
Neural Nets with a Newton Conjugate
Gradient Method on Multiple GPUs

Severin Reiz(B) , Tobias Neckel , and Hans-Joachim Bungartz

School of Computation, Information and Technology, Technical University
of Munich (TUM), Munich, Germany

s.reiz@tum.de

Abstract. Training deep neural networks consumes increasing compu-
tational resource shares in many compute centers. Often, a brute force
approach to obtain hyperparameter values is employed. Our goal is (1) to
enhance this by enabling second-order optimization methods with fewer
hyperparameters for large-scale neural networks and (2) to compare opti-
mizers for specific tasks to suggest users the best one for their problem.
We introduce a novel second-order optimization method that requires
the effect of the Hessian on a vector only and avoids the huge cost of
explicitly setting up the Hessian for large-scale networks.

We compare the proposed second-order method with two state-of-the-
art optimizers on five representative neural network problems, including
regression and very deep networks from computer vision or variational
autoencoders. For the largest setup, we efficiently parallelized the opti-
mizers with Horovod and applied it to a 8 GPU NVIDIA A100 (DGX-1)
machine with 80% parallel efficiency.

Keywords: Numerical methods · Machine learning · Deep learning ·
Second-order optimization · Data parallelism

1 Introduction

Machine Learning (ML) is widely used in todays software world: regression or
classification problems are solved to obtain efficient models of input-output rela-
tionships learning from measured or simulated data. In the context of scientific
computing, the goal of ML frequently is to create surrogate models of similar
accuracy than existing models but with evaluation runtimes of much cheaper
computational costs. Applying an ML technique typically results in an online
vs. an offline phase. While the offline phase comprises all computational steps
to create the ML model from given data (the so-called training data), the online
phase is associated to obtaining desired answers for new data points (typically
called validation points). Different types of ML techniques exist: Neural networks
in various forms, Gaussian processes which incorporate uncertainty, etc. [1].

For almost all methods, numerical optimization is necessary to tune param-
eters or hyperparameters of the corresponding method in the offline phase such
c© The Author(s) 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 139–152, 2023.
https://doi.org/10.1007/978-3-031-30442-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_11&domain=pdf
http://orcid.org/0000-0001-5752-4233
http://orcid.org/0000-0002-3442-7171
http://orcid.org/0000-0002-0171-0712
https://doi.org/10.1007/978-3-031-30442-2_11

140 S. Reiz et al.

that good/accurate results can be obtained in the online phase. Even though
numerical optimization is a comparably mature field that offers many solution
approaches, the optimization problem associated with real-world large-scale ML
scenarios is non-trivial and computationally very demanding: The dimensional-
ity of the underlying spaces is high, the amount of parameters to be optimized
is large to enormous, and the cost function (the loss) is typically mathematically
complicated being non-convex and possessing many local optima and saddle
points in general. Additionally, the performance of a method typically depends
not only on the ML approach but also on the scenario of application.

Of the zoo of different optimization techniques, certain first-order methods
such as the stochastic gradient descent (SGD) have been very popular and repre-
sent the de-facto fallback in many cases. Higher-order methods provide generally
nice convergence features since they include more derivative information of the
loss function. These methods, however, come at the price of evaluating the Hes-
sian of the problem, which typically is way too costly for real-world large-scale
ML scenarios, both w.r.t. setting up and storing the matrix and w.r.t. evaluating
the matrix-vector product with standard implementations (e.g., the ResNet50
scenario discussed below has about 16 million degrees of freedom in form of
corresponding weights).

In this paper, we analyze a second-order Newton-based optimization method
w.r.t. accuracy and computational performance in the context of large-scale neu-
ral networks of different type. To cope with challenging costs in such scenarios,
we implemented a special variant of a regularized Newton method using the
Pearlmutter scheme together with a matrix-free conjugate gradient method to
evaluate the effect of the Hessian on a given vector with about twice the costs of
a backpropagation itself. All implementations are publicly available and easy to
integrate since they rely on TensorFlow Keras code1. We compare our proposed
solution with existing TensorFlow implementations of the prominent SGD and
Adam method for five representative ML scenarios of different categories. In
particular, we exploit parallelisation in the optimization process on two different
levels: a parallel execution of runs the as well as data parallelism by treating
several chunks of data (the so-called batches or mini batches) in parallel. The
latter results in a quasi-Newton method where the effect of the Hessian is kept
constant for a couple of data points before the next update is computed. Our
approach, thus, represents a combination of usability, accuracy and efficiency.

The remainder of this paper is organized as follows. Section 2 lists work in
the community that is related to our approach. In Sect. 3, basic aspects of deep
neural networks are briefly stated to fix the nomenclature for the algorithmic
building blocks we combine for our method. The detailed neural network struc-
tures and architectures for the five scenarios to be discussed are discussed in
Sect. 4. We briefly describe aspects of the implementation in Sect. 5 and show
results for the five neural network scenarios in Sect. 6. Section 7 finally concludes
the discussion.

1 https://github.com/severin617/Newton-CG.

https://github.com/severin617/Newton-CG

Newton-CG for Large ResNets 141

2 Related Work

Hessian multiplication for neural networks without forming the matrix was intro-
duced very early [2]; while there are multiple optimization techniques around [3],
it gained importance again with Deep Learning via Hessian-free optimization
[4]. Later, the Kronecker-factored approximate curvature (KFAC) of the Fisher
matrix(similar to Gauss-Newton Hessian) was introduced [5]; for high perfor-
mance computing, chainerkfac was introduced [6]. AdaHessian uses the Hutchin-
son method for adapting learning rate [7], other work involves inexact new-
ton methods for neural networks [8] or a comparison of optimizers [9]. With
GOFMM, we performed initial studies on Hessian matrices [10], where later we
looked at the fast approximation for a multilayer perceptron [11].

3 Methods

In this section, we first briefly describe the basics of deep neural networks2

and the peculiarities of the variants we are going to use in the five different
scenarios in Sect. 6. Afterwards, we highlight the basic algorithmic ingredients
of the reference implementations (SGD and Adam) [1]. Finally, we explain the
building blocks of our approach: The Pearlmutter trick and the Newton-CG step.

3.1 Scientific Computing for Deep Learning

Consider a feed-forward deep neural network defined as the parameterized func-
tion f(X,W). The function f is composed by vector-valued functions f (i), i =
1, . . . , D, which represent each one layer in the network of depth D, in the fol-
lowing way: f(x) = f (D)(. . . f (2)(f (1)(x)))

The function corresponding to a network layer (d) and the output of the j-th
neuron are computed via

f (d) =

⎡
⎢⎢⎢⎢⎣

z
(d)
1

z
(d)
2
...

z
(d)

M(d)

⎤
⎥⎥⎥⎥⎦

and z
(d)
j = φ(

M(d−1)∑
i=1

(w(d)
ji f

(d−1)
i) + w0

j)

with activation function φ and weights w. All weights w are comprised in a large
vector W ∈ R

n which represents a parameter for f . The optimization problem
consists now of finding weights W a given loss function l will be minimized for
given training samples X,Y : minW l(X,Y,W).

A prominent example of a loss function is the categorical cross-entropy:

lentr(X,Y,W) := −
N∑

l=1

yi log(f (D)(X,W)) .

2 For a brief introduction on deep NN, cf. [12].

142 S. Reiz et al.

Note that only the last layer function f (D) of the network directly shows up
in the loss, but all layers are indirectly relevant due to the optimization for all
weights in all layers.

Optimizers look at stochastic mini batches of data, i.e. disjoint collections of
data points. The union of all mini batches will represent the whole training data
set. The reason for considering data in chunks of mini batches and not in total is
that the backpropagation in larger neural networks will face severe issues w.r.t.
memory. Hence, the mini batch loss function, where the mini batch is varied in
each optimization step in a round-robin manner, is now defined by

L(x, y,W) := −
batch-size∑

i=1

yi log(f (D)(X,W)) .

3.2 State-of-the-Art Optimization Approaches

In order to solve the optimization problem (3.1), different first-order methods
exist (for a survey, see [1], e.g.). The pure gradient descent without momentum
computes weights Wk in iteration k via Wk = Wk−1 − ak−1∇l(Wk−1) where
∇l(Wk−1) denotes the gradient of the total loss l w.r.t. the weights W.

The stochastic gradient descent method (SGD) includes stochasticity by
changing the loss function to the input of a specific mini batch of data, i.e. using
L instead of l. Each mini batch of data provides a noisy estimator of the aver-
age gradient over all data points, hence the term stochastic. Technically, this is
realised by switching the mini batches in a round-robin manner to reach over the
full dataset (one full sweep is called an epoch; frequently, more than one epoch
of iterations is necessary to achieve quality in the optimization).

The family of Adam methods updates weight values by enhancing averages
of the gradient sk with estimates of the 1st moment (the mean) and the 2nd raw
moment (the uncentered variance). The approach called AdaGrad is directly
using these estimators:

Wk+1 = Wk − αk
sk

δ +
√

rk
(1)

The Adam method corrects for the biases in the estimators by using the esti-
mators ŝk = sk

1−βk
1

and r̂k = rk

1−βk
2

instead of sk and rk. Good default settings
for the tested machine learning problems described in this paper are a0 = 0.001,
β1 = 0.9, β2 = 0.999, and δ = 10−8.

3.3 Proposed 2nd-Order Optimizer

The second-order optimizer implemented and used for the results of this work con-
sists of a Newton scheme with a matrix-free conjugate gradient (CG) solver for the
linear systems of equations arising in each Newton step. The effect of the Hessian
on a given vector (i.e. a matrix-vector multiplication result) is realised via the so-
called Pearlmutter approach and avoids setting up the Hessian explicitly.

Newton-CG for Large ResNets 143

PearlmutterApproach. The explicit setup of the Hessian is memory-expensive
due to the quadratic dendence on the problem size; e.g., a 16M×16M matrix
requires about 1 TB of memory. We can obtain “cheap” access to the problems
curvature information by computing the Hessian-vector product. This method is
called Fast Exact Multiplication by the Hessian H (see [2], e.g.). Specifically, it
computes the Hessian vector product Hs for any s in just two (instead of the num-
ber of weights n) backpropagations (i.e. automatic differentiations for 1st deriva-
tive components). For our formulation of the problem this is defined as:

HL(W)s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

si
δ2

δw1δwi
L(W)

n∑
i=1

si
δ2

δw2δwi
L(W)

...
n∑

i=1

si
δ2

δwnδwi
L(W)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
δw1

n∑
i=1

si
δ

δwi
L(W)

δ
δw2

n∑
i=1

si
δ

δwi
L(W)

...
δ

δwn

n∑
i=1

si
δ

δwi
L(W)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ∇w(∇wL(W)·s)

The resulting formula is both efficient and numerically stable [2]. This results in
the Algorithm 1, denoted Pearlmutter in the implementation.

Newton’s Method. Recall the Newton equation

HL(Wk)dk = −∇L(Wk)

for the network loss function L : Rn → R, where W is the vector of network
weights and Wk the current iterate of Newton’s method to solve for the update
vector dk. The size of the Hessian is Rn×n which becomes infeasible to store with
state-of-the-art weight parameter ranges of ResNets (or similar).

Since frequently the Hessian has a high condition number, which implies near-
singularity and provokes imprecision, one would apply regularization techniques
to counteract a bad condition. A common choice is Tikhonov regularization. To
this end, a multiple of the unit matrix is added to the Hessian of the loss function
such that the regularized system is given by

(H(Wk) + τI)dk = H(Wk)dk + τIdk = −∇L(Wk) (2)

Note that for large τ the solution will converge to a fraction of the negative gra-
dient ∇L(Wk), similar to a stochastic gradient descent method. The regularized
Newton method is summarized in Algorithm 2.

Algorithm 1. Pearlmutter
Require: X, Y,W, s: Compute HLs = ∇w(∇wL(W) · s)
Require: W0: Initial estimate for W.
1: g0 ← gradient(L(W)) � Back-Prop
2: intermediate ← matmul(g0, s) � Matrix-Multiplication
3: Hs ← gradient(intermediate) � Back-Prop
4: return Hs

144 S. Reiz et al.

Algorithm 2. Newton Step
Require: W0: Starting point
Require: τ : Tikhonov regularization/damping factor
1: k ← 0
2: while Wk not converged do
3: k ← k + 1
4: pk ← CG((H + τI) , −∇L (Wk)) # Approx (H + τI) pk = −∇L (Wk)
5: if ∇L (Wk)� pk > τ then pk ← −∇L (Wk) # Feasibility check.
6: end if
7: αk ← α # Compute with lr-scheduler or use a given step size.
8: Wk ← Wk−1 + αkpk

9: end while

Conjugate Gradient Step. Since Pearlmutter realises a matrix-vector prod-
uct without setting up the full matrix, we employ an iterative solver that requires
matrix products only. We therefore employ a few (inaccurate) CG-iterations
to solve Newton’s regularized Eq. (2), resulting in an approximated Newton
method. The standard CG-algorithm is e.g. described in [13]; note that no direct
matrix-access is required since CG relies only on products of vectors.

Complexity: The method described above requires O(bn) operations for the eval-
uation of the gradient, where n is the number of network weights and b is the
size of the mini batch. In addition, for the evaluation of the Hessian product
and the solution of the Newton-like equation O(2mbn) is needed, where m is the
number of iterations conducted by the CG solver until a sufficient approximation
to the solution is reached. Although the second-order optimizer requires more
work than ordinary gradient descent, it may still be beneficial since, under the
conditions that it promises local q-superlinear convergence, where W� is a local
minimizer (see [14]), i.e. ∃ γ ∈ (0, 1), l ≥ 0, such that

||Wk+1 − W∗|| ≤ γ||Wk − W∗|| ∀k > l .

4 Scenarios and Neural Network Architectures

In this section, we briefly outline the different neural network structures for the
five different ML scenarios used in Sect. 6. Those networks share the general
structure outlined in Sect. 3.1 but differ in details considerably.

Regressional Analysis: Most regression models connect the input X with some
parametric function f to the output Y , including some error ε, i.e. Y = f(X,β)+
ε. The goal is find W to minimize the loss function which here is the sum of the
squared error for all samples i in the training data set

l =
N∑

i=1

(yi − f(xi,W))2 .

Newton-CG for Large ResNets 145

Variational Autoencoder: A variational autoencoder (VAE) consists of two cou-
pled but independently parametrized components: The encoder compresses the
sampled input X into the latent space. The decoder receives as input the infor-
mation sampled from the latent space and produces x′ as close as possible to X.
In a variational autoencoder, encoder and decoder are trained simultaneously
such that output X ′ minimizes a reconstruction error to X by the Kullback-
Leibler divergence. For details on VAEs, see [15], e.g.

Bayesian Neural Network: One of the biggest challenges in all areas of machine
learning is deciding on an appropriate model complexity. Models with too low
complexity will not fit the data well, while models possessing high complex-
ity will generalize poorly and provide bad prediction results on unseen data, a
phenomenon widely known as overfitting. Two commonly deployed strategies
to counteract this problem are hold-out or cross-validation on one hand, where
part of the data is kept from training in order to optimize hyperparameters of
the respective model that correspond to model complexity, and controlling the
effective complexity of the model by inducing a penalty term on the loss function
on the other hand. The latter approach is known as regularization and can be
implemented by applying Bayesian techniques on neural networks [16].

Let θ, ε ∼ N(0, 1) be random variables, w = t(θ, ε), where t is a deterministic
function. Moreover, let w ∼ q(w|θ) be normally distributed. Then our optimiza-
tion task where the loss function l is the log-likelihood reads [17]

l(w, θ) = log q(w|θ) − log P (D|w) − log P (w) .

Convolutional Neural Network (CNN): In general, the convolution is an opera-
tion on two functions I, K, defined by

S(t) = (I ∗ K)(t) =
∫

I(a)K(t − a)da .

If we use a 2D image I as input with a 2D kernel K, we obtain a two-dimensional
discrete convolution S(i, j) = (I ∗ K)(i, j) =

∑
x

∑
y I(x, y)K(i − x, j − y).

Color images additionally have at least a channel for red, blue and green
intensity at each pixel position. Assume that each image is a 3D-tensor and
Vi,j,k describes the value of channel i at row j and column k. Then let our kernel
be a 4D-tensor with Kl,i,j,k denoting the connection strength (weight) between a
unit in input channel i and output channel l at an offset of k rows and l columns
between input and output. CNNs apply, besides other incredients, convolution
kernels of different size in different layers in a sliding window approach to extract
features. For a brief introduction to CNN, see [12], e.g. As an example, the
prominent ResNet 50 network structure consists of 50 layers of convolutions or
other layers, with skip connections to avoid the problem of diminishing gradients.

Transfer Learning: Transfer learning (TL) deals with applying already gained
knowledge for generalization to a different, but related domain [18]. Creating a
separate, labeled dataset of sufficient size for a specific task of interest in the
context of image classification is a time-consuming and resource-intensive pro-
cess. Consequently, we find ourselves working with sets of training data that

146 S. Reiz et al.

are significantly smaller than other renowned datasets, such as CIFAR and Ima-
geNet [19]. Moreover, the training process itself is time-consuming too and relies
on dedicated hardware. Since modern CNNs take around 2–3 weeks to train on
ImageNet in a professional environment, starting this process from scratch for
every single model is hardly efficient. Therefore, general pretrained networks are
typically used which are then tailored to specific inputs.

5 Implementation

5.1 Automatic Differentiation Framework

The Newton-CG optimization strategy is independent of the implementation, and
of course, is suitable in any setting where second-order is beneficial (1) and stor-
ing Hessians is infeasible w.r.t. memory consumption (2). However, one needs a
differentiation framework. During the course of the work, a custom auto-encoder
(and similar) implementation with optimized matrix operations [10] became dif-
ficult w.r.t. the automatic differentiation (especially with convolutions), so we
decided to move to a prominent framework, TensorFlow. The TensorFlow pro-
gramming model consists of two main steps: (1) Define computations in form of
a “stateful dataflow graph” and (2) execute this graph. At the heart of model
training in TensorFlow lies the optimizer; like Adam or SGD, newton-cg uses
inheritance from the class tf.python.keras.optimizer v2.Optimizer v2. The
base class handles the two main steps of optimization: compute gradients()
and apply gradients(). When applying the gradients, for each variable that
is optimized, the method resource compute dense(grad, var) is called with
the variable and its (earlier computed) gradient. In this method, the algorithm
update step for this variable is computed. It has to be overwritten by any sub-
classing optimizer. We implemented two versions of our optimizer: one inheriting
from the optimizer in tf.train and one inheriting from the Keras Optimizer v2.
The constructor accepts the learning rate as well as the Newton-CG hyperparam-
eters: regularization factor τ , the CG-convergence-tolerance and the maximum
number of CG iterations. Internally, the parameters are converted to tensors and
stored as python object attributes. The main logic happens in the above men-
tioned resource compute dense(grad, var) method3. Table 1 lists the five ML
scenarios and their implementation used to generate the results below.

5.2 Data Parallelism

In order to show the applicability of the proposed second-order optimizer for
real-world large-scale networks, it was necessary to parallelize optimization com-
putations to obtain suitable runtimes. We decided to use the comparably simple
and prominent strategy of data parallelism. Data-parallel strategies t distribute
data across different compute units, and each unit operates on the data in par-
allel. So in our setting, we compute different Newton-CG steps on i different
3 See the implementation in https://github.com/severin617/Newton-CG/blob/main/

newton cg/newton cg.py#L127.

https://github.com/severin617/Newton-CG/blob/main/newton_cg/newton_cg.py#L127
https://github.com/severin617/Newton-CG/blob/main/newton_cg/newton_cg.py#L127

Newton-CG for Large ResNets 147

Table 1. Five ML scenarios with different neural network structures.

Scenario Description

reg-lif one-layer life expectancy predictiona

reg-bos two-layer boston housing price projection with keras b

vae-mnist variational autoencoder from Keras c

bnn-mnist Bayesian neural network with tensorflow-probabilityd [20]

resnet ResNet architecture from Keras e

ahttps://valueml.com/predicting-the-life-expectancy-using-tensorflow/.
bhttps://www.kaggle.com/code/prasadperera/the-boston-housing-
dataset.
chttps://keras.io/examples/generative/vae/.
dhttps://www.tensorflow.org/probability/.
ehttps://www.tensorflow.org/api docs/python/tf/keras/applications/
resnet50/ResNet50.

mini-batches in parallel, and the resulting update vectors are accumulated using
an Allreduce. Note that this is different to e.g. a i-times as big batch or i-times
as many steps since this would use an updated weight when computing gradient
information via backpropagations. In a smoothly defined function, this could
converge to a similar minimum, however due to stochasticity this may not.

Horovod is a data-parallel distributed training framework (open source) for
TensorFlow, Keras, PyTorch, and Apache MXNet, that scales a training script
up to many GPUs using MPI [21]. We apply Horovod for the data parallelisation
of the second-order Newton-CG approach. In a second step the whole algorithms
could be parallelized, this would then be model parallelism. The following matrix
summarizes the data and model parallelism in the context of neural network
optimization.

Data parallelism Model parallelism

Operations performed on different
batches of data

Parallel operations performed on
same data (in identical batch)

5.3 Software and Hardware Setup

Training with Keras and Horovod was used to show applicability and scalability
of the proposed second order optimization. The ResNets for computer vision were
pretrained for 200 epochs to improve second-order convergence, see Fig. 1 (f),
with training data from the Imagenet Large Scale Visual Recognition Challenge
2012 (ILSVRC2012)4. Test runs were performed on the Leibniz Rechenzentrum
(LRZ) AI System DGX-1 A100 Architecture with 8 NVIDIA Tesla A100 and 80
GB per GPU.
4 Following parameters were utilized in the pretraining: training/val-batch-size: 64,

learning-rate: 0.001, momentum: 0.9, weight-decay: 0.00005. After each step, ten
validation steps were used to calculate the top 5 accuracy, resulting in a final loss of
4.5332 and a final top 5 accuracy of 0.6800 after 2e5 steps.

https://valueml.com/predicting-the-life-expectancy-using-tensorflow/.
https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset.
https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset.
https://keras.io/examples/generative/vae/.
https://www.tensorflow.org/probability/.
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50.
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50.

148 S. Reiz et al.

6 Results

6.1 Accuracy Results for Different Scenarios

In this study, we applied the Newton-CG method as well as the two state-
of-the-art methods SGD and Adam for the five different network architectures
and specific scenarios described in Sect. 4 and Table 1 to evaluate the perfor-
mance for each case and obtain insight into potential patterns. We show the
detailed optimization behavior in Fig. 1 while the final validation loss optimum
is summarized in Fig. 2. A similar comparison figure was used in [9] highlighting
a similar insight that it is hard to predict the performance of different optimizers
for considerably different scenarios.

One can observe significant benefits of the 2nd-order Newton-CG in regres-
sion models, be it the life expectancy prediction or the boston housing data
regression. We believe this is mostly due to the continuity in loss/optimization,
whereas in the other scenarios this could jump, due to mini batches and classi-
fication.

The variatonal autoencoder seems to work better with the conventional opti-
mizers. Our hope was that due to the continuous behaviour we may see some
benefits. However, this is also very hyper-parameter dependent, and the conven-
tional methods have to be considerably tuned for that. In the Bayesian Neural
Network we see benefits of Newton-CG especially against Adam.

We observe hardly any benefits of 2nd-order optimization for the ResNet50
model. While at first we follow the near-optimal training curve, Newton-CG
moves away from the minimum. One problem could be that we work with a
fixed learning rate. This could be tuned with a learning-rate-scheduler, which we
currently work on.

6.2 Parallel Runs

Exploiting parallelism allows for distributing work in case of failures (e.g.
resilience), usage of modern compute architectures with accelerators, and ulti-
mately, lower time-to-solution. All network architectures shown before can be
run in parallel, in the data parallel approach explained in Sect. 5.2.

For the following measurements, we ran the ResNet50 model on the DGX-
1 partition of the LRZ, since it is our biggest network model and therefore,
allows for the biggest parallelism gains (see Table 2).5 Note that the batch size is
reduced with GPUs, in order to account for a similar problem to be solved when
increasing the amount of workers. However, it cannot be fully related to strong
scaling, since the algorithm changes as explained in Sect. 5. In a parallel setup,
the loss is calculated for a smaller mini-batch and then the update is accumulated.
This is different to looking at a bigger batch, since the loss function is a different
one (computed for mini-batch per GPU only).

5 On the LRZ cluster, we had to reduce to 20% training images for lower memory disk
usage and 60% of the optimization layers, 30 layers for ResNet-50.

Newton-CG for Large ResNets 149

Fig. 1. Results for the training loss ((a), (b) and (f)) and the validation loss ((c)–
(e)) for the three compared methods: SGD in green, Adam in blue and Newton-CG
in orange. The methods have been applied to the five different ML scenarios with
corresponding different neural network structure: (a) regression case for life expectancy
prediction, (b) regression for boston housing dataset, (c) Variational Auto Encoder with
MNIST, (d) Bayesian Neural Network with MNIST, (e) ResNet50 with ImageNet, and
(f) the corresponding sgd pretraining run (“steps” corresponds to epochs). (Color figure
online)

150 S. Reiz et al.

Fig. 2. Final loss value of each optimizer for the five different neural network architec-
tures and scenarios.

Table 2. Newton-CG runtimes per epoch with batch-size 512, ResNet-50 on ImageNet

1 GPU 2 GPUs 4 GPUs 8 GPUs

A100 runtime 238 s 121 s 65 s 37 s

A100 parallel efficiency 100% 98.3% 91.5% 80.4%

Similarly, we conducted the performance study on a single GPU for the
two other optimizers. SGD and Adam take 238 s and 242 s per epoch, resp.,
showing similar runtimes as Newton-CG with 238 s. We believe that for this
big scenario the runtime is dominated by memory transfer and the one vs. two
backpropagations hardly makes a difference.

7 Conclusion and Future Work

In conclusion, we found benefits of second-order curvature information plugged
into the optimization of the neural network weights especially for regression
cases, but not much benefits in classification scenarios. In order to improve for
classification, we experimented with a cyclical learning rate scheduler for ResNets
for computer vision and Natural Language Processing, but more studies need to
be investigated. The data-parallel approach seems to work well in performance
numbers, since we reach about 80% parallel efficiency for 8 A100 GPUs.

For showcasing purposes, you may also try the frontend android application
TUM-lens6, where some models have been trained with Newton-CG.

6 https://play.google.com/store/apps/details?id=com.maxjokel.lens.

https://play.google.com/store/apps/details?id=com.maxjokel.lens

Newton-CG for Large ResNets 151

References

1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

2. Pearlmutter, B.A.: Fast exact multiplication by the Hessian. Neural Comput. 6(1),
147–160 (1994)

3. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)
4. Martens, J., et al.: Deep learning via Hessian-free optimization. In: ICML, vol. 27,

pp. 735–742 (2010)
5. Martens, J.: Second-order optimization for neural networks. University of Toronto

(Canada) (2016)
6. Osawa, K., Tsuji, Y., Ueno, Y., Naruse, A., Yokota, R., Matsuoka, S.: Large-scale

distributed second-order optimization using kronecker-factored approximate cur-
vature for deep convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12359–12367 (2019)

7. Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K., Mahoney, M.W.: Ada-
hessian: an adaptive second order optimizer for machine learning. arXiv preprint
arXiv:2006.00719 (2020)

8. O’Leary-Roseberry, T., Alger, N., Ghattas, O.: Inexact newton methods for
stochastic nonconvex optimization with applications to neural network training.
arXiv preprint arXiv:1905.06738 (2019)

9. Schmidt, R.M., Schneider, F., Hennig, P.: Descending through a crowded valley-
benchmarking deep learning optimizers. In: International Conference on Machine
Learning, pp. 9367–9376. PMLR (2021)

10. Chenhan, D.Y., Reiz, S., Biros, G.: Distributed-memory hierarchical compression
of dense SPD matrices. In: SC 2018: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 183–197. IEEE (2018)

11. Chen, C., Reiz, S., Yu, C.D., Bungartz, H.-J., Biros, G.: Fast approximation of
the Gauss-Newton Hessian matrix for the multilayer perceptron. SIAM J. Matrix
Anal. Appl. 42(1), 165–184 (2021)

12. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
13. Shewchuk, J.R., et al.: An introduction to the conjugate gradient method without

the agonizing pain (1994)
14. Suk, J.: Application of second-order optimisation for large-scale deep learning.

Masterarbeit, TUM (2020)
15. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Found.

Trends R© Mach. Learn. 12(4), 307–392 (2019)
16. Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford University

Press, Oxford (1995)
17. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in

neural network. In: International Conference on Machine Learning, pp. 1613–1622.
PMLR (2015)

18. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems,
vol. 27 (2014)

19. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Master’s thesis, University of Tront (2009)

20. Weigold, H.: Second-order optimization methods for Bayesian neural networks.
Masterarbeit, Technical University of Munich (2021)

21. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799 (2018)

http://www.deeplearningbook.org
http://arxiv.org/abs/2006.00719
http://arxiv.org/abs/1905.06738
http://arxiv.org/abs/1802.05799

152 S. Reiz et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Neural Nets with a Newton Conjugate Gradient Method on Multiple GPUs
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Scientific Computing for Deep Learning
	3.2 State-of-the-Art Optimization Approaches
	3.3 Proposed 2nd-Order Optimizer

	4 Scenarios and Neural Network Architectures
	5 Implementation
	5.1 Automatic Differentiation Framework
	5.2 Data Parallelism
	5.3 Software and Hardware Setup

	6 Results
	6.1 Accuracy Results for Different Scenarios
	6.2 Parallel Runs

	7 Conclusion and Future Work
	References

