
Proactive Task Offloading for Load
Balancing in Iterative Applications

Minh Thanh Chung1(B) , Josef Weidendorfer2 , Karl Fürlinger1 ,
and Dieter Kranzlmüller1,2

1 MNM-Team, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
{minh.thanh.chung,karl.fuerlinger,kranzlmueller}@ifi.lmu.de

2 Leibniz Supercomputing Centre (LRZ), Garching, Germany
{josef.weidendorfer,kranzlmueller}@lrz.de

Abstract. Load imbalance is often a challenge for applications in paral-
lel systems. Static cost models and pre-partitioning algorithms distribute
the load at the beginning. Nevertheless, dynamic changes during execution
or inaccurate cost indicators may lead to imbalance at runtime. Reactive
work-stealing strategies can help monitor the execution and perform task
migration to balance the load. However, the benefits depend on migration
overhead and assumption about future execution.

Our proactive approach further improves existing solutions by applying
machine learning to online load prediction. Following that, we propose a
fully distributed algorithm for adapting the prediction result to guide task
offloading. The experiments are performed with an artificial test case and a
realistic application named Sam(oa)2 on three systems with different com-
munication overhead. Our results confirm improvements for important use
cases compared to previous solutions. Furthermore, this approach can sup-
port co-scheduling tasks across multiple applications.

Keywords: HPC · Task-based Parallel Models · MPI+OpenMP ·
Machine Learning · Online Prediction · Dynamic Load Balancing

1 Introduction

Load balancing refers to the distribution of tasks over a set of computing
resources in parallel systems. We simplify load as execution time, where the
load difference between processes results in imbalance. A process is an abstract
entity performing its tasks on a processor. For example, the imbalance can hap-
pen when a process waits for the others in bulk-synchronous parallel programs.
The primary use case in our paper is represented by iterative applications such as
adaptive mesh refinement (AMR) solving partial differential equations (PDEs)
[22]. Traditional methods distribute the load at the beginning by using cost
indicators. However, an unexpected performance slowdown can lead to a new
imbalance. Therefore, dynamic load balancing strategies are more practical to
help, such as work-stealing [9]. Work-stealing principally waits until the queue of
underloaded processes is empty, then overloaded processes will steal tasks within
c© The Author(s) 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 263–275, 2023.
https://doi.org/10.1007/978-3-031-30442-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_20&domain=pdf
http://orcid.org/0000-0001-6119-3852
http://orcid.org/0000-0001-7159-1432
http://orcid.org/0000-0003-0398-4087
http://orcid.org/0000-0002-8319-0123
https://doi.org/10.1007/978-3-031-30442-2_20


264 M. T. Chung et al.

an agreement. In contrast, the reactive approach monitors execution repeatedly
to estimate the load status, and offloads1 tasks if the imbalance ratio reaches
a given condition [13]. The monitored information is the most recent number
of waiting tasks on each queue that implicitly represents computing speed per
process. Following that, the imbalance ratio is estimated; tasks at an overloaded
process can be reactively offloaded to a corresponding underloaded process [23].
Without prior load information, this idea safely fixes a consistent number of
offloaded tasks once. Nevertheless, a very high imbalance case is the challenge
that can limit reactive load balancing.

We propose a proactive approach for offloading tasks to improve the perfor-
mance further. The scheme is based on task characterization and online load
prediction. Instead of monitoring only queue information, we characterize task
features and execution time on-the-fly. Then, we apply this data to train an
adaptive prediction model. The prediction knowledge is learned from dynamic
change during execution. After that, our proactive algorithm will use the pre-
diction result to guide task offloading. The idea is implemented in a task-based
programming framework for shared and distributed memory called Chameleon
[13]. We evaluate this work with an artificial benchmark (matrix multiplication)
and an adaptive mesh refinement (AMR) named Sam(oa)2 [18]. Sam(oa)2 is
a hybrid framework PDE systems on dynamically adaptive tree-structured tri-
angular meshes. Variations in computation cost per element are caused by the
limiting procedure, space-time predictor, and numerical inundation treatment
at coastlines [21]. Our example and implementation can be found in more detail
at (See footnote 5). The main contributions are:

– We discuss what limits the existing reactive approaches and define a proactive
solution based on load prediction.

– Our approach shows when it is possible to apply machine learning on-the-fly
to predict task execution time.

– Then, a fully distributed algorithm for offloading task is proposed to improve
load balancing further.

Finally, the rest of paper begins with related work in Sect. 2. Section 3
describes the terminologies of task-based load balancing and problem motiva-
tion. Online prediction scheme and proactive algorithm for offloading tasks are
addressed in Sect. 4. Finally, Sect. 5 reveals the evaluation and Sect. 6 highlights
conclusion with future work.

2 Related Work

Assuming that system performance is stable, load balancing has been studied in
terms of static cost models and partitioning algorithms [12] [4]. The balance is
achieved by accurately mapping tasks to processors. Our paper focuses on issues
after the work has been already partitioned. As mentioned, performance slow-
down is a reason for imbalance during execution [27]. There are three classes of
1 “Offload” and “migrate” are used interchangeably to denote the migration of tasks.



Proactive Task Offloading for Load Balancing in Iterative Applications 265

dynamic load balancing algorithms, centralized [5], distributed, and hierarchical
[7]. Work stealing is a traditional approach employed in shared memory systems
[2]. For distributed memory, work-stealing is risky because of communication
overhead. Researchers attempted to improve communication by using RDMA
in PGAS programming models [9,15]. Lifflander et al. introduced a hierarchical
technique that applies the persistence principle to refine the load of task-based
applications [17]. Focus on scientific applications where computational tasks
tend to be persistent, Menon et al. proposed using partial information about
the global system state to balance load by randomized work-stealing [19]. To
improve stealing decisions, Freitas et al. analyzed workload information to com-
bine with distributed scheduling algorithms [10]. The authors reduced migration
overhead by packing similar tasks to minimize messages. Instead of enhancing
migration, reactive solutions rely on monitoring execution speed to offload tasks
from an overloaded process to underloaded targets2 [13,23]. The following idea is
replication that aims at tackling unexpected performance variability [24]. How-
ever, this is difficult to know exactly how many tasks should be offloaded or
which processes are truly underloaded in high imbalance cases. Without prior
load knowledge, replication strategies need to fix the target process for replicas,
such as neighbor ranks. The decision is not easy to make and may get high cost.
Using machine learning-based prediction to guide task scheduling is not new.
However, the difference comes from the problem feature and applied context.
Almost all studies have been proposed in terms of cloud [1] or cluster manage-
ment [8] using historic logs or traces [3,25] in profilers, i.e., TAU [26], Extrae [20].
Li et al. introduced an online prediction model to optimize task scheduling as a
master-worker model in R language [16]. Our context is a given distribution of
tasks, and the imbalance is caused by online performance slowdown. Therefore,
offline prediction from historical data is insufficient.

3 Preliminaries and Motivation

The many-task runtimes have been studied in shared memory architectures
[28]. A task is defined by an entry function and its data (e.g., input arguments).
An iterative application has a decomposition into distinct parallel phases of
executing tasks. Barriers synchronize each parallel execution phase (so-called
time step in numerical simulation). Figure 1(A) illustrates an execution phase,
where x-axis represents the time progress, y-axis lists four processes (MPI ranks3

from 0 to 3), and the green boxes indicate tasks. Each rank has 16 tasks, running
by two threads per rank. In general, we define nt independent tasks per phase,
where T = {0, ..., nt − 1} denotes a set of tasks. One task has an associated
execution wallclock time (w ≥ 0) and runs on a specific core until termination.
All tasks in T are distributed on np processes, where P = {0, ..., np − 1} denotes
a set of processes. The real value of w depends on task’s input, CPU frequency,

2 Underloaded targets/processes indicate victims with an under-average load.
3 Process/rank refers interchangeably to an entity where tasks are assigned.



266 M. T. Chung et al.

Fig. 1. The illustration of (A) an iterative task-based execution with 4 ranks, 2 threads
per rank, and (B) a real load imbalance case with Sam(oa)2.

or memory bandwidth. Therefore, it can only be measured at runtime. Below,
we address some definitions and illustrate their symbols in Fig. 1(A).

– Wi: denotes the wallclock execution time of Rank i. Besides, Li is a total load
of Rank i being the sum of load values of all tasks assigned to Rank i.

– Wpar: indicates the longest wallclock execution time (the so-called parallel
wallclock execution time), where Wpar = max∀i∈P Wi.

Thereby, the maximum wallclock execution time (Wmax) is considered as
Wpar, Wmin = min∀i∈P Wi, and the average value is Wavg = avg∀i∈P Wi. Load
balancing strategies need to minimize the Wpar value. To evaluate the balance,
we use a ratio of the maximum and average W values called Rimb in Eq. 1, where
Rimb ≥ 0 and a high Rimb means a high imbalance.

Rimb =
Wmax

Wavg
− 1 (1)

In work-stealing, underloaded ranks exchange information with overloaded ranks
when the task queues are empty, and tasks can be stolen if reaching an agreement.
However, this might be too late in distributed memory because of communication
overhead. In contrast, the reactive balancing approach uses a dedicated thread4.
Based on the most current status, tasks are offloaded by speculative balancing
operations early instead of waiting for empty queues [23]. This approach has
two strategies: reactive task offloading [14] and reactive task replication [24].
Without prior knowledge, the balancing operation of reactive decisions must be
safe at runtime about the number of offloaded tasks and potential victims. In
the cases of high imbalance ratio, such as Fig. 1(B) shows, the uncertainty of
balancing decision at a time tk can affect the overall efficiency after execution.
This leads to motivation for this work such the following points:

(1) For permanently task offloading, how can we know the appropriate number
of tasks to offload?

4 In hybrid MPI+OpenMP, we can spawn multiple threads per rank. One thread can
be dedicated to repeatedly monitoring execution speed and communication.



Proactive Task Offloading for Load Balancing in Iterative Applications 267

(2) For victim selection from phase to phase, how can we know the potential
victims to offload tasks proactively?

(3) For a long-term vision, it is necessary to learn the variability of communi-
cation overhead along with given topology information at runtime.

4 Online Load Prediction and Proactive Task Offloading

4.1 Online Load Prediction

This work exploits a task-based framework of hybrid MPI+OpenMP and a dedi-
cated thread to perform online prediction by machine learning regression model.
The results are then adapted to balance load before a new iteration begins.

Where is dataset from? The inputs (IN) are from two sides: application
(INapp) and system (INsys), where INapp is task-related features and INsys is
related to processor frequencies or performance counters. The output is defined
by OUT , which can be the wallclock execution time of a task or the total load of
a rank in the next execution phases. IN and OUT are normalized from the char-
acterized information at runtime, being used to create a training dataset. Due
to domain-specific applications, users should pre-define influence characteristics
or parameters. Therefore, we design this scheme as a user-defined tool outside
the main library [6].

When is a prediction model trained? Iterative applications can have
many execution phases (iterations) relying on computation scenarios. In hybrid
MPI+OpenMP model, our dedicated thread runs asynchronously with other
threads, which will characterize and collect runtime data in the first iterations
on each rank. We simplify in-out features as configuration parameters in the
tool. Users can flexibly tune the parameters before running applications. This
issue also raises some related questions below.

– Which input features and how much data are effective?
– Why is machine learning needed?
– In which ways do the learned parameters change during runtime?

First, in-out features are based on observing application characteristics. Depend-
ing on each use case, it is difficult to confirm how much data are generally ade-
quate. Therefore, an external user-defined tool is relevant for this issue. Second,
the hypothesis is a correlation between application and system characteristics
that can map to a prediction target over iterations. Also, the repetition of itera-
tive applications facilitates machine learning to learn the behavior. Third, learn-
ing models can be adaptive by re-training in the scope of performance variability.
However, how many levels of variability make the model ineffective has not been
addressed in the paper; this will be extended in future work.

For our experiments, we describe the input and output parameters of online
prediction in Table 1. There are two use cases: synthetic matrix multiplication
(denoted by MxM) and Sam(oa)2. In MxM, the matrix size argument of a task
mainly impacts its execution time. Thereby, we configure the training inputs



268 M. T. Chung et al.

Table 1. The input-output features for training the prediction models.

No. App. Task INapp INsys OUT

1 MxM MxM kernel matrix sizes core freq (Hz) load/task (w)

2 Sam(oa)2 grid traversal previous Li ∅ next Li

being matrix sizes and core frequency. For Sam(oa)2, it uses the concept of grid
sections where each section is processed by a single thread [18]. A traversed
section is an independent computation unit which is defined as a task. Following
the canonical approach of cutting the grid into parts of uniform load, tasks per
rank are uniform and a set of tasks on different ranks might not have the same
load. By characterizing Sam(oa)2, we predict the total load of a rank in an
iteration (LI

i ) instead of the wall clock time of each task (w), where L denotes
the total load value of Rank i in Iteration I. To estimate w, we can divide L
by the number of assigned tasks per rank. Furthermore, our observation shows
that LI

i can be predicted by the correlation between the current iteration and
the previous iterations. For example, suppose Rank 0 has finished Iteration I,
and we take the total load values of four previous iterations. In that case, our
training features will be the load values from Iteration I − 4 to I − 1, such as
the following samples I = 8, 9.

· · ·
L4

0, L
5
0, L

6
0, L

7
0 → L8

0

L5
0, L

6
0, L

7
0, L

8
0 → L9

0

(2)

Concretely, the left part of the arrow is training inputs, and the right part is
training labels. Other ranks also use this format for generating their dataset.

4.2 Proactive Algorithm and Offloading Strategies

As Algorithm 1 shows, our proactive algorithm uses the prediction results as
inputs, where Array L contains the total predicted load, Array N denotes the
given number of tasks per rank. The number of ranks (np mentioned in Sect. 3)
is the size of L, N . First, L is sorted by the load values and stored in a new
array L̂. Second, Lavg indicates the average load, which is considered an optimal
balanced value. To estimate how many tasks should be offloaded, Algorithm 1
uses Array R to record the total load of offloaded tasks (so-called remote tasks).
Also, Array TB is used to track the number of local tasks (remaining tasks in a
local rank) and remote tasks. TB is a tracking table with the same number of
rows and columns (= np), where its diagonal represents the local task number,
and the others indicate the remote task number. For example, if the value of
TB[i, j] > 0 (i �= j), Rank i should offload TB[i, j] tasks to Rank j.

In detail, the outer loop goes forward each victim (L̂[i] < Lavg). The under-
loaded value between Rank i and Lavg is then calculated, named δunder, which
means that Rank i needs a load of δunder to be balanced. The inner loop goes
backward each offloader (L̂[j] > Lavg). The overloaded load (δover) between



Proactive Task Offloading for Load Balancing in Iterative Applications 269

Algorithm 1: Proactive Task Offloading

Input : Array L, N , where each has np elements; L[i] is the predicted load, N [i] is the
number of assigned tasks on Rank i.

1 New Array L̂ ← Sort L by the load values

2 Lavg ← ∑np−1
i=0

L[i]
np

3 New Array R; TB /* R has np elements denoting the total load of remote tasks per

rank, TB has np × np elements which record the number of local and remote tasks */
4 for i ← 0 to np − 1 do

5 if L̂[i] < Lavg then

6 δunder ← Lavg − L̂[i] /* the load value under average */

7 for j ← np − 1 to 0 do

8 if L̂[j] > Lavg then

9 δover ← L̂[j] − Lavg /* the load value over average */

10 ŵ ← Estimate the load per task and assert δover ≥ ŵ
11 if δover ≥ δunder then
12 Noff , Loff ← Calculate the number of tasks to offload and the total

load of remote tasks by ŵ, δunder

13 else
14 Noff , Loff ← Calculate the number of tasks to offload and the total

load of remote tasks by ŵ, δover

15 end if

16 Update δunder , L̂ at the index i and j based on Noff , Loff

17 Update N [j], R[j]; TB at the index (i, j), (j, i), (j, j)
18 Break if abs (δunder, Lavg) < ŵ

19 end if

20 end for

21 end if

22 end for
23 return TB

Rank j and Lavg is then calculated and distributed around. To compute the
number of tasks for offloading, we need to know the load per task (w) except in
the cases we predict w directly, i.e., in MxM. Otherwise, the load per task can
be estimated by the total predicted load over the number of assigned tasks per
rank, named ŵ at line 10. Afterward, the number of offloaded tasks (Noff ) and
the total offloaded load (Loff ) are calculated. The following values of δunder, L̂,
N , R, TB will be updated at the corresponding indices. In line 18, the absolute
value between δunder and Lavg is compared with ŵ to check whether or not the
current offloader has enough tasks to fill up a load of δunder. If not, we will go
through another offloader. Regarding complexity, if we have np ranks in total,
where K is the number of victims, np − K will be offloaders; then the algorithm
takes O(K(np − K)). As mentioned, our implementation is described in more
detail at5. For offloading tasks, we use two strategies: round-robin and packed-
tasks offloading. Round-robin sends task by task, e.g., Algorithm 1 says that R0

needs to offload 3 tasks to R1 and 5 tasks to R2. It will send the 1st task to R1,
the 2nd one to R2, and repeat the progress until all tasks are sent. In contrast,
packed-tasks offloading encodes the three tasks for R1 as a package and send it
once before proceeding R2.

5 https://github.com/chameleon-hpc/chameleon-apps/tree/master/tools/tool load
prediction.

https://github.com/chameleon-hpc/chameleon-apps/tree/master/tools/tool_load_prediction
https://github.com/chameleon-hpc/chameleon-apps/tree/master/tools/tool_load_prediction


270 M. T. Chung et al.

Fig. 2. An evalution of online load prediction for Sam(oa)2 in simulating the oscillating
lake scenario.

Table 2. The overview of compared load balancing methods.

No. Method Description

1 baseline Applications run with default task pre-partition.

2 random ws Randomized work-stealing.

3 react mig With Chameleon, only reactive migration.

4 react rep With Chameleon, only a-priori speculative replication.

5 react mig rep With Chameleon, both reactive migration and replication.

6 proact off1 With Chameleon, proactive task offloading, round-robind.

7 proact off2 With Chameleon, proactive task offloading, packed-tasks

5 Evaluation

5.1 Environment and Online Prediction Evaluation

All tests are run on three clusters with different communication infrastructures
at Leibniz Supercomputing Centre, CoolMUC26, SuperMUC-NG7 and BEAST8.
The CoolMUC2 system has 28-way Haswell-based nodes and FDR14 Infiniband
interconnect. SuperMUC-NG features Intel Skylake compute nodes with 48 cores
per dual-socket, using Intel OmniPath interconnection. In BEAST-system, we
use AMD Rome EPYC 7742 nodes with a higher interconnect bandwidth, HDR
200Gb/s InfiniBand.

The first evaluation shows the results of load prediction with Sam(oa)2. We
run 100 time-steps to simulate oscillating lake scenario. Sam(oa)2 has several
configuration parameters that can be found at [18], such as the number of grid
sections, grid size, etc. This paper use a default configuration to reproduce the
experiments. As mentioned in Subsect. 4.1, the training input features are the
total load of the first finished iterations (the dataset from the first 20 iterations).
To evaluate accuracy, we use MSE loss [11] between real and predicted values as
6 https://doku.lrz.de/display/PUBLIC/CoolMUC-2.
7 https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.
8 https://www.lrz.de/presse/ereignisse/2020-11-06 BEAST/.

https://doku.lrz.de/display/PUBLIC/CoolMUC-2
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://www.lrz.de/presse/ereignisse/2020-11-06_BEAST/


Proactive Task Offloading for Load Balancing in Iterative Applications 271

Fig. 3. The comparison of MxM testcases with 8 ranks in total, 2 ranks per node.

the boxplot in Fig. 2 (left). It shows feasibility when using this prediction scheme
for load balancing, where x-axis points to the scale of machines, and y-axis is
the loss values. Besides, Fig. 2 (right) highlights the comparision between real
and predicted load from R28 to R31 in 16 nodes from Iteration 20 to 99, because
we collect data in Iteration 0–19 to generate the training dataset.

5.2 Artificial Imbalance Benchmark

We use the synthetic MxM test cases to ease reproducibility, where tasks are
independent and uniform load. The number of tasks per rank is varied to cause
different imbalance scenarios. In detail, we generate 4 cases from no imbalance
to a high imbalance ratio (Imb.0 - Imb.3). Compared to the baseline and other
methods, we name the proposed methods proact off1 and proact off2 that apply
the same prediction scheme and proactive algorithm but different offloading
strategies. All compared methods are addressed in Table 2. In Fig. 3, the smaller
ratio is the better. It indicates that the Wpar and waiting-time values between
ranks are low. For reactive solutions, react mig and react rep mig are competi-
tive. However, the case of Imb.3 shows the ratio of ≈ 1.7 with random ws, 1.5–1.1
with react mig and react mig rep on CoolMUC2. proact off1 and proact off2
reduce this under 0.6. On SuperMUC-NG and the BEAST system, the commu-
nication overhead is mitigated by higher bandwidth interconnection, showing
that the reactive methods are still useful. Corresponding to the Imb. values, the
second row of charts highlights the speedup values calculated by execution time
of each method over the baseline.

5.3 Realistic PDE Use Case with Sam(oa)2

In this experiment, we vary the number of ranks on each system, where two
ranks per node and each rank uses full cores of a CPU socket, e.g., 14 threads per
rank on CoolMUC2. For different communication overheads, the tests can show



272 M. T. Chung et al.

Fig. 4. The comparison of imbalance ratios and speedup in various methods by the
usecase of oscillating lake simulation.

scalability and adaptation in various methods. In Fig. 4, reactive or proactive
methods obtain higher performance than the baseline. Compared to react mig,
speculative replication (react rep) usually comes to some cost. However, their
combination react mig rep could help in the cases from 16 ranks on CoolMUC2
and BEAST. The replication strategy is difficult to deal with the imbalance
case of consecutive underloaded ranks. In contrast, our proactive approach uses
online prediction to provide information about potential victims. As we can see,
proact off1 and proact off2 can improve load balancing in the high imbal-
ance cases (≥ 8 ranks). In two offloading strategies, proact off2 has some delay
for encoding a set of tasks when the data is large. Therefore, if an overloaded
rank has multiple victims, the second victim must wait long for proceeding the
first one. Without any objection, the proactive algorithm must depend on the
accuracy of prediction models. However, the features characterized by an online
scheme at runtime can reflect the execution behavior flexibly. Therefore, it is fea-
sible to generate a reasonable runtime cost model. Furthermore, we can combine
reactive and proactive approaches to improve each other.

6 Conclusion

We have introduced a proactive approach for task-based load balancing in dis-
tributed memory systems, which mainly supports the use cases of iterative appli-
cations. This approach is enabled by combining online load prediction and proac-
tive task offloading. We proposed a fully distributed algorithm that utilizes pre-
diction results to guide task offloading. The paper shows that existing reactive
approaches can be limited in high imbalance use cases by lacking load infor-
mation to select victims and wisely decide the number of offloaded tasks. Our



Proactive Task Offloading for Load Balancing in Iterative Applications 273

proactive approach can provide prediction knowledge to make better decisions,
e.g., potential victims and how many tasks should be offloaded. We implemented
this approach in a task-based parallel library and evaluated it with synthetic and
real use cases. The results confirm the benefits in important use cases on three
different systems. For a long-term vision, this work can be considered as a poten-
tial scheme to co-schedule tasks across multiple applications in future parallel
systems. Our solution could work as a plugin on top of a task-based programming
framework for load balancing improvement.

Acknowledgment. The authors would like to thank the Chameleon (http://www.
chameleon-hpc.org/) and MNM team (http://www.mnm-team.org/) for their support
and feedback. Part of the performance results have been obtained on systems in the
test environment BEAST (Bavarian Energy Architecture & Software Testbed) at the
Leibniz Supercomputing Centre.

References

1. Amiri, M., et al.: Survey on prediction models of applications for resources provi-
sioning in cloud. J. Netw. Comput. Appl. 82, 93–113 (2017). https://doi.org/10.
1016/j.jnca.2017.01.016

2. Blumofe, R.D., Joerg, C.F., et al.: Cilk: an efficient multithreaded runtime system.
SIGPLAN Not. 30(8), 207–216 (1995). https://doi.org/10.1145/209937.209958

3. Carrington, L.C., Laurenzano, M., et al.: How well can simple metrics represent the
performance of HPC applications? In: Proceedings of the ACM/IEEE Conference
on Supercomputing (2015). https://doi.org/10.1109/SC.2005.33

4. Catalyurek, U.V., Boman, E.G., et al.: Hypergraph-based dynamic load balancing
for adaptive scientific computations. In: International Parallel and Distributed Pro-
cessing Symposium, pp. 1–11 (2007). https://doi.org/10.1109/IPDPS.2007.370258

5. Chow, Y.C., et al.: Models for dynamic load balancing in a heterogeneous multiple
processor system. IEEE Trans. Comput. C-28(5), 354–361 (1979)

6. Chung, M.T., Kranzlmüller, D.: User-defined tools for characterizing task-parallel
applications and predicting load imbalance. In: 15th International Conference on
Advanced Computing and Applications (ACOMP), pp. 98–105 (2021). https://
doi.org/10.1109/ACOMP53746.2021.00020

7. Corradi, A., Leonardi, L., Zambonelli, F.: Diffusive load-balancing policies for
dynamic applications. IEEE Concurrency 7(1), 22–31 (1999). https://doi.org/10.
1109/4434.749133

8. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and GOS-aware clus-
ter management. SIGPLAN Not. 49(4), 127–144 (2014). https://doi.org/10.1145/
2644865.2541941

9. Dinan, J., Larkins, D.B., et al.: Scalable work stealing. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis
(2009). https://doi.org/10.1145/1654059.1654113

10. Freitas, V., Pilla, L.L., et al.: Packsteallb: a scalable distributed load balancer
based on work stealing and workload discretization. J. Parallel Distrib. Comput.
150, 34–45 (2021)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

http://www.chameleon-hpc.org/
http://www.chameleon-hpc.org/
http://www.mnm-team.org/
https://doi.org/10.1016/j.jnca.2017.01.016
https://doi.org/10.1016/j.jnca.2017.01.016
https://doi.org/10.1145/209937.209958
https://doi.org/10.1109/SC.2005.33
https://doi.org/10.1109/IPDPS.2007.370258
https://doi.org/10.1109/ACOMP53746.2021.00020
https://doi.org/10.1109/ACOMP53746.2021.00020
https://doi.org/10.1109/4434.749133
https://doi.org/10.1109/4434.749133
https://doi.org/10.1145/2644865.2541941
https://doi.org/10.1145/2644865.2541941
https://doi.org/10.1145/1654059.1654113
http://www.deeplearningbook.org


274 M. T. Chung et al.

12. Karypis, G., Kumar, V.: A coarse-grain parallel formulation of multilevel k-way
graph partitioning algorithm. In: PPSC (1997)

13. Klinkenberg, J., Samfass, P., et al.: Chameleon: reactive load balancing for hybrid
MPI+OpenMP task-parallel applications. J. Parallel Distrib. Comput. 138, 55–64
(2020). https://doi.org/10.1016/j.jpdc.2019.12.005

14. Klinkenberg, J., Samfass, P., et al.: Reactive task migration for hybrid
MPI+OpenMP applications. In: Parallel Processing and Applied Mathematics,
pp. 59–71 (2020). https://doi.org/10.1007/978-3-030-43222-5 6

15. Larkins, D.B., Snyder, J., Dinan, J.: Accelerated work stealing. In: Proceedings of
the 48th International Conference on Parallel Processing (2019)

16. Li, J., Ma, X., et al.: Machine learning based online performance prediction for
runtime parallelization and task scheduling. In: IEEE International Symposium on
Performance Analysis of Systems and Software, pp. 89–100 (2009)

17. Lifflander, J., et al.: Work stealing and persistence-based load balancers for itera-
tive overdecomposed applications. In: Proceedings of the 21st International Sym-
posium on High-Performance Parallel and Distributed Computing, pp. 137–148
(2012)

18. Meister, O., Rahnema, K., Bader, M.: Parallel memory-efficient adaptive mesh
refinement on structured triangular meshes with billions of grid cells. ACM Trans.
Math. Softw. (TOMS) 43(3), 1–27 (2016)

19. Menon, H., Kalé, L.: A distributed dynamic load balancer for iterative applica-
tions. In: Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, pp. 1–11 (2013). https://doi.org/10.
1145/2503210.2503284

20. Munera, A., Royuela, S., et al.: Experiences on the characterization of parallel
applications in embedded systems with Extrae/Paraver. In: 49th International
Conference on Parallel Processing (2020)

21. Rannabauer, L., Dumbser, M., Bader, M.: ADER-DG with a-posteriori finite-
volume limiting to simulate tsunamis in a parallel adaptive mesh refinement frame-
work. Comput. Fluids 173, 299–306 (2018)

22. Renardy, M., Rogers, R.C.: An introduction to partial differential equations, vol.
13. Springer, New York (2006). https://doi.org/10.1007/b97427

23. Samfass, P., Klinkenberg, J., Bader, M.: Hybrid MPI+OpenMP reactive work
stealing in distributed memory in the PDE framework Sam(oa)2. In: IEEE Inter-
national Conference on Cluster Computing, pp. 337–347 (2018)

24. Samfass, P., Klinkenberg, J., et al.: Predictive, reactive and replication-based load
balancing of tasks in chameleon and Sam(oa)2. In: Proceedings of the Platform for
Advanced Scientific Computing Conference (2021)

25. Sharkawi, S., Desota, D., et al.: Performance projection of HPC applications using
SPEC CFP2006 benchmarks. In: International Symposium on Parallel & Dis-
tributed Processing, pp. 1–12 (2009)

26. Shende, S., Malony, A.D., et al.: Portable profiling and tracing for parallel, scien-
tific applications using C++. In: Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, pp. 134–145

27. Skinner, D., Kramer, W.: Understanding the causes of performance variability in
HPC workloads. In: Proceedings of the IEEE Workload Characterization Sympo-
sium, pp. 137–149 (2005). https://doi.org/10.1109/IISWC.2005.1526010

28. Thoman, P., et al.: A taxonomy of task-based parallel programming technologies for
high-performance computing. J. Supercomput. 74(4), 1422–1434 (2018). https://
doi.org/10.1007/s11227-018-2238-4

https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1007/978-3-030-43222-5_6
https://doi.org/10.1145/2503210.2503284
https://doi.org/10.1145/2503210.2503284
https://doi.org/10.1007/b97427
https://doi.org/10.1109/IISWC.2005.1526010
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4


Proactive Task Offloading for Load Balancing in Iterative Applications 275

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Proactive Task Offloading for Load Balancing in Iterative Applications
	1 Introduction
	2 Related Work
	3 Preliminaries and Motivation
	4 Online Load Prediction and Proactive Task Offloading
	4.1 Online Load Prediction
	4.2 Proactive Algorithm and Offloading Strategies

	5 Evaluation
	5.1 Environment and Online Prediction Evaluation
	5.2 Artificial Imbalance Benchmark
	5.3 Realistic PDE Use Case with Sam(oa)2

	6 Conclusion
	References




