Skip to main content

Theranostic Applications of Upconversion Nanoparticle-Based Drug-Delivery Systems

  • Chapter
  • First Online:
Nanomaterial-Based Drug Delivery Systems

Abstract

Upconversion nanoparticles (UCNPs) are capable of converting multiple photons (~975 nm) of lower energy to a single photon of (400–700 nm) comparatively high energy upon near-infrared (NIR) excitation. NIR radiations are non-hazardous and are able to penetrate to the deeper tissues. Besides these radiations (~970–980 nm), they do not cause autofluorescence and the tissues are pretty much transparent to the light. Further, due to low-energy excitation power, minimal cellular damage occurs. Additionally, upconverted nanoparticles emission in the visible spectrum can be utilized for diagnosis and imaging purposes. In the last few years, UCNPs have gained considerable attention in the drug delivery and theranostics because of their property to act as energy donor, biocompatible carrier, and drug carrier and their ability to convert NIR light to visible light and heat, thereby paving way to numerous applications such as theranostics, targeted delivery, sustained drug release, deep tissue imaging, and photothermal and photodynamic therapy. The unique combination of advanced drug delivery system and UCNPs in a single platform has generated significant interest in translating such system to clinical applications. Due to their unique optical and interesting biomedical applications, UCNPs have demonstrated a significant role in both therapy and imaging of various diseases including cancer. This chapter provides an extensive review of the present status and recent advances in the domain of UCNPs synthesis and their application in theranostics in addition to the upconversion mechanism. Mostly, this chapter deals with challenges associated with the use of UCNP in clinical applications and the strategies to circumvent the associated problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Activator

Cs:

Cesium

DDSs:

Drug-delivery systems

EGFR:

Epidermal growth factor receptors

ESA:

Excited state absorption

ETU:

Energy transfer upconversion

FA:

Folic acid

FDA:

Food and Drug Administration

FRET:

Fluorescence resonance energy transfer

ICG:

Indocyanine green

MSNs:

Mesoporous silica nanoparticles

NIR:

Near-infrared

NP:

Nanoparticle

OA:

Oleic acid

PA:

Photon avalanche

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PTT:

Photothermal therapy

QDs:

Quantum dots

ROS:

Reactive oxygen species

S/N:

Signal to noise ratio

S:

Sensitizer

TL-CPT:

Thioketal camptothecin linkage

UC:

Upconversion

UCL:

Upconversion luminescence

UCNPs:

Upconversion nanoparticles

UV:

Ultraviolet

References

  1. Sonali, Viswanadh MK, Singh RP, Agrawal P, Mehata AK, Pawde DM, et al. Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics. 2018;2(1):70–86. https://doi.org/10.7150/ntno.21638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim H, Kwak G, Kim K, Yoon HY, Kwon IC. Theranostic designs of biomaterials for precision medicine in cancer therapy. Biomaterials. 2019;213:119207. https://doi.org/10.1016/j.biomaterials.2019.05.018.

    Article  CAS  PubMed  Google Scholar 

  3. Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dendritic cell-targeted theranostic nanomedicine: advanced cancer nanotechnology for diagnosis and therapy. Nanomedicine (London). 2020;15(10):947–9. https://doi.org/10.2217/nnm-2020-0032.

    Article  CAS  Google Scholar 

  4. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62(11):1064–79. https://doi.org/10.1016/j.addr.2010.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421–31. https://doi.org/10.2147/ijn.S138624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tripathi SK, Kaur G, Khurana RK, Kapoor S, Singh B. Quantum dots and their potential role in cancer theranostics. Crit Rev Ther Drug Carrier Syst. 2015;32(6):461–502. https://doi.org/10.1615/critrevtherdrugcarriersyst.2015012360.

    Article  CAS  PubMed  Google Scholar 

  7. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763–75. https://doi.org/10.1038/nmeth.1248.

    Article  CAS  PubMed  Google Scholar 

  8. Wang M, Abbineni G, Clevenger A, Mao C, Xu S. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine. 2011;7(6):710–29. https://doi.org/10.1016/j.nano.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  9. Oliveira H, Bednarkiewicz A, Falk A, Fröhlich E, Lisjak D, Prina-Mello A, et al. Critical considerations on the clinical translation of upconversion nanoparticles (UCNPs): recommendations from the european upconversion network (COST Action CM1403). Adv Healthc Mater. 2019;8(1):e1801233. https://doi.org/10.1002/adhm.201801233.

    Article  CAS  PubMed  Google Scholar 

  10. Ge X, Dong L, Sun L, Song Z, Wei R, Shi L, et al. New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging. Nanoscale. 2015;7(16):7206–15. https://doi.org/10.1039/c5nr00950b.

    Article  CAS  PubMed  Google Scholar 

  11. Fang L, Trigiante G, Kousseff CJ, Crespo-Otero R, Philpott MP, Watkinson M. Biotin-tagged fluorescent sensor to visualize ‘mobile’ Zn(2+) in cancer cells. Chem Commun (Camb). 2018;54(69):9619–22. https://doi.org/10.1039/c8cc05425h.

    Article  CAS  PubMed  Google Scholar 

  12. Erben T, Ossig R, Naim HY, Schnekenburger J. What to do with high autofluorescence background in pancreatic tissues - an efficient Sudan black B quenching method for specific immunofluorescence labelling. Histopathology. 2016;69(3):406–22. https://doi.org/10.1111/his.12935.

    Article  PubMed  Google Scholar 

  13. Wang C, Li X, Zhang F. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst. 2016;141(12):3601–20. https://doi.org/10.1039/c6an00150e.

    Article  CAS  PubMed  Google Scholar 

  14. Sun T, Ai F, Zhu G, Wang F. Upconversion in nanostructured materials: from optical tuning to biomedical applications. Chem Asian J. 2018;13(4):373–85. https://doi.org/10.1002/asia.201701660.

    Article  CAS  PubMed  Google Scholar 

  15. Huang Y, Xiao Q, Hu H, Zhang K, Feng Y, Li F, et al. 915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52 YbF3.52 :Er upconversion nanoprobes. Small. 2016;12(31):4200–10. https://doi.org/10.1002/smll.201601023.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou J, Liu Z, Li F. Upconversion nanophosphors for small-animal imaging. Chem Soc Rev. 2012;41(3):1323–49. https://doi.org/10.1039/c1cs15187h.

    Article  CAS  PubMed  Google Scholar 

  17. Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev. 2009;38(4):976–89. https://doi.org/10.1039/b809132n.

    Article  CAS  PubMed  Google Scholar 

  18. Ma Y, Li Y, Feng J, Zhang K. Influence of energy-transfer upconversion and excited-state absorption on a high power Nd:YVO(4) laser at 1.34 μm. Opt Express. 2018;26(9):12106–20.

    Article  CAS  PubMed  Google Scholar 

  19. Jiu J, An X, Li J, Leng J, Lü W, Chen L, et al. Intense red up-conversion luminescence and dynamical processes observed in Sc(2)O(3):Yb(3+),Er(3+) nanostructures. Dalton Trans. 2017;46(45):15954–60. https://doi.org/10.1039/c7dt03354k.

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Xiao S, Bu Y, Yang X, Ding JW. Visible photon-avalanche upconversion in Ho3+ singly doped beta-Na(Y1.5Na0.5)F6 under 980 nm excitation. Opt Lett. 2008;33(22):2653–5. https://doi.org/10.1364/ol.33.002653.

    Article  CAS  PubMed  Google Scholar 

  21. Joubert M-F. Photon avalanche upconversion in rare earth laser materials. Opt Mater. 1999;11(2–3):181–203. https://doi.org/10.1016/S0925-3467(98)00043-3.

    Article  CAS  Google Scholar 

  22. Chen J, Zhao JX. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors (Basel). 2012;12(3):2414–35. https://doi.org/10.3390/s120302414.

    Article  CAS  PubMed  Google Scholar 

  23. Qin X, Xu J, Wu Y, Liu X. Energy-transfer editing in lanthanide-activated upconversion nanocrystals: a toolbox for emerging applications. ACS Cent Sci. 2019;5(1):29–42. https://doi.org/10.1021/acscentsci.8b00827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng X, Tu D, Zheng W, Chen X. Energy transfer designing in lanthanide-doped upconversion nanoparticles. Chem Commun (Camb). 2020;56(96):15118–32. https://doi.org/10.1039/d0cc05878e.

    Article  CAS  PubMed  Google Scholar 

  25. Yi Z, Lu W, Xu Y, Yang J, Deng L, Qian C, et al. PEGylated NaLuF4: Yb/Er upconversion nanophosphors for in vivo synergistic fluorescence/X-ray bioimaging and long-lasting, real-time tracking. Biomaterials. 2014;35(36):9689–97. https://doi.org/10.1016/j.biomaterials.2014.08.021.

    Article  CAS  PubMed  Google Scholar 

  26. Tian G, Zhang X, Gu Z, Zhao Y. Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv Mater. 2015;27(47):7692–712. https://doi.org/10.1002/adma.201503280.

    Article  CAS  PubMed  Google Scholar 

  27. Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J. Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery. Chem Soc Rev. 2015;44(6):1416–48. https://doi.org/10.1039/c4cs00155a.

    Article  CAS  PubMed  Google Scholar 

  28. Idris NM, Jayakumar MK, Bansal A, Zhang Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev. 2015;44(6):1449–78. https://doi.org/10.1039/c4cs00158c.

    Article  CAS  PubMed  Google Scholar 

  29. Xing H, Zheng X, Ren Q, Bu W, Ge W, Xiao Q, et al. Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci Rep. 2013;3:1751. https://doi.org/10.1038/srep01751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin D, Song K, Ou Y, Wang C, Liu B, Wu M. Synthesis of NaYF4, NaLuF4 and NaGdF4-based upconversion nanocrystals with hydro (solvo) thermal methods. J Nanosci Nanotechnol. 2013;13(6):4162–7. https://doi.org/10.1166/jnn.2013.7214.

    Article  CAS  PubMed  Google Scholar 

  31. Fang W, Wei Y. Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy. J Innov Optic Health Sci. 2016;9(04):1630006. https://doi.org/10.1142/S1793545816300068.

    Article  CAS  Google Scholar 

  32. Kedar S, Sudhir R, Ahmad MI, Kumar M. Green route synthesized upconverting (NaYF4: Yb3+, Tm3+) nanophosphors and its photophysical and magnetic Properties. J Lumin. 2020;228:117654. https://doi.org/10.1016/j.jlumin.2020.117654.

    Article  CAS  Google Scholar 

  33. Gainer CF, Romanowski M. A review of synthetic methods for the production of upconverting lanthanide nanoparticles. J Innov Optic Health Sci. 2014;7(02):1330007. https://doi.org/10.1142/S1793545813300073.

    Article  CAS  Google Scholar 

  34. Gong G, Xie S, Song Y, Tan H, Xu J, Zhang C, et al. Synthesis of lanthanide-ion-doped NaYF4 RGB Up-conversion nanoparticles for anti-counterfeiting application. J Nanosci Nanotechnol. 2018;18(12):8207–15. https://doi.org/10.1166/jnn.2018.15801.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Wang Z, Lu Z, Xia K, Deng Y, Li S, et al. Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties. J Nanosci Nanotechnol. 2014;14(6):4710–3. https://doi.org/10.1166/jnn.2014.8641.

    Article  CAS  PubMed  Google Scholar 

  36. Tian G, Duan L, Zhang X, Yin W, Yan L, Zhou L, et al. One-pot template-free synthesis of NaYF4 upconversion hollow nanospheres for bioimaging and drug delivery. Chem Asian J. 2014;9(6):1655–62. https://doi.org/10.1002/asia.201301695.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang F, Shi Y, Sun X, Zhao D, Stucky GD. Formation of hollow upconversion rare-earth fluoride nanospheres: nanoscale kirkendall effect during ion exchange. Chem Mater. 2009;21(21):5237–43. https://doi.org/10.1021/cm902231s.

    Article  CAS  Google Scholar 

  38. Zhan Q, He S, Qian J, Cheng H, Cai F. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield. Theranostics. 2013;3(5):306–16. https://doi.org/10.7150/thno.6007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guryev EL, Smyshlyaeva AS, Shilyagina NY, Sokolova EA, Shanwar S, Kostyuk AB, et al. UCNP-based photoluminescent nanomedicines for targeted imaging and theranostics of cancer. Molecules. 2020;25(18) https://doi.org/10.3390/molecules25184302.

  40. Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, et al. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnol. 2020;18(1):154. https://doi.org/10.1186/s12951-020-00713-3.

    Article  Google Scholar 

  41. Chen F, Bu W, Cai W, Shi J. Functionalized upconversion nanoparticles: versatile nanoplatforms for translational research. Curr Mol Med. 2013;13(10):1613–32. https://doi.org/10.2174/1566524013666131111122133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang C, Cheng L, Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics. 2013;3(5):317–30. https://doi.org/10.7150/thno.5284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hao S, Chen G, Yang C. Sensing using rare-earth-doped upconversion nanoparticles. Theranostics. 2013;3(5):331–45. https://doi.org/10.7150/thno.5305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Z, Zhang Y, La H, Zhu R, El-Banna G, Wei Y, et al. Upconverting NIR photons for bioimaging. Nanomaterials (Basel). 2015;5(4):2148–68. https://doi.org/10.3390/nano5042148.

    Article  CAS  PubMed  Google Scholar 

  45. Argyo C, Weiss V, Bräuchle C, Bein T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater. 2014;26(1):435–51. https://doi.org/10.1021/cm402592t.

    Article  CAS  Google Scholar 

  46. Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25(23):3144–76. https://doi.org/10.1002/adma.201205292.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang X, Yang P, Dai Y, Pa M, Li X, Cheng Z, et al. Multifunctional Up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv Funct Mater. 2013;23(33):4067–78. https://doi.org/10.1002/adfm.201300136.

    Article  CAS  Google Scholar 

  48. Zhang T, Lin H, Cui L, An N, Tong R, Chen Y, et al. Near infrared light triggered reactive oxygen species responsive upconversion nanoplatform for drug delivery and photodynamic therapy. Eur J Inorg Chem. 2016;2016(8):1206–13. https://doi.org/10.1002/ejic.201501320.

    Article  CAS  Google Scholar 

  49. Liu Z, Shi J, Wang Y, Gan Y, Wan P. Facile preparation of pyrenemethyl ester-based nanovalve on mesoporous silica coated upconversion nanoparticle for NIR light-triggered drug release with potential monitoring capability. Colloids Surf, A Physicochem Eng Asp. 2019;568:436–44. https://doi.org/10.1016/j.colsurfa.2019.02.027.

    Article  CAS  Google Scholar 

  50. Li C, Yang D, Ma P, Chen Y, Wu Y, Hou Z, et al. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small. 2013;9(24):4150–9. https://doi.org/10.1002/smll.201301093.

    Article  CAS  PubMed  Google Scholar 

  51. Lai J, Shah BP, Zhang Y, Yang L, Lee KB. Real-Time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles. ACS Nano. 2015;9(5):5234–45. https://doi.org/10.1021/acsnano.5b00641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen W, Goldys EM, Deng W. Light-induced liposomes for cancer therapeutics. Prog Lipid Res. 2020;79:101052. https://doi.org/10.1016/j.plipres.2020.101052.

    Article  CAS  PubMed  Google Scholar 

  53. Deamer DW. From “banghasomes” to liposomes: a memoir of Alec Bangham, 1921-2010. Faseb J. 2010;24(5):1308–10. https://doi.org/10.1096/fj.10-0503.

    Article  CAS  PubMed  Google Scholar 

  54. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938–66. https://doi.org/10.1021/acs.chemrev.5b00046.

    Article  CAS  PubMed  Google Scholar 

  55. Pidgeon C, Hunt CA. Light sensitive liposomes. Photochem Photobiol. 1983;37(5):491–4. https://doi.org/10.1111/j.1751-1097.1983.tb04506.x.

    Article  CAS  Google Scholar 

  56. Carter KA, Shao S, Hoopes MI, Luo D, Ahsan B, Grigoryants VM, et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat Commun. 2014;5:3546. https://doi.org/10.1038/ncomms4546.

    Article  CAS  PubMed  Google Scholar 

  57. Muthu MS, Kulkarni SA, Raju A, Feng SS. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials. 2012;33(12):3494–501. https://doi.org/10.1016/j.biomaterials.2012.01.036.

    Article  CAS  PubMed  Google Scholar 

  58. Luo D, Li N, Carter KA, Lin C, Geng J, Shao S, et al. Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids. Small. 2016;12(22):3039–47. https://doi.org/10.1002/smll.201503966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pashkovskaya A, Kotova E, Zorlu Y, Dumoulin F, Ahsen V, Agapov I, et al. Light-triggered liposomal release: membrane permeabilization by photodynamic action. Langmuir. 2010;26(8):5726–33. https://doi.org/10.1021/la903867a.

    Article  CAS  PubMed  Google Scholar 

  60. Huang Y, Hemmer E, Rosei F, Vetrone F. Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs. J Phys Chem B. 2016;120(22):4992–5001. https://doi.org/10.1021/acs.jpcb.6b02013.

    Article  CAS  PubMed  Google Scholar 

  61. Gao W, Wang Z, Lv L, Yin D, Chen D, Han Z, et al. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics. 2016;6(8):1131–44. https://doi.org/10.7150/thno.15262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Narendra, Mehata AK, Viswanadh MK, Sonkar R, Pawde DM, Priya V, et al. Formulation and in vitro evaluation of upconversion nanoparticle-loaded liposomes for brain cancer. Ther Deliv. 2020;11(9):557–71. https://doi.org/10.4155/tde-2020-0070.

    Article  CAS  PubMed  Google Scholar 

  63. Yao C, Wang P, Li X, Hu X, Hou J, Wang L, et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv Mater. 2016;28(42):9341–8. https://doi.org/10.1002/adma.201503799.

    Article  CAS  PubMed  Google Scholar 

  64. Sun Q, You Q, Wang J, Liu L, Wang Y, Song Y, et al. Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2018;10(2):1963–75. https://doi.org/10.1021/acsami.7b13651.

    Article  CAS  PubMed  Google Scholar 

  65. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16) https://doi.org/10.3390/molecules25163731.

  66. Agrawal P, Singh RP, Sonali, Kumari L, Sharma G, Koch B, et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater Sci Eng C Mater Biol Appl. 2017;74:167–76. https://doi.org/10.1016/j.msec.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  67. Indoria S, Singh V, Hsieh MF. Recent advances in theranostic polymeric nanoparticles for cancer treatment: a review. Int J Pharm. 2020;582:119314. https://doi.org/10.1016/j.ijpharm.2020.119314.

    Article  CAS  PubMed  Google Scholar 

  68. Viswanadh MK, Vikas JA, Reddy Adena SK, Mehata AK, Priya V, et al. Formulation and in vivo efficacy study of cetuximab decorated targeted bioadhesive nanomedicine for non-small-cell lung cancer therapy. Nanomedicine (London). 2020;15(24):2345–67. https://doi.org/10.2217/nnm-2020-0167.

    Article  CAS  Google Scholar 

  69. Yue C, Zhang C, Alfranca G, Yang Y, Jiang X, Yang Y, et al. Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for Simultaneous fluorescence imaging and chemo-photodynamic combined therapy. Theranostics. 2016;6(4):456–69. https://doi.org/10.7150/thno.14101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guan Y, Lu H, Li W, Zheng Y, Jiang Z, Zou J, et al. Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy. ACS Appl Mater Interfaces. 2017;9(32):26731–9. https://doi.org/10.1021/acsami.7b07768.

    Article  CAS  PubMed  Google Scholar 

  71. Liu Y, Li L, Guo Q, Wang L, Liu D, Wei Z, et al. Novel Cs-based upconversion nanoparticles as dual-modal CT and UCL imaging agents for chemo-photothermal synergistic therapy. Theranostics. 2016;6(10):1491–505. https://doi.org/10.7150/thno.15111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou A, Wei Y, Chen Q, Xing D. In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles. J Biomed Nanotechnol. 2015;11(11):2003–10. https://doi.org/10.1166/jbn.2015.2150.

    Article  CAS  PubMed  Google Scholar 

  73. Kumar Mehata A, Bharti S, Singh P, Viswanadh MK, Kumari L, Agrawal P, et al. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy. Colloids Surf B Biointerfaces. 2019;173:366–77. https://doi.org/10.1016/j.colsurfb.2018.10.007.

    Article  CAS  PubMed  Google Scholar 

  74. Burande AS, Viswanadh MK, Jha A, Mehata AK, Shaik A, Agrawal N, et al. EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer. AAPS PharmSciTech. 2020;21(5):151. https://doi.org/10.1208/s12249-020-01671-7.

    Article  CAS  PubMed  Google Scholar 

  75. Guryev EL, Shilyagina NY, Kostyuk AB, Sencha LM, Balalaeva IV, Vodeneev VA, et al. Preclinical study of biofunctional polymer-coated upconversion nanoparticles. Toxicol Sci. 2019;170(1):123–32. https://doi.org/10.1093/toxsci/kfz086.

    Article  CAS  PubMed  Google Scholar 

  76. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. https://doi.org/10.1016/j.addr.2015.09.012.

  77. Hamidi M, Azadi A, Rafiei P. Pharmacokinetic consequences of pegylation. Drug Deliv. 2006;13(6):399–409. https://doi.org/10.1080/10717540600814402.

    Article  CAS  PubMed  Google Scholar 

  78. Veronese FM, Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22(5):315–29. https://doi.org/10.2165/00063030-200822050-00004.

    Article  CAS  PubMed  Google Scholar 

  79. Kang JS, Deluca PP, Lee KC. Emerging PEGylated drugs. Expert Opin Emerg Drugs. 2009;14(2):363–80. https://doi.org/10.1517/14728210902907847.

    Article  CAS  PubMed  Google Scholar 

  80. Wang C, Cheng L, Liu Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 2011;32(4):1110–20. https://doi.org/10.1016/j.biomaterials.2010.09.069.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Q, Song K, Zhao J, Kong X, Sun Y, Liu X, et al. Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4:Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic. J Colloid Interface Sci. 2009;336(1):171–5. https://doi.org/10.1016/j.jcis.2009.04.024.

    Article  CAS  PubMed  Google Scholar 

  82. Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc. 2008;130(10):3023–9. https://doi.org/10.1021/ja076151k.

    Article  CAS  PubMed  Google Scholar 

  83. Generalova A, Rocheva V, Nechaev A, Khochenkov D, Sholina N, Semchishen V, et al. PEG-modified upconversion nanoparticles for in vivo optical imaging of tumors. RSC Adv. 2016;6(36):30089–97. https://doi.org/10.1039/C5RA25304G.

    Article  CAS  Google Scholar 

  84. Lee G, Park YI. Lanthanide-doped upconversion nanocarriers for drug and gene delivery. Nanomaterials (Basel). 2018;8(7) https://doi.org/10.3390/nano8070511.

  85. Chen Y, Lin H, Tong R, An N, Qu F. Near-infrared light-mediated DOX-UCNPs@mHTiO(2) nanocomposite for chemo/photodynamic therapy and imaging. Colloids Surf B Biointerfaces. 2017;154:429–37. https://doi.org/10.1016/j.colsurfb.2017.03.026.

    Article  CAS  PubMed  Google Scholar 

  86. Yang D, Dai Y, Liu J, Zhou Y, Chen Y, Li C, et al. Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes. Biomaterials. 2014;35(6):2011–23. https://doi.org/10.1016/j.biomaterials.2013.11.018.

    Article  CAS  PubMed  Google Scholar 

  87. Tian G, Yin W, Jin J, Zhang X, Xing G, Li S, et al. Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/magnetic resonance/X-ray computed tomography imaging and targeted delivery of combined anticancer drugs. J Mater Chem B. 2014;2(10):1379–89. https://doi.org/10.1039/c3tb21394c.

    Article  CAS  PubMed  Google Scholar 

  88. Tiwari AP, Hwang TI, Oh JM, Maharjan B, Chun S, Kim BS, et al. pH/NIR-responsive polypyrrole-functionalized fibrous localized drug-delivery platform for synergistic cancer therapy. ACS Appl Mater Interfaces. 2018;10(24):20256–70. https://doi.org/10.1021/acsami.7b17664.

    Article  CAS  PubMed  Google Scholar 

  89. Xiang J, Tong X, Shi F, Yan Q, Yu B, Zhao Y. Near-infrared light-triggered drug release from UV-responsive diblock copolymer-coated upconversion nanoparticles with high monodispersity. J Mater Chem B. 2018;6(21):3531–40. https://doi.org/10.1039/c8tb00651b.

    Article  CAS  PubMed  Google Scholar 

  90. Bagheri A, Arandiyan H, Boyer C, Lim M. Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems. Adv Sci (Weinh). 2016;3(7):1500437. https://doi.org/10.1002/advs.201500437.

    Article  CAS  PubMed  Google Scholar 

  91. Cho HJ, Chung M, Shim MS. Engineered photo-responsive materials for near-infrared-triggered drug delivery. J Ind Eng Chem. 2015;31:15–25. https://doi.org/10.1016/j.jiec.2015.07.016.

    Article  CAS  Google Scholar 

  92. Koralli P, Nega AD, Vagiaki LE, Pavlou A, Siskos M, Dimitrakopoulou-Strauss A, et al. New conjugated polymer nanoparticles with high photoluminescence quantum yields for far-red and near infrared fluorescence bioimaging. Mater Chem Front. 2020; https://doi.org/10.1039/D0QM00195C.

  93. Han XB, Li HX, Jiang YQ, Wang H, Li XS, Kou JY, et al. Upconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ROS generation. Cell Death Dis. 2017;8(6):e2864. https://doi.org/10.1038/cddis.2017.242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Singh R. Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech. 2019;9(11):415. https://doi.org/10.1007/s13205-019-1940-0.

  95. Li K, Hong E, Wang B, Wang Z, Zhang L, Hu R, et al. Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagnosis Photodyn Ther. 2019;25:177–92. https://doi.org/10.1016/j.pdpdt.2018.12.007.

    Article  CAS  PubMed  Google Scholar 

  96. Lay A, Sheppard OH, Siefe C, McLellan CA, Mehlenbacher RD, Fischer S, et al. Optically robust and biocompatible mechanosensitive upconverting nanoparticles. ACS Cent Sci. 2019;5(7):1211–22. https://doi.org/10.1021/acscentsci.9b00300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng L, Yang K, Shao M, Lu X, Liu Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine (London). 2011;6(8):1327–40. https://doi.org/10.2217/nnm.11.56.

    Article  CAS  Google Scholar 

  98. Zhou M, Ge X, Ke DM, Tang H, Zhang JZ, Calvaresi M, et al. The Bioavailability, biodistribution, and toxic effects of silica-coated upconversion nanoparticles in vivo. Front Chem. 2019;7:218. https://doi.org/10.3389/fchem.2019.00218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Del Rosal B, Jaque D. Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl Fluoresc. 2019;7(2):022001. https://doi.org/10.1088/2050-6120/ab029f.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madaswamy S. Muthu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehata, A.K., Viswanadh, M.K., Prasanna, P., Kumar, M., Muthu, M.S. (2023). Theranostic Applications of Upconversion Nanoparticle-Based Drug-Delivery Systems. In: Pardeshi, C.V. (eds) Nanomaterial-Based Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-30529-0_8

Download citation

Publish with us

Policies and ethics