
Building a Fine-Grained Analytical
Performance Model for Complex

Scientific Simulations

Jelle van Dijk(B) , Gabor Zavodszky , Ana-Lucia Varbanescu ,
Andy D. Pimentel , and Alfons Hoekstra

Institute for Informatics, Faculty of Science, University of Amsterdam,
Amsterdam, The Netherlands

jelle.van.dijk@uva.nl

Abstract. Analytical performance models are powerful for understand-
ing and predicting the performance of large-scale simulations. As such,
they can help identify performance bottlenecks, assess the effect of load
imbalance, or indicate performance behavior expectations when migrat-
ing to larger systems. Existing automated methods either focus on broad
metrics and/or problems - e.g., application scalability behavior on large
scale systems and inputs - or use black-box models that are more difficult
to interpret e.g., machine-learning models.

In this work we propose a methodology for building per-process ana-
lytical performance models relying on code analysis to derive a simple,
high-level symbolic application model, and using empirical data to fur-
ther calibrate and validate the model for accurate predictions.

We demonstrate our model-building methodology on HemoCell, a
high-performance framework for cell-based bloodflow simulations. We
calibrate the model for two large-scale systems, with different archi-
tectures. Our results show good prediction accuracy for four different
scenarios, including load-balanced configurations (average error of 3.6%,
and a maximum error below 13%), and load-imbalanced ones (with an
average prediction error of 10% and a maximum error below 16%).

Keywords: Performance modeling · workload imbalance ·
performance prediction · coupled simulations

1 Introduction

Analytical performance models are powerful for understanding and predicting
the performance of large-scale simulations. An analytical performance model is
a closed-form expression that describes application performance, expressed in a
metric of choice, as a combination of application components, application specific
parameters and hardware parameters. Analytical models are human-readable and
cost little to no resources to use. Furthermore, they can provide many insights
that are otherwise expensive to obtain, e.g., locating the performance bottle-
necks [10], or are not obtainable at all, e.g., predicting how an application will
perform on a next generation of supercomputers [7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 183–196, 2023.
https://doi.org/10.1007/978-3-031-30442-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_14&domain=pdf
http://orcid.org/0000-0003-3005-9890
http://orcid.org/0000-0003-0150-0229
http://orcid.org/0000-0002-4932-1900
http://orcid.org/0000-0002-2043-4469
http://orcid.org/0000-0002-3955-2449
https://doi.org/10.1007/978-3-031-30442-2_14

184 J. van Dijk et al.

Analytical performance models are also useful in determining the impact of
load-imbalance in large-scale parallel applications running on current parallel
(distributed) systems. Load-imbalance occurs when the parallel processes of an
application are not assigned an equal amount of work. This can cause significant
inefficiency during the parallel execution of applications on large-scale systems.
Several large-scale applications and libraries [5,9,15,21] already use different
simple analytical performance models to predict load imbalance. Some of these
analytical models have a per-process view of the application, thus allowing for
detailed load imbalance predictions [9].

Despite its advantages, analytical modeling remains challenging, as it requires
both performance-modeling and application-specific expertise. Furthermore,
because the resulting models are application-specific, most of the work needs
to be redone when modeling a different application, or even the next version
of the same application. While work on generalizing the process of building
analytical performance models already exists [10,14], most of these approaches
aim to provide performance models that predict scalability and extrapolate to
new, larger systems, and/or lack the fine granularity needed to support a better
understanding of application inefficiency.

To address such limitations, we propose in this work a detailed methodology
for building fine-grained, per-process analytical performance models for scientific
simulations. By design, the per-process modeling gives us more detailed insights
into the performance and load-balance of the modeled application. Our four-step
modeling process is as follows: (1) we identify the code-sections and input param-
eters with a relevant performance impact (2) we build a symbolic analytical per-
formance model that describes the application performance at process level, (3)
we calibrate the models for a specific machine with the help of empirical perfor-
mance data, and we aggregate the per-process models for an application-wide
performance prediction. (4) We validate the model performance. The resulting
model is outlined in Fig. 1. We note that the symbolic model remains constant
for the target application - that is, migrating the model to a different system
only requires re-calibration, i.e., collecting empirical performance data.

Fig. 1. Overview of the per-process analytical model.

We demonstrate the feasibility of our approach on HemoCell, a high-
performance framework for dense cellular suspension flows [19,20]. Previous

Building an Analytical Performance Model for Scientific Simulations 185

work, starting from L. Axner, et al. [2], developed a model to predict runtime per-
formance from fractional overheads and showed that, when accurate estimation
of these overheads is available, the model is an accurate tool (at most 5% error)
for analyzing code execution, even in load-imbalanced scenarios. S. Allowayyad,
et al. [1] applied this model for HemoCell, where the fractional overhead caused
by load imbalance was estimated under the assumption that it is entirely depen-
dent on local red blood cell count. In this work, we propose a novel methodology
to build a model for the function level performance, which, after calibration,
provides an estimation for the main sources of computational load (i.e., for the
fractional loads). This method is demonstrated using HemoCell, similarly to [1].
However, the calibrated performance functions are defined using natural units
of the simulation (red blood cell count and fluid node count). Specifically, we
build a per-process function-level symbolic model for HemoCell, and calibrate
it for two different HPC platforms: Snellius (SURF, Netherlands) and DAS6
(ASCI, Netherlands) [3]. The model accuracy is evaluated on balanced and non-
balanced simulations, using three scenarios that showcase different types of exe-
cution imbalance1. Our results demonstrate good prediction accuracy for our
models, indicating they can be useful tools for assessing load-imbalance impact
in scientific simulations.

The remainder of this paper is structured as follows. We present our modeling
approach in Sect. 2 and further show, in Sect. 3, how it is applied to build and
calibrate an analytical performance model for HemoCell. We further evaluate the
accuracy of the model in Sect. 4 on four different scenarios with different degrees
and types of load-imbalance. Finally, we provide a brief overview of related work
in Sect. 5, and conclude the paper in Sect. 6.

2 Performance Modeling Methodology

In this section we present our methodology for building per-process analytical
performance models for large-scale simulations. We assume a Single-Program,
Multiple-Data model, where processes with different ranks and are executed
concurrently on different processing units (e.g., cores or nodes). Throughout
the modeling process we also assume that at least function level performance
measurements of the application are available. The collected data depends on
the desired model output, e.g., time (s), execution rate (Mflop/s), or energy (J).

Our methodology has four steps: (1) identifying relevant code sections and
parameters, (2) building the model, (3) calibrating the model, and (4) validating
the model. In this section we elaborate on each of these steps.

(1) Identify performance relevant code sections and parameters.
A code section can be any part of the application code which is monitored
individually. Usually, in practice, such code sections are functions. The relevant
code sections are those code sections that are significant in the performance
breakdown. The performance of a code section will change based on external
1 The code for data processing and the raw data used in this paper are available at

DOI:10.5281/zenodo.6570501.

https://doi.org/10.5281/zenodo.6570501

186 J. van Dijk et al.

parameters, e.g., size of the simulated domain. For each code section, we identify
the relevant parameters, which are then selected as inputs for the model.

(2) Build the symbolic model: The model is built in a top-down manner:
we start from a coarse symbolic model, and refine parts as needed, which allows
for control over the level of detail incorporated into the model. The results, is
a symbolic analytical performance model that describes the performance of a
singe process in terms of the code-sections and parameters selected in step (1).

The output of the per-process model is aggregated into a final prediction
using operators that are application- and metric-specific (see Fig. 1). For exam-
ple, when predicting execution time for fully concurrent applications, the per-
formance is dominated by the longest process; however, when processes run
sequentially, the aggregated execution time is the sum of the execution time of
all processes.

(3) Calibrate the model: To calibrate the model we replace the symbolic
terms describing code section performance with predictive functions. Firstly,
empirical data of code section performance is collected. This data is used to fit
a function for each individual code section, the degree of the function depends
on the relationship between the code section and the input parameters e.g., the
output can scale linearly or exponentially in relation to the parameters.

(4) Validate the model: To validate the model, we measure perfor-
mance on relevant (unseen) datasets, and report prediction error, calculated
as e = abs(predicted − measured) ∗ 100/measured. If needed, to increase predic-
tion accuracy, the model can be further refined (i.e., functions can be further
split into smaller units). This, however, also increases the model complexity.

3 Modeling Hemocell

In this section, we build an analytical performance model describing the exe-
cution time of Hemocell. This model is calibrated on two different machines,
Snellius (SURF, Netherlands) and DAS6 (ASCI, Netherlands) [3].

3.1 Hemocell

Hemocell is a coupled multi-scale simulation code used for modeling blood flow.
The application simulates blood as a dense cellular suspension flow, modeling the
evolution of particles, i.e., red blood cells (RBCs) and platelets, suspended in a sol-
vent, i.e., the blood plasma, over multiple discrete time steps [19,20]. The solvent
is modeled as a fluid using the lattice Boltzman method (LBM). LBM calculations
are handled by the Palabos library [12]. The movement, deformation, and inter-
action of particles is modeled separately from the LBM calculation. Both models
are coupled together intermittently to simulate the full blood flow system.

For parallelization, Hemocell uses multi-processing: each process receives a
section of the simulated domain, i.e., a subdomain, and is responsible for com-
puting the fluid and particles within that subdomain. During the simulation, the
processes communicate with each other using MPI. The edges of the fluid field,

Building an Analytical Performance Model for Scientific Simulations 187

as well as parts of the particles which may span multiple subdomains, must be
communicated to ensure correct results.

Previous research focused on improving Hemocell’s overall performance [16],
as well as improving the scaling performance through better load balancing [1].

3.2 Performance-Relevant Functions and Parameters

A Hemocell simulation consists of three phases: (1) setup, (2) computation, and
(3) data output. Our work focuses on the most expensive of these phases, the
computation. In turn, the Hemocell computation phase has three components:
(i) fluid computation, (ii) particle computation, and (iii) model coupling.

We define performance-relevant functions as those functions that have a non-
negligible performance impact. Similarly, we define performance-relevant param-
eters as function parameters that have a non-negligible performance impact.
The process of identifying the performance-relevant functions and parameters
is based on both expert application knowledge, code inspection, and investiga-
tion of any available fine-grained performance measurements. Table 1 shows the
performance-relevant functions and parameters for Hemocell.

Table 1. Performance-relevant functions and parameters for Hemocell.

Name Component Description Parameters

CollideAndStream Fluid field Lattice-Boltzmann calculations (xs, ys, zs)

CollideAndStream comm Fluid field Lattice-Boltzmann communication (xs, ys, zs)

spreadParticleForce Model coupling Apply particle forces to the fluid field RBCs

interpolateFluidVelocity Model coupling Apply fluid forces to the particles RBCs

syncEnvelopes Particle field Setup for particle communication. RBCs

syncEnvelopes comm Particle field Communicate particle vertices. RBCs, (xs, ys, zs)

AdvanceParticles Particle field Calculate new particle position. RBCs

applyConstitutiveModel Particle field Compute and apply internal particle forces. RBCs

deleteNonLocalParticles Particle field Remove non-local particle information. RBCs

setExternalVector Fluid field Apply external forces to the fluid. (xs, ys, zs)

3.3 Model-Building

For building the model, we start with the highest-level description of the appli-
cation: the components.

T = Iters × [FluidField(xs, ys, zs) (1)
+ ParticleField(xs, ys, zs,RBCs)

+ ModelCoupling(RBCs)]

In Eq. (1), Iters is the number of iterations, (xs, ys, zs) are the dimensions
of the domain, RBCs is the number of red blood cells within the domain, and
FluidField, ParticleField and ModelCoupling are the functions that describe the

188 J. van Dijk et al.

execution time per iteration for each component2. We improve on this initial
model by expanding the component terms. Each component term is made up of
the summation of the time spent in the respective relevant functions, see Table 1.

To simplify the calibration step we derive two new parameters: V and SA,
representing the subdomain volume and surface area, respectively. For rectangu-
lar domains they are defined as V = xs×xy×xz and SA = 2 × (xs× ys+xs×
zs+ ys× zs). Expanding on the initial model, replacing xs, ys, zs with either V
or SA, gives us the following analytical model:

T = Iters × [FluidField(V, SA) (2)
+ ParticleField(SA,RBCs)

+ ModelCoupling(RBCs)]

FluidField(V, SA) = CollideAndStream(V) (3)
+ CollideAndStream comm(SA)

+ setExternalVector(V)

ParticleField(SA,RBCs) = syncEnvelopes(RBCs) (4)
+ syncEnvelopes comm(RBCs, SA)

+ AdvanceParticles(RBCs)

+ applyConstitutiveModel(RBCs)

+ deleteNonLocalParticle(RBCs)

ModelCoupling(RBCs) = spreadParticleForce(RBCs) (5)
+ interpolateFluidVelocity(RBCs)

3.4 Model Calibration

In the calibration step the terms in the model are replaced with predictors.
The predictors are fitted, using empirical data collected from the two machines,
Snellius and DAS6, the machine details are presented in Table 2.

Table 2. Machine Descriptions

Machine CPU Cores Frequency Memory

Snellius AMD Rome 7H12 (x2) 128 3.2 GHz 256 GiB

DAS6 AMD EPYC-2 7402P 24 2.8 GHz 128 GB

To collect the data, we simulate a cuboid-shaped domain of blood for 500 iter-
ations. The size of the domain ranges from (12.5, 12.5, 12.5)µm to (75, 75, 50)µm.

2 Please note: for readability purposes, when using the name of a function in a model,
we denote its performance, in most cases, execution time. In other words, we use
ParticleField instead of TParticleField.

Building an Analytical Performance Model for Scientific Simulations 189

Every domain size is run with 7 different volume fractions of RBCs (hematocrit):
0%, 9%, 10%, 12%, 14%, 16%, and 18%. The workload in these experiments is
fully balanced, i.e., every process performs the same amount of work. Throughout
the modeling and analysis process, we use the Scalasca toolchain for automatic
code instrumentation and performance measurements of Hemocell [8,11].

The predictors are all fitted functions over the respective performance data.
The degree of the fit function is dependent on the relationship between the
parameters and the output metric. For this model we have chosen the parameters
such that all relationships are linear. The calibrated predictors are presented in
Table 3.

Table 3. Calibrated performance predictors for Snellius and DAS6.

Name Predictors Snellius [S] Predictors DAS6 [S]

collideAndStream 0.0062 + V × 3.5 × 10−7 0.008 + V × 2.5 × 10−7

setExternalVector 2.6 × 10−5 + V × 4.3 × 10−8 −0.000 22 + V × 2.1 × 10−8

collideAndStream comm −0.000 47 + SA× 9.1 × 10−7 0.000 94 + SA× 2.2 × 10−7

syncEnvelopes comm 0.000 48 + SA× 1.3 × 10−7 0.000 46 + SA× 1.3 × 10−8

+RBCs× 3.5 × 10−5 +RBCs× 9.5 × 10−6

syncEnvelopes −1.4 × 10−5 + RBCs× 8.3 × 10−5 9.2 × 10−5 + RBCs× 3.6 × 10−5

advanceParticles 0.000 49 + RBCs× 0.000 14 0.000 59 + RBCs× 8.2 × 10−5

applyConstitutiveModel −1.3 × 10−5 + RBCs× 4.4 × 10−5 −4.4 × 10−5 + RBCs× 2.8 × 10−5

deleteNonLocalParticles 5.1 × 10−5 + RBCs× 1.5 × 10−5 2.1 × 10−5 + RBCs× 7.5 × 10−5

spreadParticleForce 0.000 81 + RBCs× 0.0004 0.0012 + RBCs× 0.000 25

interpolateFluidVelocity 0.000 13 + RBCs× 7.7 × 10−5 0.000 31 + RBCs× 4.2 × 10−5

4 Scenario Analysis

The fine granularity of the model allows for accurate performance predictions in
scenarios that differ from the configuration used for calibration. In this section we
evaluate the model, as presented in Sect. 3, and use it to analyze the performance
of Hemocell in four different scenarios, (1) balanced workload, (2) imbalanced
subdomains, (3) imbalanced hematocrit, and (4) imbalanced communication.

4.1 Scenario: Balanced Workload

In the balanced scenario each process receives the same amount of work. The
setup is identical to the simulation configurations used for model calibration,
however the domain sizes are of course different. Empirical and predicted results
are shown for Snellius and DAS6 in Fig. 2a and 2b.The results show that the
model can accurately predict the performance in this scenario a maximum error
of 12.87% and an average error of 3.6%.

190 J. van Dijk et al.

Fig. 2. Observed and predicted execution time and prediction error for the load bal-
anced scenario, on DAS6 and Snellius. The standard deviation of the observed results
is within 1.5%

4.2 Scenario: Imbalanced Subdomains

In an ideal scenario each process is assigned a subdomain of the same size.
However, due to complex simulation domains this is not always achievable. An
imbalanced distribution of the domain leads to a loss of performance.

The imbalance in this scenario is generated by assigning half of the processes
to 75% of the full domain, and the other half of the process to 25% of the full
domain, see Fig. 3. This means that half of the process are assigned three times
more work than the other half.

Fig. 3. Imbalanced domain distribution. Both the red and blue parts are assigned to
half of the processes. (Color figure online)

For each configuration, the results for the imbalanced and balanced configura-
tions are measured and predicted. By comparing the balanced and imbalanced

Building an Analytical Performance Model for Scientific Simulations 191

predictions we estimate the overhead introduced by the load imbalance. The
results are presented in Fig. 4.

We observe good accuracy for the imbalanced scenario predictions, with a
maximum error of 15.83% and an average of 10.26%. The prediction accuracy
on Snellius is lower than on DAS6. This is most likely caused by the difference
in memory layout. A node on Snellius is dual-socket, meaning that the L3 cache
is not shared between all threads. By assigning most of the domain to half of
the processes we are moving most of the data onto a single socket, significantly
increasing the amount of data that is accessed by that socket. This combined
with the larger overall domain on Snellius, which results in the subdomains of
one process being further apart. The result is that the cost of memory operations
increases more on Snellius, which is not captured by the model.

We also observe that the load-imbalance overhead is higher for the 18%
hematocrit configurations, compared to the equivalent 0% runs. This increase
is due to the RBC computation, which worsens the already-present workload
imbalance. This increase is correctly captured by the model.

Fig. 4. Observed and predicted execution time and prediction error for the imbalanced
domain scenario, on DAS6 and Snellius. The standard deviation of the observed results
is within 1.5%

4.3 Scenarios: Imbalanced Hematocrit

The hematocrit value has a significant impact on performance, as can be seen
in Fig. 2. A higher hematocrit means more of the volume is occupied by RBCs,
resulting in more computation and communication. In the configurations up till
now, we assumed a homogeneous hematocrit throughout the domain. However,
in more realistic scenarios the hematocrit varies throughout the domain.

The imbalanced hematocrit scenario shows the performance overhead of hav-
ing a non-homogeneous hematocrit. To create an imbalanced hematocrit each
domain is initialized such that part of the domain has a hematocrit of 18%, the
other part is either initialized at 9% or 0%. On DAS6 both parts are evenly
sized, on Snellius they are either evenly sized, see Fig. 5a, or the first 16 threads
are assigned the higher hematocrit subdomains, see Fig. 5b.

192 J. van Dijk et al.

Fig. 5. Snellius imbalanced hematocrit (18% and 0%) across 128 processes.

Because the fluid computation is not affected by the hematocrit for the results
in this scenario we only show the time spend on the particle and coupling com-
ponents. The results are presented in Fig. 6.

Fig. 6. Observed and predicted execution time and prediction error for the imbalanced
hematocrit scenario, on DAS6 and Snellius. The standard deviation of the observed
results is within 1.5%

For the imbalanced configurations where the domain is split in half, the high-
est observed prediction error is acceptable, at 8.61%. However, for the (16/112)
configurations, the predictions are less accurate, with errors above 16.8%. The
large error is caused by a change in the number of communication neighbors,
which is not captured in the current model. We address this limitation in Sect. 4.4.

4.4 Scenario: Imbalanced Communication

In the imbalanced hematocrit results, we observe a lower prediction accuracy on
the (16 / 112) distribution configurations. This is partially caused by a change
in the communication costs. The processes that are assigned more work, in the
(16/112) configuration, as shown in Fig. 5b, are located at the edge of the non-
periodic domain. This means that the number of neighbors that need to be
communicated with is less than if the subdomain computed by the process is
located in the middle of the domain. However, during calibration it is assumed
that the processes are fully surrounded by neighbors. To address this we expand
the original model to include a term to express how many direct neighbors a
process needs to communicate with.

Building an Analytical Performance Model for Scientific Simulations 193

Fig. 7. Snellius imbalanced hematocrit (18% and 0%) across 128 processes.

The model is expanded by adding CRx, which denotes the communication
ratio of the fluid or particle component, CRx = #Neighbors

Max Neighbors . This ratio is
defined separately for the fluid and particle communication because for fluid
communication the maximal number of neighbors that need to be communicated
with is 18, as opposed to 26 possible neighbors for the particle communication3.
In Eqs. (3) and (4) the functions describing the fluid and particle communications
are replaced with Eqs. (6) and (7). The functions in Eqs. (6) and 7 multiply the
original communication term with the newly introduced CRcomponent ratio.

syncEnvelopes comm(RBCs, SA,CRparticle) = (6)
CRparticle × syncEnvelopes comm(RBCs, SA)

collideAndStream comm(SA,CRfluid) = (7)
CRfluid × collideAndStream comm(SA)

To verify that the model expansion improves the accuracy the updated model
is applied to the (16/112) configuration, as well as a (8/120) configuration, shown
in Fig. 7a, and a (32/92) configuration, shown in Fig. 7b. These experiments are
run on Snellius for 500 iterations with a subdomain size of (50, 50, 50) µm. The
results are presented in Fig. 8.

The results show a clear improvement in the prediction accuracy, compared to
the previous version without the added imbalance term. The highest prediction
error is reduced from 24.53% to 16.19% when using the updated model. The
results in all experiments performed before this did not change, because in those
configurations the processes that dominate performance need to communicate
with the maximum number of neighbors. Not only is the accuracy better, but the
results also provide more detailed information about the different configurations.
With the old model, the prediction for each configuration is identical. However, in
the results we see that the different configurations do not perform the same. The
updated model is capable of better highlighting this difference in performance.

3 For CRfluid neighbors with no RBCs are not counted, because the communication is
overlapped by computation. For CRparticle the value of each neighbor is scaled with
the relative number of RBCs, i.e., if the neighboring hematocrit is half the neighbors
value is 0.5.

194 J. van Dijk et al.

Fig. 8. Observed and predicted results and prediction error for the imbalanced com-
munication scenario, on DAS6 and Snellius. Standard deviation of the observed results
is within 1.5%

5 Related Work

This section provides a brief overview of alternative performance models, and
how they differ from our own approach.

Analytical performance models for modeling the performance of large-scale
applications have been proposed for many years [14]. However, such models
are application-specific, and not generalizable to a wider range of applications.
To address this, Hoefler et al. [10] propose a multistep approach for building
analytical performance models. Their metric of interest is application scaling
behavior; therefore, these models do not capture per-process performance.

Other tools to automate parts of the modeling process, such as EXTRA-P [6,
7], target on finding scalability bugs in large-scale applications. EXTRA-P builds
a statistical model based on empirical performance results of the application.
However, the resulting model is non-trivial to understand and tweak, and cannot
predict scalability bugs at process-level.

Beyond analytical models, other types of performance models, such as simu-
lators and machine-learning based models, are typically more accurate, but have
interpretability issues. For example, models based on machine-learning require
significant training data and resources, and the resulting black-box models pro-
vide a lot less insight into the application performance characteristics [13,17].
Functional and cycle-accurate simulations provide accurate information on how
an application behaves, and why, but they take a very long time to build and
calibrate, which renders them difficult to use for large-scale applications [4,18].

6 Conclusion

In this paper we proposed a methodology for building per-process performance
models for large-scale, multi-processing simulations. The per-process modeling
approach gives portable, fine-grained, accurate, analytical performance models.

We further used the proposed methodology to build an accurate predictive
model for Hemocell, a coupled simulation for blood flow. We demonstrated that

Building an Analytical Performance Model for Scientific Simulations 195

the resulting model is capable of accurate performance prediction for both bal-
anced workloads, where we see a maximum error of 12.9%, and an average of
3.6% error, and imbalanced scenarios, with a maximum of 16.2% error, and an
average of 10.2% error. These results indicate that, although the model-building
and calibration steps are based on simple balanced workloads, the model is able
to analyze and predict simulation performance in load-imbalanced scenarios.
This is a significant advantage for our per-process approach. Finally, we have
shown how to refine the model to address potential inaccuracies, thus showing
the advantage of a white-box, analytical approach.

In future work we aim to reduce the amount of manual work required to
build the model, by for example incorporating statistical methods for determin-
ing performance behavior of code sections. In the near future, we aim to extend
the model to work for multi-node computations and both apply our model to
more simulations and increasingly dynamic scenarios. Specifically, at runtime,
the workload could be dynamically shifting between processes as a result of the
simulated phenomena, thus showing different load-imbalance patterns during
execution. Thus, we plan to use the model to predict the performance degrada-
tion due to such changes in load balancing.

References

1. Alowayyed, S., et al.: Load balancing of parallel cell-based blood flow simulations.
J. Comput. Sci. 24, 1–7 (2018). https://doi.org/10.1016/j.jocs.2017.11.008

2. Axner, L., et al.: Performance evaluation of a parallel sparse lattice Boltzmann
solver. J. Comput. Phys. 227(10), 4895–4911 (2008). https://doi.org/10.1016/j.
jcp.2008.01.013

3. Bal, H., et al.: A medium-scale distributed system for computer science research:
infrastructure for the long term. Computer 49(5), 54–63 (2016). https://doi.org/
10.1109/MC.2016.127

4. Bohrer, P., et al.: Mambo: a full system simulator for the PowerPC architecture.
SIGMETRICS Perform. Eval. Rev. 31(4), 8–12 (2004). https://doi.org/10.1145/
1054907.1054910

5. Borgdorff, J., et al.: Performance of distributed multiscale simulations. Philos.
Trans. A Math. Phys. Eng. Sci. 372(2021), 20130407 (2014). https://doi.org/10.
1098/rsta.2013.0407

6. Calotoiu, A., et al.: Using automated performance modeling to find scalability bugs
in complex codes. In: SC 2013, pp. 1–12. ACM (2013). https://doi.org/10.1145/
2503210.2503277

7. Calotoiu, A., et al.: Lightweight requirements engineering for exascale co-design.
In: IEEE Cluster 2018, pp. 201–211 (2018). https://doi.org/10.1109/CLUSTER.
2018.00038

8. Geimer, M., et al.: The Scalasca performance toolset architecture. Concurr. Com-
putat. Pract. Exper. (2010). https://doi.org/10.1002/cpe.1556

9. Germaschewski, K., et al.: The plasma simulation code: a modern particle-in-cell
code with patch-based load-balancing. J. Comput. Phys. 318, 305–326 (2016).
https://doi.org/10.1016/j.jcp.2016.05.013

10. Hoefler, T., et al.: Performance modeling for systematic performance tuning. In:
SC 2011, pp. 1–12 (2011). https://doi.org/10.1145/2063348.2063356

https://doi.org/10.1016/j.jocs.2017.11.008
https://doi.org/10.1016/j.jcp.2008.01.013
https://doi.org/10.1016/j.jcp.2008.01.013
https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1145/1054907.1054910
https://doi.org/10.1145/1054907.1054910
https://doi.org/10.1098/rsta.2013.0407
https://doi.org/10.1098/rsta.2013.0407
https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1109/CLUSTER.2018.00038
https://doi.org/10.1109/CLUSTER.2018.00038
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1016/j.jcp.2016.05.013
https://doi.org/10.1145/2063348.2063356

196 J. van Dijk et al.

11. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastruc-
ture for periscope, Scalasca, TAU, and Vampir. In: Brunst, H., et al. (eds.) Tools
for High Performance Computing, pp. 79–91. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31476-6 7

12. Latt, J., et al.: Palabos: parallel lattice Boltzmann solver. Comput. Math. Appl.
(2020). https://doi.org/10.1016/j.camwa.2020.03.022

13. Lee, B.C., et al.: Methods of inference and learning for performance modeling of
parallel applications. In: Ppopp 2007, pp. 249–258. Association for Computing
Machinery (2007). https://doi.org/10.1145/1229428.1229479

14. Mathis, M.M., Amato, N.M., Adams, M.L.: A general performance model for paral-
lel sweeps on orthogonal grids for particle transport calculations. In: ISC 2000, pp.
255–263. Association for Computing Machinery (2000). https://doi.org/10.1145/
335231.335256

15. Murtaza, S., Hoekstra, A.G., Sloot, P.M.A.: Compute bound and I/O bound cel-
lular automata simulations on FPGA logic. ACM Trans. Reconfigurable Technol.
Syst. 1(4), 23:1–23:21 (2009). https://doi.org/10.1145/1462586.1462592

16. Tarksalooyeh, V.A., Závodszky, G., Hoekstra, A.G.: Optimizing parallel perfor-
mance of the cell based blood flow simulation software HemoCell. In: Rodrigues,
J.M.F., et al. (eds.) Computational Science. LNCS, vol. 11538, pp. 537–547.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9 42

17. Witt, C., et al.: Predictive performance modeling for distributed batch processing
using black box monitoring and machine learning. Inf. Syst. 82, 33–52 (2019).
https://doi.org/10.1016/j.is.2019.01.006

18. Xu, G., et al.: Simulation-based performance prediction of HPC applications: a
case study of HPL. In: 2020 IEEEACM International Workshop HPC User Support
Tools HUST Workshop on Programming and Performance Visualization Tools Pro-
Tools, pp. 81–88 (2020). https://doi.org/10.1109/HUSTProtools51951.2020.00016

19. Závodszky, G., et al.: Cellular level in-silico modeling of blood rheology with an
improved material model for red blood cells. Front. Physiol. 8 (2017). https://doi.
org/10.3389/fphys.2017.00563

20. Zavodszky, G., et al.: Hemocell: a high-performance microscopic cellular library.
Procedia Comput. Sci. 108, 159–165 (2017)

21. Zhu, X., et al.: Gemini: a computation-centric distributed graph processing system.
In: 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, pp. 301–316 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1016/j.camwa.2020.03.022
https://doi.org/10.1145/1229428.1229479
https://doi.org/10.1145/335231.335256
https://doi.org/10.1145/335231.335256
https://doi.org/10.1145/1462586.1462592
https://doi.org/10.1007/978-3-030-22744-9_42
https://doi.org/10.1016/j.is.2019.01.006
https://doi.org/10.1109/HUSTProtools51951.2020.00016
https://doi.org/10.3389/fphys.2017.00563
https://doi.org/10.3389/fphys.2017.00563
http://creativecommons.org/licenses/by/4.0/

	Building a Fine-Grained Analytical Performance Model for Complex Scientific Simulations*-4pt
	1 Introduction
	2 Performance Modeling Methodology
	3 Modeling Hemocell
	3.1 Hemocell
	3.2 Performance-Relevant Functions and Parameters
	3.3 Model-Building
	3.4 Model Calibration

	4 Scenario Analysis
	4.1 Scenario: Balanced Workload
	4.2 Scenario: Imbalanced Subdomains
	4.3 Scenarios: Imbalanced Hematocrit
	4.4 Scenario: Imbalanced Communication

	5 Related Work
	6 Conclusion
	References

