
Chapter 2
General Topology

2.1 Topological Spaces

If a set X and a collection of its subsets τ satisfy the following three properties (i)
τ contains X and the empty set ∅; (ii) τ is closed under finite intersections; (iii) τ

is closed under arbitrary unions; then, the pair (X, τ ) is called a topological space.
The elements of τ are said to be open and their complements in X are said to be
closed. We assume all our topological spaces (X, τ ) to be Hausdorff , that is, for
any two points p1, p2 ∈ X there exist open neighbourhoods U1,U2 ∈ τ of p1 and
p2, respectively, such that U1 ∩U2 = ∅. In what follows we frequently drop the
explicit declaration of the topology τ . A point p ∈ X is called a limit of the sequence
{pk}k≥0 if for any open neighbourhood U of p there is a K ∈ N such that pk ∈ U
for all k ≥ K . As X is a Hausdorff space, this limit is unique, which is important
in the context of defining dynamical systems and their stability. Moreover, as we
will appeal to Whitney’s approximation theorems, we assume all our topological
spaces (X, τ ) to be second countable, that is, there is a set B ⊆ τ such that every
element in τ can be written as a union of countably many elements in B, i.e., τ

admits a countable basis. Then, we call the topological space (X, τ ) a n-dimensional
topological manifold, when for each p ∈ X there is an open neighbourhood U ∈ τ

of p such thatU is homeomorphic toRn (or equivalently, some open set ofRn), that
is, there is a continuous bijection between U and R

n with the inverse of this map
also being continuous (see below). When these homeomorphisms fail to exist, but
do exist when elements of τ are also allowed to be homeomorphic to open subsets
of Hn = {p ∈ R

n : pn ≥ 0}, X is said to be a manifold with boundary, frequently
denoted as ∂X �= ∅. Indeed, ∂(∂X) = ∅.
Example 2.1 (The standard topology on R

n) Let ‖ · ‖ be a norm on R
n and let

B
n
r (p) = {y ∈ R

n : ‖p − y‖ < r} be an open ball in R
n . The collection of all these

open balls gives rise to a topology on Rn , called the norm topology, or the standard
topology, denoted τstd. Now it can be shown that the set of all open balls Bn

r (p),
with a rational radius r , centred at a point p with rational coordinates, is a countable
basis for the standard topology [4, Chap. IV]. As any two points p1, p2 ∈ R

n admit
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Fig. 2.1 Example 2.2, for the subspace- (i), quotient- (ii) and the standard topology (iii) on S
1,

we show a typical open set U ′. When applicable, U denotes the corresponding open set in the
topological space the topology on S

1 is inherited from

open non-intersecting neighbourhoods Bn
r (p1),B

n
r (p2) ∈ τstd for r = 1

2‖p1 − p2‖,
it readily follows that (Rn, τstd) is Hausdorff and second-countable. As any open ball
is homeomorphic to R

n , e.g., consider without loss of generality B
n
1(0) and see that

the homeomorphism ϕ : Bn
1(0) → R

n is given by ϕ : p �→ p/(1 − ‖p‖) with the
inverse map ϕ−1 : y �→ y/(1 + ‖y‖), it follows that (Rn, τstd) is in fact a topological
manifold.

Example 2.2 (Topologies on the circle S1) When looking at the circle as a subset
of the plane, i.e., S1 = {x ∈ R

2 : ‖x‖2 = 1}, one can define a topology on S
1 via a

topology onR2. Generally, let (X, τ ) be a topological space and letA ⊆ X, then τA =
{A ∩U : U ∈ τ } is the subspace topology on A. The circle can also be described
as S1 = R/Z or S1 = [0, 1]/ ∼ for 0 ∼ 1, that is, one identifies all integers. Now
again, the topology on R can be used to generate a topology on R/Z. Generally,
let ∼ be an equivalence relation on the topological space (X, τ ) and define the
surjective map q : X → X/ ∼, then, the quotient topology on X/ ∼ is defined as
τ/∼ = {U ⊆ X/ ∼: q−1(U ) ∈ τ }. A third option would be to directly employ open
sets of the form {eiθ : θ ∈ (a, b) ⊆ [0, 2π ]} ⊂ C and proceed as in Example 2.1. See
Fig. 2.1 for a visualization of these topologies.

A function f : R → R is said to be continuous at x ∈ Rwhen for each ε > 0 there
is δ > 0 such that for all y ∈ R satisfying |x − y| < δ one has | f (x) − f (y)| < ε.
Some refer to this construction as the ε − δ definition of continuity. Imposing a
topology on spaces X and Y allows for generalizing the notion of continuity beyond
Euclidean spaces. Let (X, τ ) and (Y, τ ′) be topological spaces, then f : X → Y is
said to be continuous when for each V ∈ τ ′ the preimage under f is a contained
in τ , i.e., f −1(V ) = {p ∈ X : f (p) ∈ V } ∈ τ . Indeed, under the standard topology
on R, one recovers the ε − δ definition. Another concept of importance is that of
compactness. An open cover of a topological space (X, τ ) is a collection of open
sets U = {Uj } j∈J with Uj ⊆ X for all j ∈ J , such that X = ∪ j∈JUj . Then, if a
subset of U still covers X, this subset is said to be a subcover. Now a topological
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space X is compact when every open cover of X has a finite subcover. The notion of
compactness is fundamental in topology since for any continuous map f : X → Y
between topological spaces X and Y, when X is compact, so is f (X) [9, Theo-
rem 4.32]. A useful result is the Heine-Borel theorem, stating that a subset of Rn

is compact if and only if it is closed and bounded [9, Theorem 4.40]. One should
observe that continuity and compactness can be in conflict, i.e., a fine topology is
desirable from a continuity point of view, yet a coarse topology is easier to work
with when it comes to compactness.

Regarding notation, we will drop the explicit dependency on τ as the upcom-
ing material is invariant under the particular choice of the topology, as long as the
topology satisfies the properties as highlighted above. Besides, the dimension (of the
component(s) under consideration) is frequently added bymeans of a superscript, i.e.,
Xn denotes a n-dimensional topological manifold. Unless stated otherwise, n will
be finite. As mentioned above, maps of interest are homeomorphisms, i.e., continu-
ous bijections with a continuous inverse. When two objects are homeomorphic, we
speak of topological equivalence, denoted �t . Here, mapping the interval [0, 1) to
the circle S1 is the prototypical example of a map that is continuous and one-to-one,
yet not a homeomorphism as the inverse cannot be chosen to be continuous.

2.2 Homotopy and Retractions

It turns out that many topological invariants (under homeomorphims) are invariant
under a weaker notion; that of homotopy.1 Let X and Y be topological spaces with
g1 and g2 continuous maps from X to Y. A continuous map H : [0, 1] × X → Y is
said to be a homotopy from g1 to g2 when for all p ∈ X we have H(0, p) = g1(p)
and H(1, p) = g2(p). If such a map exists, g1 and g2 are homotopic, which is an
equivalence relation, denoted g1�hg2. Moreover, if H is stationary with respect
to some set A ⊆ X, that is, H(t, p) = g1(p) = g2(p) for all p ∈ A and t ∈ [0, 1],
then, H is a homotopy relative to A. We note that not only homotopies give rise to
an equivalence class, but also homotopies relative to some subset [14, p. 24]. Two
topological spaces X and Y are called homotopy equivalent, or simply homotopic,
when there are continuousmaps g1 : X → Y, g2 : Y → X such that g1 ◦ g2�h idY and
g1 ◦ g2�h idX, e.g., generalizing the concept of a homeomorphism to maps that are
not necessarily invertible. It is imperative to remark that when colloquially referring
to “the topology of a space X” one commonly refers to the homotopy type of X.

Definition 2.1 (Retractions) Given a topological space X, a subset A ⊆ X is a
retract of X if there is a continuous map r : X → A, called a retraction, such that
r ◦ ιA = idA, for ιA : A ↪→ X the inclusion map. The retraction is said to be a defor-
mation retract when ιA ◦ r�h idX. We speak of a strong deformation retract when
the homotopy is relative to A. On the other hand, A is weak deformation retract of
X if every open neighbourhoodU ⊆ X of A contains a strong deformation retract V
of X such that A ⊆ V .

1 One can argue that homotopy theory is a field of its own and not merely a branch of topology [1].
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Fig. 2.2 Definition 2.1, (i) a deformation retract of X onto the point A; (ii) a strong deformation
retract of X onto the point A; (iii) a weak deformation retract of X onto the set A, with A being
the boundary of the cube without the point a, U an open neighbourhood of A and V ⊂ U a strong
deformation retract of X

A deformation retraction maps all of X, continuously, to A, but with A free to
move throughout the process. On the other hand, a strong deformation retract keeps
A stationary, see also Fig. 2.2. A mere retraction to a point is not particularly inter-
esting as one can retract to any point via the constant map. As will be clarified below,
deformation retracts, however, relate to stability notions indeed. For more on retrac-
tion theory, see [2, 7], it is imperative to remark that the literature does not agree on
the terminology used in Definition 2.1 cf. [5].

Lemma 2.1 (Subset deformation retract) Let both A and B be deformation retracts
of C. Then, if A ⊆ B, A is a deformation retract of B.

Proof As C deformation retracts on A ⊆ C there is a map rA : C → A such that
rA ◦ ιAC = idA, ιAC ◦ rA�h idC for ιAC : A ↪→ C . Similarly for B ⊆ C , there is a
map rB : C → B such that rB ◦ ιBC = idB , ιBC ◦ rB�h idC . Now construct the map
r : B → A via the inclusion map ιBC : B ↪→ C , that is, r = rA ◦ ιBC . As A ⊆ B,
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we have that r ◦ ιAB = rA ◦ ιBC ◦ ιAB = rA ◦ ιAC = idA. Moreover, as ιBC ◦ ιAB ◦
rA�h idC and rB ◦ ιBC = idB we have that ιAB ◦ r�h idB , as desired.

Formore on the relation between homotopies and deformation retractions, see, [7],
[14, Chap. 1], [5, Chap. 0] or [10, Chap. 7].

When for a closed subset A ⊆ X there is an open neighbourhood U ⊆ X of A
such that A is any retraction type from Definition 2.1 of U , then A is said to be a
neighbourhood retract, of that particular type, e.g., a neighbourhood deformation
retract, reconsider Fig. 2.2(iii).

Lemma 2.2 (Neighbourhood retracts [12, Theorem 4]) Let A ⊆ X be a weak
deformation retract of B ⊆ X, then the following hold:

(i) if A is a neighbourhood retract of X, then A is a retract of B;
(ii) if A is a neighbourhood deformation retract of X, then A is a deformation

retract of B;
(iii) if A is a strong neighbourhood deformation retract of X, then A is a strong

deformation retract of B.

The intuition behind Lemma 2.2 is that B strongly deformation retracts onto a neig-
bourhood of A, which can be subsequently retracted to A itself.

The prototypical retraction example is that of the sphere S
n−1 being a strong

deformation retract of the punctured Euclidean space Rn \ {0}. To see this, consider
r(p) = p/‖p‖2 and let the homotopy, relative to Sn−1, be the convex combination of
r and idRn , that is, H(t, p) = tr(p) + (1 − t)p. See Example 3.1 for a retraction in
the context of vector bundles, Example 5.3 for a homotopy in the context of Lyapunov
functions and Example 6.10 for strong deformation retracts of Lie groups.

A set S is contractible when idS is homotopic to a constant map. Equivalently,
S is homotopy equivalent to a point or a point p ∈ S is a deformation retract of
S. For example, X in Fig. 2.2(i) is contractible, while X in Fig. 2.2(iii) is not. Note,
contractability does not imply that the deformation is strong [5, Exercise 0.6].

Remark 2.1 (On contractible sets) One might expect that all n-dimensional con-
tractible sets are homeomorphic to R

n . In 1935, Whitehead provided the first coun-
terexample. Namely, there is an open, 3-dimensional manifold which is contractible
but not homeomorphic to R3, see [15]. Although we focus on the finite-dimensional
setting, more counter-intuitive phenomena appear in the infinite-dimensional setting.
For example, S∞ is contractible [5, Example 1B.3].

2.3 Comments on Triangulation

Motivated by Morse [3, p. 913], triangulations were formally introduced by Cairns,
with further initial work by Brouwer, Freudenthal and Whitehead [8, Chap. 15]. A
topological space X is called triangulablewhen the space is homeomorphic to some
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Fig. 2.3 Adding the lines
�1, �2 and �3 preserves the
Euler characteristic

polyhedron P . Then, the Euler characteristic for surfaces of polyhedra is given by
χ(P) = V − E + F , for V the number of vertices (0-dimensional), E the number of
edges (1-dimensional) andF the number of faces2 (2-dimensional) of the polyhedron
P at hand. It turns out that this number χ(P) equals 2 − 2g, for g the number of
holes in P and is independent of how one selects the triangulation, as such, χ is a
topological invariant of X, see Fig. 2.3. This invariance is why in what follows one
will keep seeing alternating sums akin to χ(P). Studying a topological space X via a
naïve triangulation, however, requires attention above dimension 3, those topological
spaces do not have a canonical triangulation e.g., see [13], [9, Chap. 5] for more on
the so-called Hauptvermuntung.

For further references on general topology, see [5, 7, 9, 14] and see [11] for how
homotopies appeared in the context of robust control, albeit not explicitly.
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