
EVA: a Tool for the Compositional Verification of
AUTOSAR Models

Alessandro Cimatti1 , Luca Cristoforetti1 , Alberto Griggio1 ,
Stefano Tonetta1 , Sara Corfini2(�) , Marco Di Natale2,4,

and Florian Barrau3

1 Fondazione Bruno Kessler, Trento, Italy
2 Huawei Pisa Research Center, Pisa, Italy

s.corfini@huawei.com
3 Huawei Grenoble Research Center, Grenoble, France

4 Scuola Superiore Sant’Anna, Pisa, Italy

Abstract. We present EVA, a framework for the integration of modern
verification tools in the context of AUTOSAR, a widely-used open stan-
dard for the development of automotive software systems. Our framework
enables the automatic end-to-end verification of system-level properties
using a compositional approach. It combines software model checking
techniques for the verification of software components at the code level
with a contract-based analysis for verifying their correct composition. In
this paper, we present the tool through its application on a representa-
tive automotive case study, discussing the main functionalities provided
and the results obtained.

1 Introduction

AUTOSAR [1] is a worldwide consortium of car manufacturers and component
or service providers in the automotive domain, with the main goal of provid-
ing a standardized software architecture for the development and execution of
software components. One of the fundamental challenges in designing software
for the AUTOSAR platform is ensuring safety. To this end, the application of
formal methods – and in particular automatic (or semi-automatic) techniques
based on model checking and theorem proving – is receiving significant interest
as a complement to more traditional V&V techniques. In this paper we present
EVA, a framework for the integration of modern verification tools in the con-
text of AUTOSAR. EVA adopts a model-based compositional verification that
founds on the contract-based methodology in [8]. The tool allows the automatic
end-to-end verification of system-level properties, and combines software model
checking techniques for the verification of software components at the code level
with a contract-based analysis for verifying their correct composition. EVA also
implements all the features that are required for usability in a typical industrial
context, including a front-end integrated in a standard AUTOSAR development
environment [2] with a user-friendly (formal) property editor, the automatic
generation of code stubs and other views and forms to help the user manage
verification in an AUTOSAR environment.

c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 3–10, 2023.
https://doi.org/10.1007/978-3-031-30820-8 1

https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0002-8519-6342
http://orcid.org/0000-0002-3311-0893
http://orcid.org/0000-0001-9091-7899
http://orcid.org/0000-0003-1715-3882
http://orcid.org/0000-0002-5878-777X
mailto:s.corfini@huawei.com
https://doi.org/10.1007/978-3-031-30820-8_1
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_1&domain=pdf


A. Cimatti et al.

AUTOSL

BrakeCommand CruiseControl

CC_Init

CC_Run

RBrakeCommand

Brake

Commands

Key

Active

TargetSpeed

Set
Resume
Increment
Decrement

CCActive

CCTargetSpeed

Brake

Key

BrakeSensor1
IsBrakeSensor1Valid
BrakePedalPosition1

BrakeSensor2
IsBrakeSensor2Valid
BrakePedalPosition2

IsBrakeSensorValid
BrakePedalPosition

Brake

Fig. 1. BrakeCommand and CruiseControl components.

We present EVA through its application on a representative case study, which
describes a simplified active safety automotive system containing some of the
typical safety functions available in the modern vehicles (such as lane departure
warning, cruise control and a fault-tolerant brake pedal system). The example
is meant to show the potential of the tool as a driver for a more widespread
adoption of formal methods and contract-based verification in the industrial au-
tomotive context. Specifically, we introduce the case study in §2 and we describe
the typical verification workflow followed by a user of EVA in §3. Finally, in §4
we discuss the main verification results obtained.

2 A Case Study for Verification in AUTOSAR

AUTOSAR defines the reference architecture for the development of automotive
systems and provides the language (meta-model) for describing their architec-
tural models. An AUTOSAR application consists of a hierarchy of components
connected through ports. Provide ports represent output ports and require ports
correspond to the input ports. Connectors represent data flow from one port to
another. An AUTOSAR port can be classified as sender-receiver or client-server
and sender-receiver communications can be queued or non-queued (i.e., with no
buffering and the receiver always accesses the last sent data). In this paper we
assume that all ports are sender-receiver and non-queued.

An atomic software component consists of a set of runnables. A runnable
is a sequence of operations started by the Run-Time Environment (RTE). The
runnable is configured so that is triggered by an event that can be timing, data
sent or received, operation invoked, return of a server call, mode switching or
external events. A special init event is used for runnables that are executed when
the RTE starts and initializes the software components.

We illustrate the basic notions above by means of a simple but representa-
tive case study, that we shall use to present the main features of EVA. Figure
1 overviews (a section of) the architecture of the sample application. It collects
22 atomic components (including sensors, controllers and actuators) plus one

4



EVA

composite component (AUTOSL) that represents the whole system, and imple-
ments some of the typical safety functions available in the modern vehicles such
as autonomous emergency braking, lane departure warning, crash preparation
and cruise control. We implemented (the runnables of) 9 components, 7 have
been coded manually and 2 have been generated from a Simulink model using
the Embedded Coder Support Package for AUTOSAR. The other components
are considered as stubs because their data come from lower levels (hardware
sensors) and we assume that the values they provide are correct.

The case study considers various safety properties, both at the level of the
whole system and at the level of the implementation of individual components
or runnables. As an example, we describe here two properties, a system-level
one and a component-level one, both concerning the behaviour of the cruise
controller. Specifically, the cruise controller is expected to react to a brake input
by disengaging itself within two execution steps. At the implementation level,
the requirement relates the input and output ports of the CruiseControl periodic
runnable, stating that whenever the CruiseControl CCActive port is true and the
Brake input port is true, then the CCActive output port must become false in at
most two steps. At the system level, instead, the same requirement relates the
behaviour of the components BrakeCommand and CruiseControl, stating that the
cruise control shall be disengaged if the user brakes, even when one of the two
brake pedal sensors is faulty.

3 EVA Verification Workflow

EVA integrates the verification engines Kratos2 [6] and OCRA [5] into an analysis
AUTOSAR toolchain. The ultimate goal is to automate the verification of formal
properties (contracts) on AUTOSAR models. In its default configuration, EVA
uses a portfolio of different state-of-the-art SAT- and SMT-based symbolic model
checking algorithms (implemented in Kratos2 and OCRA) which include differ-
ent variants of bit-level IC3 [10,12], IC3 with implicit abstraction [7], bounded
model checking [3] and K-induction [11].

The typical workflow of the tool is sketched in Figure 2. At the beginning,
the user creates an analysis project providing as input the AUTOSAR config-
uration of the system. The tool transforms the AUTOSAR configuration into
an internal set of analysis models. Since the AUTOSAR standard deals neither
with requirements nor with formal properties and their verification, EVA adopts
the extended AUTOSAR metamodel defined in [4] to support such concepts.

The user then completes the configuration of the system and provides:

source code: the user imports into the analysis project the source code of the
runnables and associates each runnable with its source files.

requirements: the user defines the (informal) properties of the system and
their relationships. Specifically, the user can assign a requirement to a com-
ponent, or to the system (modeled by a composite component) and refine
it into other requirements. Considering the following examples of informal

5



A. Cimatti et al.

Create
Analysis Project

Create
Functional Verification


Analysis

Create
Coverage Set Generation


Analysis

Coverage Generation

Import

Code Files

AUTOSAR Configuration

Source Code

Add

Requirements

Add

Formal Requirements

C Unit Tests

Shared

Analysis Models

Local

Analysis Models

Functional Verification

Contract VerifiedCounterexample

C Unit Test

Change Configuration


Apply Changes

Local

Analysis Models

Fig. 2. The analysis workflow.

requirements for the case study of §2:

If the user brakes, the cruise control shall disengage within 2 steps (1)

The signals of the brake pedal sensors shall be merged (2)

Even if at most one brake pedal sensor is faulty (3)
if the user brakes, the cruise control shall disengage

(1) and (2) are component-level requirements assigned to CruiseControl and
BrakeCommand respectively, while (3) is a system-level requirement assigned
to the composite AUTOSL and refined by (1) and (2).

contracts: the user formalizes the requirements into contracts. Precisely, a con-
tract consists of (optional) assumptions (properties that shall be satisfied by
the environment) and assertions (properties that the owner of the contract
shall satisfy), expressed as formulas in Linear Temporal Logic (LTL) with
some metric extensions (interpreted over discrete time). The user can assign

6



EVA

a contract either to a runnable or to a (composite) component.

in the future within [2,2] (4)
it shall always be that

(CCActive and Brake is greater than 0) implies
in the future within [0,2] (not next(CCActive))

holds true

Contract (4) is the formal representation of requirement (1) and it is assigned
to the periodic runnable of the CruiseControl component5. It is worth noting
that EVA provides a smart contract editor that assists the user with context
completion, syntax highlighting and error detection. Also, to aid readability
of contracts, EVA uses some syntactic sugar to represent temporal operators,
such as in the future for F or it shall always be for G.

The user can create a new functional verification analysis, allowing to perform:

code verification: the user can check whether (the source code of) a runnable
satisfies one of the contracts assigned to it. Let us consider again the periodic
runnable of the CruiseControl component. The user can run code verification
to check whether that runnable satisfies its assigned contract (4).

compositional verification: the user can check whether a contract assigned
to a (composite) component is correctly refined by the contracts of the sub-
components. Intuitively, the user can run compositional verification to check
whether the system-level contract derived from requirement (3) and assigned
to the composite AUTOSL, is refined by the contracts derived from require-
ments (1) and (2) and assigned to the runnables of components CruiseControl
and BrakeCommand.

The result of both analyses can be that the contract is verified or violated. In
case of contract violation, EVA returns a counterexample (and the corresponding
test case, if the performed analysis is code verification). The user can fix the code
or change the system configuration (refine requirements or scheduling runnables)
and then execute the analysis again. The user can optionally apply local changes
to the shared analysis models (typically after a contract has been verified).

In addition to the main features above, two further analyses are provided:

contract validation: the user can verify the consistency (and absence of logical
contradictions) of the contracts of a component and of its sub-components.

coverage set generation: it combines model checking and random simulation
to automatically generate unit tests (using the CUnit [9] framework) trying
to cover all the branches of the C code of a given runnable.

4 Experimental Evaluation

In order to evaluate the effectiveness and performance of EVA, we applied it to
the verification of all the 43 requirements (10 system-level, 33 component-level)

5 We omit the contracts derived from (2) and (3) for lack of space (their formalization
shall be included in the artifact accompanying this submission).

7



A. Cimatti et al.

of the case-study application described in §2. Due to lack of space, we cannot
report the results in detail and we shall limit our analysis to some qualitative
considerations about the overall performance of EVA and the usefulness of the
produced outputs. Full details on the obtained results will be included in the
submitted artifact.

Performance considerations. We verified all the requirements on a PC run-
ning Ubuntu Linux 20.04, with a 2.6 GHz Intel Core I7-66000U CPU and 20 Gb
of RAM. EVA was able to successfully perform 42 out of 43 verification tasks
within the timeout (set to 1 hour), requiring less than one second in nearly half
of the cases for component-level properties, and requiring less than one minute
for all the remaining component-level tasks except one. For such problems, the
main bottlenecks identified during the case study involved the use of complex
floating-point operations, which are still handled inefficiently by the verification
backend. Also the verification of the 10 system-level properties could be com-
pleted relatively efficiently, with EVA requiring less than one minute in 7 cases,
and approximately 30 minutes for the hardest one. In this case, the main factor
affecting performance (besides the expected ones such as the number of involved
contracts and their complexity and length) are the constraints on the compo-
sition of components defined in the input model. In particular, performance is
affected significantly in cases in which the contract under analysis involves peri-
odic components with very different activation periods. The presence of periods
that range from few milliseconds to seconds poses a conceptual/theoretical chal-
lenge because the reasoner must explore a large number of small steps of the
more frequent tasks for each step of the slow ones. Optimizations targeting this
issue are left as research directions for future works.

Issues discovered. During verification, several counterexamples have been dis-
covered. Most of them turned out to be due to incorrect formalizations of re-
quirements or missing environment assumptions, which could be easily fixed by
examining the produced counterexamples. The analyses however revealed also
a number of real bugs in the implementations of some of the software compo-
nents as well as two issues due to wrong scheduling of components. The first
was caused by a mismatch between the Simulink description of the CruiseCon-
trol periodic runnable and its C implementation in the AUTOSAR application.
Specifically, the mismatch was due to different assumptions about the rate of
execution of the step of the cruise control with respect to the rate of the change
of the inputs, which caused the input values to be read only at even steps of the
cruise controller. The second issue regarded the scheduling of the BrakeCommand
runnable, which was set to be executed only upon changes in the input pedal
positions. A counterexample in the contract refinement showed that the validity
of these input signals could change value without the BrakeCommand running
so that the pedal position was not propagated to the CruiseControl. The model
was fixed by adding a trigger of the BrakeCommand also associated to the valid
signal of the pedal positions. In both cases, the bugs could be fixed by analyzing
the counterexamples generated by EVA.

8



EVA

5 Data Availability Statement

The artifact described in the paper is not publicly available due to internal policy.
Any requests can be directed to the corresponding author.

References

1. https://www.autosar.org

2. Artop: The AUTOSAR Tool Platform, http://www.artop.org
3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without

BDDs. In: Cleaveland, W.R. (ed.) 5th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 1579,
pp. 193–207. Springer (1999)

4. Cimatti, A., Corfini, S., Cristoforetti, L., Di Natale, M., Griggio, A., Puri, S.,
Tonetta, S.: A Comprehensive Framework for the Analysis of Automotive Systems.
In: Syriani, E., Sahraoui, H.A., Bencomo, N., Wimmer, M. (eds.) ACM/IEEE 25th

International Conference on Model Driven Engineering Languages and Systems
(MODELS). pp. 379–389. ACM (2022)

5. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A Tool for Checking the Refine-
ment of Temporal Contracts. In: Denney, E., Bultan, T., Zeller, A. (eds.) 28th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
pp. 702–705. IEEE (2013)

6. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos - A Soft-
ware Model Checker for SystemC. In: Gopalakrishnan, G., Qadeer, S. (eds.) 23rd

International Conference on Computer Aided Verification (CAV). LNCS, vol. 6806,
pp. 310–316. Springer (2011)

7. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state Invariant Checking
with IC3 and Predicate Abstraction. Formal Methods in System Design 49(3),
190–218 (2016)

8. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Science of Computer Programming 97, 333–348 (2015)

9. CUnit: A Unit Testing Framework for C, cunit.sourceforge.net
10. Griggio, A., Roveri, M.: Comparing Different Variants of the ic3 Algorithm for

Hardware Model Checking. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 35(6), 1026–1039 (2016)

11. Sheeran, M., Singh, S., St̊almarck, G.: Checking Safety Properties Using Induction
and a SAT-Solver. In: Hunt, W.A., Johnson, S.D. (eds.) 3rd International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD). LNCS, vol. 1954,
pp. 108–125. Springer (2000)

12. Vizel, Y., Gurfinkel, A.: Interpolating Property Directed Reachability. In: Biere,
A., Bloem, R. (eds.) 26th International Conference on Computer Aided Verification
(CAV). LNCS, vol. 8559, pp. 260–276. Springer (2014)

9

https://www.autosar.org
http://www.artop.org
cunit.sourceforge.net


A. Cimatti et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

10

http://creativecommons.org/licenses/by/4.0/

	EVA: a Tool for the Compositional Verification of AUTOSAR Models
	1 Introduction
	2 A Case Study for Verification
 in AUTOSAR
	3 EVA Verification 
Workflow 
	4 Experimental Evaluation
	5 Data Availability Statement
	References




