
Modal Crash Types for Intermittent Computing⋆

Farzaneh Derakhshan(B), Myra Dotzel, Milijana Surbatovich, and Limin Jia

Carnegie Mellon University, Pittsburgh PA, USA
{fderakhs,mdotzel,milijans,liminjia}@andrew.cmu.edu

Abstract. Intermittent computing is gaining traction in application do-
mains such as Energy Harvesting Devices (EHDs) that experience arbi-
trary power failures during program execution. To make progress, pro-
grams require system support to checkpoint state and re-execute after
power failure by restoring the last saved state. This re-execution should
be correct, i.e., simulated by a continuously-powered execution. We study
the logical underpinning of intermittent computing and model check-
point, crash, restore, and re-execution operations as computation on
Crash types. We draw inspiration from adjoint logic and define Crash
types by introducing two adjoint modality operators to model persistent
and transient memory values of partial (re-)executions and the transi-
tions between them caused by checkpoints and restoration. We define
a Crash type system for a core calculus. We prove the correctness of
intermittent systems by defining a novel logical relation for Crash types.

Keywords: intermittent computing · modal Crash type · logical relation

1 Introduction

Intermittent computing is gaining importance in application domains that re-
quire inaccessible or large-scale device deployments, such as wildlife monitor-
ing [28], tiny satellites [22,29], or smart civil infrastructure [1]. As battery main-
tenance may be infeasible in these environments, programs can instead run on
batteryless Energy Harvesting Devices (EHDs). An EHD can run solely off en-
ergy harvested from its environment, at the cost of being powered intermit-
tently. The device harvests energy (e.g., via solar panel) into a re-chargeable
buffer. Once the energy buffer is full, the device turns on and begin to compute,
consuming the stored energy. When the buffer drains, the device turns off at
an arbitrary location until it can recharge and repeat this operational cycle. A
power failure erases volatile execution state (e.g., the program counter), while

⋆ This work was generously funded in part through National Science Foundation (NSF)
Award 2007998, NSF Graduate Research Fellowship Program grants DGE1745016
and DGE2140739, and the CMU CyLab Security & Privacy Institute. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the sponsoring organizations.

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp.
https://doi.org/10.1007/978-3-031-30044-8 7

168–196, 2023.

https://doi.org/10.1007/978-3-031-30044-8_7
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_7&domain=pdf

nonvolatile state persists. For programs to make progress, they require inter-
mittent system support to save state at checkpoints and restore the saved state
after power failure, potentially causing re-execution from the last checkpoint.

As EHDs aim to enable long-term deployments with little or no mainte-
nance, intermittent systems must execute programs reliably despite frequent
power failures and partial executions. Initial systems [35,43,24] relied only on in-
formal notions of correctness that left them susceptible to memory consistency
bugs caused by reading the results of partial executions [23] or by allowing sensor
reads from past executions to remain in the nonvolatile memory [39]. More recent
work [41,40,9,13] provides formal frameworks and correctness criteria for reason-
ing about intermittent execution. More concretely, all intermittent executions of
a program must be simulated by some continuously-powered execution [41]. In
other words, intermittent execution should be idempotent. Even if the system in-
duces multiple partial executions of a program due to power failure, the program
should not generate a different result than it would on a single execution.

The correctness of an intermittent execution relies on checkpointing, restor-
ing, and finalizing state upon reaching the next checkpoint; mistakes in these op-
erations can lead to incorrect, non-idempotent behavior. Few works have tried to
understand the fundamental logical underpinning of these operations. This work
fills this gap by formalizing checkpointing, crash, restoration, and re-execution
as computation on Crash types. Crash types capture the core notion of inter-
mittent computing: some values and computations persist across power failures
and others do not. For instance, nonvolatile memory state persists across power
failure and reboots, while volatile memory does not. Conversely, partially com-
puted results do (or rather should) not persist across power failures, while com-
pleted/checkpointed computations do. We call the former unstable values and
computations and the latter stable values and computations. Our key insight is
that the interactions between these stable and unstable components bear close
resemblance to shifts in adjoint logic [8,36]. Computation of a stable value can
only rely on locations that store stable values, while computation on unstable
values can rely on both stable and unstable values. Moreover, checkpoint and
restore operations can turn values of one type to the other. We define terms and
their associated types so that each of the key intermittent computing operations
must be well-typed under our Crash types.

We define a core calculus for intermittent computing and develop a type sys-
tem for Crash types by using the two adjoint modality operators. The Crash type
of an intermittent computation is: Cunit = ↓(nat⇝ ↑ Cunit)∨↓↑unit, which says
that the computation will either encounter a power failure (the left disjunct),
or succeed in producing a stable value (the right disjunct). In the former case,
the computation is suspended until energy arrives, after which it will again act
as an intermittent computation. This recursive definition captures the multi-
ple re-executions of a computation under repeated power failures. To prove the
correctness of intermittent systems, we define a novel logical relation for Crash
types, indexed by the number of power failures, which relates a continuously-

Modal Crash Types for Intermittent Computing 169

powered execution to an intermittent execution. While intermittent computing
motivates our results, the methods we develop are generally applicable to other
system failures with the same effect on persistent and transient storage.

This paper makes the following technical contributions:

– The first logical interpretation of key operations of intermittent execution.
– Novel Crash types to specify how stable and unstable portions of the system

and computation interact.
– A core calculus for Crash types with progress and preservation.
– A novel logical relation to prove the correctness of intermittent executions.

Detailed proofs and definitions can be found in the extended TR [15].

2 Background

We provide background on intermittent computing and detail how checkpoint
systems work to store and restore program state to handle power failures.

Intermittent Computing on EHDs. EHDs need intermittent system sup-
port to save necessary state before power failure and to restore it after re-
boot. When and where such checkpoints occur governs the intermittent exe-
cution model under which software executes. The two prevailing intermittent
execution models are just-in-time (JIT) checkpoints [5,4] and atomic execu-
tion [23,24,43,37]. Under a JIT model, state is saved immediately prior to power
failure so that execution resumes from the same point after reboot. Under an
atomic execution model, state is saved at the beginning of an atomic region. If
power fails before the end of the region, the system will reboot to the beginning
of the region, re-executing until the region completes without power failure (akin
to software transactions [38]). State-of-the-art intermittent systems use a hybrid
“JIT + Atomics” model that defaults to JIT checkpoints except when there is
an explicit atomic region [40,25,19]. Our core calculus follows this hybrid model.

To ensure idempotence, an intermittent system must save the value of volatile
state and often a portion of the nonvolatile state. To illustrate why, consider an
execution of the simple program in Fig. 1. The program has four variables stored
in nonvolatile memory: x, y, and z of type int and u of type bool. It consists
of two code blocks: an atomic region declared with the Ckpt construct (lines
1-7 on the left of Fig. 1) and a regular code block executed in JIT mode (lines
8-14 on the right). A continuous execution of the atomic region with initial state
x = 2, y = 0, z = 1, u = ff ends in x = 2, y = 1, z = 1, u = tt. Now, suppose power
fails after the execution of Line 2. Once the device recharges, the program restarts
from the start of the atomic region. If the system does not restore y’s original
value, this re-run computes an incorrect result: x = 2, y = 2, z = 1, u = ff. Thus,
to ensure idempotent execution, an intermittent system must checkpoint, i.e.,
save the value of, both volatile and nonvolatile memory. We next explain correct
execution of the program in Fig. 1 for atomic and JIT modes.

Atomic Region Execution. As EHDs are highly resource constrained, the
system should save state judiciously; checkpointing all of nonvolatile memory is

F. Derakhshan et al.170

1 Ckpt[a1; x,z:read-only](

2 y:=y+z;

3 let w= x-y in

4 if w>0 then

5 u:=tt

6 else

7 u:=ff);

8 let w=not u in

9 if w then

10 x=x+y;

11 w=ff

12 else

13 skip;

14 skip

Fig. 1. An example program with an atomic region and a JIT region

2 0 1 ff
ℓ! ℓ! ℓ" ℓ#

𝖭𝖵$

𝖵%2 0 1 ff
ℓ! ℓ! ℓ" ℓ"

𝖭𝖵% 0 ff
ℓ! ℓ#

𝖵!
Crash

Restore

1 ff2 0 1 ff𝖭𝖵!

2 0 1 ff𝖭𝖵&
ℓ% ℓ"

2 0 1 ff𝖭𝖵" 𝖵" 0 ff
ℓ! ℓ#

InitWorld

2 0 1 ff𝖭𝖵' 1 tt 1
⋮

FinWorld

2 1 1 tt𝖭𝖵(

ℓ! ℓ! ℓ" ℓ#

Ω!,#: = 𝑥: ↑ 𝑖@RD, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK
Σ!,#: = 𝑦: ↓↑ 𝑖@CK, 𝑢: ↓↑ 𝑏@CK

L1

L2

L7
ℓ)

𝛾:= 𝑥 ↦ ℓ!, 𝑦 ↦ ℓ#,
𝑧 ↦ ℓ$, 𝑢 ↦ ℓ%

𝛾:= ⋯ ,𝑤 ↦ ℓ)

Ω&: = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK

Ω': = 𝑥: ↑ 𝑖@RD, 𝑦 : ↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK

Ω$: = 𝑥: ↑ 𝑖@RD, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK
Σ": = 𝑦: ↓↑ 𝑖@RD, 𝑢: ↓↑ 𝑏@CK

Ω(: = 𝑥: ↑ 𝑖@RD, 𝑦 : ↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK
Σ(: = 𝑦: ↓↑ 𝑖@CK, 𝑢: ↓↑ 𝑏@CK, 𝑤: ↓↑ 𝑖@CK

Ω): = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK

(0)

(1)

(2)

(3)

(4)

(5)

(6)

↑ 𝐶*+,-

𝐶*+,-

𝐶*+,-

𝐶*+,-

𝐶*+,-

↑ 𝑈𝑛𝑖𝑡

𝑛𝑎𝑡 ⇝↑ 𝐶*+,-

ck ck

ℓ! ℓ"ck ck

𝖵′
⋮ ⋮

ck

ck

ck

ck ck

ck

ck

ck

L1-L6

Initial state

Final state

Fig. 2. Intermittent execution of an atomic region. We write i for int and b for bool.

expensive and unnecessary. For example, variables in an atomic region that are
read-only (i.e., never updated) do not change value and need not be checkpointed.
In our example, x and z are read-only, so checkpointing y and u is enough to ensure
correct intermittent execution. Many intermittent systems follow this design of
checkpointing all variables that are not read-only [37,19,17,26,44,12]. Given such
a system, Fig. 2 shows an execution of the atomic region in Fig. 1. For now, ignore
the last two columns about typing. To save and restore state, the system follows
redo-log semantics. It records updates to checkpointed variables in a special
volatile region, not main memory. This region clears if power fails, throwing
out partial updates. Upon reaching the next atomic or JIT region, the system
commits the updates by copying them back to main memory.

Row (0) shows initial nonvolatile locations, their values, and the mapping
between variables and memory locations; locations ℓ1, ℓ2, ℓ3, and ℓ4 in the non-
volatile memory correspond to variables x, y, z and u, respectively. When starting
the atomic region (Row (1)), the system takes a snapshot of ℓ2 and ℓ4 and stores
it in the volatile region V1. We mark the original nonvolatile locations as check-
pointed with the superscript ck. i.e., ℓck2 and ℓck4 .Checkpointed locations ℓck2 and
ℓck4 remain untouched for the remainder of the atomic region execution. Every
access to variables y and u will instead be associated with their volatile copy ℓ2
and ℓ4, e.g., the assignment in Line 2 is applied to the volatile logs of Row (2).

Modal Crash Types for Intermittent Computing 171

On power failure, all volatile memory clears (Row (3)), throwing out the
log. The system shuts down until more energy is harvested, at which point the
system regenerates the volatile copies ℓ2 and ℓ4 (Row (4)) and resumes execution
from Line 2. When the execution of the atomic region is complete (Row (5)),
the system commits the updated values of the checkpointed locations (ℓ2 and ℓ4)
from volatile memory to their original nonvolatile locations (Row (6)). During
execution, local variables are stored to volatile memory via a let construct, e.g.,
location ℓ5 for variable w on Line 3, corresponding to a volatile execution stack.
On power failure, the device clears all volatile memory, but such stack allocated
locations will be recreated upon re-execution.

JIT Region Execution. The JIT execution model prevents re-execution, so the
intermittent system only saves and restores volatile state at checkpoints. Fig. 3
shows the details of executing the code on the right of Fig. 1 in JIT mode. Row
(0) shows the initial nonvolatile locations, their values, and the mapping from
variables to locations. The system starts the JIT region by creating an empty
context to be populated by volatile locations (Row (1)). The let construct in
Line 8 allocates a fresh location ℓ5 in V2 and updates the mapping to associate
variable w to ℓ5. On a power failure in JIT mode, the system creates a nonvolatile
copy of the volatile location ℓ5 just before it loses the location (Row (3)). It marks
the nonvolatile copy with the superscript ck. When restoring the program, the
system restores these copies to volatile memory and dismisses the nonvolatile
backups (Row (4)). The program then continues with the if clause on lines
9-12, finally dropping the volatile location ℓ5, as it is out of scope (Row (5)).

2 1 1 tt
ℓ! ℓ! ℓ" ℓ#

𝖭𝖵$

𝖵%2 1 1 tt𝖭𝖵%

𝖵!
Crash

Restore

2 1 1 tt𝖭𝖵!

2 1 1 tt𝖭𝖵&

2 1 1 tt𝖭𝖵" 𝖵"

2 1 1 tt𝖭𝖵'

⋮

Ω!: = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CKStart

L8
(let clause)

𝛾:= 𝑥 ↦ ℓ!, 𝑦 ↦ ℓ",
𝑧 ↦ ℓ#, 𝑢 ↦ ℓ$

𝛾:= ⋯ ,𝑤 ↦ ℓ(

Ω%: = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK

Ω&: = 𝑥: ↑ 𝑖@CK, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢 ∶↑ 𝑏@CK,

Ω#: = 𝑥: ↑ 𝑖@CK, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢 ∶↑ 𝑏@CK

Ω': = 𝑥: ↑ 𝑖@CK, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢 ∶↑ 𝑏@CK

(0)

(1)

(2)

(3)

(4)

(5)

↑ 𝐶()*+

𝐶()*+

𝐶()*+

𝐶()*+

↑ 𝑈𝑛𝑖𝑡

𝑛𝑎𝑡 ⇝↑ 𝐶()*+

⋮

L9-L12
(if clause)

Initial state

Final state

Σ!: = !

Ω": = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK
Σ": =𝑤: ↓↑ 𝑏

𝑤 ∶↑ 𝑏@CKck

Σ#: =𝑤: ↓↑ 𝑏
ff

ff

ff

Fig. 3. Intermittent execution of a JIT region. We write i for int and b for bool.

3 Key Ideas of Crash Types

We present the intuition behind the stable and unstable memory types (Sec. 3.1),
Crash types which internalize checkpointing, power failure/crash, restoration, re-

F. Derakhshan et al.172

execution, and finalization of atomic regions (Sec. 3.2), and the independence
principle applied to intermittent computing (Sec. 3.3).

3.1 Modal Store Types

An unstable value is an intermediate result of an execution towards a stable value
and will be lost upon a power failure. However, if the result of a partial execution
is committed to a nonvolatile location, it will persist and is thus stable. To
reflect the behavior of a memory location in its type, we introduce two (adjoint)
modalities ↑su (read as “up shift from unstable to stable”) and ↓su (read as “down
shift from stable to unstable”), where ↑su τ indicates that the location stores a
stable value of type τ and ↓su τ indicates that the location stores an intermediate
result of an execution toward a value of type τ . To fully capture how intermittent
execution interacts with a memory location, we also annotate the type of a
memory location with an access qualifier, RD or CK, that represents whether the
location is read-only or checkpointed by the system, respectively.

In our example in Fig. 2, the read-only variable x is stored in nonvolatile
memory, so it has type x :↑su int@RD. The checkpointed variable y has type
yck :↑su int@CK in the nonvolatile memory, while y’s volatile copy has type
y :↓su↑su int@CK. We use the context Ω to type nonvolatile memory and the
context Σ to type volatile memory, as shown in the third columns of Figs. 2
and 3. We drop the superscript s and subscript u from the modalities for brevity.

3.2 Crash Types

To capture the effects of intermittent execution in the type of expressions and
commands, we introduce Crash types, as the notion of stable and unstable values
is insufficient. One might expect the expression x − y to have the type ↓↑int
as it is a (partial) execution towards computing a stable integer value. How-
ever, this type does not account for steps due to power failure: the crash itself,
waiting for the device to charge, restoration, and re-execution. To reflect these
runtime system steps at the type level, we assign the expression a type in the
form of a disjunction ? ∨ ↓↑int, where ? is a type for computations that
handle power failures. This type means that the expression either power fails, or
completes its execution that evaluates to int. Next, we fill in ? for commands

and expressions. ? is a recursive type since it handles re-execution.

Commands. The Crash type for commands is: Cunit = ↓(nat ⇝ ↑ Cunit) ∨
↓↑unit. The right disjunct states that if no power failure occurs while executing
a command, then it computes a stable value of type unit. The left disjunct states
that on power failure, the computation continues as a function; after receiving
a (logical) energy input from the environment, it becomes a computation that
yields a stable value of a command type, i.e., Cunit. This computation will execute
after the restore, which differs for atomic and JIT modes. In an atomic region,
the system re-executes the region from the beginning, and in a JIT region, the
system continues with the same command that was interrupted by the failure.

Modal Crash Types for Intermittent Computing 173

Expressions. The definition of the Crash type for expressions depends on the
execution mode, just as the continuation of the program after a power failure
depends on the mode. In an atomic region, the system restores an interrupted
run of the expression to the original command enclosed in the region, so the type
of an atomic mode expression is CatomA = ↓(nat ⇝ ↑ Cunit) ∨ ↓↑A, where the left
disjunct is the same as that of a command. On the other hand, an interrupted
run of an expression in JIT mode will be restored to the expression itself. Hence,
the type of a JIT mode expression is CjitA = ↓(nat⇝ ↑CjitA) ∨ ↓↑A, where the left
disjunct states that after power failure and reception of the energy input, the
computation again yields a stable value of a JIT mode expression type.

3.3 Independence Principle for Typing Intermittent Execution

We design our typing rules to follow the rules for ↓ and ↑ modalities in adjoint
logic. We introduce two judgment categories. The first category (Js) is for deriv-
ing stable types and corresponds to the judgments of the form Ω ⊢ τ s, meaning
that the rules can rely only on stable locations to evaluate computation on a
stable type. The second category (Ju) is for deriving unstable types and corre-
sponds to the judgments of form Ω;Σ ⊢ τu, meaning that the rules can rely on
both stable and unstable locations to evaluate computation on an unstable type.

The adjoint modalities allow going back and forth between judgments Js
and Ju, mirroring checkpointing and restoration operations. The following four
sequent calculus rules in the underlying logic govern this back-and-forth behavior
in our system. The rules are derivable from the more general rules in prior
work [8,34,36]—in particular, the ↑L∗ rule can be derived from a cut rule and
↓L. Typical of sequent calculus style rules, we read them bottom-up and match
each execution step of a command with the reading of a corresponding rule.
Next, we illustrate this matching using the execution steps in Figs. 2 and 3.

Ω; · ⊢ τu

Ω ⊢ ↑τu ↑R
Ω, ↑Au;Σ, ↓↑Au ⊢ τu

Ω, ↑Au;Σ ⊢ τu ↑L∗ Ω ⊢ τs

Ω;Σ ⊢ ↓τs ↓R
Ω, ↑Au;Σ ⊢ τu

Ω;Σ, ↓↑Au ⊢ τu ↓L

Shifts in Atomic Mode (Fig. 2): A combination of ↑R and two ↑L∗ rules
corresponds to creating a volatile log from the nonvolatile locations when starting
the atomic region, i.e., the step from Row (0) to Row (1). The last two columns in
Row (0) correspond to the conclusion of a ↑R rule: Ω0 ⊢ ↑ Cunit. An application
of ↑R from bottom to top drops the ↑ modality from the type of the program and
opens an empty volatile region, i.e., Ω0; · ⊢ Cunit. Next, one application of ↑L∗,
copies the variable y of type ↑ int to the volatile memory with the type ↓ ↑ int.
Similarly, the next application of ↑L∗ copies the variable u of type ↑ bool to
the volatile memory with the type ↓ ↑ bool. The same combination corresponds
to creating a volatile log from a nonvolatile location when restarting the atomic
region, i.e., the step from Row (3) to Row (4), again copying variables y and u
to the volatile memory.

The ↓R rule corresponds to a power failure, which erases the volatile memory
Σ. From Row (2) to Row (3) in Fig. 2, the system loses the volatile locations of y

F. Derakhshan et al.174

and u and closes off the volatile context. Row (2) corresponds to the conclusion
of the rule, and Row (3) corresponds to its premise. The type of the command in
Row (2) changes from Cunit to ↓(nat⇝ ↑Cunit) (by another ∨-R rule as a crash
is detected), and then to the type (nat⇝ ↑Cunit) in Row (3).

Finally, a ↓L rule combined with a standard weakening rule and a ↓R rule
corresponds to the final commit of the volatile context, i.e., stepping from Row
(5) to Row (6), the nonvolatile context drops the locations y and u of types
↑int and ↑bool, respectively, by a weakening rule. These two variables map to
the locations with outdated values. Next, the volatile locations of y and u in
Σ′, which contain the up-to-date values, commit their values to the nonvolatile
context by a ↓L rule. Then, a ↓R rule closes off the remaining volatile context,
which contains w of type ↓ ↑int. The type of the command in Row (2) changes
from Cunit to ↓↑unit (by a separate ∨-R rule as the system detects a successful
execution) and from that to type ↑int in Row (6).

Shifts in JIT Mode (Fig. 3): A ↑R rule corresponds to creating an empty
volatile context Σ1 when starting the JIT region, i.e., the step from Row (0)
to Row (1). A combination of the ↓L rule and ↓R rule corresponds to a power
failure, i.e., the stepping from Row (2) to Row (3). A ↓L rule copies the location
w of type ↓ ↑ bool from volatile memory Σ2 to nonvolatile memory Ωc. A ↓R rule
closes off the (empty) nonvolatile memory. As in atomic mode, a combination
of ↑R and ↑L∗ rules corresponds to creating a volatile log from a nonvolatile
location when restarting the command after the failure, i.e., the step from Row
(3) to Row (4). The ↑R rule clears a portion of volatile memory, and the ↑L∗

rule copies variable w from nonvolatile memory into volatile memory. We need
an extra weakening rule to eliminate the remaining variable w in nonvolatile
memory. The dropping of volatile memory at the end of execution (Row (5)) is
not a modal step, but rather follows from a standard rule for the let clause.

4 A Basic Calculus for Intermittent Execution

We present the syntax, semantics, and the Crash type system for a basic calculus.

4.1 Syntax

The syntactic constructs are summarized in Fig. 4. Expressions include con-
stants, variables, and binary operations while commands include assignments,
mutable let bindings, sequencing, and if branching. A program consists of se-
quenced blocks of commands and atomic regions, denoted Ckpt[aID, ρ](c) with a
unique identifier aID, read-only variables ρ, and the enclosed command c.

Nonvolatile memory (NV) and volatile memory (V) map locations ℓ to values.
Each location is annotated with its access mode q (RD or CK). The nonvolatile
memory location ℓck is the checkpointed copy of location ℓ in volatile memory.
The context γ maps variable names to memory locations. Access mode qualifiers
in V and NV have constrained values (to be discussed in the semantics).

Modal Crash Types for Intermittent Computing 175

Command, expression, and memory
values v ::= n | tt | ff | x access qualifier q ::= CK | RD
exprs e ::= v | e⊙ e var loc map γ ::= · | γ, x 7→ ℓ
cmds c ::= skip | letx = e in c | c; c nonvolatile mem NV ::= · | ℓ@ q ↪→ v,NV

| if e then c else c | x ::= e | ℓck @ CK ↪→ v,NV
progs p ::= Ckpt[aID, ρ](c); p | c; p | skip volatile mem V ::= · | l@ CK ↪→ v,V

Instructions, statements, and configurations.
commands c ::= · · · c;W c crash instrs i ::= ↓ε # in(b > 0, ↑κ)
continuations κ ::= c | e | ε # in(b > 0, ↑κ) |↑ κ
statements s ::= κ | i | p open config Ko ::= (γ | Md | g | NV | V | s)
energy level g ::= · | n | (γ | Md | g | NV | s)
charge stream χ ::= n :: χ closed config Kc ::= [χ▷ ε] ⊗Ko

exec. mode Md ::= aID(c) | jit

Fig. 4. Summary of syntax

The runtime instruction c1;W c2 is used for evaluating c1 under the execu-
tion context W . To model energy harvesting from the environment, we assume a
unique external energy channel, ε, from which the system receives energy. Three
crash instructions control the system in the event of a power failure. The instruc-
tion ↓ε # in(b > 0, ↑κ) models the system that faces a power failure, where κ is
the interrupted command or expression, and b > 0 is a guard to ensure that the
bound incoming energy variable b is positive. The instruction ε # in(b > 0, ↑κ)
models the system awaiting an energy input to be bound to b. The instruction
↑κ models the system ready to restore memory and re-execute.

We write Ko to denote an open system configuration, consisting of the map-
ping γ, the mode of execution Md (i.e., atomic or JIT), energy available for this
execution g, memories, and the statement s to be executed. The energy level (·)
models the state right after power failure. We close an open configuration with
[χ ▷ ε]; we connect it via an external energy channel ε to an infinite charging
stream Ξ of natural numbers, which models available energy the configuration
harvests from the environment at each power failure point for re-execution.

We call a configuration that cannot take a step a value configuration (value
for short). An open configuration of form (· · · | g | · · · | s) is a value, i.e.,
Val(· · · | g | · · · | s), if either s is a constant or skip, it has depleted all energy for
this execution (g=0), or s is a crash instruction. The latter two cases are values
because they cannot take a step without interacting with the environment or
perform operations on the volatile and novolatile memory specific to handling
power failures. A closed configuration is a value only if the statement s is skip
with some energy left (g > 0). We list all values in the extended TR [15].

4.2 Operational Semantics

Top-level Program Execution. The top-level semantic rules for setting up
and finalizing the atomic and JIT execution contexts are shown in Fig. 5. The
P-Ckpt rule applies if the next code block is an atomic region. The nonvolatile

F. Derakhshan et al.176

n > 0 InitWorldd(NV; ρ; γ) = NV0, V0

[χ▷ ε] ⊗ γ | aID(c0) |n |NV0 |V0| c0 ⇒∗ [χ′ ▷ ε] ⊗ γ′ | aID(c0) |n′|NV′|V′| skip
n′ > 0 NV1 = FinWorldd(NV′;V′)

[χ▷ ε] ⊗ γ | n | NV | Ckpt[(aID; ρ)](c0); p ⇒ [χ′ ▷ ε] ⊗ γ | n′ | NV1 | p
(P-CKpt)

n > 0 n′ > 0
[χ▷ ε] ⊗ γ | jit | n | NV | · | c ⇒∗ [χ′ ▷ ε] ⊗ γ′ | jit | n′ | NV′ | V′ | skip

[χ▷ ε] ⊗ γ | n | NV | c; p ⇒ [χ′ ▷ ε] ⊗ γ | n′ | NV′ | p
(P-seq)

Fig. 5. Closed configuration semantics for programs

NV0 and volatile V0 locations are initialized based on a given NV, declared read-
only variables ρ, and their mapping γ to locations. The InitWorldd function (a)
changes the qualifier of locations in NV that are declared as read-only in ρ from
CK to RD, (b) creates V0 by copying the rest of the locations of NV that still have
qualifier CK, and (c) marks the original version of the locations ℓ in NV that
still have qualifier CK as checkpointed (ℓck). This part corresponds to the step
from Row (0) to Row (1) in Fig. 2. The closed configuration of c0 is evaluated
until completion, using the rules in Fig. 6. This execution may undergo several
power failures and corresponds to the steps from Row (1) to Row (5) in Fig. 2.
Finally, the FinWorldd function closes off atomic regions, finalizing the volatile
and nonvolatile locations. FinWorldd (a) copies the values of volatile locations in
V′ that have a checkpointed version into NV′, (b) removes CK from the locations
in NV′, i.e., converts ℓck to ℓ, and (c) replaces the RD qualifier of the locations in
NV′ with CK. This corresponds to the step from Row (5) to Row (6) in Fig. 2.

The P-seq rule applies when the next code block is a regular command c.
The closed configuration of c with an empty initial set of volatile locations is
fully evaluated. This corresponds to the steps from Row (0) to Row (1) and Row
(1) to Row (5) in Fig. 3. Then the resulting volatile locations V′ scoped in c are
dropped, corresponding to the step from Row (5) to Row (6) in Fig. 3.

Command Execution (Closed Config). We summarize rules for a closed
configuration in the top part of Fig. 6. Rule D-step steps the closed command
configuration when the corresponding open configuration steps. Next, we explain
the trio of power failure, charge, and restore rules. When the energy for this
execution is depleted (i.e., g = 0), theD-Crash rule applies, stepping the system
to the crash instruction ↓ε # in(b > 0; ↑κ). Next,D-S-Jit orD-S-aID rules apply
and operate on volatile memory based on the execution mode Md. In JIT mode,
D-S-Jit checkpoints and stores all volatile memory in nonvolatile locations. In
atomic mode, D-S-aID drops all volatile memory locations. Then, D-charge
applies and inputs a natural number n > 0 from the energy channel, replenishing
the configuration’s energy level for re-execution. Finally, the program is restored
via D-restore-Jit and D-restore-aID which copy checkpointed locations
into volatile memory. D-restore-Jit drops the checkpointed regions and steps

Modal Crash Types for Intermittent Computing 177

Closed Configuration Semantics for Commands and Crash Instructions

γ | Md |n |NV |V | c → γ | Md |n′ |NV′ |V′ | c′

[χ▷ ε] ⊗ γ | Md |n |NV |V | c ⇒ [χ▷ ε] ⊗ γ | Md |n′ |NV′ |V′ | c′
(D-step)

[χ▷ ε] ⊗ γ | Md | 0 |NV |V | c ⇒ [χ▷ ε] ⊗ γ | Md | · |NV |V | ↓ ε # in(b > 0; ↑c)
(D-Crash)

Md = jit

[χ▷ ε] ⊗ γ | Md | · |NV |V | ↓ε # in(b > 0; ↑κ)
⇒ [χ▷ ε] ⊗ γ | Md |NV,Vck | ε # in(b > 0; ↑κ)

(D-S-Jit)

Md = aID(c0) γ′ ⊆ γ range(γ′) = dom(NV)

[χ▷ ε] ⊗ γ | Md | · |NV |V | ↓ε # in(b > 0; ↑κ)
⇒ [χ▷ ε] ⊗ γ′ | Md | · |NV | ε # in(b > 0; ↑κ)

(D-S-aID)

[n :: χ▷ ε] ⊗ γ | Md | · |NV | ε # in(b > 0; ↑κ) ⇒ [χ▷ ε] ⊗ γ | Md |n |NV | ↑κ
(D-charge)

NV = NV′,NV′′
ck

[χ▷ ε] ⊗ γ | jit |n |NV | ↑ κ ⇒ [χ▷ ε] ⊗ γ | jit |n |NV′ |NV′′ |κ
(D-restore-Jit)

NV = NV′,NV′′
ck

[χ▷ ε] ⊗ γ | aID(c0) |n |NV | ↑ κ ⇒ [χ▷ ε] ⊗ γ | aID(c0) |n |NV |NV′′ | c0
(D-restore-aID)

Selected expression and command semantics

γ = γ′, [x 7→ ℓ] V = ℓ@q ↪→ v,V′ n = n′ + 1

γ | Md | n | NV | V | x → γ | Md | n′ | NV | V | v
(D-V-Read)

Val(γ | Md | n | NV | V | e)
V = V′, ℓ@q ↪→ v′ q ̸= RD γ = γ′, [x → ℓ] n = n′ + 1

γ | Md | n | NV | V | x := e → γ | Md | n′ | NV | V′, ℓ@q ↪→ e | skip
(D-Assign-V)

Fig. 6. Statement steps

to the interrupted command κ, while D-restore-aID keeps the checkpointed
regions and steps to the original command c0 in the atomic region.

Command/Expression Execution (Open Config). The rules for executing
commands and expressions in an open configuration are standard. We present
a selection of them on the bottom of Fig. 6. Each step decrements the energy
level by one. The rules ensure that checkpointed location ℓck in NV is not read
by the program, as it could store outdated data, and is not written to, as this
would tamper with the checkpointed value.

4.3 Types, Typing Contexts, and Judgments

This section introduces the typing judgments used in our static typing.

F. Derakhshan et al.178

(Ju) Md | bR 0 : nat | Ω;Σ ⊢ c :: Cunit c could crash
(Ju) Md | b : nat | Ω;Σ ⊢ skip :: ↓↑unit c will not crash
(Js) Md | b : nat | Ω ⊢ skip :: ↑unit after commit

(Ju) Md | bR 0 : nat | Ω;Σ ⊢RD e :: CMdA e read, could crash
(Js) Md | b : nat | Ω;Σ ⊢RD v :: ↓↑A e read no crash
(Js) Md | b : nat | Ω ⊢RD v :: ↑A e read, commit
(Ju) Md | b : nat | Ω;Σ ⊢WT x :: ↓↑A write on x, no crash
(Js) Md | b : nat | Ω ⊢WT x :: ↑A write on x, commit

(Js) Md | b : nat | Ω ⊢ p :: ↑Cunit before execution

(Ju) Md | b = 0 : nat | Ω;Σ ⊢ κ :: CMdT about to crash
(Ju) Md | · | Ω;Σ ⊢ ↓ε # in(b > 0, ↑κ) :: ↓(nat⇝ ↑ CMdT) crash state
(Js) Md | · | Ω ⊢ ε # in(b > 0, ↑κ) :: nat⇝ ↑ CMdT waiting for energy
(Js) Md | b > 0 : nat | Ω ⊢ ↑κ :: ↑CMdT before re-execution

Table 1. Typing judgment summary

Types and Static Context. Our types are summarized below. The two modal-
ities stratify types into the varieties stable (τ s) and unstable (τu). The base store
types int and bool are considered unstable. A type variable vt denotes a type
in the set {Cunit, CatomA , CjitA}, and implements the recursive nature of Crash types.
We include the connectives ∨ and ⇝ solely for the purpose of defining Crash
types; they are not used elsewhere. Defining Crash types using these connec-
tives will allow us to define the logical relation in Sec. 5 based on the intended
meaning of its index type. Some well-formed types, e.g., nat ⇝ nat ⇝ ↑unit,
are not accepted by our type system introduced in Sec. 4.4. These types have
no inhabitants, i.e., no well-typed configuration is of these types.

store types A := int | bool stable types τ s := nat⇝ τ s |↑ τu

basic types T := unit | A unstable types τu := T |↓ τ s | τu ∨ τu | vt
Volatile store typing context Σ := · | x : ↓su↑suA@Ck, Σ
Nonvolatile store typing context Ω := · | x : ↑suA@Rd, Ω | xck : ↑suA@CK, Ω

| x : ↑suA@CK, Ω

A nonvolatile store typing context Ω assigns stable types to nonvolatile lo-
cation variables, i.e. all variables in Ω have a type of the form ↑suA. A volatile
store typing context Σ assigns unstable types to volatile location variables, i.e.,
variables in Σ are of the type ↓su↑suA. xck refers to a location that has been
checkpointed. In the atomic mode, xck has an active volatile log in Σ.

Typing Judgments. Table 1 summarizes all the typing judgments. These judg-
ments are parameterized over the execution mode Md of the expression or com-
mand to be typed. The judgment also tracks a variable b corresponding to the
current energy level of this execution. b ranges over natural numbers (nat) and
is constrained by a relation R ∈ {≥, >} or is set to 0; where b ≥ 0 is uncon-
strained. The constraint on b determines whether or not a command can evaluate
a value without power failure. There are three judgments for command typing.
The first judgment is used when the command has not yet successfully finished

Modal Crash Types for Intermittent Computing 179

jit | b ≥ 0 : nat | Ω; · ⊢∅ c : Cunit b : nat | Ω ⊢ p : ↑Cunit
b : nat | Ω ⊢ c; p : ↑Cunit

(T-P-seq)

Ω0 | Σ0 = InitWorldt(Ω; ρ)
Sig = {aID(c0) | b ≥ 0 : nat | Ω0;Σ0 ⊢ c0 : Cunit}

aID(c0) | b ≥ 0 : nat | Ω0; Σ0 ⊢Sig c0 : Cunit b : nat | Ω ⊢ p : ↑Cunit
b : nat | Ω ⊢ Ckpt[aID, ρ](c0); p : ↑Cunit

(T-P-Ckpt)

Fig. 7. Program typing

executing; its next step, depending on its constraint R, may or may not crash.
When the command reaches type ↓↑unit, b no longer needs to be constrained
as the execution succeeded without power failure. The second judgment invokes
the third judgment to type the configuration after the volatile log is committed:
in the typing rule for committing the volatile log, the conclusion is of the form of
the second judgment and the premise is of the form of the third. For expression
typing, we distinguish expressions on the right of an assignment (being read)
from those on the left of an assignment (being written to) via subscripts RD and
WT, respectively. The expressions that are being written to are only of the sim-
ple form x. As no execution is required to evaluate x, we consider its judgment
crash free, so no constraint is required on b. For program typing, we only have
one judgment that refers to the type of the program before the execution of its
next block starts. The rest of the judgments type states after a crash. The first
judgment uses the constraint b = 0, which corresponds to the power failure con-
dition. It invokes the second judgment, which types a state right after crash. The
third judgment types the state awaiting energy to continue re-execution, and the
final judgment types the state that is ready for restoration and re-execution.

4.4 Typing Rules

Program Typing. Fig. 7 shows the typing rules for programs. The P-seq rule
types program c; p by first typing c under jit mode, requiring b ≥ 0, and then
typing the rest of the program. The volatile memory context is empty for now,
but will be populated when the let commands allocate new volatile locations.

The P-Ckpt rule types the command c0 enclosed in an atomic region under
the mode aID(c0) and then types the rest of the program p. The first premise
sets up the initial typing contexts for nonvolatile and volatile memories, as illus-
trated in Fig. 2. The partial function InitWorldt initializes the volatile memory
by creating a log of variables in Ω that are not read-only. Ω can be uniquely
split into Ωc and Ωr, where Ωr is the set of all read-only locations in Ω, and Ωc

is the set of all locations that are not read-only. This function is defined below:
Ω0 | Σ0 = InitWorldt(Ω; ρ) iff ρ ⊆ dom(Ω), Ω0 = Ωr, Ωc

ck and Σ0 = ↓Ωc

where Ω = Ωc, Ωr and Ωr = Ω↾ρ.
Here Ωr = Ω↾ρ is a subset of Ω where locations are declared in ρ to be
read-only, and Ωc are all other locations in Ω. The context Ωc

ck, is defined as

F. Derakhshan et al.180

Ωc
ck = {xck : ↑A@q | x : ↑A@q ∈ Ωc}, and the context ↓Ωc, is defined as

↓Ωc = {x : ↓↑A@q | x : ↑A@q ∈ Ωc}. If the set of read only variables, ρ, is not in
the domain of Ω, then the function InitWorldt is not defined.

In rules P-seq and P-ckpt, the command typing judgment in the premise
makes use of a signature (subscripts ∅ and Sig, respectively) to type check
the command relative to the signature. The signature is populated at different
stages of type checking the JIT and atomic regions. In an atomic region, rule
T-P-Ckpt populates the signature at the beginning of the region with the initial
judgment which includes the region’s original command c0 and static memory
context Ω0;Σ0. The region is then typed relative to the signature. In JIT mode,
the signature is populated later with the judgment just at the point of the failure
(rule T-enough?). The program remembers that it built a typing derivation for
the judgment in the signature such that when it restores from a power failure, it
refers to the signature and checks that the restored judgment matches the one
stored in the signature without needing to derive it again. This makes the typing
derivations finitary and inductive.

Command and Expression Typing. Fig. 8 shows selected typing rules for
commands. The T-skip rule declares the command skip as the stable type ↑unit.
Rule T-∨-Succ applies when the command successfully completes its execution
and still has one unit of energy available (b > 0) to conclude the execution. In
this case, we close off the energy level variable and continue typing the com-
mand against the type ↓↑ unit. Rule T-C-shift is invoked by T-∨-Succ and
updates the memory typing contexts by removing checkpointed locations in Ω
as now they are not needed, and making locations in Σ stable as now they are
committed. This corresponds to the last step of Fig. 2.

The rules T-let and T-assign, are mostly standard except that we consider
crashes. For example, in typing the assign command x := e, the first premise
of T-assign considers the type of expression e to be the Crash type CMd

A , but
in the second premise we require the location x to be of type ↓↑A, i.e., the
location only considers the type corresponding to the case where execution of e
can be completed successfully. The reason is that the assignment only occurs if
the execution of e is successful. The constraint on the energy levels for premises
goes back to b ≥ 0, as we use one energy unit to deconstruct these commands.

The rule T-Enough? checks two premises based on the value of b ≥ 0. The
third premise, a crash judgment, corresponds to the case where b = 0 (typing
rules for crash judgments are given later in this section) and the fourth premise
corresponds to the case where b > 0. The condition b > 0 states that there is at
least one unit of energy available to decompose one command construct, e.g., via
T-let or T-assign. This rule populates the signature for JIT commands. The
second premise states that the signature remains intact if the mode is atomic, but
is populated by Sig′ if the mode is JIT. In the JIT mode, after a power failure,
the command c is restored to itself, and Sig′ remembers that the well-typedness
of the command when the energy level is non-negative has been checked already.

Expression typing rules are very similar to those of the commands. Fig. 8
shows a few selected rules. The T-Loc-Write and T-Loc-Read rules match

Modal Crash Types for Intermittent Computing 181

Commands

Md | b : nat | Ω ⊢Sig skip : ↑unit
(T-Skip)

Σ = ↓Σ′ Ω = Ω′, Ω′′
ck Md | b : nat | Ω′, Σ′ ⊢Sig skip : ↑unit

Md | b : nat | Ω;Σ ⊢Sig skip : ↓↑unit
(T-C-Shift)

Md | b : nat | Ω;Σ ⊢Sig skip : ↓↑unit
Md | b > 0 : nat | Ω;Σ ⊢Sig skip : τ ∨ ↓↑unit

(T-∨-Succ)

Md | b ≥ 0 : nat | Ω;Σ ⊢RD;Sig e1 : CMdA
Md | b ≥ 0 : nat | Ω;Σ, x:↓↑A@CK ⊢Sig c : τ

Md | b > 0 : nat | Ω;Σ ⊢Sig letx = e1 in c : τ
(T-Let)

Md | b ≥ 0 : nat | Ω;Σ ⊢RD;Sig e : CMdA Md | b > 0 : nat | Ω;Σ ⊢WT x : ↓↑A
Md | b > 0 : nat | Ω;Σ ⊢Sig x := e : CMdunit

(T-Assign)

Sig
′ = {Md | b ≥ 0 : nat | Ω;Σ ⊢ c : τ}

Sig
′′ = if Md = jit, then Sig′, else Sig

Md | b = 0 : nat | Ω;Σ ⊢Sig′′ c : τ Md | b > 0 : nat | Ω;Σ ⊢Sig c : τ

Md | b ≥ 0 : nat | Ω;Σ ⊢Sig c : τ
(T-enough?)

Expressions

Ω,Σ′ = x:↑A@q,Ω′
2 q ̸= RD

Md | b : nat | Ω,Σ′ ⊢Wt x : ↑A
(T-Loc-Write)

Ω = x : ↑A@q,Ω′

Md | b : nat | Ω ⊢RD x : ↑A
(T-Loc-Read)

Md | b : nat | Ω ⊢RD tt :↑ bool
(T-Bool-t)

Fig. 8. Selected command and expression typing

the location variable x with an existing variable inside the context. T-Loc-Write
performs an extra check to make sure that x is not a read-only variable.

Statement typing Fig. 9 presents the typing rules for crash instructions. The
crash is detected by the depleted energy level b = 0 in the T-∨-crash rule. In
the premise, the crash instruction ↓ε # in(b > 0, ↑κ′) is typed. In JIT mode,
the T-Jit-stop rule brings a checkpointed version of all the volatile variables
in Σ inside Ω since they are checkpointed then. In atomic mode, T-aID-Stop
rule simply drops the volatile locations in Σ. The T-charge rule inputs a new
energy level from the energy channel ε, regardless of the mode. The first premise
shows that the energy channel is needed to provide a natural number greater
than zero. Finally, the T-Jit-Restore and T-aID-Restore rules prepare and
check rebooted system in JIT and atomic modes, respectively. In both modes,
volatile memory is restored from the checkpointed locations in Ω. In the atomic
mode, the checkpointed locations persist in Ω as we may need them for the

F. Derakhshan et al.182

Md | · | Ω;Σ ⊢Sig ↓ε # iņ(b > 0, ↑κ′) : ↓(nat⇝ ↑ CMdT ′)

Md | b = 0 : nat | Ω;Σ ⊢Sig κ
′ : ↓(nat⇝ ↑ CMdT ′) ∨ ↓↑T

(T-∨-Crash)

Σ = ↓↑Σ′ jit | · | Ω, ↑Σ′
ck ⊢Sig ε # iņ(b > 0, ↑κ′) : (nat⇝ ↑CsT)

jit | · | Ω;Σ ⊢Sig ↓ε # iņ(b > 0, ↑κ′) : ↓(nat⇝ ↑ CsT)
(T-Jit-stop)

aID(c0) | · | Ω ⊢Sig ε # iņ(b > 0, ↑κ′) : (nat⇝ ↑Csunit)
aID(c0) | · | Ω;Σ ⊢Sig ↓ε # iņ(b > 0, ↑κ′) : ↓(nat⇝ ↑ Csunit)

(T-aID-stop)

ε # iņ() : nat > 0 Md | b > 0 : nat | Ω ⊢Sig↑ κ′ : ↑CsT
Md | · | Ω ⊢Sig ε # iņ(b > 0, ↑ κ′) : (nat⇝ ↑CsT))

(T-Charge)

Ω = Ω′, Ω′′
ck jit | b ≥ 0 : nat | Ω′; ↓Ω′′ ⊢ κ′ : CT ∈ Sig

jit | b > 0 : nat | Ω ⊢Sig ↑κ′ :↑ CT
(T-Jit-Restore)

Ω = Ω′, Ω′′
ck aID(c0) | b ≥ 0 : nat | Ω; ↓Ω′′ ⊢ c0 : Cunit ∈ Sig

aID(c0) | b > 0 : nat | Ω ⊢Sig ↑κ′ :↑ Cunit
(T-aID-Restore)

Fig. 9. Crash, restore, and checkpoint typing

next power failure. Alternatively, in the JIT mode, checkpoints are dropped
from Ω and execution continues with the expression or command κ, which was
running right before the crash. In the atomic mode, execution continues with
the original command c0 enclosed in the atomic region. Instead of retyping the
restored judgments, we check if there are already typing derivations by matching
them up with the saved judgment in the signature.

5 Logical Relation for Intermittent Execution

We establish a logical relation to prove idempotency, which states that every
intermittent execution of a program can be simulated by a continuous execu-
tion. The logical relation relates an intermittent execution with a continuous
one and is indexed by Crash types. A continuous run is one with an infinite en-
ergy level, ∞. Crash types are recursive, yielding possible infinite atomic region
re-executions. Thus, we use the maximum number of executions (also power fail-
ures) as a step index to stratify our logical relation to ensure its well-foundedness.

The logical relation (defined in Sec. 5.1) relies on PwOff, Restore, and Commit

functions, referred to as power failure, restore, and commit policies, respec-
tively. We establish specific policies for atomic and JIT execution modes. We
formalize semantic typing as every atomic and JIT region of the program being
logically-related to themselves. We prove that the semantically well-typed pro-
grams are idempotent across power failures in Sec. 5.2. The definitions match
the memory operations in the dynamic rules that deal with crash, restore,
and re-execution (D-S-aID/ D-S-Jit, D-R-aID/ D-R-Jit, and D-P-Ckpt/

Modal Crash Types for Intermittent Computing 183

Md | b ≥ 0 : nat | Ω | Σ ⊩ c1 ≤ c2 : Cunit
iff ∀n,m ≥ 0. ∀γ,NV,V.s.t.NV | V ⊩ γ :: Ω | Σ.

(γ | Md | n | NV | V | c1, γ | Md | ∞ | NV | V | c2) ∈ EJCunitKm

Term Relation

EJCunitKm+1 = {(γ1 | Md | n1 | NV1 | V1 | c1, γ2 | Md | ∞ | NV2 | V2 | c2) s.t.
∃.(γ′

1 | Md′ | n′
1 | NV′

1 | V′
1 | c′1) s.t.

γ1 | Md | n1 | NV1 | V1 | c1 →∗
irred γ′

1 | Md′ | n′
1 | NV′

1 | V′
1 | c′1 ∧

∃.(γ′
2 | Md′ | ∞ | NV′

2 | V′
2 | c′2) s.t .

γ2 | Md | ∞ | NV2 | V2 | c2 →∗ γ′
2 | Md′ | ∞ | NV′

2 | V′
2 | c′2 ∧

(γ′
1 | Md′ | n′

1 | NV′
1 | V′

1 | c′1, γ′
2 | Md′ | ∞ | NV′

2 | V′
2 | c′2)∈VJCunitKm+1}

EJCunitK0 = {(γ1 | Md | n1 | NV1 | V1 | c1, γ2 | Md | ∞ | NV2 | V2 | c2)}

Value Relation

VJ↑unitKm = {(γ | Md |n1 |NV1 | skip, γ | Md |∞ |NV2 | skip) s.t.NV1 = NV2}

VJ↓↑unitKm = {(γ1 | Md |n1 |NV1 |V1 | skip, γ2 | Md |∞ |NV2 |V2 | skip) s.t.
Commit(γi | Md |NVi |Vi) = γ′

1 |NV′
i ∧

(γ′
1 | Md |n1 |NV′

1 | skip, γ2 | Md |∞ |NV′
2 | skip) ∈ VJ↑unitKm}

VJ↑CunitKm = {(γ1 | Md |n |NV1 | ↑κ, γ2 | Md |∞ |NV2 |V2 | c2) s.t.
restore(γ1, Md,NV1, κ) = NV0 |V0 | c0 ∧
(γ1 | Md |n |NV0 |V0 | c0, γ2 | Md |∞ |NV2 |V2 | c2) ∈ EJCunitKm}

VJnat⇝↑CunitKm = {(γ1 | Md | · |NV1 | ε # in(n > 0, ↑κ), γ2 | Md |∞ |NV2|V2|c2) s.t.
∀n>0.(γ1 | Md |n |NV1| ↑κ, γ2 | Md |∞ |NV2|V2| c2)∈VJ↑ CunitKm}

VJ↓(nat⇝↑Cunit)Km = {(γ1 | Md | · |NV1|V1| ↓ε # in(n > 0, ↑κ), γ2 | Md |∞ |NV2|V2| c2)
s.t. PwOff(γ1, Md,NV1,V1) = γ′

1 |V′ ∧
(γ′

1 | Md | · |V′,NV1 | ε # in(n > 0, ↑κ), γ2 | Md |∞ |NV2 |V2 | c2)
∈ VJnat⇝ ↑CunitKm}

VJCunitKm+1 = {(γ1 | Md |n1 |NV1 |V1 | c1, γ2 | Md |∞ |NV2 |V2 | c2)
s.t. either
n1 = 0 ∧ (γ1 | Md | · |NV1 |V1 | ↓ε # in(n1 > 0, ↑c1),

γ2 | Md |∞ |NV2 |V2 | c2) ∈ VJ↓(nat⇝↑ Cunit)Km, or
n1 > 0 ∧ (γ1 | Md |n1 |NV1 |V1 | c1, γ2 | Md |∞ |NV2 |V2 | c2)

∈ VJ↓↑ unitKm}

Fig. 10. Logical relation

D-P-seq) for atomic and JIT regions, We prove that our syntactically well-typed
programs are semantically well-typed. We generalize semantic typing rules, al-
lowing custom power failure, restore, and commit policies (Sec. 5.3).

5.1 Semantic Typing via a Logical Relation

The logical relation, written Md | b ≥ 0 : nat | Ω | Σ ⊩ c1 ≤ c2 : Cunit, is defined
in Fig. 10 by a lexicographic induction on the index m and the structure of the

F. Derakhshan et al.184

types. The judgment NV | V ⊩ γ :: Ω | Σ in the definition states that γ maps the
variables in Σ and Ω to locations in V and NV resp., such that their qualifiers
and types match. Similar to prior work [2,16,42], our definition consists of a term
relation EJCunitKm and a value relation VJτKm.

Term Relation. A pair of open command configurations of type Cunit are in
the term relation of index m if any intermittent execution of the first one after
m power failures is indistinguishable from a continuous execution of the second
one. In particular, for index m+1, the term relation relates two configurations at
type Cunit if the first configuration eventually steps to a value (or “irreducible”)
configuration, i.e., it either evaluates to skip or its energy level depletes (n′

1 = 0),
and the second configuration can take zero or more steps such that the pair con-
tinue to be in the value relation of VJCunitKm+1. When the index is m = 0,
no execution is observed, so any two configurations are in the term relation.
Here, irred refers to γ′

1 | Md′ |n′
1 |NV

′
1 |V′

1 | c′1 being an irreducible configuration,
i.e. it cannot take any more steps. Since our semantics for commands is deter-
ministic, for each configuration γ1 | Md |n1 |NV1 |V1 | c1 there is exactly one such
irreducible configuration.

Value Relation. The value relation is defined based on the intended meaning
of the type, and relates two value configurations that will have the same effect
on the stores. The value relation relates two open command configurations at
type Cunit and index m+1 if either (a) the first configuration has faced a power
failure, and the two configurations continue to relate by VJ↓(nat ⇝ ↑Cunit)Km,
or (b) the first configuration executed successfully without any power failures,
and the two configurations are related by VJ↓↑unitKm. This definition matches
the disjunctive nature of type Cunit, which is recursively defined in the signature
as ↓(nat ⇝ ↑Cunit) ∨ ↓↑unit. Since we unfold the recursive definition of Cunit,
we decrease the index from m+1 to m to ensure the relation’s well-foundedness.
Note that the value relation is neither defined nor called for Cunit at index 0.

The value relations in the third, fourth, and fifth rows of Fig. 10 are defined
based on the type of the first configuration; the second configurations in these
relations continue to be of type Cunit. Only in the relations defined in the first
and second rows of Fig. 10 do the types of both configurations match the indexed
type of the relation. Hence, the value relation has varying arity: in the first and
second rows of Fig. 10, the relation is binary while in the rest, the relation
degenerates to unary, with the second configuration as its Kripke world [18].

The value relation at type ↓(nat ⇝ ↑Cunit) relates two configurations if the
first one runs the crash instruction ↓ε # in(n > 0, ↑κ) and a power failure policy
creates a checkpoint of volatile locations such that the configurations continue
to be in the value relation at type (nat ⇝ ↑Cunit). The power failure function
in an atomic mode is defined to checkpoint none of the volatile locations, i.e.,
PwOff(γ, aID(c0),NV1,V1) = γ′ | ∅, where γ′ is the largest restriction of γ with
range(γ′) = dom(NV1), and defined to checkpoint all volatile locations in JIT
mode, i.e., PwOff(γ, jit,NV1,V1) = γ | V1.

Modal Crash Types for Intermittent Computing 185

The value relation at type (nat ⇝ ↑Cunit) is defined similarly to a function
type in a value relation and requires the configurations to be related at type
(↑Cunit) for every energy input level n provided to the first configuration.

The value relation at type ↑Cunit requires the first configuration to run the
crash instruction ↑κ. The defined restore policy restores the nonvolatile memory
NV0, volatile memory V0, and re-execution command c0 such that the config-
urations continue to be related in the term interpretation at type Cunit. In an
atomic mode, the restore function is defined as restore(γ, aID(c),NV1, κ) =
NV1 | NV′′ | c where NV1 = NV′,NV′′

ck. In the JIT mode, the restore function
is defined as restore(γ, jit(c),NV1, κ) = NV′

1 | NV′′ | c where NV1 = NV′,NV′′
ck.

We write NV1 = NV′,NV′′
ck to state that NV1 can be uniquely partitioned into

all locations (NV′′
ck) that are checkpointed, i.e., of the form ℓck, and regular lo-

cations (NV′) of the form ℓ. NV′′ is the non-checkpointed version of NV′′
ck which

could be retrieved by removing the ck subscript from every location in NV′′
ck.

The value relation at type ↓↑unit requires both configurations to run skip,
and the defined commit policy creates nonvolatile memories for both runs such
that they continue to be related at type ↑unit. In an atomic mode, the commit
function is defined to replace the checkpointed locations in the nonvolatile mem-
ory with their volatile log, i.e., Commit(γ | aID(c0) | NV1 | V1) = γ′ | NV′

1 | V′′,
where NV1 = NV′

1,NV
′′
ck and V1 = V′

1,V
′′ and dom(V′′) = dom(NV′′). Moreover,

γ′ ⊆ γ, with range(γ′) = dom(NV1) ∪ dom(V ′′). In the JIT mode, the commit
function simply drops all volatile memory, i.e., Commit(γ | jit | NV1 | V1) = γ′ |
NV1, γ

′ ⊆ γ, with range(γ′) = dom(NV1).
The value relation at type ↑unit requires the successful executions to store

the same values in their memories, i.e., NV1 = NV2.

Semantic Typing. A program is semantically well-typed if every JIT and
atomic region of it is self-related under our logical relation.

jit | b ≥ 0 : nat | Ω; · ⊩ c ≤ c : Cunit b : nat | Ω ⊩ p : ↑Cunit
b : nat | Ω ⊩ c; p : ↑Cunit

(P-seq-semantic)

Ω0 |Σ0 = InitWorldt(Ω; ρ)
aID(c0) | b≥ 0 : nat |Ω0;Σ0 ⊩ c0 ≤ c0 : Cunit b : nat |Ω ⊩ p : ↑Cunit

b : nat |Ω ⊩ Ckpt[aID, ρ](c0); p : ↑Cunit
(P-Ckpt-semantic)

5.2 Semantic Typing for Idempotency

The fundamental theorem of our logical relation states that syntactically well-
typed programs are also semantically well-typed by proving that syntactically
well-typed JIT and atomic regions are self-related. We state and prove the theo-
rem in Sec. 6 but devote this section to explaining why being self-related implies
idempotency. We explain it separately for JIT and atomic blocks.

Stepping a JIT block. Consider a program of form [χ1▷ε]⊗γ1 | n | NV1 | c1; p
that can take a step to [χk ▷ ε] ⊗ γ | n′

k | NV′
k | p via the D-P-Seq rule. By

the D-P-Seq rule, we know that the command c1 is successfully executed to
completion with possibly m-many power failures along the way: [χ1 ▷ ε] ⊗ γ1 |

F. Derakhshan et al.186

jit | n | NV1 | · | c1 ⇒∗ [χk ▷ ε] ⊗ γ′
k | jit | n′

k | NV′
k | V′

k | skip. Our goal is to
simulate this execution in a continuous setting. To model a continuous run, we
run the configuration with ∞, an energy level: [χ ▷ ε] ⊗ γ1 | jit | ∞ | NV1 | · |
c1 ⇒∗ [χ▷ ε]⊗ γ′

j | jit | ∞ | NV′
j | V′

j | skip.
Fig. 11 shows the construction of the simulation. We start with the assump-

tion that the configuration with n energy level is self-related when given energy
level ∞ for every index, including m + 1 (point (1) in Fig. 11). We show that
if the first configuration takes one or more steps, the second configuration can
take zero or more steps so that the intermediate regions continue to relate.

By definition of the term interpretation, c1 in the first configuration is ex-
ecuted until the first power failure occurs. Moreover, by the relation, we can
execute c1 in the second configuration, too, such that the resulting configura-
tions remain related (point (2) in Fig. 11) by the value interpretation at type
Cunit. The first configuration takes a step from point (2) to point (3) using the
D-crash rule by the computational semantics. By the definition of the logical
relation, the two configurations continue to be related by the value interpretation
at type ↓(nat⇝↑ Cunit). Then the first configuration takes a step from point (3)
to point (4) by the D-S-Jit rule; in this case, we know (by the assumptions of
the rule) V′ = V′

1 and γ′′
1 = γ. This matches the definition of the power-off policy

for JIT blocks (see Sec. 5.1), and thus the two configurations remain related by
the value relation at type nat ⇝↑ Cunit. Next, the first configuration takes a
step to point (5) by inputting a new energy level from the environment (n2). By
the definition of the value relations, the two configurations will remain related
by the value interpretation at type ↑ Cunit.

Finally, the configuration steps to point (6) by D-Restore-Jit that copies
all checkpointed locations inside the volatile memory and continues by running
the interrupted command κ, i.e., here NV0 = NV′

1 and V0 = V′ = V′
1 and c0 = κ.

This matches the restore policy defined for JIT regions; thus, the configurations
continue to be related by the term relation at type Cunit, similar to what we had
earlier at point (1) in Fig. 11, but with fewer power failures remaining.

Now, when the first configuration finally steps to point (8), by the definition
of the logical relation, we know that the second configuration steps into skip too.
Thus, we can apply the D-Ckpt rule on the second configuration. The volatile
memory V′

j is dropped, and the mapping is reset to γ, i.e., it matches the commit

policy defined for JIT blocks. in the logical relation. By Fig. 11-d, we get NV′
j =

NV′
k, which completes deriving our goal.

Stepping an atomic region. We can build the desired simulation by tak-
ing the same steps described for a JIT region. Similarly, the key point is that
the power-off and restore policies exactly match how the rules D-S-aID and
D-restore-aID, respectively, handle nonvolatile and volatile memories, and
the commit policy corresponds to the FinWorld function in the D-ckpt rule.

We showed that our logical relation ensures idempotency for JIT and atomic
regions. In the next section, we show that our logical relation formalizes a se-
mantic typing to ensure idempotency of more general policies.

Modal Crash Types for Intermittent Computing 187

([χ1 ▹ ϵ] γ1 ∣ 𝙼𝚍 ∣ n ∣ 𝖭𝖵1 ∣ 𝖵1 ∣ c1, [χ ▹ ϵ] γ1 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵1 ∣ c1)

([χ1 ▹ ϵ] γ′ 1 ∣ 𝙼𝚍 ∣ 0 ∣ 𝖭𝖵′ 1 ∣ 𝖵′ 1 ∣ c′ 1, [χ ▹ ϵ] γ′ 2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′ 2 ∣ 𝖵′ 2 ∣ c′ 2)

∈ ℰ Cunit

∈ 𝒱 Cunit

([χ′ 1 ▹ ϵ] γ0 ∣ 𝙼𝚍 ∣ n0 ∣ 𝖭𝖵0 ∣ 𝖵0 ∣ c0, [χ ▹ ϵ] γ′ 2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′ 2 ∣ 𝖵′ 2 ∣ c′ 2)

⟹

[χ1 ▹ ϵ] γ′ 1 ∣ 𝙼𝚍 ∣ ⋅ ∣ 𝖭𝖵′ 1 ∣ 𝖵′ 1 ∣ ↓ ϵ#in(b > 0; ↑ c′ 1)
([χ1 ▹ ϵ] γ′ ′ 1 ∣ 𝙼𝚍 ∣ ⋅ ∣ 𝖭𝖵′ 1, 𝖵′ ∣ ϵ#in(b > 0; ↑ c′ 1), [χ ▹ ϵ] γ′ 2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′ 2 ∣ 𝖵′ 2 ∣ c′ 2)

[χ′ 1 ▹ ϵ] γ′ ′ 1 ∣ 𝙼𝚍 ∣ n0 ∣ 𝖭𝖵′ 1, 𝖵′ ∣ ↑ c′ 1

χ1 = n0 :: χ′ 1) ∈ 𝒱 nat ⇝ ↑ Cunit

∈ ℰ Cunit

(a)

([χk ▹ ϵ] γk ∣ 𝙼𝚍 ∣ nk ∣ 𝖭𝖵k ∣ 𝖵k ∣ ck, [χ ▹ ϵ]γj ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵j ∣ 𝖵j ∣ cj)

([χk ▹ ϵ] γ′ k ∣ 𝙼𝚍 ∣ n′ k ∣ 𝖭𝖵′

k ∣ 𝖵′ k ∣ skip, [χ ▹ ϵ] γ′ j ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′

j ∣ 𝖵′ j ∣ skip)

∈ ℰ Cunit

∈ 𝒱 ↓ ↑ unit
(b) (γ′ k ∣ 𝙼𝚍 ∣ n′ k ∣ 𝖭𝖵′

k, 𝖵′ ′ k ∣ skip, γ′ j ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′

j, 𝖵′ ′ j ∣ skip) ∈ 𝒱 ↑ unit

𝖭𝖵′

k, 𝖵′ ′ k = 𝖭𝖵′

j, 𝖵′ ′ j(c)

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(6)

⋯ ⋯

⟹ ⟹
0

⟹
0

⟹
*

⟹
*

⟹
*

⟹
*

⟹
*

⟹
*

⟹
⟹

*
⟹

⟹
*

(where

Fig. 11. Why the logical relation is enough.

5.3 More General Policies

We utilize our semantic typing to allow custom policies for power failure, restore,
and commit. We extend the grammar of programs as p := · | Reg[aID,−→arg](c); p,
where −→arg refers to the arguments that the programmer decides to pass to
the region for initialization. To each region, we assign a unique identifier aID
that is associated with the three policies and two functions InitGeneralt and
InitGenerald to initialize the static and dynamic memories, respectively. We
add the following semantic typing rule for the general regions:

c0 |Ω0 |Σ0 = InitGeneralt(Ω; aID; c;−→org)
aID(c0) | b≥ 0 : nat |Ω0;Σ0 ⊩ c0 ≤ c0 : Cunit b : nat |Ω ⊩ p : ↑Cunit

b : nat |Ω ⊩ Reg[aID,−→arg](c); p : ↑Cunit
(P-Reg-semantic)

For a self-related region to be idempotent, its policies Commit, PwOff, and
Restore must match the dynamics, so we add dynamic rules for custom regions
in Fig. 12. The JIT and atomic region policies and their dynamic rules are
instances of these general policies. As an example, the programmer can customize
the policies of the first block of Fig. 1 to not checkpoint variable u. The program
remains idempotent as the atomic region never reads u before writing to it. This

F. Derakhshan et al.188

γ0 | NV0 | V0 | c0 = restore(NV,V, κ, Md, γ)

[χ▷ ε] ⊗ γ | Md | n | NV |↑ κ ⇒ [χ▷ ε] ⊗ γ0 | Md | n | NV0 | V0 | c0
(D-R-Reg)

n > 0 InitGenerald(NV; aID; c; γ;−→arg) = c0,NV0,V0

[χ▷ ε] ⊗ aID(c0) | n | NV0 | V0 | c0 ⇒∗ [χ′ ▷ ε] ⊗ aID(c0) | n′ | NV′ | V′ | skip
n′ > 0 NV1 = Commit(NV′;V′; aID;−→arg)

[χ▷ ε] ⊗ γ | n | NV | Reg[(aID; arg)](c); p ⇒ [χ′ ▷ ε] ⊗ γ | n′ | NV1 | p
(D-Reg)

V′ = PwOff(NV,V, Md, γ)

[χ▷ ε] ⊗ γ | Md | · | NV | V | ↓ε # in(b > 0; ↑κ) ⇒
[χ▷ ε] ⊗ γ | Md | · | NV,V′ | ε # in(b > 0; ↑κ)

(D-S-Reg)

Fig. 12. Custom dynamic rules

policy is implemented by real systems [23,24,41]. Our static typing rules can be
extended to reason about them as shown in the companion technical report.

6 Metatheory

This section establishes the main properties of the system, which are progress and
preservation, adequacy, and the most important result: the fundamental theorem
where we prove that statically well-typed programs are semantically well-typed.
The theorems and their complete proofs are provided in the companion TR [15].

The progress and preservation theorems assume memory locations to be well-
formed, ⊢Md

γ NV | V : Ω | Σ, which is defined similarly to the NV | V ⊩ γ : Ω | Σ
used in the logical relation, but imposes extra conditions based on the execution
mode Md. It states that γ maps variables in contexts Ω and Σ to the nonvolatile
and volatile memories, NV and V, respectively, such that their qualifiers and the
type of the stored values match. Moreover, it requires specific properties on the
contexts depending on Md; in atomic mode, each checkpointed location in NV
and Ω must have copies in V and Σ. We state the theorems below.

Theorem 1 (Progress for Commands). If Md | b R m : nat | Ω;Σ ⊢Sig c : τ ,
then ∀n : nat with nRm and ∀ γ,NV,V with ⊢Md

γ NV | V : Ω | Σ, either γ | Md |
n | NV | V | c is a value, or for some configuration γ′ | Md′ | n′ | NV′ | V′ | c′ we
have γ | Md | n | NV | V | c → γ′ | Md′ | n′ | NV′ | V′ | c′. Moreover, if Md is an
atomic mode, we have NV′ = NV.

Theorem 2 (Preservation for Commands). If Md | b ≥ 0 : nat | Ω;Σ ⊢Sig

c : τ , and for some ⊢Md
γ NV | V : Ω | Σ and n:nat ≥ 0, we have γ | Md |

n | NV | V | c → γ′ | Md | n′ | NV′ | V′ | c′, then for some Σ1, we have
Md | b ≥ 0 : nat | Ω;Σ1 ⊢Sig c

′ : τ , where ⊢Md
γ′ NV

′ | V′ : Ω | Σ1 and n′ ≥ 0.

Theorem 3 (Fundamental Theorem). If b : nat | Ω ⊢ p : ↑Cunit, then
b : nat | Ω ⊩ p : ↑Cunit.

Modal Crash Types for Intermittent Computing 189

Fig. 13. Proof of the fundamental theorem for P-Ckpt

The proof of Theorem 3 is by induction on the static typing derivation for p
and considers the last step in the derivation. Fig. 13 explains the idea of the
proof for the case where P-Ckpt is the last step of the derivation. By inversion,
p = Ckpt[aID, ρ](c); p′. Also, c is well-typed for static contexts Ω′ and Σ, where
Ω′ = Ω′′, Σck. The goal is to establish point (1) in the figure: c is related to
itself in the term interpretation for arbitrary n, m, γ, NV and V where NV | V ⊩
γ::Ω′′, Σck | Σ. The last condition enforces that the static contexts match the
dynamic context. The condition also establishes the more refined well-formedness
condition that ⊢Md

γ NV | V : Ω | Σ in atomic mode, required by progress and
preservation, since it enforces that each checkpointed location in NV and Ω have
copies in V and Σ. In particular, NV = NV′,Vck and range(γ) = dom(NV).
When m = 0, the proof is trivial. Consider the case where m = k + 1. By the
progress and preservation theorems, the first configuration can take multiple
steps until it becomes a value γ1 | aID(c) | n′ | NV | V1 | c1 that continues to be
well-typed. If n′ > 0, the second configuration steps similarly to completion and
establishes that the two resulting configurations are in the value relation. This
case is not shown in the figure. If n′ = 0, the second configuration does not step
and instead reaches point (2) in Fig. 13. At point (2), the proof must show that
the configurations are in the value interpretation at type Cunit.

The dashed line in the figure states that establishing point (2) implies the
relation in point (1). The cascade of implications (dashed lines) follows the def-
inition of the value relations at each type. At each step, we invert on the typing
rule of the open configuration and show that runtime memories stay well-defined
for static contexts. At point (4), we apply the power failure policy for atomic
regions, which drops the volatile memory V1 and creates a mapping using the
domain of NV. By the prior conditions established, we know the created map-
ping is the original mapping γ. At point (6), we apply the restore policy for
atomic regions, which creates a new volatile memory based on NV. Again by the

F. Derakhshan et al.190

prior conditions established, we know the volatile memory created is the original
volatile V. The goal at point (6) is similar to our original goal at point (1), except
that the proof uses an inductive argument to relate the two configurations at k.

Finally the Adequacy Theorem states that semantically well-typed programs
are idempotent, defined below. The proof is illustrated in Section 5.2.

Definition 1 (Idempotency). A triple of a program p, nonvolatile memory
NV, and a mapping γ is idempotent, if every intermittent execution of the pro-
gram can be simulated by a continuous execution of it: for all n, n′, χ1, χ

′
1,NV

′, p′,
if [χ1 ▷ ε]⊗ γ | n | NV | p ⇒ [χ′

1 ▷ ε]⊗ γ | n′ | NV′ | p′, then [χ2 ▷ ε]⊗ γ | ∞ |
NV | p ⇒ [χ2 ▷ ε]⊗ γ | ∞ | NV′ | p′.

Theorem 4 (Adequacy). Consider b : nat | Ω ⊩ p : Cunit, a nonvolatile mem-
ory NV and a bijective map γ that matches qualifiers and types from variables
in Ω to locations in NV. The triple of p, NV, and γ is idempotent.

7 Discussion & Related Work

Intermittent Computing. Surbatovich et al. [41] provide the first formal
framework for reasoning about intermittent execution, give the correctness defi-
nition that we use, and identify precise memory invariants needed for an execu-
tion to be correct. Our Crash types capture some of these invariants; capturing
all requires reasoning about the effects of non-deterministic sensor inputs, which
we leave to future work. This work is the first to treat intermittent operations
at the type level and explore the logical interpretation of intermittent execution.
We speculate that our type-based approach using logical relations will provide
a cleaner foundation for reasoning about the correctness of more complex inter-
mittent systems, e.g., concurrent ones. Other works that investigate the formal
properties of intermittent computing either reason about the effects of intermit-
tent execution on peripheral interactions [9] or enforce timeliness constraints on
sensor readings [40], which are orthogonal to ours.

Adjoint Logic. Benton et al. [7,8] provided the first categorical foundation for
using adjoint functors to combine linear and nonlinear logics and showed that a
well-behaved calculus requires an independence principle: linear formulae cannot
appear in the assumptions of a nonlinear sequent. Follow up works further gen-
eralized the system [20,21,36]. There, the relation to Pfenning and Davies’s [30]
formulation of the lax ⃝ modality was noted; ⃝ corresponds to UF, where F and
U are adjunctions between truth and validity categories. Short of a full curry-
howard correspondence for our type system and underlying logic, we designed
the rules for ↑ and ↓ based on the above calculi. Our stable and unstable contexts
correspond to the validity and truth contexts respectively. Thus, we speculate
that the combination ↑↓ in our system corresponds to the lax modality.

Several prior works used type systems with adjoint modalities to model
switching between program modes [6,14,34], e.g., switching a processes’ mode
between shared and unshared [6], or adding multicasting, replicable services,
and cancellation modes to a session-typed message passing system [34]. We are

Modal Crash Types for Intermittent Computing 191

the first to use these modalities to handle unforeseen shut-downs and distinguish
between stable and power-failure prone modes.

Logical Relations. Prior work [3,42] uses step indexing to ensure the well-
foundedness of logical relations that handle heaps with cyclic references, dynamic
memory allocation, or recursive types. Our Crash types model the infinite com-
putation that an atomic region can experience under a non-deterministic number
of power failures and re-executions. This recursion necessitates an-indexed rela-
tion that limits the number of execution attempts a program can make.

Jung and Tiuryn introduced a logical relation for lambda definability that
allows varying arities [18]. The idea is to increase the arity when passing to
later worlds instead of starting with a large arity. Our logical relation can also
be viewed as a relation with different arities; the initial type of the relation is
binary, while after a crash the type of the value relation only corresponds to
the intermittent configuration. During these value steps, the relation is unary,
with the continuous configuration acting as a kripke world for the intermittent
configuration. After restoration, the relation reverts to binary.

Logical relations have been widely used to prove program equivalence, e.g.,
[2,3,10,16]. At a high level, idempotency is similar to program equivalence, but
it handles re-execution and requires us only to prove simulation from an inter-
mittent to continuous run, not vice-versa.

Algebraic Effect Handlers. Algebraic effect handlers [27,31,32,33] give a uni-
fied theory for computational effects, e.g., exceptions and interactive input/out-
put. A handler accesses the continuation to transform the computation. Follow-
ing effect handler syntax, we write effectful environmental interactions of our
system as ε#in(b > 0, ↑κ), where b refers to a natural number returned by the
environment and ↑κ is the continuation. Our restore policy resembles a handler,
in that it has access to the continuation, but an atomic region may dismiss the
continuation, restarting from a saved command.

Crash Hoare Logic. Crash Hoare logic (CHL) [11] ensures the correctness of
crash and restore operations in a file system. CHL extends Hoare logic with a
crash condition and a recovery procedure. The crash condition states what hap-
pens to the state on a crash. The recovery procedure runs after the crash and
manipulates the state before resuming. The system checks that if the program
crashes, the storage system will recover to a state consistent with the specifica-
tions. Unlike us, they do not care about idempotency, requiring manual effort
to formalize the crash condition and recovery policy. Our syntactic typing fixes
the power failure, restore, and commit policies, and our formal results guarantee
that following the policies ensures idempotency, the common correctness con-
dition for intermittent execution. We also allow the programmer to formalize
bespoke semantically well-typed policies.

8 Conclusion

This work provides the first logical interpretation of intermittent execution. It
shows that adjoint logic can be applied to define Crash types, which internalize

F. Derakhshan et al.192

the dualities between stable and unstable values, and complete versus partial
(re-)executions of intermittent programs. The typing constraints capture invari-
ants of power failure, restoration, and re-execution in intermittent systems. The
proofs of progress, preservation, and the fundamental theorem imply the cor-
rectness of intermittent systems, i.e. idempotency of execution.

References

1. Adkins, J., Campbell, B., Ghena, B., Jackson, N., Pannuto, P., Dutta, P.:
The signpost network: Demo abstract. In: Proceedings of the 14th ACM Con-
ference on Embedded Network Sensor Systems CD-ROM. SenSys ’16 (2016).
https://doi.org/10.1145/2994551.2996542

2. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation in-
dependence. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. p. 340–353. POPL
’09, Association for Computing Machinery, New York, NY, USA (2009).
https://doi.org/10.1145/1480881.1480925

3. Ahmed, A.J.: Semantics of types for mutable state. Princeton University (2004)

4. Balsamo, D., Weddell, A., Das, A., Arreola, A., Brunelli, D., Al-Hashimi, B.,
Merrett, G., Benini, L.: Hibernus++: A self-calibrating and adaptive system
for transiently-powered embedded devices. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems PP(99), 1–1 (2016).
https://doi.org/10.1109/TCAD.2016.2547919

5. Balsamo, D., Weddell, A.S., Merrett, G.V., Al-Hashimi, B.M., Brunelli, D.,
Benini, L.: Hibernus: Sustaining computation during intermittent supply for
energy-harvesting systems. IEEE Embedded Systems Letters 7(1), 15–18 (2015).
https://doi.org/10.1109/LES.2014.2371494

6. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Proceedings of the 29th European Symposium on Programming. pp. 611–
639 (2019)

7. Benton, N., Wadler, P.: Linear logic, monads and the lambda calculus. In: Proceed-
ings 11th Annual IEEE Symposium on Logic in Computer Science. pp. 420–431.
IEEE (1996)

8. Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models. In:
International Workshop on Computer Science Logic. pp. 121–135. Springer (1994)

9. Berthou, G., Dagand, P.E., Demange, D., Oudin, R., Risset, T.: Intermittent com-
puting with peripherals, formally verified. In: The 21st ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems. pp. 85–96.
LCTES ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3372799.3394365

10. Birkedal, L., Støvring, K., Thamsborg, J.: Realizability semantics of parametric
polymorphism, general references, and recursive types. In: International Conference
on Foundations of Software Science and Computational Structures. pp. 456–470.
FOSSACS ’09, Springer (2009)

11. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash hoare logic for certifying the fscq file system. In: Proceedings of the
25th Symposium on Operating Systems Principles. pp. 18–37. SOSP ’15 (2015)

Modal Crash Types for Intermittent Computing 193

https://doi.org/10.1145/2994551.2996542
https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1145/3372799.3394365

12. Colin, A., Lucia, B.: Chain: Tasks and channels for reliable intermittent pro-
grams. In: Proceedings of the ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications. OOPSLA ’16 (2016).
https://doi.org/10.1145/2983990.2983995

13. Dahiya, M., Bansal, S.: Automatic verification of intermittent systems. In: Dillig,
I., Palsberg, J. (eds.) Verification, Model Checking, and Abstract Interpretation.
VMCAI ’18 (2018)

14. Das, A., Balzer, S., Hoffmann, J., Pfenning, F., Santurkar, I.: Resource-aware ses-
sion types for digital contracts. In: IEEE 34th Computer Security Foundations
Symposium. pp. 1–16. CSF ’21 (2021)

15. Derakhshan, F., Dotzel, M., Surbatovich, M., Jia, L.: Technical report: Modal crash
types for intermittent computing. Tech. rep., Carnegie Mellon University (2023).
https://doi.org/10.1184/R1/21950804

16. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. Journal of Functional Programming 22(4-5),
477–528 (2012)

17. Hester, J., Storer, K., Sorber, J.: Timely execution on intermittently powered bat-
teryless sensors. In: Proceedings of the 15th ACM Conference on Embedded Net-
work Sensor Systems (2017). https://doi.org/10.1145/3131672.3131673

18. Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Inter-
national Conference on Typed Lambda Calculi and Applications. pp. 245–257.
Springer (1993)

19. Kortbeek, V., Yildirim, K.S., Bakar, A., Sorber, J., Hester, J., Pawe lczak,
P.: Time-sensitive intermittent computing meets legacy software. In: Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. pp. 85–99. ASP-
LOS ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3373376.3378476

20. Licata, D.R., Shulman, M.: Adjoint logic with a 2-category of modes. In: Inter-
national Symposium on Logical Foundations of Computer Science. pp. 219–235.
Springer (2016)

21. Licata, D.R., Shulman, M., Riley, M.: A fibrational framework for substructural
and modal logics. In: 2nd International Conference on Formal Structures for Com-
putation and Deduction. FSCD ’17, Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2017)

22. Lucia, B., Denby, B., Manchester, Z., Desai, H., Ruppel, E., Colin,
A.: Computational nanosatellite constellations: Opportunities and chal-
lenges. GetMobile: Mobile Comp. and Comm. 25(1), 16–23 (Jun 2021).
https://doi.org/10.1145/3471440.3471446

23. Lucia, B., Ransford, B.: A simpler, safer programming and execution model
for intermittent systems. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI ’15 (2015).
https://doi.org/10.1145/2737924.2737978

24. Maeng, K., Colin, A., Lucia, B.: Alpaca: Intermittent execution without
checkpoints. Proc. ACM Program. Lang. 1(OOPSLA), 96:1–96:30 (Oct 2017).
https://doi.org/10.1145/3133920

25. Maeng, K., Lucia, B.: Supporting peripherals in intermittent systems with just-in-
time checkpoints. In: Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. p. 1101–1116. PLDI ’19 (2019).
https://doi.org/10.1145/3314221.3314613

F. Derakhshan et al.194

https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1184/R1/21950804
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1145/3471440.3471446
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/3133920
https://doi.org/10.1145/3314221.3314613

26. Maeng, K., Lucia, B.: Adaptive low-overhead scheduling for periodic and reac-
tive intermittent execution. In: Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 1005–1021.
PLDI ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3385412.3385998

27. Moggi, E.: Computational lambda-calculus and monads. University of Edinburgh,
Department of Computer Science, Laboratory for Foundations of Computer Science
(1988)

28. Nardello, M., Desai, H., Brunelli, D., Lucia, B.: Camaroptera: A bat-
teryless long-range remote visual sensing system. In: Proceedings of the
7th International Workshop on Energy Harvesting & Energy-Neutral Sens-
ing Systems. pp. 8–14. ENSsys’19, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3362053.3363491

29. NASA: What is KickSat-2? https://www.nasa.gov/ames/kicksat (2019), visited
April 15th, 2022

30. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathemat-
ical structures in computer science 11(4), 511–540 (2001)

31. Plotkin, G., Power, J.: Semantics for algebraic operations. Electronic Notes in
Theoretical Computer Science 45, 332–345 (2001)

32. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Proceedings of the 19th
European Symposium on Programming. pp. 80–94. Springer (2009)

33. Pretnar, M., Plotkin, G.D.: Handling algebraic effects. Logical methods in com-
puter science 9 (2013)

34. Pruiksma, K., Pfenning, F.: A message-passing interpretation of adjoint logic. Jour-
nal of Logical and Algebraic Methods in Programming 120, 100637 (2021)

35. Ransford, B., Sorber, J., Fu, K.: Mementos: System support for long-running com-
putation on RFID-scale devices. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS XVI (2011). https://doi.org/10.1145/1950365.1950386

36. Reed, J.: A judgmental deconstruction of modal logic. Unpublished manuscript,
January (2009)

37. Ruppel, E., Lucia, B.: Transactional concurrency control for intermittent, energy-
harvesting computing systems. In: Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. p. 1085–1100. PLDI
’19 (2019). https://doi.org/10.1145/3314221.3314583

38. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing. pp.
204–213. PODC ’95 (1995). https://doi.org/10.1145/224964.224987

39. Surbatovich, M., Jia, L., Lucia, B.: I/o dependent idempotence bugs in intermit-
tent systems. Proc. ACM Program. Lang. 3(OOPSLA), 183:1–183:31 (Oct 2019).
https://doi.org/10.1145/3360609

40. Surbatovich, M., Jia, L., Lucia, B.: Automatically enforcing fresh and consistent
inputs in intermittent systems. In: Proceedings of the 42nd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implementation. p.
851–866. PLDI ’21, Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3453483.3454081

41. Surbatovich, M., Lucia, B., Jia, L.: Towards a formal foundation of inter-
mittent computing. Proc. ACM Program. Lang. 4(OOPSLA) (Nov 2020).
https://doi.org/10.1145/3428231

42. Thamsborg, J., Birkedal, L.: A kripke logical relation for effect-based program
transformations. ACM SIGPLAN Notices 46(9), 445–456 (2011)

Modal Crash Types for Intermittent Computing 195

https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1145/3362053.3363491
https://www.nasa.gov/ames/kicksat
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/3314221.3314583
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/3360609
https://doi.org/10.1145/3453483.3454081
https://doi.org/10.1145/3428231

43. Van Der Woude, J., Hicks, M.: Intermittent computation without hard-
ware support or programmer intervention. In: Proceedings of OSDI’16: 12th
USENIX Symposium on Operating Systems Design and Implementation (2016).
https://doi.org/10.5555/3026877.3026880

44. Yildirim, K.S., Majid, A.Y., Patoukas, D., Schaper, K., Pawelczak, P., Hester, J.:
Ink: Reactive kernel for tiny batteryless sensors. In: Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems. pp. 41–53. SenSys ’18, ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3274783.3274837

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

F. Derakhshan et al.196

https://doi.org/10.5555/3026877.3026880
https://doi.org/10.1145/3274783.3274837
http://creativecommons.org/licenses/by/4.0/

	Modal Crash Types for Intermittent Computing

