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Abstract. Verifying relations between programs arises as a task in
various verification contexts such as optimizing transformations, relating
new versions of programs with older versions (regression verification),
and noninterference. However, relational verification for programs acting
on dynamically allocated mutable state is not well supported by existing
tools, which provide a high level of automation at the cost of restricting the
programs considered. Auto-active tools, on the other hand, require more
user interaction but enable verification of a broader class of programs.
This article presents WhyRel, a tool for the auto-active verification
of relational properties of pointer programs based on relational region
logic. WhyRel is evaluated through verification case studies, relying on
SMT solvers orchestrated by the Why3 platform on which it builds.
Case studies include establishing representation independence of ADTs,
showing noninterference, and challenge problems from recent literature.

Keywords: local reasoning · relational verification · auto-active verifica-
tion · data abstraction.

1 Introduction

Relational properties encompass conditional equivalence of programs (as in re-
gression verification [28]), noninterference (in which a program is related to itself
via a low-indistinguishability relation), and other requirements such as sensitiv-
ity [6]. The problem we address concerns tooling for the modular verification of
relational properties of heap-manipulating programs, including programs that
act on differing data representations involving dynamically allocated pointer
structures.

Modular reasoning about pointer programs is enabled through local reasoning
using frame conditions, procedural abstraction (i.e., reasoning under hypotheses
about procedures a program invokes), and data abstraction, requiring state-based
encapsulation. For establishing properties of ADTs such as representation inde-
pendence, encapsulation plays a crucial role, permitting implementations to rely
on invariants about private state hidden from clients. Relational verification also
involves a kind of compositionality, the alignment of intermediate execution steps,
which enables use of simpler relational invariants and specs (see e.g. [29,17,25]).
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We aim for auto-active verification [19], accessible to developers, as promoted
by tools such as Dafny and Why3. Users are expected to provide specifications,
annotations such as loop invariants and assertions, and, for relational verification,
alignment hints. The idea is to minimize or eliminate the need for users to
manually invoke tactics for proof search.

Automated inference of specs, loop invariants, or program alignments facili-
tates automated verification, and is implemented in some tools. But in the current
state of the art these techniques are restricted to specs and invariants of limited
forms (e.g., only linear arithmetic) and seldom support dynamically allocated
objects. So inference is beyond the scope of this paper.

What is in scope is use of strong encapsulation, to hide information in the
sense that method specs used by clients do not expose internal representation
details, and to enable verification of modular correctness of a client, in the
sense that its behavior is independent from internal representations. Achieving
strong encapsulation for pointer programs, without undue restriction on data and
control structure, is technically challenging. Auto-active tools rely on extensive
axiomatization for the generation of verification conditions (VCs); for high
assurance the VCs should be justified with respect to a definitional operational
semantics of programs and specs.

In this article, we describe WhyRel, a prototype for auto-active verification
of relational properties of pointer programs. Source programs are written in an
imperative language with support for shared mutable objects (but no subtyping),
dynamic allocation, and encapsulation. The assertion language is first-order and,
for expressing relational properties, includes constructs that relate values of
variables and pointer structures between two programs. WhyRel is based on
relational region logic [1], a relational extension of region logic [4,2]. Region
logic provides a flexible approach to local reasoning through the use of dynamic
frame conditions [15] which capture footprints of commands acting on the heap.
Verification involves reasoning explicitly about regions of memory and changes
to them as computation proceeds; flexibility comes from being able to express
notions such as parthood and separation in the same first-order setting.

Encapsulation is specified using a kind of dynamic frame, called a dynamic
boundary : a footprint that captures a module’s internal locations. Enforcing
encapsulation is then a matter of ensuring that clients don’t directly modify or
update locations in a module’s boundary. There are detailed soundness proofs
for the relational logic [1], of which our prototype is a faithful implementation.

WhyRel is built on top of the Why3 platform3 for deductive program verifi-
cation which provides infrastructure for verifying programs written in WhyML,
a subset of ML [7] with support for ghost code and nondeterministic choice. The
assertion language is a polymorphic first-order logic extended with support for
algebraic data types and recursively and inductively defined predicates [11]. Why3
generates VCs for WhyML which can then be discharged using a wide array of
theorem provers, from interactive proof assistants such as Coq and Isabelle, to
first-order theorem provers and SMT solvers such as Vampire, Alt-Ergo and Z3.

3 The Why3 distribution can be found at: https://why3.lri.fr/.
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Primarily, WhyRel is used as a front end to Why3. Users provide programs,
specs, annotations, and for relational verification, relational specs and alignment
specified using a specialized syntax for product programs. WhyRel translates
source programs into WhyML, performing significant encoding so as to faithfully
capture the heap model and fine-grained framing formalized in relational region
logic. VCs pertinent to this logic are introduced as intermediate assertions and
lemmas for the user to establish. Verification is done using facilities provided by
Why3 and the primary mode of interaction is through an IDE for viewing and
discharging verification conditions.

Our approach is evaluated through a number of case studies performed in
WhyRel, for which we rely entirely on SMT solvers to discharge proof obligations.
The primary contribution is the development of a tool for relational verification of
heap manipulating programs which has been applied to challenging case studies.
Examples formalized demonstrate the effectiveness of relational region logic for
alignment, for expressing heap relations, and for relational reasoning that exploits
encapsulation.

Organization. Sec. 2 highlights aspects of specifying programs and relational
properties in WhyRel using a stack ADT example. Sec. 3 discusses examples of
program alignment. Sec. 4 gives an overview of the design of WhyRel and Sec. 5
provides highlights on experience using the tool. Sec. 6 discusses related work
and Sec. 7 concludes.

2 A tour of WhyRel

Programs and specifications. WhyRel provides a lightweight module system to
organize definitions, programs, and specs. Developments are structured into
interfaces and modules that implement interfaces. In addition, for relational
verification, WhyRel introduces the notion of a bimodule, described later, to
relate method implementations between two (unary) modules.

We’ll walk through aspects of specification in WhyRel using the STACK interface
shown in Fig. 1, which describes a stack of boxed integers with push and pop
operations. The interface starts by declaring global variables, pool and capacity,
and client-visible fields of the Cell and Stack classes. Variable pool has type rgn,
where a region is a set of references, and is used to describe objects notionally
owned by modules implementing the stack interface; capacity has type int and
describes an upper bound on the size of a stack. The Cell class for boxed integers
is declared with a single field, val, storing an int. The Stack class is declared with
three fields: rep of type region keeps track of objects used to represent the stack,
size of type int stores the number of elements in the stack, and the ghost field
abs of type intlist (list of mathematical integers) keeps track of an abstraction
of the stack, used in specs. Class definitions can be refined later by modules
implementing the interface: e.g., a module using a linked-list implementation
might extend the Stack class with a field head storing a reference to the list.

Heap encapsulation is supported at the granularity of modules through the use
of dynamic module boundaries which describe locations internal to a module. A
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interface STACK =
public pool:rgn /* rgn: a set of references */ public capacity:int
class Cell {val:int} class Stack {rep:rgn; size:int; ghost abs:intlist}

/* encapsulated locations */
boundary {capacity, pool, pool‘any, pool‘rep‘any}
public invariant stkPub = ∀ s: Stack ∈ pool. 0 ≤ s.size ≤ capacity
∧ (∀ t: Stack ∈ pool. s 6= t ⇒ s.rep ∩ t.rep ⊆ {null}) ∧ ...

meth Cell(self: Cell) : unit ... meth getVal(self: Cell) : int ...
meth Stack(self: Stack) : unit ensures {self ∈ pool} ...

meth push(self: Stack, k: int) : unit
requires {self ∈ pool ∧ self.size < capacity}
ensures {self.abs = cons(k,old(self.abs)) ∧ ...}
/* allowed heap effects of implementations */
effects {rw {self}‘any, self.rep‘any, alloc; rd self,capacity}

meth pop(self: Stack) : Cell
requires {self ∈ pool ∧ self.size > 0}
ensures {self.size = old(self.size)-1}
ensures {result.val = hd(self.abs) ∧ self.abs = tl(old(self.abs))}

Fig. 1: WhyRel interface for the Stack ADT

location is either a variable or a heap location o.f , where o is an object reference
and f is its field. In WhyRel, module boundaries are specified in interfaces and
clients are enforced to not directly read or write locations described by the
boundary except through the use of module methods. For our stack example,
the dynamic boundary is capacity, pool, pool‘any, pool‘rep‘any; expressed
using image expressions and the any datagroup. Given a region G and a field f of
class type, the image expression G‘f denotes the region containing the locations
o.f of all non-null references o in G, where f is a valid field of o. If f is of type
region, G‘f is the union of the collection of reference sets o.f for all o in G. For f
of primitive type, such as int or intlist, G‘f is the empty region. The datagroup
any is used to abstract from concrete field names: the expression pool‘any is
syntactic sugar for pool‘val,. . . ,pool‘abs. Intuitively, the dynamic boundary in
Fig. 1 says that clients may not directly read or write capacity, pool, any fields
of objects in pool, and any fields of objects in the rep of any Stack in pool.

While encapsulation is specified at the level of modules, separation or locality
at finer granularities can be specified using module invariants. The stack interface
defines a public invariant stkPub which asserts that the rep fields of all Stack
objects in pool are disjoint. This idiom can be used to ensure that modifying one
object has no effect on any locations in the representation of another. Clients
can rely on public invariants during verification, but modules implementing
the interface must ensure they are preserved by module methods. Additionally,
modules may define private invariants that capture conditions on internal state;
provided these refer only to encapsulated locations, i.e., the designated boundary
frames these invariants, clients are exempt from reasoning about them [14].
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module Client =
meth prog (n: int) : int

requires { 0 ≤ n < capacity ∧ ... }
effects { rw alloc, pool, pool‘any, pool‘rep‘any; rd n, capacity }

= var i: int in var c: Cell in
var stk: Stack in stk := new Stack; Stack(stk);
while (i < n) do push(stk,i); i:=i+1 done; i := 0;
while (i < n) do c:=pop(stk); result:=result+getVal(c); i:=i+1 done;

meth prog (n: int|n: int) : (int|int) /* Relational spec for prog */
requires { n =̈ n ∧ Both(0 ≤ n < capacity ∧ ... ) }
ensures { result =̈ result }

Fig. 2: Example client for STACK and relational spec for equivalence

Finally, the STACK interface defines specs for initializers (methods Cell and
Stack) and public specs for client-visible methods getVal, push, and pop. Notice
that the stack initializer ensures self is added to the boundary (through post
self ∈ pool) and stack operations require self to be part of the boundary
(through pre self ∈ pool). Specs for push and pop are standard, using “old”
expressions to precisely capture field updates. WhyRel’s assertion language
is first-order and includes constructs such as the points-to assertion x.f = e
and operations on regions such as subset and membership. In addition to pre-
and post-conditions, each method is annotated with a frame condition in an
effects clause that serves to constrain heap effects of implementations. Allowable
effects are expressed using read/write (rw) or read (rd) of locations or location
sets, described by regions. For example, the effects clause for push says that
implementations may read/write any field of self and any field of any objects
in self.rep. The distinguished variable alloc is used to indicate that push may
dynamically allocate objects.

In our development, we build two modules that implement the interface in
Fig. 1: one using arrays, ArrayStack and another using linked-lists, ListStack.
Both rely on private invariants on encapsulated state that capture constraints on
their pointer representations and its relation to abs, the mathematical abstraction
of stack objects. The private invariant of ListStack, for example, says that Cell
values in the linked-list of any Stack in pool are in correspondence with values
stored in abs.

Example client, equivalence spec, and verification. We now turn attention to
an example client, prog, shown in Fig. 2. This program computes the sum
Σn

i=0i, albeit in a roundabout fashion, using a stack. The frame condition of prog
mentions the boundary for STACK, but this is fine since the client respects WhyRel’s
encapsulation discipline, modifying encapsulated locations solely through calls to
methods declared in the STACK interface. For this client, our goal is to establish
equivalence when linked against either implementations of STACK. Let the left
program be the client linked against ArrayStack, and the right the client linked
against ListStackEquivalence is expressed using the relational spec shown in
Fig. 2. For brevity, we omit frame conditions when describing relational specs.
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meth prog (n: int | n: int) : (int | int)
= var i: int | i: int in var c: Cell | c: Cell in

var stk: Stack in b stk := new Stack c; b Stack(stk) c;
while (i < n) | (i < n) do b push(stk,i) c; b i:=i+1 c done; b i:=0 c;
while (i < n) | (i < n) do b c:=pop(stk) c;
b result:=result+getVal(c) c; b i:=i+1 c done;

Fig. 3: Alignment for example stack client

This relational spec relates two versions of prog; the notation (n:int | n:int)
is used to declare that both versions expect n as argument. The pre-relation
requires equality of inputs: n =̈ n says that the value of n on the left is equal to
the value of n on the right. We use (=̈), instead of (=) to distinguish between
values on the left and the right4. The relational spec requires the two states
being related to satisfy the unary precondition for the client, as indicated by
Both(...). The post-relation, result =̈ result, asserts equality on returned
values. In WhyRel, relational specs capture a ∀∀ termination-insensitive property:
terminating executions of the programs being related, when started in states related
by the pre-relation, will result in states related by the post-relation.

WhyRel supports two approaches to verifying relational properties. The first
reduces to proving functional properties of the programs involved. For instance,
equivalence of the client when linked against the two stack implementations
is immediate if we prove that prog indeed computes the sum of the first n
nonnegative integers.

However, this approach neither lends well to more complicated programs
and relational properties, nor does it allow us to exploit similarities between
related programs or reason modularly using relational specs. The alternative is to
prove the relational property using a convenient alignment of the two programs.
Alignments are represented syntactically in WhyRel using biprograms which pair
points of interest between two programs so that their effects can be reasoned
about in tandem. If the chosen alignment is adequate in the sense of capturing all
pairs of executions of the related programs, relational properties of the alignment
entail the corresponding relation between the underlying programs.

The biprogram for prog is shown in Fig. 3. The alignment it captures is
maximal: every control point in one version of the client is paired with itself in
the other version. The construct (C|C ′) pairs a command C on the left with a
command C ′ on the right, and the sync form bCc is syntactic sugar for (C|C);
e.g., the biprogram for prog aligns the two allocations using bstk := new Stackc.
Further, this biprogram aligns both loops in lockstep, indicated using the syntax
while e|e’ do ... done. This alignment pairs a loop iteration on the left with a
loop iteration on the right and requires the loop guards be in agreement: here,
that i < n on the left is true just when i < n on the right is. Calls to stack
operations are aligned in the loop body using the sync construct to facilitate

4 Note in particular that x =̈ y is not the same as y =̈ x
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bimodule REL_STACK (ArrayStack | ListStack) =
coupling stackCoupling = ∀ s: Stack ∈ pool | s: Stack ∈ pool.

s =̈ s ⇒ s.abs =̈ s.abs ∧ ...

meth Stack(self: Stack | self: Stack) : (unit | unit)
ensures {self =̈ self ∧ ...} = /* biprogram for Stack */

meth push(self: Stack | self: Stack) : (unit | unit)
requires {self =̈ self ∧ ... }
ensures {self.abs =̈ self.abs ∧ ... } = /* biprogram for push */

meth pop(self:Stack | self:Stack) : (Cell | Cell)
requires {self =̈ self ∧ Both (self ∈ pool) ∧ Both (self.size > 0)}
ensures {... ∧ result.val =̈ result.val} = /* biprogram for pop */

Fig. 4: Bimodule for Stack; excerpts

modular verification of relational properties by indicating that relational specs
for push and pop are to be used.

To prove the spec (in Fig. 2) about the biprogram in Fig. 3 we reason as
follows: after allocation stk on both sides is initialized to be the empty stack.
The first lockstep aligned loop which pushes integers from 0, . . . , n maintains
as invariant equality on i and on the mathematical abstractions the two stacks
represent, i.e., i =̈ i ∧ stk.abs =̈ stk.abs. The second lockstep aligned loop
which pops the stacks and increments result maintains as invariant agreement on
the stack abstractions and result, the key conjunct being result =̈ result. This
is sufficient to establish the desired post-relation. Importantly, the loop invariants
are simple to prove—they only contain equalities between variables—and we
don’t have to reason about the exact contents of the two stacks involved.

Relational specs for Stack and verification. The reasoning described above relies on
knowing the method implementations in ArrayStack and ListStack are equivalent.
We need relational specs for push which state that given related inputs, the
contents represented by the two stacks are the same; and for pop, which state
that given related inputs, the values of the returned Cells are the same.

Fig. 4 shows a bimodule, REL_STACK, relating the two implementations of STACK.
It includes relational specs for the stack operations along with biprograms used
for verification. The bimodule maintains a coupling relation which relates data
representations used by the two stack implementations. Concretely, the coupling
here states that related stacks in pool represent the same abstraction. Note that
quantifiers in relation formulas bind pairs of variables; and the equality s =̈ s in
stackCoupling is not strict pointer equality, but indicates correspondence. Strict
pointer equality is too strong as it would not allow for modeling allocation as
a nondeterministic operation or permit differing allocation patterns between
programs being related. Behind the scenes, WhyRel maintains a partial bijection
π between allocated references in the two states being related. The relation x =̈ y,
where x and y are pointers, states that x in the left state is in correspondence
with y in the right state w.r.t π, i.e., π(x) = y.

The relational spec for the initializer Stack ensures self =̈ self, which is
required in the specs for push and pop. Like other invariants, coupling relations
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meth mult(n: int, m: int) =
i := 0;
while (i < n) do j:=0;

while (j < m) do
result := result+1; j := j+1

done; i := i+1 done;

meth mult(n:int, m:int) =
i := 0;
while (i < n) do

result := result+m;
i := i+1

done;

Fig. 5: Two versions of a simple multiplication routine

are meant to be framed by the boundary and are required to be preserved by
module methods being related. Encapsulation allows for coupling relations to be
hidden so that clients are exempt from reasoning about them.

The steps taken to complete the Stack development and verify equivalence of
two versions of its client are as follows: (i) build the STACK interface in WhyRel,
with public invariants clients can rely on and a boundary that designates encap-
sulated locations; (ii) develop two modules refining this interface, ArrayStack and
ListStack, and verify that their implementations conform to STACK interface specs,
relying on any private invariants that capture conditions on encapsulated state;
(iii) provide a bimodule relating the two stack modules and prove equivalence
of stack operations, relying on a coupling relation that captures relationships
between pointer structures used by the two modules; (iv) verify the client with
respect to specs given in STACK and prove it respects WhyRel’s encapsulation
regime; and finally (v) develop a bimodule for the client and verify equivalence
using relational specs for stack methods.

3 Patterns of alignment

Well chosen alignments help decompose relational verification, allowing for the
use of simple relational assertions and loop invariants. In this section, we’ll look
at examples of biprograms that capture alignments that aren’t maximal, unlike
the STACK client example in Sec. 2. We don’t formalize the syntax of biprograms
here, but we show representative examples. When discussing examples, we’ll omit
frame conditions and other aspects orthogonal to alignment.

Differing control structures. Churchill et al. [8] develop a technique for proving
equivalence of programs using state-dependent alignments of program traces.
They identify a challenging problem for equivalence checking, shown in Fig. 5,
which compares two procedures for multiplication with different control flow.
For automated approaches to relational verification, their example is challenging
because of the need to align an unbounded number m of loop iterations on the
left with a single iteration on the right.

To prove equivalence, we verify the biprogram shown in Fig. 6 with re-
spect to a relational spec with pre-relation n =̈ n ∧ m =̈ m and post-relation
result =̈ result; i.e., agreement on inputs results in agreement of outputs. Un-
like the stack client biprogram shown in Fig. 3, the alignment embodied here is
not maximal—indeed, such alignment would not be possible due to the differing
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meth mult(n: int, m: int | n: int, m: int) : (int | int) =
b i := 0 c;
while (i < n) | (i < n) do invariant { i =̈ i ∧ result =̈ result }

( j := 0; while (j < m) do result := result+1; j := j+1 done
| result := result+m );
assert { 〈[result = old(result)+m〈] };
b i := i+1 c done;

Fig. 6: Biprogram for example in Fig. 5

meth sumpub (l: List) : int =
p:=l.head; s:=0;
while (p 6= null) do

if p.pub then
s:=s+p.val

end;
p:=p.nxt

done;
result:=s;

meth sumpub (l: List | l: List) : int =
b p:=l.head c; b s:=0 c;
while (p 6= null) | (p 6= null) .
〈[ ¬ p.pub 〈] | [〉 ¬ p.pub ]〉 do
( if p.pub then s:=s+p.val end;

p:=p.nxt
| if p.pub then s:=s+p.val end;

p:=p.nxt)
done; b result:=s c;

Fig. 7: Summing up public elements of a linked list: program and alignment

control structure. Similarities are still exploited by aligning the outer loops in
lockstep and the left inner loop with the assignment to result on the right.

A simple relational loop invariant which asserts agreement on i and result is
sufficient for proving equivalence. To show this is invariant, we need to establish
that the inner loop on the left has the effect of incrementing result by m, thereby
maintaining equality on result after the inner loop. In Fig. 6 this is indicated by
the assertion after the left inner loop. The notation 〈[P 〈] (resp. [〉P ]〉) is used to
state that the unary formula P holds in the left (and resp. right) state.

Conditionally aligned loops. Examples so far have concerned lockstep aligned
loops, requiring a one-to-one correspondence between loop iterations. However,
this condition is often too restrictive. WhyRel provides for other patterns of loop
alignment, including those that account for conditions on data values. Consider for
example the program shown in Fig. 7 which traverses a linked list and computes
the sum of all elements marked public, indicated in each element’s pub field. The
program satisfies the following noninterference property, with relational spec:

meth sumpub(l: List | l: List) : (int | int)
requires { Both(listpub(l,xs)) ∧ xs =̈ xs }
ensures { result =̈ result }

Here listpub(l,xs) is a predicate which asserts that the sequence of public values
reachable from the list pointer l is realized in xs, a mathematical list of integers.
Intuitively, this specification captures the property that the result of sumpub does
not depend on the values of nonpublic elements in the input list l. Showing
the program computes exactly the sum of public elements: result = sum(xs)
would imply the desired noninterference property. However, to showcase support
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WhyRel offers for non-lockstep alignments, we’ll establish noninterference by
conditionally aligning the loops in the two copies of sumpub (see Fig. 7).

The alignment is as follows: if p is a nonpublic node on one side, perform a
loop iteration on that side, pausing the iteration on the other; and if p on both
sides is public, perform lockstep iterations of both loops. This has the effect
of incrementing s exactly when both sides are visiting public nodes, the values
of which are guaranteed to be the same by the relational precondition. The
biprogram expresses this alignment through the use of additional annotations,
called alignment guards which are general relation formulas and express conditions
that lead to left-only, right-only, or lockstep iterations. The left alignment guard
〈[¬ p.pub〈] indicates that left-only loop iterations are to be performed when p on
the left is not public. The right alignment guard expresses a similar condition
when p on the right is not public. Iterations proceed in lockstep when both
alignment guards are false, i.e., when Both(p.pub) is true.

This biprogram maintains ∃ xs|xs. Both(listpub(p,xs)) ∧ xs=̈xs ∧ s=̈s as
loop invariant, which implies the desired post-relation. This invariant states
that p on both sides points to the same sequence of public values as captured
by listpub(p,xs) and that there is agreement on the sum s computed so far.
During verification, we must establish that left-only, right-only, and lockstep
iterations of the aligned loops preserve this invariant. Due to the alignment, the
value of s is only updated during lockstep iterations and its straightforward to
show preservation. For one-sided iterations, reasoning relies on knowing that the
sequence of public values pointed to by p remains the same.

4 Encoding and design

We implement WhyRel in OCaml, relying on a library provided by Why3 for
constructing WhyML parse trees. Source programs are parsed and typechecked
before being translated to WhyML. Prior to translation, WhyRel performs a
variety of checks and transformations: primary among these is a check that clients
respect encapsulation and that any biprograms provided by users are adequate.
Proof obligations pertinent to relational region logic are generated in the form of
intermediate assertions in WhyML programs and lemmas for the user to prove.
In this section, we provide an overview of some aspects of our implementation,
focusing on the translation to WhyML.

Encoding program states. References are represented using an abstract WhyML
type reference with a distinguished element, null. The only operation supported
on reference values is equality; WhyRel does not deal with pointer-arithmetic.
Regions are encoded as ghost state, using a library for mathematical sets provided
by Why3. Set operations on regions are inherently supported, and we axiomatize
image expressions: for each field f , WhyRel generates a Why3 function symbol
img_f along with an axiom that captures the meaning of G‘f .

Program states are encoded using WhyML records. An example is shown in
Fig. 8. The state type includes at least two mutable components called alloct
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/* class defs */
class Cell {

val: int;
ghost rep: rgn; }

class Node {
curr: Cell;
nxt: Node; }

/* global vars */
public pool : rgn

type reftype = Cell | Node (*class names*)
type heap = {

mutable val: map reference int;
mutable ghost rep : map reference Rgn.t;
mutable curr: map reference reference;
mutable nxt: map reference reference }

type state = {
mutable alloct: map reference reftype;
mutable heap: heap;
mutable ghost pool: rgn }

invariant {¬(Map.mem null alloct) ∧ ...}

(* axiomatization of G‘nxt *)
function img_nxt : state → Rgn.t → Rgn.t
axiom img_nxt_ax : ∀ s, r, p.

Rgn.mem p (img_nxt s r) ⇔ ∃ q.
s.alloct[q] = Node ∧ Rgn.mem q r

∧ p = s.head.nxt[q]

Fig. 8: State encoding: WhyRel source on left, encoding in WhyML on right.

and heap. The component alloct stores a map from references to object types
and keeps track of allocated objects; heap is itself a record with one mutable
component per field in the source program that stores a map from references to
values. The set of values includes references, Why3 mathematical types such as
arrays and lists, regions, and primitive types such as int and bool. In addition,
the state type contains one mutable field per global variable in the source
program, storing a value of the appropriate type. The state type is annotated
with a WhyML invariant that captures well-formedness. This invariant includes
conditions such as null never being allocated, no dangling references, and typing
constraints: for example, the nxt field of a Node is itself a Node.

Translating unary programs and effects. WhyRel translates unary programs into
WhyML functions that act on our encoding of states. Commands that modify the
heap are modeled as updates to an explicit state parameter, and local variables,
parameters, and the distinguished result variable are encoded using WhyML
reference cells. Object parameters are modeled using the reference type and
a typing assumption. Translation of control flow statements is straightforward.
For programs with loops, WhyRel additionally adds a diverges clause to the
generated WhyML function: this indicates that the function may potentially
diverge, avoiding generation of VCs for proving termination. While Why3 supports
reasoning about total correctness, we’re only concerned with partial correctness.
Fig. 9 shows an example translation.

Translation of frame conditions requires care given our encoding of states. As
an example, the writes for method m shown in Fig. 9 would include rw {c}‘val
due to the write to, and read of, field val of object c. Correspondingly, in the
Why3 translation, component val of s.heap is updated; so specifying the function
in Why3 requires adding writes {s.heap.val} as annotation. However, this isn’t
the granularity we want since it implies the field val of any reference can be
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meth m (c: Cell, i: int) : int
requires { c.val ≥ 0 }

= while (i ≥ 0) do
invariant { c.val ≥ 0 }
c.val := c.val+i;
i := i-1

done;
result := c.val

let m (s:state) (c:reference) (i:int)
: int diverges
requires { s.alloct[c] = Cell }
requires { s.heap.val[c] ≥ 0 }

= let result = ref 0 in
let c = ref c in
let i = ref i in
while (!i ≥ 0) do

invariant { s.heap.val[!c] ≥ 0 }
(* c.val := c.val + i *)
s.heap.val ← Map.add !c

(s.heap.val[!c]+!i) s.heap.val;
i := !i-1

done;
result := s.heap.val[!c]; !result

Fig. 9: Program translation example: WhyRel program on the left, WhyML
translation on the right; frame conditions omitted.

written. Hence, WhyRel generates an additional postcondition for method m:
wr_framed_val (old s) s (Rgn.singleton c), where
predicate wr_framed_val (s: state) (t: state) (r: rgn) = ∀ p: reference.

s.alloct[p] = Cell ∧ p /∈ r ⇒ s.heap.val[p] = t.heap.val[p]

With this postcondition, callers of m (in WhyML) can rely on knowing that the
val fields of only references in {c} are modified.

Biprograms. WhyRel translates biprograms into product programs; specifically,
WhyML functions that act on a pair of states5. Before translation, it performs an
adequacy check to ensure the biprogram is well-formed. Recall that adequacy here
means that all computations of the underlying unary programs are covered by
their aligned biprogram. Adequacy ensures that a relational judgment about the
biprogram entails the expected relation between the underlying unary programs.
The check WhyRel performs is syntactic and defined using projection operations
on biprograms. Given a biprogram CC, the left projection

↼−
CC (and resp. the right

projection
−⇀
CC) extracts the unary program on the left (and resp. the right). As

an example, the left projection of bc.f:=gc; (x:=c.f | skip) is c.f:=g; x:=c.f
and its right projection is c.f:=g. For adequacy, given unary programs C and
C ′ and their aligned biprogram CC, it suffices to check whether

↼−
CC ≡ C and

−⇀
CC ≡ C ′ [1].

Translation of biprograms is described in Fig. 10. The translation function
B takes a biprogram and a pair of contexts (Γl, Γr) to a WhyML program. In
addition to mapping WhyRel identifiers to WhyML identifiers, contexts store
information about the state parameters on which the generated WhyML program
5 In reality, generated WhyML functions act on a pair of states and a bijective renaming
of references allocated in these states. This is to cater for relation formulas such
as x =̈ y where x and y are references. However, this additional parameter is not
important to our discussion here, so we avoid mentioning it.
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BJC|C’K(Γl, Γr) =̂ UJCK(Γl); UJC’K(Γr)
BJbm(x|y)cK(Γl, Γr) =̂ apply(Φ(m), [Γl.st;Γr.st; EJxK(Γl); EJyK(Γr)])
BJbCcK(Γl, Γr) =̂ BJC|CK(Γl, Γr)
BJC; C’K(Γl, Γr) =̂ BJCK(Γl, Γr); BJC’K(Γl, Γr)
BJvar x:T|x:T’ in CCK(Γl, Γr) =̂ let xl = def(T) in let xr = def(T’) in

BJCCK([Γl | x : xl], [Γr | x : xr])
BJif E|E’ then CC else DDK(Γl, Γr) =̂ assert {EJEK(Γl) = EJE’K(Γr)};

if EJEK(Γl) then BJCCK else BJDDK
BJwhile E|E’ do DDK(Γl, Γr) =̂ while EJEK(Γl) do

invariant {EJEK(Γl) = EJE’K(Γr)}
BJCCK(Γl, Γr)

BJwhile E|E’. P|P do DDK(Γl, Γr) =̂

while (EJEK(Γl) ∨ EJE’K(Γr)) do invariant {A}
if (EJEK(Γl) ∧ FJPK(Γl, Γr)) then UJ↼−CCK(Γl)

else if (EJE’K(Γr) ∧ FJP ′K(Γl, Γr)) then UJ−⇀CCK(Γr) else BJCCK(Γl, Γr)

where A ≡ (EJEK(Γl) ∧ FJPK(Γl, Γr)) ∨ (EJE′K(Γr) ∧ FJP ′K(Γl, Γr)) ∨
(¬EJEK(Γl) ∧ ¬EJE′K(Γr)) ∨ (EJEK(Γl) ∧ EJE′K(Γr))

Fig. 10: Translation of biprograms, excerpts

acts. Similar to B, the function U translates unary programs to WhyML programs,
E , expressions to WhyML expressions, and F , a restricted set of relation formulas
to WhyML expressions. Biprograms don’t require the underlying unary programs
to act on a disjoint set of variables; however, this means that WhyRel has to
perform appropriate renaming during translation. Renaming is manifest in the
translation of variable blocks (var x:T|x:T’ in CC), where the context Γl (and
resp. Γr) is extended, [Γl | x : xl], mapping x to a renamed copy xl (and resp. Γr

is extended with the binding x : xr).
In translating (C|C ′), the unary translations of C and C ′ are sequentially

composed. Syncs bCc are handled similarly, as syntactic sugar for (C|C), except
for the case of method calls. Procedure-modular reasoning about relational
properties is enabled by aligning method calls which indicates that the relational
spec associated with the method is to be exploited. WhyRel will translate these
to calls to the appropriate WhyML product program, using a global method
context (Φ in Fig. 10). Since translated product programs act on pairs of states,
the generated WhyML call takes Γl.st and Γr.st, names for left and right state
parameters, as additional arguments.

Product constructions for control flow statements require generating additional
proof obligations. For aligned conditionals, WhyRel introduces an assertion that
the guards are in agreement. Lockstep aligned loops are dealt with similarly;
guard agreement must be invariant. For conditionally aligned loops, the generated
loop body captures the pattern indicated by the alignment guards P |P ′: if the
left (resp. right) guard is true and P (resp. P ′) holds, perform a left-only (resp.
right-only) iteration; otherwise, perform a lockstep iteration. Adequacy is ensured
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by requiring the condition A to be invariant. This condition states that until
both sides terminate, the loop can perform a lockstep or a one-sided iteration.
In relational region logic, the alignment guards P and P ′ can be any relational
formula. However, the encoding of conditionally aligned loops is in terms of a
conditional that branches on these alignment guards. In Why3, this only works if
P and P ′ are restricted; for example, to not contain quantifiers. WhyRel supports
alignment guards that include agreement formulas, one-sided points-to assertions,
one-sided boolean expressions, and the usual boolean connectives.

Proof obligations for encapsulation. To ensure sound encapsulation, WhyRel
performs an analysis on source programs. This analysis includes two parts: a static
check to ensure client programs don’t directly write to variables in a module’s
boundary; and the generation of intermediate assertions that express disjointness
between the footprints of client heap updates and regions demarcated by module
boundaries. For modules with public/private invariants, WhyRel additionally
generates a lemma which states that the module’s boundary frames the invariant,
i.e., the invariant only depends on locations expressed by the boundary. The
same is done with coupling relations, for which we need to consider boundaries
of both modules being related. A technical condition of relational region logic
requiring boundaries grow monotonically as computation proceeds is also ensured
by introducing appropriate postconditions in generated programs.

5 Evaluation

We evaluate WhyRel via a series a case studies, representative of the challenge
problems highlighted at the outset of this article. Examples include representation
independence, optimizations such as loop tiling [5], and others from recent
literature on relational verification (including [9] and [21]). Some, like those
described in Sec. 3, deal with reasoning in terms of varying alignments including
data-dependent ones. Our representation independence examples include showing
equivalence of Dijkstra’s single-source shortest-paths algorithm linked against
two implementations of priority queues, which requires reasoning about fine-
grained couplings between pointer structures; and Kruskal’s minimum spanning
tree algorithm linked against different modules implementing union-find, which
requires couplings equating the partitions represented by the two versions. For
all examples, VCs are discharged using the SMT solvers Alt-Ergo, CVC4, and
Z3. Replaying proofs of most developments using Why3’s saved sessions feature
takes less than 30 minutes on a machine with an Intel Core i5-6500 processor
and 32 gigabytes of RAM.

A primary goal of this work is to investigate whether verifying relational
properties of heap manipulating programs can be performed in a manner tractable
to SMT-based automation, and for the most part, we believe WhyRel provides a
promising answer. The tool serves as an implementation of relational region logic
and demonstrates that even its additional proof obligations for encapsulation can
be encoded using first-order assertions. In fact, exploration of case studies using
WhyRel was instrumental in designing proof rules of relational region logic.
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Reasoning about heap effects à la region logic is generally simple and VCs
get discharged quickly using SMT. However, technical lemmas WhyRel generates
which pertain to showing that module boundaries frame private invariants and
couplings require considerable manual effort to prove. These lemmas usually in-
volve reasoning about image expressions, which involve existentials and nontrivial
set operations on regions. Given our encoding of states and regions, SMT solvers
seem to have difficulties solving these goals. Manual effort involves applying a
series of Why3 transformations (or proof tactics) and introducing intermediate
assertions. We conjecture that the issue can be mitigated by using specialized
solvers [23] or different heap encodings [24].

Another issue with our encoding of typed program states is the generation of
a large number of VCs related to well-formedness of states. These account for
a substantial fraction of proof replay time. Why3 programs act directly on our
minimally-typed state representation and each heap update needs to preserve
an invariant that specifies constraints on the types of allocated references (see
Fig. 8). Using Why3’s support for module abstraction [12] may ameliorate this
issue. An alternative is to use assumptions, which can be justified by correctness
of the WhyRel type checker and translator.6

Apart from these challenges related to verification, we note that specs in
region logic tend to be verbose when compared to other formalisms such as
separation logic [4].

6 Related work

WhyRel is closely modeled on relational region logic, developed in [1]. That paper
provides a high-level overview of WhyRel, using a small set of examples verified
in the tool to motivate aspects of the formal logic; but it doesn’t give a full
presentation of the tool or go into details about the encoding. The paper provides
comprehensive soundness proofs of the logic and shows how the VCs WhyRel
generates and the checks it performs correspond closely to obligations of relational
proof rules. The paper builds on a line of work on region logic [4,2,3]. The VERL
tool implements an early version of unary region logic without encapsulation and
was used to evaluate a decision procedure for regions [23].

For local reasoning about pointer programs, separation logic is an effective
and elegant formalism. For relational verification, ReLoC [13], based on the Iris
separation logic and built in the Coq proof assistant supports, apart from many
others, language features such as dynamic allocation and concurrency. However,
we are unaware of auto-active relational verifiers based on separation logic.

Alignments for relational verification have been explored in various contexts.
In WhyRel, the biprogram syntax captures alignment based on control flow, but
also caters to data-dependent alignment of loops through the use of alignment
guards (as discussed in Sec. 3). Churchill et al. [8] develop a technique for
equivalence checking by using data dependent alignments represented by control
6 The Boogie verification language provides “free requires” and “free ensures” syntax
for just such assumptions.
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flow automata which they use to prove correctness of a benchmark of vectorizing
compiler transformations and hand-optimized code. Unno et al. [30] address a wide
range of relational problems including k-safety and co-termination, expressing
alignments and invariants as constraint satisfaction problems they solve using a
CEGIS-like technique. Their work is applied to benchmarks proposed by Shemer
et al. [25] who develop a technique for equivalence and regression verification.
Both the above works represent alignments as transition systems and perform
inference of relational invariants and alignment conditions. Inference relies on
solvers and therefore programs need to be restricted so they are amenable to these
solvers. A promising approach by Barthe et al. [6] reduces relational verification
to proving formulas in trace logic, a multi-sorted first-order logic using first-
order provers. In trace logic, conditions can be expressed on traces including
relationships between different time points without recourse to alignment per se.

Sousa and Dillig develop Descartes [26] for reasoning about k-safety properties
of Java programs automatically using implicit product constructions and in a
logic they term Cartesian Hoare logic. Their work is furthered by Pick et al. [22]
who develop novel techniques for detecting alignments. The REFINITY [27]
workbench based on the interactive KeY tool can be used to reason about
transformations of Java programs; heap reasoning relies on dynamic frames and
relational verification proceeds by considering abstract programs. Other related
tools include SymDiff [18] which is based on Boogie and can modularly reason
about program differences in a language-agnostic way, and LLRêve [16] for regres-
sion verification of C programs. Eilers et al. [10] develop an encoding of product
programs for noninterference that facilitates procedure-modular reasoning. They
verify a large collection of benchmark examples using the VIPER toolchain.

7 Conclusion

In this paper we present WhyRel, a prototype for relational verification of pointer
programs that supports dynamic framing and state-based encapsulation. The
tool faithfully implements relational region logic and demonstrates how its proof
obligations, including those related to encapsulation, can be encoded in a first-
order setting. We’ve performed a number of representative examples in WhyRel
leveraging support Why3 provides for SMT, and believe these demonstrate the
amenability of region logic, and its relational variant, to automation.
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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