow graph)
prior to generating the SSA form. This approach poses a problem for the original un-
winder when dealing with allocations inside loops. Each new unwinding of a loop may
introduce a new call to malloc, effectively introducing new abstract dynamic objects.
Such additions invalidate the previously computed points-to analysis since pointers may
now also point to the new objects and, thus, operations via pointers must be re-encoded.

Unwinding in the GOTO programs. Our new approach to loop unwinding unrolls
the loops in the GOTO program representation instead of the SSA form. This allows us
to update the set of abstract dynamic objects in the program as well as to compute the
points-to analysis anew based on the newly introduced objects [9]. In order to facilit-
ate verification in 2LS, there are multiple transformations that need to be done after
the loops of the GOTO program are unwound. First, the k-induction algorithm of 2LS
requires a special unwinding approach. Many state-of-the-art unwinders, including the
unwinder from CPROVER that we use, copy the loop body and place it before the ori-
ginal loop (i.e., the unwound loop bodies are outside the loop). On the contrary, 2LS
requires all of the unwindings to be included in a single loop, i.e., the backwards edge of
the not-yet-unwound part must go to the beginning of the topmost unwinding (instead of
going to the top of the not-yet-unwound part) [2]. Hence, we must appropriately recon-
nect the backwards edges to fulfil this requirement and make our approach usable with
the current algorithms of 2LS. Second, assertions inside the unwound loop bodies may
be assumed to hold as they were verified in the previous iteration of the kIkI algorithm.
Hence, 2LS converts such assertions into assumptions. We reflect this approach inside
our new unwinding algorithm, cf. [9] for details.

530



2LS: Arrays and Loop Unwinding

Combining the two approaches. The proposed approach, while being sound when
handling dynamic memory, introduces a noticeable performance degradation. Unwind-
ing of loops in the GOTO program changes a great part of the generated SSA form
which decreases the benefits of incremental SAT solving. To overcome this issue, we
only enable the new unwinder when necessary, i.e., when dynamic memory is used in
the analysed program. In addition, in our future work, we plan to improve our new
unwinder to fully leverage incremental solving.

3 Array Domain

The core algorithm of 2LS, kIkI, uses abstract interpretation to infer k-inductive invari-
ants in various abstract domains. The computed invariants are used to verify or refute
the program’s properties. Since the verification approach of 2LS is based on translating
the program into a first-order formula to reason about its properties, the abstract do-
mains in 2LS are required to have the form of a template—a parametrised, quantifier-
free, first-order formula describing a relevant program property. 2LS already supports
a handful of domains, such as the interval domain [2], a shape domain [6], or rank-
ing domains [3] for termination analysis, however, a domain for describing the content
of arrays has been missing, which limited usability of 2LS on programs manipulating
array structures. In this section, we propose such a domain.

In the literature, there exists a number of works on abstract domains for arrays. To
exploit the 2LS’ seamless combination of abstract domains, we found that perhaps the
most suitable approach to draw inspiration from is [5], where each array is split into
several parts, called segments, and a separate invariant is computed for every segment.
The segment invariant can be computed in any domain supported by 2LS, usually selec-
ted based on the data type of the array elements (e.g., the interval domain for numerical
values or the shape domain for pointers). In the rest of this section, we describe different
aspects of our proposed domain. In all of the below parts, we assume that we compute
a loop invariant of an array a. We use Na to denote the number of elements of a.

Array Segmentation. First, let us assume that we know the set of array indices,
so-called segment borders, for an array a which we denote Ba (see below on the way
this set is obtained). When splitting a into segments, we distinguish two situations:

1. Indices from Ba cannot be totally ordered. In such a case, we create multiple seg-
mentations, one for each b ∈ Ba:

{0} Sb
1 {b} Sb

2 {b+ 1} Sb
3 {Na}. (1)

2. Indices from Ba can be totally ordered s.t. b1 ≤ · · · ≤ bn. In such a case, we create
a single segmentation for the entire a:
{0} S1 {b1} S2 {b1 + 1} S3 {b2} . . . {bn} S2n {bn + 1} S2n+1 {Na}. (2)

A single array segment S denoted {bl} S {bu} represents an abstraction of the ele-
ments of a between the indices bl (inclusive) and bu (exclusive). For each S, we define
two special variables: (1) the segment element variable elemS being an abstraction of
the array elements contained in S and (2) the segment index variable idxS being an
abstraction of the indices of the array elements contained in S.

531



Array Template. Having the set of program arrays Arr and the set of segments
Sa for each a ∈ Arr, we define the array domain template as:

T A ≡
∧

a∈Arr

∧
S∈Sa

(
GS ⇒ T in(elemS)

)
(3)

where T in is the inner domain template (over the inner elements of S abstracted by
elemS) and GS is the conjunction of guards associated with the segment S. The pur-
pose of GS is to make sure that the inner invariant is limited to the elements of the given
segment {bl} S {bu}. In particular, GS is a conjunction of several guards:

bl ≤ idxS < bu ∧ 0 ≤ idxS < Na ∧ elemS = a[idxS ] (4)

where the first conjunct ensures that the segment index variable stays between the seg-
ment borders, the second conjunct makes sure that the segment index variable stays
between the array borders (since segment borders are generic expressions, they may lie
outside of the array), and the last conjunct binds the segment element variable to the
segment index variable. Using the above template, 2LS is able to compute a different
invariant for each segment. For example, for a typical array iteration loop, this would
allow 2LS to infer a different invariant for the part of the array that has already been
traversed than for the part of the array that is still to be visited.

Computing Array Segment Borders. Since 2LS requires the template formula to
be fixed at the beginning of the analysis, the set of segments must be pre-computed. The
main idea of our approach is that the segment borders should be closely related to the
expressions that are used to access array elements in the analysed program. Therefore,
we perform a static array index analysis which collects the set of all expressions occur-
ring as array access indices (i.e., inside the square bracket operators). Once the analysis
is complete, for each array a, we determine the set of its segment borders by taking the
set of all index expressions used to write into a in the corresponding loop.

4 Strengths and Weaknesses

For general strengths and weaknesses of 2LS, we refer to the previous competition
contribution [8]. The two major improvements described in the previous sections, in-
crease the number of programs correctly verified by this year’s version of 2LS. The
new loop unwinding approach allows us to use the BMC part of the kIkI algorithm for
programs manipulating dynamic memory, which particularly enables us to find counter-
examples occurring in higher loop iterations, as well as verify such programs for which
the initially computed invariant is not sufficiently strong and the loops can be unwound
completely. This is the most notable in the heap-related categories (MemSafety-Heap,
MemSafety-LinkedLists, and ReachSafety-Heap) where the number of the correct true
and the correct false results increased from 110 to 177 and from 51 to 82, respectively.
The new array domain allowed us to score points in array-related categories, which was

V. Malı et al.´532



not possible before (e.g., 2LS correctly solved 17 tasks in ReachSafety-Arrays com-
pared to 2 from the previous years, which 2LS managed by chance)1.

Still, there remains a number of limitations. The array domain is rather simple and
cannot verify many array-manipulating programs. In addition, as we described earlier,
the new unwinder cannot make use of incremental SAT solving efficiently.

5 Data-Availablitity Statement

2LS is publicly available from https://www.github.com/diffblue/2ls, under a BSD-style
license. The competition version is based on version 0.9.6 and the archive used in the
competition is available from https://doi.org/10.5281/zenodo.7467706 or from the col-
lection of all verifiers and validators participating in SV-COMP 2023 [1].

References

1. Beyer, D.: Verifiers and validators of the 12th Intl. Competition on Software Verification
(SV-COMP 2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7627829

2. Brain, M., Joshi, S., Kroening, D., Schrammel, P.: Safety Verification and Refutation by
k-Invariants and k-Induction. In: Proc. of SAS’15. LNCS, vol. 9291. Springer (2015)

3. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Bit-Precise Procedure-
Modular Termination Proofs. TOPLAS 40 (2017)

4. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Proc. of
TACAS’04. LNCS, vol. 2988. Springer (2004)

5. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully auto-
matic and scalable array content analysis. In: Proceedings of the 38th. p. 105–118.
POPL ’11, Association for Computing Machinery, New York, NY, USA (2011). ht-
tps://doi.org/10.1145/1926385.1926399

6. Malı́k, V., Hruška, M., Schrammel, P., Vojnar, T.: Template-Based Verification of Heap-
Manipulating Programs. In: Proc. of FMCAD’18. IEEE (2018)

7. Malı́k, V., Martiček, Š., Schrammel, P., Srivas, M., Vojnar, T., Wahlang, J.: 2LS: Memory
Safety and Non-termination (Competition Contrib.). In: Proc. of TACAS’18. Springer (2018)

8. Malı́k, V., Schrammel, P., Vojnar, T.: 2ls: Heap analysis and memory safety. In: Proc. of
TACAS’20. pp. 368–372. Springer International Publishing (2020)

9. Nečas, F.: Program Loop Unwinding in the 2LS Framework. Bachelor’s thesis, Brno Univer-
sity of Technology (2022), https://www.fit.vut.cz/study/thesis/24719/

10. Schrammel, P., Kroening, D.: 2LS for Program Analysis (Competition Contribution). In:
Proc. of TACAS’16. LNCS, vol. 9636. Springer (2016)

1 A number of tasks was last-minute disqualified from SV-COMP 2023 due to past-deadline
changes which were often related to the tasks being added to new categories (e.g., NoOver-
flows) rather than actual modifications of the tasks or their verdicts. Hence, we present results
from the entire benchmark instead of the (limited) competition benchmark set as those results
are more representative and can be better compared to the previous year’s results.

2LS: Arrays and Loop Unwinding 533

https://www.github.com/diffblue/2ls
https://doi.org/10.5281/zenodo.7467706
https://www.fit.vut.cz/study/thesis/24719/


Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

V. Malı et al.´534

http://creativecommons.org/licenses/by/4.0/

	2LS: Arrays and Loop Unwinding
	1 Overview
	2 Loop Unwinding of Heap-Manipulating Programs
	3 Array Domain
	4 Strengths andWeaknesses
	5 Data-Availablitity Statement
	References




