
c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp.
https://doi.org/10.1007/978-3-031-30820-8 12

Bridging Hardware and Software Analysis with
Btor2C: A Word-Level-Circuit-to-C Translator

Dirk Beyer , Po-Chun Chien , and Nian-Ze Lee

LMU Munich, Munich, Germany

Abstract. Across the broad research field concerned with the analysis of
computational systems, research endeavors are often categorized by the
respective models under investigation. Algorithms and tools are usually
developed for a specific model, hindering their applications to similar
problems originating from other computational systems. A prominent
example of such a situation is the area of formal verification and testing
for hardware and software systems. The two research communities share
common theoretical foundations and solving methods, including satisfia-
bility, interpolation, and abstraction refinement. Nevertheless, it is often
demanding for one community to benefit from the advancements of the
other, as analyzers typically assume a particular input format. To bridge
the gap between the hardware and software analysis, we propose Btor2C,
a translator from word-level sequential circuits to C programs. We choose
the Btor2 language as the input format for its simplicity and bit-precise
semantics. It can be deemed as an intermediate representation tailored for
analysis. Given a Btor2 circuit, Btor2C generates a behaviorally equivalent
program in the language C, supported by many static program analyzers.
We demonstrate the use cases of Btor2C by translating the benchmark set
from the Hardware Model Checking Competitions into C programs and
analyze them by tools from the Intl. Competitions on Software Verification
and Testing. Our results show that software analyzers can complement
hardware verifiers for enhanced quality assurance: For example, the soft-
ware verifier VeriAbs with Btor2C as preprocessor found more bugs than
the best hardware verifiers ABC and AVR in our experiment.

Keywords: Hardware compilation · Word-level circuit · Intermediate
representation · Formal verification · Testing · Btor2 · SMT · SAT

1 Introduction

Computational systems have become more and more ubiquitous in our daily life
and manifest themselves in various contexts, including VLSI circuits, software
programs, and cyber-physical systems. To construct reliable systems, quality
assurance has become an indispensable research topic. Numerous endeavors
have been invested for different computational systems. Because of the ever-
increasing system complexity and applications in safety-critical missions, it is of
vital importance to take advantage of all available solutions for different types
of systems to guarantee the quality and correctness.

152–172, 2023.

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30820-8_12
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_12&domain=pdf
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0000-0002-8096-5595


Formal verification and testing are two active fields of research to analyze and
assure the quality of computational systems. The former decides with mathematical
rigorousness whether a system conforms to a specification. The latter aims at
generating input patterns and executing a system on a test suite to observe
irregular output responses. Studies for formal verification or testing usually focus
on a specific computational model, especially a sequential circuit (hardware) or a
program (software). Tool competitions are also established based on modeling
languages for input instances, such as the language Btor2 [64] used in the
Hardware Model Checking Competitions (HWMCC) [28, 29], or the language C
assumed by the Competitions on Software Verification (SV-COMP) [11, 14] and
Testing (Test-Comp) [12, 13]. Unfortunately, such distinction erects a barrier
between the two closely related research communities.

1.1 Our Motivations and Contributions
For the hardware community to easily benefit from state-of-the-art software-
analysis techniques, we aim at developing a lightweight yet effective translation
flow to bridge the gap between hardware and software analysis. There have been
several attempts [48, 62] to compile hardware designs into software, mostly using
the language Verilog as the input format. Verilog is a general-purpose hardware
description language, and thus, a comprehensive frontend for Verilog requires
tremendous engineering effort. Moreover, Verilog has rather complicated syntax
and semantics, which might increase the burden on the translation flow.

To address the complexity in the frontend design, we resort to the language
Btor2 [64], proposed recently to model word-level sequential circuits. A suite
Btor2Tools [63] of utility tools is also provided for conveniently parsing, simu-
lating, and bit-blasting (to the bit-level format Aiger [26]) Btor2 circuits. We
emphasize the following two benefits of using Btor2 as the translation fron-
tend over Verilog. First, Btor2 provides simple yet sufficient operations over
bit-vectors and arrays. The simplicity makes it an appropriate intermediate repre-
sentation for formal verification and testing, as the operations are suitable for
the underlying satisfiability solvers. Second, Btor2 is the input format used in
the HWMCC. Many hardware model checkers support this format, and a large
collection of benchmarking tasks is available for empirical evaluation. In practice,
a Verilog circuit can be translated to Btor2 via Yosys [70], an open-source
Verilog synthesis tool. Therefore, using Btor2 as frontend does not restrict the
applicability of the translation flow.

Having settled down the frontend choice, our next question is: Should we make
software analyzers support Btor2, or should we implement a standalone translator
that does the job for all tools? We take the latter approach such that any software
analyzer (from 76 available [25]) can in principle be used for hardware analysis.
As opposed to using Verilog as frontend, the simplicity of the Btor2 language
helps to generate C programs suitable for the backend analysis, as will be shown
in Sect. 5 via comparison with the Verilog-to-C translator v2c [62].

Once a handy translator is viable, we are enthusiastic about empirically
comparing hardware and software analyzers on a large scale. Similar experiments
have been carried out for bounded [60] and unbounded [61] formal verification on a

Bridging Hardware and Software Analysis with Btor2C 153

http://fmv.jku.at/hwmcc20/
https://sv-comp.sosy-lab.org/2022/
https://test-comp.sosy-lab.org/2022/


Btor2 [64]

Btor2C

Btor2AIGER [64]

C [52]

Aiger [26]

Yosys [70]

Verilog [1]

Bit-Level Analyzer

Word-Level Analyzer

Software Analyzer

Our Contribution

CPAchecker [20]Esbmc [43] FuSeBMC [3]

Fig. 1: Software analysis made readily available for hardware designs

small set of circuits. By building a translator on top of the Btor2 language, more
than a thousand benchmarking tasks from the HWMCC are at our immediate
disposal. To draw a more reliable conclusion on the performance comparison of
state-of-the-art hardware and software analyzers, we evaluate bit-level and word-
level hardware model checkers from HWMCC, software verifiers from SV-COMP,
and software testers from Test-Comp, on the HWMCC benchmark set.

Our contributions in this paper are summarized below:

Novelty. (1) To bridge the gap between hardware and software analysis, we
design and implement Btor2C, the first hardware-to-software compiler taking
the format Btor2 [64] as input. Specifically, Btor2C accepts a Btor2 circuit and
produces a behaviorally equivalent C program. Given a Verilog design, Btor2C
(with the help of Yosys) makes off-the-shelf software verifiers and testers readily
available for its analysis. In addition to bit-level and word-level analyzers, hardware
developers will be equipped with more tool choices to perfect their designs, as
shown in Fig. 1. (2) Btor2C makes it easy to construct new hardware analyzers by
prepending the translator in front of any software analyzer. (3) Applying Btor2C
to the HWMCC benchmark set, we submitted 1224 new tasks1 to sv-benchmarks,
the benchmark collection used by many researchers, including SV-COMP and
Test-Comp. Developers of software analyzers can now assess their tools using
the hardware-analysis counterparts as a new baseline.

Significance. (1) We conduct a large-scale evaluation involving hardware model
checkers, software verifiers, and software testers on the HWMCC benchmark set.
Our results show that software-analysis techniques can complement hardware
model checkers. (2) The proposed lightweight translator makes software analyzers
more accessible to the entire research community, as Btor2 can be used as an
intermediate representation for analysis, not limited to hardware designs.

1.2 Example
Figure 2 illustrates the proposed translator Btor2C on an example. A circuit
whose state is a bit-vector of width 3 is given in Btor2 format in Fig. 2a. The
1 Some tasks used in this paper were excluded due to license issues.

D. Beyer, P.-C. Chien, and N.-Z. Lee154

https://github.com/Boolector/btor2tools
https://www.sosy-lab.org/research/btor2c/
https://github.com/Boolector/btor2tools
https://www.iso.org/standard/74528.html
http://fmv.jku.at/aiger/
https://yosyshq.net/yosys/
https://doi.org/10.1109/IEEESTD.2006.99495
https://cpachecker.sosy-lab.org/
http://www.esbmc.org/
https://github.com/kaled-alshmrany/FuSeBMC
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks


1 sort bitvec 3

2 zero 1

3 state 1

4 init 1 3 2

5 input 1

6 add 1 3 5

7 one 1

8 sub 1 6 7

9 next 1 3 8

10 ones 1

11 sort bitvec 1

12 eq 11 3 10

13 bad 12

(a) Btor2 circuit

1 extern void abort(void);

2 extern unsigned char nondet_uchar();

3 void main() {

4 typedef unsigned char SORT_1;

5 typedef unsigned char SORT_11;

6 const SORT_1 var_2 = 0b000;

7 const SORT_1 var_7 = 0b001;

8 const SORT_1 var_10 = 0b111;

9 SORT_1 input_5;

10 SORT_1 state_3 = var_2;

11 for (;;) {

12 input_5 = nondet_uchar();

13 input_5 = input_5 & 0b111;

14 SORT_11 var_12 = state_3 == var_10;

15 SORT_11 bad_13 = var_12;

16 if (bad_13) {

17 ERROR: abort();

18 }

19 SORT_1 var_6 = state_3 + input_5;

20 var_6 = var_6 & 0b111;

21 SORT_1 var_8 = var_6 − var_7;

22 var_8 = var_8 & 0b111;

23 state_3 = var_8;

24 }

25 }

(b) C program (simplified for demo)

Fig. 2: An example Btor2 circuit (a) and its translated C program (b)
bit-vector is initialized to 0 (lines 2-4). In every iteration, the value of the bit-
vector will be incremented by the value of the external input (lines 5-6) and
then decremented by 1 (lines 7-8). The circuit reaches a bad state (i.e., violates
the safety property) if the value of the bit-vector equals 0b111 (lines 12-13).
The translated C program is shown in Fig. 2b. Btor2C first looks for the sorts
used in the input Btor2 file. In this example, bit-vectors of 3 bits and 1 bit are
used, and Btor2C encodes them with the shortest possible unsigned integer type
unsigned char (lines 4-5). After sort declarations, Btor2C defines constants,
declares inputs, and initializes circuit states (lines 6-10). An infinite loop is created
to simulate the behavior of a sequential circuit. At the beginning of the loop, the
safety property is evaluated. If the property is violated (namely, variable bad_13

evaluates to true), the program reaches the error location at line 17. Otherwise,
the next-state value (stored in variable var_8) is computed and assigned to
the current state (lines 19-23), and another loop iteration follows. After the
translation, we can apply software verifiers to the translated program in Fig. 2b
to check whether the circuit in Fig. 2a conforms to the specified safety property.

2 Related Work

2.1 Compiling Hardware to Software

Several research efforts [48, 68] have been invested into representing a circuit as
a program, whose primary goal is to accelerate hardware simulation. The most
related work to ours is the Verilog-to-C translator v2c [62], used to translate hard-
ware circuits into software programs for bounded [60] and unbounded [61] formal
verification. Unlike v2c, our translator uses as frontend the Btor2 language, which

Bridging Hardware and Software Analysis with Btor2C 155



is simple to parse and suitable for analysis. In Sect. 5, we compare the performance
of software analyzers on C programs generated by v2c and our tool Btor2C.

2.2 Compiling Hardware to Intermediate Representation
Another line of research related to our work is the compilation of hardware to
an intermediate representation that eases the burden of analysis. The motivation
of these works is to interface real-world designs and problems described in a
more abstract language with tools that use a primitive model representation. Our
tool Btor2C shares a similar spirit because it interfaces problems in hardware
analysis with software techniques. Among other tools, Verilog2SMV [51] and
Ver2Smv [59] translate a Verilog circuit into SMV format [34, 56], which can be
verified by tools like nuxmv [33]. QuteRTL [71] translates a register-transfer-level
hardware design (usually in Verilog or VHDL) to Btor [31], an earlier version
of Btor2. EBMC [55] generates SMT formulas in SMT-LIB 2 format [8], which
encode the bounded model checking or k -induction problems of a Verilog circuit.
Yosys [70], which translates a Verilog circuit into the Aiger or Btor2 formats,
also serves the same purpose. Recently, there has been an interest to develop
an intermediate language for the model-checking research community [67]. The
project aims at providing an expressive frontend language as well as an efficient
interface with backend model checkers.

3 Background

3.1 The Btor2 Language
Btor2 is a bit-precise modeling language for word-level sequential circuits. It
can be seen as a generalization of the bit-level Aiger format [26]. The essential
ingredients of Btor2 relevant to our discussion in Sect. 4 will be introduced below.
For the complete syntax, please refer to the Btor2 publication [64].

Each line in a Btor2 file starts with a unique number, used by other lines to
identify the entity defined in this line. Such an entity can be either a sort or a node.
A sort is either a bit-vector type of an arbitrary width w, denoted by Bw, or an
array type. An array type whose indices and elements are bit-vector types I and E ,
respectively, is denoted by AI→E . A node can be an input, a state, or a result of an
operator over other inputs, states, or results. Inputs are external stimuli given to
the Btor2 circuit. Memory elements of the circuit are modeled by states. Usually,
inputs have bit-vector types, and states can be of either bit-vector or array types.

Operators are the building blocks of a Btor2 circuit. They take arguments
of the prescribed types and guarantee a specific type for the result. The general
signature for a Btor2 operator is as follows: <node id> <op> <sort id0> <node
id1> [<node id2 [node id3]>], which defines a node to be the computation
result of the operator op on node id1 and optionally id2 and id3. The result
will have type id0 and can be accessed by id. The operators in Btor2 will be
introduced later in Sect. 4 alongside the translation process of Btor2C.

Btor2 also provides constructs like init, next, and bad to describe the
safety-reachability problem for sequential circuits. Initial and bad states can be
defined by init and bad, respectively. The transition from one state to another

D. Beyer, P.-C. Chien, and N.-Z. Lee156



is captured by next. In the following, we briefly recap sequential circuits and
their model-checking formulation.

3.2 Sequential Circuits and Hardware Model Checking

A sequential circuit is a computational model widely used in the design and
analysis of hardware. It consists of a combinational circuit and memory elements.
The combinational circuit is in charge of the computation, and the memory
elements store the circuit’s state. The combinational circuit is a directed acyclic
graph whose vertices are logic gates and edges are wires connecting the gates.
If the output pin of gate u is connected to an input pin of gate v, we say that
u is a fan-in of v, and v is a fan-out of u.

The computation of sequential circuits is segmented into consecutive time
frames. Before the first time frame starts, the memory elements are typically
reset (described by init). At the beginning of each time frame, the combinational
circuit reads the values stored in the memory elements and receives stimuli from
the environment. The former is called the current state of the circuit, and the
latter is called the external input in this time frame. Propagating the current state
and external input through its logic gates, the combinational circuit computes
the output response and the new values to be stored in the memory elements
(namely, next-state values, described by next). At the end of the time frame,
the next-state values are saved into the memory elements, which become the
current state for the next time frame.

The model-checking problem of reachability safety for hardware is formulated
as follows: Given a sequential circuit and a safety property (usually encoded as an
output of the sequential circuit’s combinational part, described by bad), decide
whether the safety property holds on all executions of the sequential circuit. If the
property does not hold on some execution, a hardware model checker generates
an input sequence to trigger the output, and the sequential circuit is deemed
unsafe with respect to the property. Otherwise, the sequential circuit is considered
safe, and a model checker might additionally generate (an overapproximation
of) the set of reachable states as correctness witness.

3.3 Software Model Checking

The reachability-safety problem for software is formulated similarly as hardware
model checking. Given a program and a safety property (usually labeled as an
error location in the program), determine whether there is an executable program
path that reaches the error location. Although, unlike hardware, software model
checking is in general undecidable, many research efforts have been invested
into automated solutions to this problem [10, 19, 53], including predicate abstrac-
tion [5, 42, 47, 50], counterexample-guided abstraction refinement (CEGAR) [6, 36],
and interpolation [49, 58]. The verification of industry-scale software such as
operating-systems code [4, 7, 23, 32, 37, 54] is made feasible together by these so-
lutions and the advances in SMT solving [9]. It is our research enthusiasm to
explore how these concepts work on hardware.

Bridging Hardware and Software Analysis with Btor2C 157



4 Translating Btor2 to C

This section describes the proposed translator Btor2C2, implemented in the
language C with approximately 1600 lines of code. We first describe the general
idea of using C programs to simulate sequential circuits, whose behavior is
intrinsically concurrent. The implementations of various Btor2 operators and
optimizations in Btor2C are discussed later.

4.1 Simulating Sequential Circuits with C Programs
Sequential circuits work in a concurrent manner: The external input and current
state propagate in parallel through the combinational circuitry to produce circuit
outputs and next-state values. In contrast, the C programming language is
imperative, and hence C programs are generally executed line-by-line.

void main() {

// Define sorts and constants

// Initialize states

for (;;) {

/∗ Evaluate safety property

if (bad) {

ERROR: abort();

} ∗/
// Compute and assign next states

}

}

Fig. 3: A generic program to imitate se-
quential circuits for reachability safety

To capture the behavior of sequen-
tial circuits in the context of reacha-
bility safety, Btor2C generates C pro-
grams with the generic single-loop pro-
gram in Fig. 3 as a template. In the
generic program, the sorts and con-
stants used in the sequential circuit
are defined at the beginning of the
main() function. Second, the program
initializes the circuit’s states. An end-
less loop is then used to mimic the
state-transition behavior of the circuit
throughout time frames: When a loop
iteration begins, the safety property is evaluated over the current state and exter-
nal input. If the property is violated, the program exits with an error. Otherwise,
the next-state values are computed and stored into the state variables. This
generic program reflects the reachability safety for sequential circuits.

The commented blocks in the generic program have to be replaced by C
instructions to encode the concurrent computation of the sequential circuit.
Btor2C assigns every node in the input Btor2 circuit a unique variable in the
translated C program. Nodes used for state initialization, state transition, or
safety properties, are specified by keywords init, next, or bad, respectively. For
such a node, a backward depth-first traversal is applied to collect its transitive
fan-in cone to avoid irrelevant signals regarding model checking. Multiple bad
keywords in a Btor2 file are translated to multiple error labels in the C program.

4.2 Variable Naming
We use the unique identification numbers for lines in a Btor2 file to name their
corresponding variables in the translated C program. Suppose the unique ID of
a line is n. If the line defines a sort, it is named SORT_n in the C file. If the line
defines a state or an input, it is named state_n or input_n, respectively. If the
line defines a node used for state initialization, transition, or property evaluation,
2 https://gitlab.com/sosy-lab/software/btor2c

D. Beyer, P.-C. Chien, and N.-Z. Lee158

https://gitlab.com/sosy-lab/software/btor2c


it is named init_n, next_n, or bad_n, respectively, to honor the keywords init,
next, or bad. For the rest of the nodes, we name their variables var_n in the C file.

4.3 Expressing Btor2 Sorts in C

The language Btor2 supports two sorts: bit-vectors and arrays. Whenever possible,
Btor2C represents a bit-vector type Bw by the shortest unsigned-integer type
whose number of bits is greater than or equal to w. For example, a B3 type with
sort ID n is encoded by typedef SORT_n unsigned char;, and a B20 type with
sort ID m is encoded by typedef SORT_m unsigned int;. A Btor2 bit-vector
type can have an arbitrary width. If a Btor2 circuit uses a bit-vector type longer
than 64 bits, Btor2C cannot translate it to a C program, because no C type can
accommodate the bit-vector3. The missing capability to handle bit-vectors longer
than 64 bits is a restriction of Btor2C, but the sacrifice is worthy: By encoding
bit-vectors with integer variables, native C operators can be directly applied to
implement Btor2 operators, which greatly simplify the analysis of translated
programs. As can be seen in Sect. 5, the state-of-the-art software verifiers and
testers have a decent performance on the translated programs. In practice, only
20% of the collected Btor2 benchmarking circuits have bit-vectors longer than
64 bits, so we consider the restriction acceptable.

For Btor2 arrays, Btor2C represents them by static arrays. Suppose the sort
ID for an array type AI→E is n. Let its index type I be Bw and element type E
be encoded by SORT_m. Then AI→E is encoded by the following C instruction:
typedef SORT_m SORT_n[1 << w];, which means SORT_n is an array with 2w

objects of type SORT_m.

4.4 Implementing Btor2 Operators in C

The language Btor2 provides various operations, most of which can be easily
implemented by the corresponding C operators. Recall that we extend to the next
unsigned-integer type to encode a bit-vector type Bw. As a result, there might be
some spare most-significant bits (MSBs) in an unsigned-integer variable. Normally,
these bits have to be set to zeros (namely, the computation result is modulo 2w)
after each operation to guarantee the precision. Later in Sect. 4.5, we discuss the
possibility of performing the modulo operation to results lazily only when needed,
instead of applying it eagerly after each operator. Such laziness helps to generate
shorter C programs and provides an opportunity for software analyzers to work
more efficiently. In the evaluation, we will also compare the effects of these two
translation schemes. Next, we follow the order of Table 1 in the Btor2 paper [64]
to introduce the Btor2 operators and their implementations in C.

Indexed Operators. Unsigned- and signed-extension operators uext and sext
can be implemented by type casting during the variable assignment. The bit-
slicing operator slice is implemented by first right-shifting the number of sliced
least-significant bits and masking the spare MSBs to zeros.

3 We stick to the ISO C18 standard [52]; GNU C offers an unsigned __int128 type,
but not every software analyzer supports it. Recently, there is a proposal to support
arbitrary-width integers in ISO C23, which will further simplify the translation.

Bridging Hardware and Software Analysis with Btor2C 159



Unary Operators. The bitwise negation operator not is implemented by its
counterpart ~ in C. The arithmetic operators inc, dec, and neg are implemented
using the ++, −−, and − operators in C. The reduction operator redand (resp.
redor) is implemented by comparing the operand to 2w − 1 (resp. 0) for an
operand of type Bw. As there is no native support in C to compute the sum of all
bits modulo 2 (parity) in an integer variable, the reduction operator redxor is
implemented by repeatedly shifting and XOR-ing the variable with itself, such
that the result will end up in the least-significant bit.

Binary Operators. For bit-vectors, the (in)equality operators eq, neq, gt, gte,
lt, and lte are implemented by the corresponding C operators. For arrays,
the equality operator is implemented by looping the two input arrays to find a
different element. Bitwise operators and, or, and xor4 and arithmetic operators
add, mul, div, rem (remainder), and sub are all supported in C and can be directly
implemented using the respective C operators. In the language Btor2, the result of
division-by-zero is defined to be the maximum number of the operands’ sort. Our
translation takes this specification into account to generate equivalent C programs.
Otherwise, division-by-zero would be considered as undefined behavior in C.

Shifting operators sll (logical left shift) and srl (logical right shift) are
implemented by the left- and right-shifting operators in C, respectively. According
to the ISO C18 standard [52], the result of right-shifting a negative value is
implementation-defined. Therefore, to ensure the intended behavior of the arith-
metic right-shift operator sra, we always pad ones directly to the resulting value
if the given operand is negative (i.e., MSB equals 1). In this way, we do not have
to assume any specific implementation of the software verifiers.

Concatenating and rotating operators concat, rol (rotating left), and ror
(rotating right), are not natively supported in C. We implemented them by shifting
and bitwise disjunction. For example, in order to concatenate node n1 of type
B3 and node n2 of type B5, we use var_1 << 5 | var_2, assuming var_1 and
var_2 are of type unsigned char.

The read operator for array types, which takes an array and an index, is
simply implemented by C’s syntax to access an array.

Ternary Operators. The if-then-else operator ite works both for bit-vectors
and arrays. It is implemented by the ternary operator exp1 ? exp2 : exp3 in C.

The write operator takes an array, an index for where to write, an element
for what to write, and returns an updated array. It is implemented using the
standard syntax in C to modify the content of an array.

Note that in a Btor2 file, a line with operator write essentially creates a
new copy of the original array with one updated element. The original array is
not replaced, because it might also be referred to by other lines. In principle, if
no lines access the original array after a write operation, the operation could
modify the element in place without allocating a new array. For now, Btor2C
always copies a new array during a write operation for simplicity.

4 The operators nand, nor, and xnor are implemented with the bitwise NOT operator.

D. Beyer, P.-C. Chien, and N.-Z. Lee160



4.5 Applying Modulo Operations Lazily
Observe that there are some operators that can work correctly without precise
operand values, which offers us the opportunity to apply modulo operations lazily
and save some computations in translated programs. For instance, consider the
addition operator. If a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n), we conclude that
a1 + b1 ≡ a2 + b2 (mod n) according to modular arithmetic. In other words, the
addition operator does not need precise operands and works correctly for modular
numbers (i.e., equivalence classes modulo n). By contrast, other operators might
yield different results for modular numbers. For example, a + kn > b does not
guarantee a > b when k > 0. Therefore, performing the modulo operation to
the result of an operator is only necessary where the result is used in another
operator that requires precise operand values.

Btor2C provides an option for the lazy application of modulo operations. If
the option is turned on, Btor2C analyzes whether the precise value is required
for each node by looking at the node’s fan-outs. If any of its fan-outs needs the
precise computation result of the node, the modulo operation will be applied to
it. Otherwise, the modulo operation will be skipped, and the result could be a
modular number of the precise value. Operators that require precise operand values
mainly include inequalities as well as indices for reading and writing arrays. As an
example, if we enable the lazy behavior to translate the Btor2 circuit in Fig. 2a,
the modulo operations in line 13 and line 20 of the program in Fig. 2b can be
omitted, because input_5 and var_6 are used only in addition and subtraction,
which do not need precise operand values.

4.6 Discussion
Correctness of the Translation. As will be seen in Sect. 5, the reliability of
Btor2C is empirically validated over a large input set: Most software verifiers
obtain consistent answers on the translated C programs as the hardware verifiers.
For Btor2 models that violate the safety property, the violation witness generated
by software verifiers can be transformed to that of the original Btor2 circuit as
a certificate of the translation process. The Btor2Tools utility suite offers a
simulator to check the transformed witness against the Btor2 model.

5 Evaluation
We evaluate the claims presented in Sect. 1.1 using the following research questions:

• RQ1: How do software analyzers perform on hardware-verification tasks?
• RQ2: Can software analyzers complement hardware model checkers?
• RQ3: What is the effect of the optimization in Sect. 4.5 on the verification of

the translated C programs?
• RQ4: How effective is the proposed translator Btor2C in comparison with

the Verilog-to-C translator v2c [62]?

Limitations. The current version of Btor2C has no support yet for the translation
of fairness constraints (keyword fair), liveness properties (keyword justice),
and overflow detection (keywords addo, divo, mulo, and subo). In our evaluation,
only supported keywords appear in the collected Btor2 circuits.

Bridging Hardware and Software Analysis with Btor2C 161



To answer the above research questions, we evaluated the state of the art of
hardware and software analyzers over a large benchmark set consisting of more
than thousand hardware-verification tasks.

5.1 Benchmark Set
We collected hardware-verification tasks in both Btor2 and Verilog formats
from various sources, including the benchmark suites used in the 2019 and 2020
Hardware Model Checking Competitions [29] and the explicit-state model-checking
tasks derived from the BEEM project [65]. The whole benchmark set as well as a
complete list of sources are available in the reproduction artifact [16] of this paper.
We also contributed a set of verification tasks to the sv-benchmarks collection, the
largest freely available benchmark set of the verification and testing community.

As the proposed translator Btor2C uses Btor2 as frontend, we translated
tasks in Verilog to Btor2 with Yosys [70]. An aggregate of 1912 Btor2 tasks were
collected. We excluded 414 tasks with bit-vectors longer than 64 bits, because
Btor2C cannot translate these tasks into standard ISO C18 programs. Out
of the remaining 1498 Btor2 tasks, 1341 use only bit-vector sorts, and the
remaining 157 tasks manipulate both bit-vector and array sorts. The bit-vector
category contains 473 unsafe tasks (with a known specification violation) and
868 safe tasks (for which the specification is satisfied). The array category contains
17 unsafe and 140 safe tasks.

We translated the remaining 1498 Btor2 tasks into C programs by the
proposed tool Btor2C (tag tacas23-camera), assuming the LP64 data model.
The 1341 tasks in the bit-vector category are also translated to Aiger by the
translator Btor2AIGER, which is provided in the Btor2Tools utility suite. The
original Btor2 models as well as the translated C programs and Aiger circuits
are available in the reproduction package [16] and online5.

Unfortunately, Btor2AIGER does not translate Btor2 circuits with array
sorts to Aiger. In our benchmark set, translating a Btor2 file to either a C
program or an Aiger circuit took less than a second. Therefore, we ignore the
translation time in the run-time of compared tools. An input task with the required
format is directly given to each tool. To facilitate the comparison with v2c, we
additionally gathered 22 C programs translated by v2c from its repository6.

5.2 State-of-the-Art Hardware and Software Analysis
To adequately reflect the state of the art of hardware and software analysis,
we evaluated the most competitive tools from the Hardware Model Checking
Competitions and Competitions on Software Verification and Testing. A wide
range of analysis techniques implemented in these tools were investigated in our
experiment. Due to space limitation, Sect. 5.4 will show the best configuration
of each tool on our benchmark set.
Hardware Model Checkers. For hardware analysis, we selected the state-of-the-
art bit-level model checker ABC [30] (commit a9237f57) and AVR [46] version 2.1,
5 https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks
6 https://github.com/rajdeep87/verilog-c
7 https://github.com/berkeley-abc/abc

D. Beyer, P.-C. Chien, and N.-Z. Lee162

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/software/btor2c/-/tree/tacas23-camera
https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks
https://github.com/rajdeep87/verilog-c
https://github.com/berkeley-abc/abc


a word-level hardware model checker that won HWMCC2020. The former takes
Aiger circuits as input, and the latter directly consumes Btor2 models. We eval-
uated the implementations of bounded model checking (BMC) [27] and property
directed reachability (PDR) [41, 45] in both ABC and AVR. Interpolation-based
model checking (IMC) [57] in ABC and k -induction (KI) [69] in AVR were
also assessed.

Software Analyzers. For software verifiers, we enrolled the first, second, and
fourth ranked verifiers VeriAbs [2], CPAchecker [20], and Esbmc [43] of category
ReachSafety in SV-COMP2022. The 3rd ranked verifier PeSCo [66] was omitted
because it selects algorithms from the CPAchecker framework. All verifiers
were downloaded from the archiving repository8 of the competition. (For Esbmc,
the performance of an earlier version in SV-COMP2021 was better than the
latest version on our benchmark set, so we used the older version instead.) We
tried the implementations of loop abstraction (LA) [38] in VeriAbs; predicate
abstraction (PA) [18, 50], Impact [24, 58], and IMC [21] in CPAchecker; BMC
and KI [17, 18, 39, 44] in both CPAchecker and Esbmc.

For software testers, the overall winner FuSeBMC [3] of Test-Comp2022,
which implements fuzz testing (fuzzing), was picked. We also experimented with
other testers from the competition, but they failed to generate test suites on
our benchmark set. FuSeBMC was downloaded from the archiving repository9
of the competition.

In the following discussion, we use 〈tool〉-〈algorithm〉 to denote the implemen-
tation of a specific algorithm in a particular tool. For example, AVR-KI refers
to the k -induction implementation in AVR.

5.3 Experimental Setup

All experiments were conducted on machines running Ubuntu 22.04 (64 bit), each
with a 3.4GHz CPU (Intel Xeon E3-1230 v5) with 8 processing units and 33GB
of RAM. Each task was limited to 2 CPU cores, 15min of CPU time, and 15GB
of RAM. We used BenchExec10 [22] to ensure reliable resource measurement
and reproducible results.

5.4 Results

RQ1: Solving HW-Verification Tasks with SW Analyzers. To study the
performance of software analyzers on hardware-verification tasks, we compared
the selected software tools against the state-of-the-art hardware model checkers.
The results are summarized in Table 1.

Note that some software verifiers are good at finding bugs in these tasks.
VeriAbs found most correct alarms in the experiment, and Esbmc also detected
more bugs than AVR. By contrast, hardware model checkers were better at
computing correctness proofs. Even the best software configuration CPAchecker-
PA for proving correctness only achieved fewer than a half of the proofs for

8 https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/tree/svcomp22
9 https://gitlab.com/sosy-lab/test-comp/archives-2022/-/tree/testcomp22

10 https://github.com/sosy-lab/benchexec

Bridging Hardware and Software Analysis with Btor2C 163

https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/tree/svcomp22
https://gitlab.com/sosy-lab/test-comp/archives-2022/-/tree/testcomp22
https://github.com/sosy-lab/benchexec


Table 1: Summary of the results for hardware and software verifiers (suffixes -e
and -l stand for applying modulo operations eagerly or lazily, respectively)

Fig. 4: Quantile plots for all correct proofs and alarms of bit-vector tasks

bit-vector tasks. In the array category, AVR delivered 45 correct proofs, whereas
the software verifiers cannot solve any of them. Our results may inspire tool
developers to investigate and alleviate the performance difference. Since we
have contributed a category ReachSafety-Hardware of verification tasks to the
common benchmark collection, the 2023 competition results of SV-COMP include
evaluations of all participating tools on those new tasks.

The quantile plots of correct proofs and alarms for bit-vector tasks are shown
in Fig. 4a and Fig. 4b, respectively. A data point (x, y) in the plots indicates
that there are x tasks correctly solvable by the respective tool within a CPU
time of y seconds. In our experiments, ABC is the most efficient and effective
tool in producing proofs, and VeriAbs is the best for bug hunting. While the
number of alarms found by Esbmc is more than AVR and close to ABC, it spent
more time in finding bugs in general.

In our evaluation, we observe that PDR is the most competitive algorithm for
both hardware model checkers, whereas software verifiers show diverse strengths in
different approaches. To account for the difference in algorithms, we also compare
implementations of the same algorithm in various analyzers.

BMC is one of the most popular formal approaches to detect errors. It is
implemented by most of the evaluated tools. Software testers are also able to

Tool ABC AVR CPAchecker Esbmc VeriAbs
Algorithm PDR PDR Pred.Abs. k-Induction LoopAbs.
Input Tasks Aiger Btor2 C-e C-l C-e C-l C-e C-l

Correct results 1498 862 736 274 280 401 410 392 393
BV proofs 868 524 458 188 189 88 93 53 49
BV alarms 473 338 233 86 91 311 315 337 342
Array proofs 140 – 45 0 0 0 0 0 0
Array alarms 17 – 0 0 0 2 2 2 2

Wrong proofs 0 0 0 0 0 0 2 2
Wrong alarms 0 0 0 0 0 0 1 1
Timeouts 479 559 924 922 554 551 1049 1042
Out of memory 0 3 9 7 543 537 3 4
Other inconclusive 0 200 291 289 0 0 51 56

0 100 200 300 400 500

0.1

10

1000

(a) Proofs

0 100 200 300

0.1

10

1000

(b) Alarms

ABC-PDR AVR-PDR CPAchecker-PA

Esbmc-KI VeriAbs-LA

x-Axis: n-th fastest correct result
y-Axis: CPU time (s)

D. Beyer, P.-C. Chien, and N.-Z. Lee164

https://github.com/berkeley-abc/abc
https://github.com/aman-goel/avr
https://cpachecker.sosy-lab.org/
http://www.esbmc.org/
http://fmv.jku.at/aiger/
https://github.com/Boolector/btor2tools


hunt bugs, and hence we include FuSeBMC, a derivative of Esbmc that combines
BMC and fuzzing, into the comparison. Figure 5 shows the quantile plot of
correct alarms for unsafe bit-vector tasks. Note that the performance of BMC
implementations in software verifiers are close to those in hardware verifiers.
However, FuSeBMC performed not as well as other competitors, indicating that
fuzzing might not be fruitful for our benchmark set.

We also performed a head-to-head comparison of the k -induction implemen-
tations in AVR and Esbmc over the bit-vector and array tasks. Both tools rely
on SMT solving for formula reasoning, so the confounding variables are fewer
than other combinations. Figure 6 shows the scatter plots for the CPU time
and memory usage of AVR and Esbmc to produce correct results. A data point
(x, y) in the plots indicates the existence of a task correctly solved by both tools,
for which Esbmc took x units of the computing resource and AVR took y units.
AVR was often more efficient than Esbmc, but the latter solved 13 tasks that
the former cannot solve.

RQ2: Complementing HW Model Checkers with SW Analyzers. Over-
all, hardware model checkers performed better than software analyzers on our
benchmark set, which is expected since they have been heavily optimized for
hardware-verification tasks. However, comparing the results of the tools for Table 1,
we observed 43 tasks that were uniquely solved by software verifiers. Interestingly,
39 of these uniquely solved tasks have a violated property. Combining BMC with
loop unwinding heuristics, e.g., the technique implemented in VeriAbs [2], is
helpful to find bugs in these tasks. This phenomenon demonstrates that software-

0 100 200 300

0.1

10

1000

n-th fastest correct result

C
P

U
ti
m

e
(s

)

ABC-BMC
AVR-BMC
CPAchecker-BMC
Esbmc-BMC
FuSeBMC

Fig. 5: Quantile plot comparing bug hunting (with BMC) on bit-vector tasks

0.1 1 10 100 1000
0.1

1

10

100

1000

Esbmc-KI (s)

A
V

R
-K

I
(s

)

safe
unsafe

10 100 1000 10000
10

100

1000

10000

Esbmc-KI (MB)

A
V

R
-K

I
(M

B
)

safe
unsafe

Fig. 6: CPU time (left) and memory (right) consumption of AVR-KI and Esbmc-KI

Bridging Hardware and Software Analysis with Btor2C 165



Table 2: Results for 22 programs generated by Btor2C and v2c

Tool CPAchecker Esbmc VeriAbs
Algorithm Pred.Abs. k-Induction LoopAbs.
translated by Btor2C v2c Btor2C v2c Btor2C v2c

Correct results 15 11 16 13 12 7
proofs 13 8 11 11 7 3
alarms 2 3 5 2 5 4

Wrong results 0 0 0 1 0 0
Errors & Unknown 7 11 6 8 10 15

analysis techniques are able to complement hardware model checkers, which is
facilitated by the proposed Btor2C translator. Some potential reasons affecting
the effectiveness and efficiency of software analyzers will be discussed in Sect. 5.5.

RQ3: Optimization in Btor2C. Section 4.5 presented an optimization tech-
nique that performs modulo operations to intermediate results lazily, in order
to generate shorter C programs. To assess whether this technique benefits the
downstream software analysis, we compared the performance of the selected soft-
ware verifiers, CPAchecker, Esbmc, and VeriAbs, on C programs translated by
Btor2C with or without this optimization (namely, applying modulo operations
lazily or eagerly, respectively).

The results of the best-performing algorithm for each tool in terms of the
number of correct answers are summarized in Table 1, whose right panel also
shows the results of the verifiers on these 2 sets of C programs. (CPAchecker-
BMC actually solved more tasks than CPAchecker-PA, but it was mainly for
bug hunting. Therefore, we reported the second best configuration, predicate
abstraction, for CPAchecker.) If modulo operations are applied lazily instead
of eagerly, the numbers of overall correct results are increased by roughly 2.2%
for both CPAchecker and Esbmc, and by 0.3% for VeriAbs. Although VeriAbs
found 4 fewer correct proofs if modulo operations are applied lazily, it reported
5 more correct alarms. Therefore, we conclude that generating shorter C programs
by reducing modulo operations is an effective optimization in Btor2C. From now
on, Btor2C enables this optimization by default.

RQ4: Comparison with v2c. Btor2C is a lightweight tool, whose compiled
binary is smaller than 0.25MB. By contrast, the precompiled v2c executable
downloaded from its web archive11 is 5.7MB. While such difference is negligible
given the capability of modern computers, we believe that a simple frontend
language benefits tool implementation.

Besides implementation complexity, we also investigated the efficiency of
the translation process. As mentioned in Sect. 5.1, Btor2C took less than a
second to translate any Btor2 model in the benchmark set. Unfortunately,
neither the v2c executable in the archive was runnable, nor was its source code
compilable12. Therefore, we were not able to directly compare the translation
efficiency of Btor2C and v2c.

11 https://www.cs.ox.ac.uk/people/rajdeep.mukherjee/tacas16_v2c.tar.gz
12 https://github.com/rajdeep87/verilog-c/issues/6

D. Beyer, P.-C. Chien, and N.-Z. Lee166

https://cpachecker.sosy-lab.org/
http://www.esbmc.org/
https://www.sosy-lab.org/research/btor2c/
http://www.cprover.org/hardware/v2c/
https://www.sosy-lab.org/research/btor2c/
http://www.cprover.org/hardware/v2c/
https://www.sosy-lab.org/research/btor2c/
http://www.cprover.org/hardware/v2c/
https://www.cs.ox.ac.uk/people/rajdeep.mukherjee/tacas16_v2c.tar.gz
https://github.com/rajdeep87/verilog-c/issues/6


As an alternative, we collected 22 C programs from v2c’s benchmark repository
and manually adapted them to the syntax rules used in SV-COMP. The original
Verilog circuits of these C programs were translated to Btor2 by Yosys and
further translated by Btor2C into another set of C programs. We compare the
performance of the evaluated software verifiers on these two sets of 22 verification
tasks in Table 2. Observe that the three verifiers produced more correct results on
the C programs generated by Btor2C, showing the benefit of using Yosys +Btor2
as frontend in the translation flow.

5.5 Discussion

From the experimental results shown above, we observe a notable performance
difference between software and hardware analyzers. There are several possibilities
to explain this outcome: First, the tasks were encoded in different formats for
software and hardware analyzers. Btor2C encoded bit-vectors with unsigned
integer types, which may contain some spare bits that complicate software analysis.
Second, each analyzer uses a different backend logical solver. ABC encodes queries
in propositional logic and uses SAT solving, while other tools resort to first-
order formulas and SMT solving. (In our experiments, AVR used Yices2 [40],
CPAchecker used MathSAT5 [35] for predicate abstraction and Boolector3 [64]
for BMC, and Esbmc used Boolector3.) The ability of solvers may affect the
analyzers’ performance. Third, the internal modeling used by the analyzers varies.
Software verifiers typically represent a program as a control-flow graph, which
might be unnecessarily complex when the problem at hand is merely a state-
transition system. Despite the above reasons, software verifiers were able to solve
43 tasks that the considered hardware model checkers cannot solve.

6 Conclusion

Assuring the correctness of computational systems is challenging yet imperative.
Therefore, we should embrace every opportunity to analyze our systems by remov-
ing the barriers between research communities. We implemented the lightweight
and open-source tool Btor2C for translating sequential Btor2 circuits to C
programs, to enable the application of off-the-shelf software analyzers to hardware
designs. We conducted a large-scale experiment including more than thousand ver-
ification tasks. State-of-the-art bit-level and word-level model checkers as well as
software verifiers and testers were evaluated empirically. Thanks to the simplicity
of the Btor2 language, software analyzers performed decently on the translated
programs and complemented the hardware model checkers by detecting more
bugs and uniquely solving 43 tasks in our experiment. Our translator Btor2C
demonstrates a new spectrum of analysis options to hardware developers and
verification engineers. The translator also simplifies the construction of a new
set of hardware analyzers, because any software analyzer can now be used to
solve hardware-verification tasks, with Btor2C as preprocessing. In the future,
we wish to bridge the gap from the other direction. That is, we aim at translating
programs into circuits and apply hardware analyzers to solve software problems.

Bridging Hardware and Software Analysis with Btor2C 167



Data-Availability Statement. To enhance the verifiability and transparency
of the results reported in this paper, all used software, verification tasks, and raw
experimental results are available in a supplemental reproduction package [16]. A
previous version [15] of the reproduction package was reviewed by the Artifact
Evaluation Committee. The updated version [16] fixes issues found by reviewers of
the paper and the artifact. For convenient browsing of the data, interactive result
tables are also available at https://www.sosy-lab.org/research/btor2c/.

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 378803395 (ConVeY).

Acknowledgements. We thank the SV-COMP community and an anonymous
reviewer for pointing out the division-by-zero issue.

References

1. IEEE Standard for Verilog Hardware Description Language (2006). https://doi.
org/10.1109/IEEESTD.2006.99495

2. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar,
S., Venkatesh, R.: VeriAbs: Verification by abstraction and test generation. In:
Proc. ASE. pp. 1138–1141 (2019). https://doi.org/10.1109/ASE.2019.00121

3. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC:
An energy-efficient test generator for finding security vulnerabilities in C pro-
grams. In: Proc. TAP. pp. 85–105. Springer (2021). https://doi.org/10.1007/
978-3-030-79379-1_6

4. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Proc. IFM. pp. 1–20.
LNCS 2999, Springer (2004). https://doi.org/10.1007/978-3-540-24756-2_1

5. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: Proc. PLDI. pp. 203–213. ACM (2001). https:
//doi.org/10.1145/378795.378846

6. Ball, T., Rajamani, S.K.: Boolean programs: A model and process for software anal-
ysis. Tech. Rep. MSR Tech. Rep. 2000-14, Microsoft Research (2000), https://www.
microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf

7. Ball, T., Rajamani, S.K.: The Slam project: Debugging system software via static
analysis. In: Proc. POPL. pp. 1–3. ACM (2002). https://doi.org/10.1145/503272.
503274

8. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0.
Tech. rep., University of Iowa (2010), https://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.0-r10.12.21.pdf

9. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model Check-
ing, pp. 305–343. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_
11

10. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art and current
trends. IEEE Intelligent Systems 29(1), 20–29 (2014). https://doi.org/10.1109/
MIS.2014.3

11. Beyer, D.: 11th Intl. Competition on Software Verification (SV-COMP 2022). https:
//sv-comp.sosy-lab.org/2022/, accessed: 2023-01-29

12. Beyer, D.: 4th Intl. Competition on Software Testing (Test-Comp 2022). https:
//test-comp.sosy-lab.org/2022/, accessed: 2023-01-29

D. Beyer, P.-C. Chien, and N.-Z. Lee168

https://www.sosy-lab.org/research/btor2c/
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/378795.378846
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf
https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/503272.503274
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1109/MIS.2014.3
https://sv-comp.sosy-lab.org/2022/
https://sv-comp.sosy-lab.org/2022/
https://test-comp.sosy-lab.org/2022/
https://test-comp.sosy-lab.org/2022/


13. Beyer, D.: Advances in automatic software testing: Test-Comp 2022. In: Proc.
FASE. pp. 321–335. LNCS 13241, Springer (2022). https://doi.org/10.1007/
978-3-030-99429-7_18

14. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc.
TACAS (2). pp. 375–402. LNCS 13244, Springer (2022). https://doi.org/10.1007/
978-3-030-99527-0_20

15. Beyer, D., Chien, P.C., Lee, N.Z.: Reproduction package for TACAS2023 submission
‘Bridging hardware and software analysis with Btor2C: A word-level-circuit-to-C
translator’. Zenodo (2022). https://doi.org/10.5281/zenodo.7303732

16. Beyer, D., Chien, P.C., Lee, N.Z.: Reproduction package for TACAS2023 article
‘Bridging hardware and software analysis with Btor2C: A word-level-circuit-to-C
translator’. Zenodo (2023). https://doi.org/10.5281/zenodo.7551707

17. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015). https://doi.
org/10.1007/978-3-319-21690-4_42

18. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software veri-
fication. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/
s10817-017-9432-6

19. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https:
//doi.org/10.1007/978-3-319-10575-8_16

20. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

21. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. arXiv/CoRR 2208(05046) (July 2022).
https://doi.org/10.48550/arXiv.2208.05046

22. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solutions.
Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019). https://doi.org/10.
1007/s10009-017-0469-y

23. Beyer, D., Petrenko, A.K.: Linux driver verification. In: Proc. ISoLA. pp. 1–6.
LNCS 7610, Springer (2012). https://doi.org/10.1007/978-3-642-34032-1_1

24. Beyer, D., Wendler, P.: Algorithms for software model checking: Predi-
cate abstraction vs. Impact. In: Proc. FMCAD. pp. 106–113. FMCAD
(2012), https://www.sosy-lab.org/research/pub/2012-FMCAD.Algorithms_for_
Software_Model_Checking.pdf

25. Beyer, D., Podelski, A.: Software model checking: 20 years and beyond. In: Principles
of Systems Design. pp. 554–582. LNCS 13660, Springer (2022). https://doi.org/
10.1007/978-3-031-22337-2_27

26. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler University
(2007). https://doi.org/10.35011/fmvtr.2007-1

27. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0_14

28. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: Proc. FMCAD. p. 9. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.
8102233

29. Biere, A., Froleyks, N., Preiner, M.: 11th Hardware Model Checking Competition
(HWMCC 2020). http://fmv.jku.at/hwmcc20/, accessed: 2023-01-29

Bridging Hardware and Software Analysis with Btor2C 169

https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.7303732
https://doi.org/10.5281/zenodo.7551707
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-34032-1_1
https://www.sosy-lab.org/research/pub/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf
https://www.sosy-lab.org/research/pub/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
http://fmv.jku.at/hwmcc20/


30. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proc. CAV. pp. 24–40. LNCS 6174, Springer (2010). https://doi.org/10.
1007/978-3-642-14295-6_5

31. Brummayer, R., Biere, A., Lonsing, F.: Btor: Bit-precise modelling of word-level
problems for model checking. In: Proc. SMT/BPR. pp. 33–38. ACM (2008). https:
//doi.org/10.1145/1512464.1512472

32. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software
verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015). https://doi.
org/10.1007/978-3-319-17524-9_1

33. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuxmv symbolic model checker. In:
Proc. CAV. pp. 334–342. LNCS 8559, Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_22

34. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: An open-source tool for symbolic
model checking. In: Proc. CAV. pp. 359–364. LNCS 2404, Springer (2002). https:
//doi.org/10.1007/3-540-45657-0_29

35. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proc. TACAS. pp. 93–107. LNCS 7795, Springer (2013). https://doi.
org/10.1007/978-3-642-36742-7_7

36. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

37. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.
CAV (2). pp. 38–47. LNCS 10981, Springer (2018). https://doi.org/10.1007/
978-3-319-96145-3_3

38. Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-
approximating loops to prove properties using bounded model checking. In: Proc.
DATE. pp. 1407–1412. IEEE (2015). https://doi.org/10.7873/DATE.2015.0245

39. Donaldson, A.F., Haller, L., Kröning, D., Rümmer, P.: Software verification using
k-induction. In: Proc. SAS. pp. 351–368. LNCS 6887, Springer (2011). https:
//doi.org/10.1007/978-3-642-23702-7_26

40. Dutertre, B.: Yices 2.2. In: Proc. CAV. pp. 737–744. LNCS 8559, Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_49

41. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Proc. FMCAD. pp. 125–134. FMCAD Inc. (2011), http:
//dl.acm.org/citation.cfm?id=2157675

42. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Proc.
POPL. pp. 191–202. ACM (2002). https://doi.org/10.1145/503272.503291

43. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
ESBMC 5.0: An industrial-strength C model checker. In: Proc. ASE. pp. 888–891.
ACM (2018). https://doi.org/10.1145/3238147.3240481

44. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (February 2017). https://doi.org/10.1007/s10009-015-0407-9

45. Goel, A., Sakallah, K.: Model checking of Verilog RTL using IC3 with syntax-guided
abstraction. In: Proc. NFM. pp. 166–185. Springer (2019). https://doi.org/10.
1007/978-3-030-20652-9_11

D. Beyer, P.-C. Chien, and N.-Z. Lee170

https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/1512464.1512472
https://doi.org/10.1145/1512464.1512472
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.7873/DATE.2015.0245
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-319-08867-9_49
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1145/503272.503291
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-20652-9_11
https://doi.org/10.1007/978-3-030-20652-9_11


46. Goel, A., Sakallah, K.: AVR: Abstractly verifying reachability. In: Proc.
TACAS. pp. 413–422. LNCS 12078, Springer (2020). https://doi.org/10.1007/
978-3-030-45190-5_23

47. Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV. pp.
72–83. LNCS 1254, Springer (1997). https://doi.org/10.1007/3-540-63166-6_10

48. Greaves, D.J.: A Verilog to C compiler. In: Proc. RSP. pp. 122–127. IEEE (2000).
https://doi.org/10.1109/IWRSP.2000.855208

49. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/
964001.964021

50. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL. pp. 58–70. ACM (2002). https://doi.org/10.1145/503272.503279

51. Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Verilog2SMV:
A tool for word-level verification. In: Proc. DATE. pp. 1156–1159 (2016), https:
//ieeexplore.ieee.org/document/7459485

52. ISO/IEC JTC1/SC22: ISO/IEC 9899-2018: Information technology — Program-
ming Languages — C. International Organization for Standardization (2018),
https://www.iso.org/standard/74528.html

53. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009). https://doi.org/10.1145/1592434.1592438

54. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165–176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

55. Kroening, D., Purandare, M.: EBMC. http://www.cprover.org/ebmc/, accessed:
2023-01-29

56. McMillan, K.L.: Symbolic Model Checking. Springer (1993). https://doi.org/10.
1007/978-1-4615-3190-6

57. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1–
13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

58. McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. pp. 123–136.
LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_14

59. Minhas, M., Hasan, O., Saghar, K.: Ver2Smv: A tool for automatic Verilog to
SMV translation for verifying digital circuits. In: Proc. ICEET. pp. 1–5 (2018).
https://doi.org/10.1109/ICEET1.2018.8338617

60. Mukherjee, R., Kroening, D., Melham, T.: Hardware verification using software
analyzers. In: Proc. ISVLSI. pp. 7–12. IEEE (2015). https://doi.org/10.1109/
ISVLSI.2015.107

61. Mukherjee, R., Schrammel, P., Kroening, D., Melham, T.: Unbounded safety verifi-
cation for hardware using software analyzers. In: Proc. DATE. pp. 1152–1155. IEEE
(2016), https://ieeexplore.ieee.org/document/7459484

62. Mukherjee, R., Tautschnig, M., Kroening, D.: v2c: A Verilog to C translator. In:
Proc. TACAS. pp. 580–586. LNCS 9636, Springer (2016). https://doi.org/10.
1007/978-3-662-49674-9_38

63. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Source-code repository of Btor2,
BtorMC, and Boolector 3.0. https://github.com/Boolector/btor2tools, ac-
cessed: 2023-01-29

64. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector
3.0. In: Proc. CAV. pp. 587–595. LNCS 10981, Springer (2018). https://doi.org/
10.1007/978-3-319-96145-3_32

Bridging Hardware and Software Analysis with Btor2C 171

https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1109/IWRSP.2000.855208
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/503272.503279
https://ieeexplore.ieee.org/document/7459485
https://ieeexplore.ieee.org/document/7459485
https://www.iso.org/standard/74528.html
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-642-11486-1_14
http://www.cprover.org/ebmc/
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1109/ICEET1.2018.8338617
https://doi.org/10.1109/ISVLSI.2015.107
https://doi.org/10.1109/ISVLSI.2015.107
https://ieeexplore.ieee.org/document/7459484
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://github.com/Boolector/btor2tools
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32


65. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Proc. SPIN. pp. 263–
267. LNCS 4595, Springer (2007). https://doi.org/10.1007/978-3-540-73370-6_
17

66. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/s10515-020-00270-x

67. Rozier, K.Y., Shankar, N., Tinelli, C., Vardi, M.: An open-source, state-of-the-art
symbolic model-checking framework for the model-checking research community.
https://www.aere.iastate.edu/modelchecker/, accessed: 2023-01-29

68. Snyder, W.: Verilator. https://www.veripool.org/verilator/, accessed: 2023-01-
29

69. Wahl, T.: The k-induction principle (2013), http://www.ccs.neu.edu/home/wahl/
Publications/k-induction.pdf

70. Wolf, C.: Yosys open synthesis suite. https://yosyshq.net/yosys/, accessed: 2023-
01-29

71. Yeh, H., Wu, C., Huang, C.R.: QuteRTL: Towards an open source framework for
RTL design synthesis and verification. In: Proc. TACAS. pp. 377–391. LNCS 7214,
Springer (2012). https://doi.org/10.1007/978-3-642-28756-5_26

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

D. Beyer, P.-C. Chien, and N.-Z. Lee172

https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/s10515-020-00270-x
https://www.aere.iastate.edu/modelchecker/
https://www.veripool.org/verilator/
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
https://yosyshq.net/yosys/
https://doi.org/10.1007/978-3-642-28756-5_26
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Bridging Hardware and Software Analysis with Btor2C: A Word-Level-Circuit-to-C Translator
	1 Introduction
	1.1 Our Motivations and Contributions
	1.2 Example

	2 Related Work
	2.1 Compiling Hardware to Software
	2.2 Compiling Hardware to Intermediate Representation

	3 Background
	3.1 The Btor2 Language
	3.2 Sequential Circuits and Hardware Model Checking
	3.3 Software Model Checking

	4 Translating Btor2 to C
	4.1 Simulating Sequential Circuits with C Programs
	4.2 Variable Naming
	4.3 Expressing Btor2 Sorts in C
	4.4 Implementing Btor2 Operators in C
	4.5 Applying Modulo Operations Lazily
	4.6 Discussion

	5 Evaluation
	5.1 Benchmark Set
	5.2 State-of-the-Art Hardware and Software Analysis
	5.3 Experimental Setup
	5.4 Results
	5.5 Discussion

	6 Conclusion
	Acknowledgements.
	References




