
Automatic Alignment in Higher-Order
Probabilistic Programming Languages?

Daniel Lundén1(�) , Gizem Çaylak1 , Fredrik Ronquist2,3 , and
David Broman1

1 EECS and Digital Futures, KTH Royal Institute of Technology, Stockholm,
Sweden, {dlunde,caylak,dbro}@kth.se

2 Department of Bioinformatics and Genetics, Swedish Museum of Natural History,
Stockholm, Sweden, fredrik.ronquist@nrm.se

3 Department of Zoology, Stockholm University, Stockholm, Sweden

Abstract. Probabilistic Programming Languages (PPLs) allow users to
encode statistical inference problems and automatically apply an infer-
ence algorithm to solve them. Popular inference algorithms for PPLs,
such as sequential Monte Carlo (SMC) and Markov chain Monte Carlo
(MCMC), are built around checkpoints—relevant events for the inference
algorithm during the execution of a probabilistic program. Deciding the
location of checkpoints is, in current PPLs, not done optimally. To solve
this problem, we present a static analysis technique that automatically
determines checkpoints in programs, relieving PPL users of this task. The
analysis identifies a set of checkpoints that execute in the same order in
every program run—they are aligned. We formalize alignment, prove the
correctness of the analysis, and implement the analysis as part of the
higher-order functional PPL Miking CorePPL. By utilizing the align-
ment analysis, we design two novel inference algorithm variants: aligned
SMC and aligned lightweight MCMC. We show, through real-world ex-
periments, that they significantly improve inference execution time and
accuracy compared to standard PPL versions of SMC and MCMC.

Keywords: Probabilistic programming · Operational semantics · Static
analysis.

1 Introduction

Probabilistic programming languages (PPLs) are languages used to encode sta-
tistical inference problems, common in research fields such as phylogenetics [39],

? This project is financially supported by the Swedish Foundation for Strategic Re-
search (FFL15-0032 and RIT15-0012), and also partially supported by the Wallen-
berg Al, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation, and the Swedish Research Council (grants 2018-
04620 and 2021-04830). The research has also been carried out as part of the Vinnova
Competence Center for Trustworthy Edge Computing Systems and Applications at
KTH Royal Institute of Technology.

c©
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 535–563, 2023.
https://doi.org/10.1007/978-3-031-30044-8_20

The Author(s) 2023, corrected publication 2023

The original version of this chapter was revised: Theorem 1 has been corrected. The
correctionto this chapter is available at https://doi.org/10.1007/978-3-031-30044-8_21

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0003-3127-5640
http://orcid.org/0000-0001-9703-6912
http://orcid.org/0000-0002-3929-251X
http://orcid.org/0000-0001-8457-4105
https://doi.org/10.1007/978-3-031-30044-8_20
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_20&domain=pdf

D. Lundén et al.

computer vision [16], topic modeling [5], data cleaning [23], and cognitive sci-
ence [15]. PPL implementations automatically solve encoded problems by ap-
plying an inference algorithm. In particular, automatic inference allows users
to solve inference problems without having in-depth knowledge of inference al-
gorithms and how to apply them. Some examples of PPLs are WebPPL [14],
Birch [31], Anglican [48], Miking CorePPL [25], Turing [12], and Pyro [3].

Sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) are
general-purpose families of inference algorithms often used for PPL implemen-
tations. These algorithms share the concept of checkpoints : relevant execution
events for the inference algorithm. For SMC, the checkpoints are likelihood up-
dates [48,14] and determine the resampling of executions. Alternatively, users
must sometimes manually annotate or write the probabilistic program in a cer-
tain way to make resampling explicit [25,31]. For MCMC, checkpoints are instead
random draws, which allow the inference algorithm to manipulate these draws to
construct a Markov chain over program executions [47,38]. When designing SMC
and MCMC algorithms for universal PPLs4, both the placement and handling
of checkpoints are critical to making the inference both efficient and accurate.

For SMC, a standard inference approach is to resample at all likelihood
updates [14,48]. This approach produces correct results asymptotically [24] but
is highly problematic for certain models [39]. Such models require non-trivial
and SMC-specific manual program rewrites to force good resampling locations
and make SMC tractable. Overall, choosing the likelihood updates at which to
resample significantly affects SMC execution time and accuracy.

For MCMC, a standard approach for inference in universal PPLs is lightweight
MCMC [47], which constructs a Markov chain over random draws in programs.
The key idea is to use an addressing transformation and a runtime database of
random draws. Specifically, the database enables matching and reusing random
draws between executions according to their stack traces, even if the random
draws may or may not occur due to randomness during execution. However, the
dynamic approach of looking up random draws in the database through their
stack traces is expensive and introduces significant runtime overhead.

To overcome the SMC and MCMC problems in universal PPLs, we present
a static analysis technique for higher-order functional PPLs that automatically
determines checkpoints in a probabilistic program that always occur in the same
order in every program execution—they are aligned. We formally define align-
ment, formalize the alignment analysis, and prove the soundness of the analysis
with respect to the alignment definition. The novelty and challenge in developing
the static analysis technique is to capture alignment properties through the iden-
tification of expressions in programs that may evaluate to stochastic values and
expressions that may evaluate due to stochastic branching. Stochastic branching
results from if expressions with stochastic values as conditions or function ap-
plications where the function itself is stochastic. Stochastic values and branches
pose a significant challenge when proving the soundness of the analysis.

4 A term coined by Goodman et al. [13]. Essentially, it means that the types and
numbers of random variables cannot be determined statically.

536

Automatic Alignment in Higher-Order PPLs

We design two new inference algorithms that improve accuracy and execu-
tion time compared to current approaches. Unlike the standard SMC algorithm
for PPLs [48,14], aligned SMC only resamples at aligned likelihood updates. Re-
sampling only at aligned likelihood updates guarantees that each SMC execution
resamples the same number of times, which makes expensive global termination
checks redundant [25]. We evaluate aligned SMC on two diversification models
from Ronquist et al. [39] and a state-space model for aircraft localization, demon-
strating significantly improved inference accuracy and execution time compared
to traditional SMC. Both models—constant rate birth-death (CRBD) and clado-
genetic diversification rate shift (ClaDS)—are used in real-world settings and are
of considerable interest to evolutionary biologists [33,28]. The documentations
of both Anglican [48] and Turing [12] acknowledge the importance of alignment
for SMC and state that all likelihood updates must be aligned. However, Turing
and Anglican neither formalize nor enforce this property—it is up to the users
to manually guarantee it, often requiring non-standard program rewrites [39].

We also design aligned lightweight MCMC, a new version of lightweight
MCMC [47]. Aligned lightweight MCMC constructs a Markov chain over the
program using the aligned random draws as synchronization points to match
and reuse aligned random draws and a subset of unaligned draws between execu-
tions. Aligned lightweight MCMC does not require a runtime database of random
draws and therefore reduces runtime overhead. We evaluate aligned lightweight
MCMC for latent Dirichlet allocation (LDA) [5] and CRBD [39], demonstrat-
ing significantly reduced execution times and no decrease in inference accuracy.
Furthermore, automatic alignment is orthogonal to and easily combines with the
lightweight MCMC optimizations introduced by Ritchie et al. [38].

We implement the analysis, aligned SMC, and aligned lightweight MCMC
in Miking CorePPL [25,7]. In addition to analyzing stochastic if-branching, the
implementation analyzes stochastic branching at a standard pattern-matching
construct. Compared to if expressions, the pattern-matching construct requires
a more sophisticated analysis of the pattern and the value matched against it to
determine if the pattern-matching causes a stochastic branch.

In summary, we make the following contributions.

– We invent and formalize alignment for PPLs. Aligned parts of a program
occur in the same order in every execution (Section 4.1).

– We formalize and prove the soundness of a novel static analysis technique
that determines stochastic value flow and stochastic branching, and in turn
alignment, in higher-order probabilistic programs (Section 4.2).

– We design aligned SMC inference that only resamples at aligned likelihood
updates, improving execution time and inference accuracy (Section 5.1).

– We design aligned lightweight MCMC inference that only reuses aligned
random draws, improving execution time (Section 5.2).

– We implement the analysis and inference algorithms in Miking CorePPL.
The implementation extends the alignment analysis to identify stochastic
branching resulting from pattern matching (Section 6).

537

Section 7 describes the evaluation and discusses its results. The paper also has
an accompanying artifact that supports the evaluation [26]. Section 8 discusses
related work and Section 9 concludes. Next, Section 2 considers a simple mo-
tivating example to illustrate the key ideas. Section 3 introduces syntax and
semantics for the calculus used to formalize the alignment analysis.

An extended version of the paper is also available at arXiv [27]. We use the
symbol † in the text to indicate that more information (e.g., proofs) is available
in the extended version.

2 A Motivating Example

This section presents a motivating example that illustrates the key alignment
ideas in relation to aligned SMC (Section 2.1) and aligned lightweight MCMC
(Section 2.2). We assume basic knowledge of probability theory. Knowledge of
PPLs is helpful, but not a strict requirement. The book by van de Meent et
al. [46] provides a good introduction to PPLs.

Probabilistic programs encode Bayesian statistical inference problems with
two fundamental constructs: assume and weight. The assume construct defines
random variables, which make execution nondeterministic. Intuitively, a proba-
bilistic program then encodes a probability distribution over program executions
(the prior distribution), and it is possible to sample from this distribution by
executing the program with random sampling at assumes. The weight construct
updates the likelihood of individual executions. Updating likelihoods for execu-
tions modifies the probability distribution induced by assumes, and the inference
problem encoded by the program is to determine or approximate this modified
distribution (the posterior distribution). The main purpose of weight in real-
world models is to condition executions on observed data.5

Consider the probabilistic program in Fig. 1a. The program is contrived
and purposefully constructed to compactly illustrate alignment, but the real-
world diversification models in Ronquist et al. [39] that we also consider in
Section 7 inspired the program’s general structure. The program defines (line 1)
and returns (line 18) a Gamma-distributed random variable rate. Figure 1b
illustrates the Gamma distribution. To modify the likelihood for values of rate,
the program executes the iter function (line 10) three times, and the survives
function (line 2) a random number of times n (line 13) within each iter call.

Conceptually, to infer the posterior distribution of the program, we execute
the program infinitely many times. In each execution, we draw samples for the
random variables defined at assume, and accumulate the likelihood at weight.
The return value of the execution, weighted by the accumulated likelihood, rep-
resents one sample from the posterior distribution. Fig. 1c shows a histogram
of such weighted samples of rate resulting from a large number of executions
of Fig. 1a. The fundamental inference algorithm that produces such weighted
samples is called likelihood weighting (a type of importance sampling [32]). We
5 A number of more specialized constructs for likelihood updating are also available
in various PPLs, for example observe [48,14] and condition [14].

D. Lundén et al.538

1 let rate = assume Gamma(2, 2) in
2 let rec survives = λn.
3 if n = 0 then () else
4 if assume Bernoulli(0.9) then
5 weight 0.5;
6 survives (n− 1)
7 else
8 weight 0
9 in

10 let rec iter = λi.
11 if i = 0 then () else
12 weight rate;
13 let n = assume Poisson(rate) in
14 survives n;
15 iter (i− 1)
16 in
17 iter 3;
18 rate

(a) Probabilistic program.

0 5 10 15

(b) Gamma(2, 2).

0 5 10 15

(c) Histogram.

w1 12 12 5 5 5 12 5 5
w2 12 5 5 12 8 12 5
w1 12 12 5 5 5 12 5 5
w2 12 5 5 12 8 12 5

(d) Aligning weight.

s1 1 13 4 13 4 4 4 13
s2 1 13 4 4 13 4 4 13 4
s1 1 13 4 13 4 4 4 13
s2 1 13 4 4 13 4 4 13 4

(e) Aligning assume.

Fig. 1: A simple example illustrating alignment. Fig. (a) gives a probabilis-
tic program using functional-style PPL pseudocode. Fig. (b) illustrates the
Gamma(2, 2) probability density function. Fig. (c) illustrates a histogram over
weighted rate samples produced by running the program in (a) a large num-
ber of times. Fig. (d) shows two line number sequences w1 and w2 of weights
encountered in two program runs (top) and how to align them (bottom). Fig.
(e) shows two line number sequences s1 and s2 of assumes encountered in two
program runs (top) and how to align them (bottom).

see that, compared to the prior distribution for rate in Fig. 1b, the posterior is
more sharply peaked due to the likelihood modifications.

2.1 Aligned SMC

Likelihood weighting can only handle the simplest of programs. In Fig. 1a, a
problem with likelihood weighting is that we assign the weight 0 to many exe-
cutions at line 8. These executions contribute nothing to the final distribution.
SMC solves this by executing many program instances concurrently and occa-
sionally resampling them (with replacement) based on their current likelihoods.
Resampling discards executions with lower weights (in the worst case, 0) and re-
places them with executions with higher weights. The most common approach in
popular PPLs is to resample just after likelihood updates (i.e., calls to weight).

Resampling at all calls to weight in Fig. 1a is suboptimal. The best option is
instead to only resample at line 12. This is because executions encounter lines 5
and 8 a random number of times due to the stochastic branch at line 3, while they
encounter line 12 a fixed number of times. As a result of resampling at lines 5 and
8, executions become unaligned ; in each resampling, executions can have reached
either line 5, line 8, or line 12. On the other hand, if we resample only at line 12,
all executions will always have reached line 12 for the same iteration of iter in
every resampling. Intuitively, this is a sensible approach since, when resampling,

Automatic Alignment in Higher-Order PPLs 539

executions have progressed the same distance through the program. We say that
the weight at line 12 is aligned, and resampling only at aligned weights results
in our new inference approach called aligned SMC. Fig. 1d visualizes the weight
alignment for two sample executions of Fig. 1a.

2.2 Aligned Lightweight MCMC

Another improvement over likelihood weighting is to construct a Markov chain
over program executions. It is beneficial to propose new executions in the Markov
chain by making small, rather than large, modifications to the previous execu-
tion. The lightweight MCMC [47] algorithm does this by redrawing a single
random draw in the previous execution, and then reusing as many other ran-
dom draws as possible. Random draws in the current and previous executions
match through stack traces—the sequences of applications leading up to a ran-
dom draw. Consider the random draw at line 13 in Fig. 1a. It is called exactly
three times in every execution. If we identify applications and assumes by line
numbers, we get the stack traces [17, 13], [17, 15, 13], and [17, 15, 15, 13] for these
three assumes in every execution. Consequently, lightweight MCMC can reuse
these draws by storing them in a database indexed by stack traces.

The stack trace indexing in lightweight MCMC is overly complicated when
reusing aligned random draws. Note that the assumes at lines 1 and 13 in Fig 1a
are aligned, while the assume at line 4 is unaligned. Fig. 1e visualizes the assume
alignment for two sample executions of Fig. 1a. Aligned random draws occur in
the same same order in every execution, and are therefore trivial to match and
reuse between executions through indexing by counting. The appeal with stack
trace indexing is to additionally allow reusing a subset of unaligned draws.

A key insight in this paper is that aligned random draws can also act as
synchronization points in the program to allow reusing unaligned draws without a
stack trace database. After an aligned draw, we reuse unaligned draws occurring
up until the next aligned draw, as long as they syntactically originate at the
same assume as the corresponding unaligned draws in the previous execution.
As soon as an unaligned draw does not originate from the same assume as in
the previous execution, we redraw all remaining unaligned draws up until the
next aligned draw. Instead of a trace-indexed database, this approach requires
storing a list of unaligned draws (tagged with identifiers of the assumes at which
they originated) for each execution segment in between aligned random draws.
For example, for the execution s1 in Fig. 1e, we store lists of unaligned Bernoulli
random draws from line 4 for each execution segment in between the three aligned
random draws at line 13. If a Poisson random draw n at line 13 does not change
or decreases, we can reuse the stored unaligned Bernoulli draws up until the
next Poisson random draw as survives executes n or fewer times. If the drawn n
instead increases to n′, we can again reuse all stored Bernoulli draws, but must
supplement them with new Bernoulli draws to reach n′ draws in total.

As we show in Section 7, using aligned draws as synchronization points works
very well in practice and avoids the runtime overhead of the lightweight MCMC

D. Lundén et al.540

database. However, manually identifying aligned parts of programs and rewrit-
ing them so that inference can make use of alignment is, if even possible, te-
dious, error-prone, and impractical for large programs. This paper presents an
automated approach to identifying aligned parts of programs. Combining static
alignment analysis and using aligned random draws as synchronization points
form the key ideas of the new algorithm that we call aligned lightweight MCMC.

3 Syntax and Semantics

In preparation for the alignment analysis in Section 4, we require an idealized
base calculus capturing the key features of expressive PPLs. This section intro-
duces such a calculus with a formal syntax (Section 3.1) and semantics (Sec-
tion 3.2). We assume a basic understanding of the lambda calculus (see, e.g.,
Pierce [37] for a complete introduction). Section 6 further describes extending
the idealized calculus and the analysis in Section 4 to a full-featured PPL.

3.1 Syntax

We use the untyped lambda calculus as the base for our calculus. We also add
let expressions for convenience, and if expressions to allow intrinsic booleans
to affect control flow. The calculus is a subset of the language used in Fig. 1a.
We inductively define terms t and values v as follows.

Definition 1 (Terms and values).

t ::= x | c | λx. t | t t | let x = t in t v ::= c | 〈λx. t, ρ〉
| if t then t else t | assume t | weight t

x, y ∈ X ρ ∈ P c ∈ C {false, true, ()} ∪ R ∪D ⊆ C.
(1)

X is a countable set of variable names, C a set of intrinsic values and operations,
and D ⊂ C a set of probability distributions. The set P contains all evaluation
environments ρ, that is, partial functions mapping names in X to values v. We
use T and V to denote the set of all terms and values, respectively.

Values v are intrinsics or closures, where closures are abstractions with an en-
vironment binding free variables in the abstraction body. We require that C
include booleans, the unit value (), and real numbers. The reason is that weight
takes real numbers as argument and returns () and that if expression conditions
are booleans. Furthermore, probability distributions are often over booleans and
real numbers. For example, we can include the normal distribution constructor
N ∈ C that takes real numbers as arguments and produces normal distributions
over real numbers. For example, N 0 1 ∈ D, the standard normal distribution.
We often write functions in C in infix position or with standard function appli-
cation syntax for readability. For example, 1 + 2 with + ∈ C means + 1 2, and
N (0, 1) means N 0 1. Additionally, we use the shorthand t1; t2 for let _ = t1
in t2, where _ is the do-not-care symbol. That is, t1; t2 evaluates t1 for side

Automatic Alignment in Higher-Order PPLs 541

1 let rec geometric = λ_.
2 let x = assume Bernoulli(0.5) in
3 if x then
4 weight 1.5;
5 1 + geometric ()
6 else 1
7 in geometric ()

(a) Probabilistic program tgeo .

Standard geometric

1 2 3 4 5 6 7 8 9

Weighted geometric

(b) Probability distributions.

Fig. 2: A probabilistic program tgeo [25], illustrating (1). Fig. (a) gives the pro-
gram, and (b) the corresponding probability distributions. In (b), the y-axis gives
the probability, and the x-axis gives the outcome (the number of coin flips). The
upper part of (b) excludes the shaded weight at line 4 in (a).

effects only before evaluating t2. Finally, the untyped lambda calculus supports
recursion through fixed-point combinators. We encapsulate this in the shorthand
let rec f = λx.t1 in t2 to conveniently define recursive functions.

The assume and weight constructs are PPL-specific. We define random vari-
ables from intrinsic probability distributions with assume (also known as sam-
ple in PPLs with sampling-based inference). For example, the term let x =
assume N (0, 1) in t defines x as a random variable with a standard normal
distribution in t. Boolean random variables combined with if expressions result
in stochastic branching—causing the alignment problem. Lastly, weight (also
known as factor or score) is a standard construct for likelihood updating (see,
e.g., Borgström et al. [6]). Next, we illustrate and formalize a semantics for (1).

3.2 Semantics

Consider the small probabilistic program tgeo ∈ T in Fig. 2a. The program
encodes the standard geometric distribution via a function geometric, which
recursively flips a fair coin (a Bernoulli(0.5) distribution) at line 2 until the
outcome is false (i.e., tails). At that point, the program returns the total number
of coin flips, including the last tails flip. The upper part of Fig. 2b illustrates the
result distribution for an infinite number of program runs with line 4 ignored.

To illustrate the effect of weight, consider tgeo with line 4 included. This
weight modifies the likelihood with a factor 1.5 each time the flip outcome is
true (or, heads). Intuitively, this emphasizes larger return values, illustrated in
the lower part of Fig. 2b. Specifically, the (unnormalized) probability of seeing
n coin flips is 0.5n · 1.5n−1, compared to 0.5n for the unweighted version. The
factor 1.5n−1 is the result of the calls to weight.

We now introduce a big-step operational semantics for single runs of programs
t. Such a semantics is essential to formalize the probability distributions encoded
by probabilistic programs (e.g., Fig. 2b for Fig. 2a) and to prove the correctness
of PPL inference algorithms. For example, Borgström et al. [6] define a PPL
calculus and semantics similar to this paper and formally proves the correctness
of an MCMC algorithm. Another example is Lundén et al. [24], who also define a

D. Lundén et al.542

ρ ` x []⇓1[] ρ(x)
(Var)

ρ ` c []⇓1[] c
(Const)

ρ ` λx.t []⇓1[] 〈λx.t, ρ〉
(Lam)

ρ ` t1 s1⇓w1
l1
〈λx.t, ρ′〉 ρ ` t2 s2⇓w2

l2
v2 ρ′, x 7→ v2 ` t s3⇓w3

l3
v

ρ ` t1 t2 s1‖s2‖s3⇓w1·w2·w3
l1‖l2‖l3 v

(App)

ρ ` t1 s1⇓w1
l1

c1 ρ ` t2 s2⇓w2
l2

c2

ρ ` t1 t2 s1‖s2⇓w1·w2
l1‖l2 δ(c1, c2)

(Const-App)
ρ ` t s⇓wl d w′ = fd(c)

ρ ` assume t s‖[c]⇓w·w
′

l c
(Assume)

ρ ` t1 s1⇓w1
l1

v1 ρ, x 7→ v1 ` t2 s2⇓w2
l2

v

ρ ` let x = t1 in t2 s1‖s2⇓w1·w2
l1‖[x]‖l2 v

(Let)
ρ ` t s⇓wl w′

ρ ` weight t s⇓w·w
′

l ()
(Weight)

ρ ` t1 s1⇓w1
l1

true ρ ` t2 s2⇓w2
l2

v2

ρ ` if t1 then t2 else t3 s1‖s2⇓w1·w2
l1‖l2 v2

(If-True)

ρ ` t1 s1⇓w1
l1

false ρ ` t3 s3⇓w3
l3

v3

ρ ` if t1 then t2 else t3 s1‖s3⇓w1·w3
l1‖l3 v3

(If-False)

Fig. 3: A big-step operational semantics for terms, formalizing single runs of pro-
grams t ∈ T . The operation ρ, x 7→ v produces a new environment extending ρ
with a binding v for x. For each distribution d ∈ D, fd is its probability density
or probability mass function—encoding the relative probability of drawing par-
ticular values from the distribution. For example, fBernoulli(0.3)(true) = 0.3 and
fBernoulli(0.3)(false) = 1− 0.3 = 0.7. We use · to denote multiplication.

similar calculus and semantics and prove the correctness of PPL SMC algorithms.
In particular, the correctness of our aligned SMC algorithm (Section 5.1) follows
from this proof. The purpose of the semantics in this paper is to formalize
alignment and prove the soundness of our analysis in Section 4. We use a big-
step semantics as the finer granularity in a small-step semantics is redundant.
We begin with a definition for intrinsics.

Definition 2 (Intrinsic functions). For every c ∈ C, we attach an arity
|c| ∈ N. We define a partial function δ : C × C → C such that δ(c, c1) = c2 is
defined for |c| > 0. For all c, c1, and c2, such that δ(c, c1) = c2, |c2| = |c| − 1.

Intrinsic functions are curried and produce intrinsic or intrinsic functions of one
arity less through δ. For example, for + ∈ C, we have δ(δ(+, 1), 2) = 3, |+| = 2,
|δ(+, 1)| = 1, and |δ(δ(+, 1), 2)| = 0. Next, randomness in our semantics is
deterministic via a trace of random draws in the style of Kozen [22].

Definition 3 (Traces). The set S of traces is the set such that, for all s ∈ S,
s is a sequence of intrinsics from C with arity 0.

In the following, we use the notation [c1, c2, . . . , cn] for sequences and ‖ for
sequence concatenation. For example, [c1, c2] ‖ [c2, c4] = [c1, c2, c3, c4]. We also
use subscripts to select elements in a sequence, e.g., [c1, c2, c3, c4]2 = c2. In
practice, traces are often sequences of real numbers, e.g., [1.1, 3.2, 8.4] ∈ S.

Automatic Alignment in Higher-Order PPLs 543

Fig. 3 presents the semantics as a relation ρ ` t s⇓wl v over P × T × S ×R×
L× V . L is the set of sequences over X, i.e., sequences of names. For example,
[x, y, z] ∈ L, where x, y, z ∈ X. We use l ∈ L to track the sequence of let-
bindings during evaluation. For example, evaluating let x = 1 in let y = 2
in x + y results in l = [x, y]. In Section 4, we use the sequence of encountered
let-bindings to define alignment. For simplicity, from now on we assume that
bound variables are always unique (i.e., variable shadowing is impossible).

It is helpful to think of ρ, t, and s as the input to ⇓, and l, w and v as the out-
put. In the environment ρ, t, with trace s, evaluates to v, encounters the sequence
of let bindings l, and accumulates the weight w. The trace s is the sequence of
all random draws, and each random draw in (Assume) consumes precisely one
element of s. The rule (Let) tracks the sequence of bindings by adding x at the
correct position in l. The number w is the likelihood of the execution—the prob-
ability density of all draws in the program, registered at (Assume), combined
with direct likelihood modifications, registered at (Weight). The remaining as-
pects of the semantics are standard (see, e.g., Kahn [20]). To give an example of
the semantics, we have ∅ ` tgeo

[true,true,true,false]⇓0.5·1.5·0.5·1.5·0.5·1.5·0.5[geometric,x,x,x,x] 4 for the
particular execution of tgeo making three recursive calls. Next, we formalize and
apply the alignment analysis to (1).

4 Alignment Analysis

This section presents the main contribution of this paper: automatic alignment
in PPLs. Section 4.1 introduces A-normal form and gives a precise definition of
alignment. Section 4.2 formalizes and proves the correctness of the alignment
analysis. Lastly, Section 4.3 discusses a dynamic version of alignment.

4.1 A-Normal Form and Alignment

To reason about all subterms t′ of a program t and to enable the analysis in
Section 4.2, we need to uniquely label all subterms. A straightforward approach
is to use variable names within the program itself as labels (remember that
we assume bound variables are always unique). This leads us to the standard
A-normal form (ANF) representation of programs [11].

Definition 4 (A-normal form).

tANF ::= x | let x = t′ANF in tANF
t′ANF ::= x | c | λx. tANF | x y

| if x then tANF else tANF | assume x | weight x

(2)

We use TANF to denote the set of all terms tANF. Unlike t ∈ T , tANF ∈ TANF
enforces that a variable bound by a let labels each subterm in the program.
Furthermore, we can automatically transform any program in T to a semantically
equivalent TANF program, and TANF ⊂ T . Therefore, we assume in the remainder
of the paper that all terms are in ANF.

D. Lundén et al.544

Given the importance of alignment in universal PPLs, it is somewhat surpris-
ing that there are no previous attempts to give a formal definition of its meaning.
Here, we give a first such formal definition, but before defining alignment, we
require a way to restrict, or filter, sequences.

Definition 5 (Restriction of sequences). For all l ∈ L and Y ⊆ X, l|Y (the
restriction of l to Y) is the subsequence of l with all elements not in Y removed.

For example, [x, y, z, y, x]|{x,z} = [x, z, x]. We now formally define alignment.

Definition 6 (Alignment). For t ∈ TANF, let Xt denote all variables that
occur in t. The sets At ∈ At, At ⊆ Xt, are the largest sets such that, for
arbitrary ∅ ` t s1⇓w1

l1
v1 and ∅ ` t s2⇓w2

l2
v2, l1|At = l2|At .

For a given At, the aligned expressions—expressions bound by a let to a variable
name in At—are those that occur in the same order in every execution, regardless
of random draws. We seek the largest sets, as At = ∅ is always a trivial solution.
Assume we have a program with Xt = {x, y, z} and such that l = [x, y, x, z, x]
and l = [x, y, x, z, x, y] are the only possible sequences of let bindings. Then,
At = {x, z} is the only possibility. It is also possible to have multiple choices for
At. For example, if l = [x, y, z] and l = [x, z, y] are the only possibilities, then
At = {{x, z}, {x, y}}. Next, assume that we transform the programs in Fig. 2a
and Fig. 1a to ANF. The expression labeled by x in Fig. 2a is then clearly not
aligned, as random draws determine how many times it executes (l could be, e.g.,
[x, x] or [x, x, x, x]). Conversely, the expression n (line 13) in Fig. 1a is aligned,
as its number and order of evaluations do not depend on any random draws.

Definition 6 is context insensitive : for a given At, each x is either aligned
or unaligned. One could also consider a context-sensitive definition of alignment
in which x can be aligned in some contexts and unaligned in others. A context
could, for example, be the sequence of function applications (i.e., the call stack)
leading up to an expression. Considering different contexts for x is complicated
and difficult to take full advantage of. We justify the choice of context-insensitive
alignment with the real-world models in Section 7, neither of which requires a
context-sensitive alignment.

With alignment defined, we now move on to the static alignment analysis.

4.2 Alignment Analysis

The basis for the alignment analysis is 0-CFA [34,42]—a static analysis frame-
work for higher-order functional programs. The prefix 0 indicates that 0-CFA is
context insensitive. There is also a set of analyses k-CFA [30] that adds increas-
ing amounts (with k ∈ N) of context sensitivity to 0-CFA. We could use such
analyses with a context-sensitive version of Definition 6. However, the potential
benefit of k-CFA is also offset by the worst-case exponential time complexity,
already at k = 1. In contrast, the time complexity of 0-CFA is polynomial (cu-
bic in the worst-case). The alignment analysis for the models in Section 7 runs
instantaneously, justifying that the time complexity is not a problem in practice.

Automatic Alignment in Higher-Order PPLs 545

1 let n1 = ¬ in let n2 = ¬ in
2 let one = 1 in
3 let half = 0.5 in let c = true in
4 let f1 = λx1. let t1 = weight one in x1 in
5 let f2 = λx2. let t2 = weight one in t2 in
6 let f3 = λx3. let t3 = weight one in t3 in
7 let f4 = λx4. let t4 = weight one in t4 in
8 let bern = Bernoulli in
9 let d1 = bern half in

10 let a1 = assume d1
11 let v1 = f1 one in

12 let v2 = n1 a1 in
13 let v3 = n2 c in
14 let f5 =
15 if a1 then let t5 = f4 one in f2
16 else f3
17 in
18 let v4 = f5 one in
19 let i1 =
20 if c then let t6 = f1 one in t6
21 else one
22 in i1

Fig. 4: A program texample ∈ TANF illustrating the analysis.

The extensions to 0-CFA required to analyze alignment are non-trivial to
design, but the resulting formalization is surprisingly simple. The challenge is
instead to prove that the extensions correctly capture the alignment property
from Definition 6. We extend 0-CFA to analyze stochastic values and alignment
in programs t ∈ TANF. As with most static analyses, our analysis is sound but
conservative (i.e., sound but incomplete)—the analysis may mark aligned expres-
sions of programs as unaligned, but not vice versa. That the analysis is conserva-
tive does not degrade the alignment analysis results for any model in Section 7,
which justifies the approach. We divide the formal analysis into two algorithms.
Algorithm 1 generates constraints for t that a valid analysis solution must satisfy.
This section describes Algorithm 1 and the generated constraints. The second al-
gorithm computes a solution that satisfies the generated constraints. We describe
the algorithm at a high level, but omit a full formalization.†

For soundness of the analysis, we require 〈λx. t, ρ〉 6∈ C (recall that C is
the set of intrinsics). That is, closures are not in C. By Definition 3, this im-
plies that closures are not in the sample space of probability distributions in D
and that evaluating intrinsics never produces closures (this would unnecessarily
complicate the analysis without any benefit).

In addition to standard 0-CFA constraints, Algorithm 1 generates new con-
straints for stochastic values and unalignment. We use the contrived but illus-
trative program in Fig. 4 as an example. Note that, while omitted from Fig. 4
for ease of presentation, the analysis also supports recursion introduced through
let rec. Stochastic values are values in the program affected by random vari-
ables. Stochastic values initially originate at assume and then propagate through
programs via function applications and if expressions. For example, a1 (line 10)
is stochastic because of assume. We subsequently use a1 to define v2 via n1
(line 12), which is then also stochastic. Similarly, a1 is the condition for the if
resulting in f5 (line 14), and the function f5 is therefore also stochastic. When
we apply f5, it results in yet another stochastic value, v4 (line 18). In conclusion,
the stochastic values are a1, v2, f5, and v4.

Consider the flow of unalignment in Fig. 4. We mark expressions that may
execute due to stochastic branching as unaligned. From our analysis of stochastic
values, the program’s only stochastic if condition is at line 15, and we determine

D. Lundén et al.546

that all expressions directly within the branches are unaligned. That is, the
expression labeled by t5 is unaligned. Furthermore, we apply the variable f4
when defining t5. Thus, all expressions in bodies of lambdas that flow to f4 are
unaligned. Here, it implies that t4 is unaligned. Finally, we established that the
function f5 produced at line 15 is stochastic. Due to the application at line 18, all
names bound by lets in bodies of lambdas that flow to f5 are unaligned. Here,
it implies that t2 and t3 are unaligned. In conclusion, the unaligned expressions
are named by t2, t3, t4, and t5. For example, aligned SMC therefore resamples
at the weight at t1, but not at the weights at t2, t3, and t4.

Consider the program in Fig. 1a again, and assume it is transformed to ANF.
The alignment analysis must mark all names bound within the stochastic if at
line 3 as unaligned because a stochastic value flows to its condition. In particular,
the weight expressions at lines 5 and 8 are unaligned (and the weight at line 12
is aligned). Thus, aligned SMC resamples only at line 12.

To formalize the flow of stochastic values, we define abstract values a ::=
λx.y | stoch | const n, where x, y ∈ X and n ∈ N. We use A to denote the set
of all abstract values. The stoch abstract value is new and represents stochastic
values. The λx.y and const n abstract values are standard and represent abstract
closures and intrinsics, respectively. For each variable name x in the program, we
define a set Sx containing abstract values that may occur at x. For example, in
Fig. 4, we have stoch ∈ Sa1 , (λx2.t2) ∈ Sf2 , and (const 1) ∈ Sn1 . The abstract
value λx2.t2 represents all closures originating at λx2, and const 1 represents
intrinsic functions in C of arity 1 (in our example, ¬). The body of the abstract
lambda is the variable name labeling the body, not the body itself. For example,
t2 labels the body let t2 = one in t2 of λx2. Due to ANF, all terms have a
label, which the function name in Algorithm 1 formalizes.

We also define booleans unalignedx that state whether or not the expression
labeled by x is unaligned. For example, we previously reasoned that unalignedx =
true for x ∈ {t2, t3, t4, t5} in Fig. 4. The alignment analysis aims to deter-
mine minimal sets Sx and boolean assignments of unalignedx for every pro-
gram variable x ∈ X. A trivial solution is that all abstract values (there is a
finite number of them in the program) flow to each program variable and that
unalignedx = true for all x ∈ X. This solution is sound but useless. To compute
a more precise solution, we follow the rules given by constraints c ∈ R.†

We present the constraints through the generateConstraints function in
Algorithm 1 and for the example in Fig. 4. There are no constraints for variables
that occur at the end of ANF let sequences (line 2 in Algorithm 1), and the
case for let expressions (lines 3–36) instead produces all constraints. The cases
for aliases (line 6), intrinsics (line 7), assume (line 35), and weight (line 36) are
the most simple. Aliases of the form let x = y in t2 establish Sy ⊆ Sx. That
is, all abstract values at y are also in x. Intrinsic operations results in a const
abstract value. For example, the definition of n1 at line 1 in Fig. 4 results in the
constraint const 1 ∈ Sn1

. Applications of assume are the source of stochastic
values. For example, the definition of a1 at line 10 results in the constraint stoch
∈ Sa1 . Note that assume cannot produce any other abstract values, as we only

Automatic Alignment in Higher-Order PPLs 547

Algorithm 1 Constraint generation function for t ∈ TANF. We denote the power
set of a set E with P(E).
function generateConstraints(t): TANF → P(R) =

1 match t with
2 | x→ ∅
3 | let x = t1 in t2 →
4 generateConstraints(t2) ∪
5 match t1 with
6 | y → {Sy ⊆ Sx}
7 | c→ if |c| > 0 then {const |c| ∈ Sx}
8 else ∅
9 | λy. ty → generateConstraints(ty)

10 ∪ {λy. name(ty) ∈ Sx}
11 ∪ {unalignedy ⇒ unalignedn

12 | n ∈ names(ty)}
13 | lhs rhs → {
14 ∀z∀y λz.y ∈ Slhs

15 ⇒ (Srhs ⊆ Sz) ∧ (Sy ⊆ Sx),
16 ∀n (const n ∈ Slhs) ∧ (n > 1)
17 ⇒ const n− 1 ∈ Sx,
18 stoch ∈ Slhs ⇒ stoch ∈ Sx,
19 const _ ∈ Slhs

20 ⇒ (stoch ∈ Srhs ⇒ stoch ∈ Sx),
21 unalignedx
22 ⇒ (∀y λy._ ∈ Slhs ⇒ unalignedy),
23 stoch ∈ Slhs

24 ⇒ (∀y λy._ ∈ Slhs ⇒ unalignedy)

25 }

26 | if y then tt else te →
27 generateConstraints(tt)
28 ∪ generateConstraints(te)
29 ∪ {Sname(tt) ⊆ Sx, Sname(te) ⊆ Sx,

30 stoch ∈ Sy ⇒ stoch ∈ Sx}
31 ∪ {unalignedx ⇒ unalignedn
32 | n ∈ names(tt) ∪ names(te)}
33 ∪ {stoch ∈ Sy ⇒ unalignedn
34 | n ∈ names(tt) ∪ names(te)}
35 | assume _→ {stoch ∈ Sx}
36 | weight _→ ∅
37
38 function name(t): TANF → X =
39 match t with
40 | x→ x
41 | let x = t1 in t2 → name(t2)
42
43 function names(t): TANF → P(X) =
44 match t with
45 | x→ ∅
46 | let x = _ in t2 → {x} ∪ names(t2)
47
48
49
50

allow distributions over intrinsics with arity 0 (see Definition 3). Finally, we use
weight only for its side effect (likelihood updating), and therefore weights do
not produce any abstract values and consequently no constraints.

The cases for abstractions (line 9), applications (line 13), and ifs (line 26)
are more complex. The abstraction at line 4 in Fig. 4 generates (omitting the
recursively generated constraints for the abstraction body ty) the constraints
{λx1.x1 ∈ Sf1} ∪ {unalignedx1

⇒ unaligned t1}. The first constraint is standard:
the abstract lambda λx1.x1 flows to Sf1 . The second constraint states that if the
abstraction is unaligned, all expressions in its body (here, only t1) are unaligned.
We define the sets of expressions within abstraction bodies and if branches
through the names function in Algorithm 1 (line 43).

The application f5 one at line 18 in Fig. 4 generates the constraints

{∀z∀y λz.y ∈ Sf5 ⇒ (Sone ⊆ Sz) ∧ (Sy ⊆ Sv4),
∀n (const n ∈ Sf5) ∧ (n > 1)⇒ const n− 1 ∈ Sv4 ,
stoch ∈ Sf5 ⇒ stoch ∈ Sv4 ,
const _ ∈ Sf5 ⇒ (stoch ∈ Sone ⇒ stoch ∈ Sv4),
unalignedv4 ⇒ (∀y λy._ ∈ Sf5 ⇒ unalignedy),

stoch ∈ Sf5 ⇒ (∀y λy._ ∈ Slhs ⇒ unalignedy)}

(3)

The first constraint is standard: if an abstract value λz.y flows to f5, the abstract
values of one (the right-hand side) flow to z. Furthermore, the result of the appli-
cation, given by the body name y, must flow to the result v4 of the application.

D. Lundén et al.548

The second constraint is also relatively standard: if an intrinsic function of arity
n is applied, it produces a const of arity n − 1. The other constraints are new
and specific for stochastic values and unalignment. The third constraint states
that if the function is stochastic, the result is stochastic. The fourth constraint
states that if we apply an intrinsic function to a stochastic argument, the result is
stochastic. We could also make the analysis of intrinsic applications less conser-
vative through intrinsic-specific constraints. The fifth and sixth constraints state
that if the expression (labeled by v4) is unaligned or the function is stochastic,
all abstract lambdas that flow to the function are unaligned.

The if resulting in f5 at line 14 in Fig. 4 generates (omitting the recursively
generated constraints for the branches tt and te) the constraints

{Sname(f2) ⊆ Sf5 , Sname(f3) ⊆ Sf5 , stoch ∈ Sa1 ⇒ stoch ∈ Sf5}
∪ {unalignedf5 ⇒ unaligned t5} ∪ {stoch ∈ Sa1 ⇒ unaligned t5}

(4)

The first two constraints are standard and state that the result of the branches
flows to the result of the if expression. The remaining constraints are new. The
third constraint states that if the condition is stochastic, the result is stochastic.
The last two constraints state that if the if is unaligned or if the condition is
stochastic, all names in the branches (here, only t5) are unaligned.

Given constraints for a program, we need to compute a solution satisfying all
constraints. We do this by repeatedly iterating through all the constraints and
propagating abstract values accordingly. We terminate when we reach a fixed
point, i.e., when no constraint results in an update of either Sx or unalignedx
for any x in the program. We extend the 0-CFA constraint propagation al-
gorithm to also handle the constraints generated for tracking stochastic val-
ues and unalignment.† Specifically, the algorithm is a function analyzeAlign:
TANF → ((X → P(A))×P(X)) that returns a map associating each variable to
a set of abstract values and a set of unaligned variables. In other words, ana-
lyzeAlign computes a solution to Sx and unalignedx for each x in the analyzed
program. For example, analyzeAlign(texample) results in

Sn1
= {const 1} Sn2

= {const 1} Sf1 = {λx1.x1} Sf2 = {λx2.t2}
Sf3 = {λx3.t3} Sf4 = {λx4.t4} Sa1 = {stoch} Sv2 = {stoch}

Sf5 = {λx2.t2, λx3.t3, stoch} Sv4 = {stoch} Sn = ∅ | other n ∈ X
unalignedn = true | n ∈ {t2, t3, t4, t5} unalignedn = false | other n ∈ X.

(5)

The example confirms our earlier intuition: an intrinsic (¬) flows to n1, stoch
flows to a1, f5 is stochastic and originates at either (λx2.t2) or (λx3.t3), and the
unaligned variables are t2, t3, t4, and t5. We now give soundness results.

Lemma 1 (0-CFA soundness). For every t ∈ TANF, the solution produced by
analyzeAlign(t) satisfies the constraints generateConstraints(t).

Proof. The well-known soundness of 0-CFA extends to the new alignment con-
straints. See, e.g., Nielson et al. [34, Chapter 3] and Shivers [42]. ut

Automatic Alignment in Higher-Order PPLs 549

The proof† uses simultaneous structural induction over the derivations ∅ `
t s1⇓w1

l1
v1 and ∅ ` t s2⇓w2

l2
v2. At corresponding stochastic branches or stochas-

tic function applications in the two derivations, a separate structural induction
argument shows that, for the let-sequences l′1 and l′2 of the two stochastic sub-
derivations, l′1|Ât

= l′2|Ât
= []. Combined, the two arguments give the result.

The result Ât ⊆ At (cf. Definition 6) shows that the analysis is conservative.

4.3 Dynamic Alignment

An alternative to static alignment is dynamic alignment, which we explored
in early stages when developing the alignment analysis. Dynamic alignment is
fully context sensitive and amounts to introducing variables in programs that
track (at runtime) when evaluation enters stochastic branching. To identify these
stochastic branches, dynamic alignment also requires a runtime data structure
that keeps track of the stochastic values. Similarly to k-CFA, dynamic alignment
is potentially more precise than the 0-CFA approach. However, we discovered
that dynamic alignment introduces significant runtime overhead. Again, we note
that the models in Section 7 do not require a context-sensitive analysis, justifying
the choice of 0-CFA over dynamic alignment and k-CFA.

5 Aligned SMC and MCMC

This section presents detailed algorithms for aligned SMC (Section 5.1) and
aligned lightweight MCMC (Section 5.2). For a more pedagogical introduction
to the algorithms, see Section 2. We assume a basic understanding of SMC and
Metropolis–Hastings MCMC algorithms (see, e.g., Bishop [4]).

5.1 Aligned SMC

We saw in Section 2.1 that SMC operates by executing many instances of t
concurrently, and resampling them at calls to weight. Critically, resampling
requires that the inference algorithm can both suspend and resume executions.
Here, we assume that we can create execution instances e of the probabilistic
program t, and that we can arbitrarily suspend and resume the instances. The
technical details of suspension are beyond the scope of this paper. See Goodman
and Stuhlmüller [14], Wood et al. [48], and Lundén et al. [25] for further details.

Algorithm 2 presents all steps for the aligned SMC inference algorithm. Af-
ter running the alignment analysis and setting up the n execution instances,
the algorithm iteratively executes and resamples the instances. Note that the
algorithm resamples only at aligned weights (see Section 2.1).

D. Lundén et al.550

Theorem 1 (Alignment analysis soundness). Assume t ∈ TANF, At from
Definition 6, and an assignment to Sx and unalignedx for x ∈ X according
to analyzeAlign(t). Let Ât = {x | ¬unalignedx} and take arbitrary ∅ ⊢
t s1⇓w1

l1
v1 and ∅ ⊢ t s2⇓w2

l2
v2. Then, l1|Ât

= l2|Ât
and consequently Ât ⊆ At for

at least one At ∈ At.

Algorithm 2 Aligned SMC. The input is a program t ∈ TANF and the number
of execution instances n.
1. Run the alignment analysis on t, resulting in Ât (see Theorem 1).
2. Initiate n execution instances {ei | i ∈ N, 1 ≤ i ≤ n} of t.
3. Execute all ei and suspend execution upon reaching an aligned weight (i.e., let x = weight

w in t and x ∈ Ât) or when the execution terminates naturally. The result is a new set of
execution instances e′i with weights w′i accumulated from unaligned weights and the single final
aligned weight during execution.

4. If all e′i = v′i (i.e., all executions have terminated and returned a value), terminate inference and
return the set of weighted samples (v′i, w

′
i). The samples approximate the posterior probability

distribution encoded by t.
5. Resample the e′i according to their weights w′i. The result is a new set of unweighted execution

instances e′′i . Set ei ← e′′i . Go to 3.

1 if assume Bernoulli(0.5) then
2 weight 1; weight 10; true
3 else
4 weight 10; weight 1; false

(a) Aligned better than unaligned.

1 if assume Bernoulli(0.1) then
2 weight 9;
3 if assume Bernoulli(0.5)
4 then weight 1.5 else weight 0.5;
5 true
6 else (weight 1; false)

(b) Unaligned better than aligned.

Fig. 5: Programs illustrating properties of aligned and unaligned SMC. Fig. (a)
shows a program better suited for aligned SMC. Fig. (b) shows a program better
suited for unaligned SMC.

We conjecture that aligned SMC is preferable over unaligned SMC for all
practically relevant models, as the evaluation in Section 7 justifies. However, it
is possible to construct contrived programs in which unaligned SMC has the
advantage. Consider the programs in Fig. 5, both encoding Bernoulli(0.5) distri-
butions in a contrived way using weights. Fig. 5a takes one of two branches with
equal probability. Unaligned SMC resamples at the first weights in each branch,
while aligned SMC does not because the branch is stochastic. Due to the differ-
ence in likelihood, many more else executions survive resampling compared to
then executions. However, due to the final weights in each branch, the branch
likelihoods even out. That is, resampling at the first weights is detrimental, and
unaligned SMC performs worse than aligned SMC. Fig. 5b also takes one of two
branches, but now with unequal probabilities. However, the two branches still
have equal posterior probability due to the weights. The nested if in the then
branch does not modify the overall branch likelihood, but adds variance. Aligned
SMC does not resample for any weight within the branches, as the branch is
stochastic. Consequently, only 10% of the executions in aligned SMC take the
then branch, while half of the executions take the then branch in unaligned SMC
(after resampling at the first weight). Therefore, unaligned SMC better explores
the then branch and reduces the variance due to the nested if, which results in
overall better inference accuracy. We are not aware of any real model with the
property in Fig. 5b. In practice, it seems best to always resample when using
weight to condition on observed data. Such conditioning is, in practice, always
done outside of stochastic branches, justifying the benefit of aligned SMC.

Automatic Alignment in Higher-Order PPLs 551

Algorithm 3 Aligned lightweight MCMC. The input is a program t ∈ TANF,
the number of steps n, and the global step probability g > 0.
1. Run the alignment analysis on t, resulting in Ât (see Theorem 1).
2. Set i← 0, k ← 1, and l← 1. Call Run.
3. Set i ← i + 1. If i = n, terminate inference and return the samples {vj | j ∈ N, 0 ≤ j < n}.

They approximate the probability distribution encoded by t.
4. Uniformly draw an index 1 ≤ j ≤ |si−1| at random. Set global ← true with probability g, and

global ← false otherwise. Set w′−1 ← 1, w′ ← 1, k ← 1, l← 1, and reuse ← true. Call Run.

5. Compute the Metropolis–Hastings acceptance ratio A = min

(
1,

wi

wi−1

w′

w′−1

)
.

6. With probability A, accept vi and go to 3. Otherwise, set vi ← vi−1, wi ← wi−1, si ← si−1,
pi ← pi−1, s′i ← s′i−1, p

′
i ← p′i−1, and n

′
i ← n′i−1. Go to 3.

function run() = Run t and do the following:
– Record the total weight wi accumulated from calls to weight.
– Record the final value vi.
– At unaligned terms let c = assume d in t (c 6∈ Ât), do the following.

1. If reuse = false, global = true, n′i−1,k,l 6= c, or if s′i−1,k,l does not exist, sample a
value x from d and set reuse ← false. Otherwise, reuse the sample x = s′i−1,k,l and set
w′−1 ← w′−1 · p

′
i−1,k,l and w

′ ← w′ · fd(c).
2. Set s′i,k,l ← x, p′i,k,l ← fd(x), and n′i,k,l ← c.
3. Set l← l + 1. In the program, bind c to the value x and resume execution.

– At aligned terms let c = assume d in t (c ∈ Ât), do the following.
1. If j = k, global = true, or if si−1,k does not exist, sample a value x from d normally.

Otherwise, reuse the sample x = si−1,k. Set w′−1 ← w′−1 · pi−1,k and w′ ← w′ · fd(x).
2. Set si,k ← x and pi,k ← fd(x).
3. Set k ← k+1, l← 1, and reuse ← true. In the program, bind c to the value x and resume

execution.

5.2 Aligned Lightweight MCMC

Aligned lightweight MCMC is a version of lightweight MCMC [47], where the
alignment analysis provides information about how to reuse random draws be-
tween executions. Algorithm 3, a Metropolis–Hastings algorithm in the context
of PPLs, presents the details. Essentially, the algorithm executes the program re-
peatedly using the Run function, and redraws one aligned random draw in each
step, while reusing all other aligned draws and as many unaligned draws as pos-
sible (illustrated in Section 2.2). It is possible to formally derive the Metropolis–
Hastings acceptance ratio in step 5.† A key property in Algorithm 3 due to
alignment (Definition 6) is that the length of si (and pi) is constant, as execut-
ing t always results in the same number of aligned random draws.

In addition to redrawing only one aligned random draw, each step has a
probability g > 0 of being global—meaning that inference redraws every random
draw in the program. Occasional global steps fix problems related to slow mixing
and ergodicity of lightweight MCMC identified by Kiselyov [21]. In a global step,
the Metropolis–Hastings acceptance ratio reduces to A = min

(
1, wi

wi−1

)
.

6 Implementation

We implement the alignment analysis (Section 4), aligned SMC (Section 5.1),
and aligned lightweight MCMC (Section 5.2) for the functional PPL Miking

D. Lundén et al.552

CorePPL [25], implemented as part of the Miking framework [7]. We implement
the alignment analysis as a core component in the Miking CorePPL compiler,
and then use the analysis when compiling to two Miking CorePPL backends:
RootPPL and Miking Core. RootPPL is a low-level PPL with built-in highly
efficient SMC inference [25], and we extend the CorePPL to RootPPL compiler
introduced by Lundén et al. [25] to support aligned SMC inference. Furthermore,
we implement aligned lightweight MCMC inference standalone as a translation
from Miking CorePPL to Miking Core. Miking Core is the general-purpose pro-
gramming language of the Miking framework, currently compiling to OCaml.

The idealized calculus in (1) does not capture all features of Miking CorePPL.
In particular, the alignment analysis implementation must support records, vari-
ants, sequences, and pattern matching over these. Extending 0-CFA to such lan-
guage features is not new, but it does introduce a critical challenge for the align-
ment analysis: identifying all possible stochastic branches. Determining stochas-
tic ifs is straightforward, as we simply check if stoch flows to the condition.
However, complications arise when we add a match construct (and, in general,
any type of branching construct). Consider the extension

t ::= . . . | match t with p then t else t | {k1 = x1, . . ., kn = xn}

p ::= x | true | false | {k1 = p, . . ., kn = p}

x, x1, . . . , xn ∈ X k1, . . . , kn ∈ K n ∈ N
(6)

of (1), adding records and simple pattern matching. K is a set of record keys. As-
sume we also extend the abstract values as a ::= . . . | {k1 = X1, . . . , kn = Xn},
where X1, . . . , Xn ⊆ X. That is, we add an abstract record tracking the names
in the program that flow to its entries. Consider the program match t1 with {
a = x1, b = false } then t2 else t3. This match is, similar to ifs, stochastic
if stoch ∈ St1 . It is also, however, stochastic in other cases. Assume we have
two program variables, x and y, such that stoch ∈ Sx and stoch 6∈ Sy. Now,
the match is stochastic if, e.g., {a = {y}, b = {x}} ∈ St1 , because the random
value flowing from x to the pattern false may not match because of randomness.
However, it is not stochastic if, instead, St1 = {{a = {x}, b = {y}}}. The ran-
domness of x does not influence whether or not the branch is stochastic—the
variable pattern x1 for label a always matches.

Our alignment analysis implementation handles the intricacies of identify-
ing stochastic match cases for nested record, variant, and sequence patterns. In
total, the alignment analysis, aligned SMC, and aligned lightweight MCMC im-
plementations consist of approximately 1000 lines of code directly contributed
as part of this paper. The code is available on GitHub [2].

7 Evaluation

This section evaluates aligned SMC and aligned lightweight MCMC on a set
of models encoded in Miking CorePPL: CRBD [33,39] in Sections 7.1 and 7.5,
ClaDS [28,39] in Section 7.2, state-space aircraft localization in Section 7.3,

Automatic Alignment in Higher-Order PPLs 553

and latent Dirichlet allocation in Section 7.4. CRBD and ClaDS are non-trivial
models of considerable interest in evolutionary biology and phylogenetics [39].
Similarly, LDA is a non-trivial topic model [5]. Running the alignment analysis
took approximately 5 ms–30 ms for all models considered in the experiment,
justifying that the time complexity is not a problem in practice.

We compare aligned SMC with standard unaligned SMC [14], which is identi-
cal to Algorithm 2, except that it resamples at every call to weight.†We carefully
checked that automatic alignment corresponds to previous manual alignments
of each model. For all SMC experiments, we estimate the normalizing constant
produced as a by-product of SMC inference rather than the complete posterior
distributions. The normalizing constant, also known as marginal likelihood or
model evidence, frequently appears in Bayesian inference and gives the proba-
bility of the observed data averaged over the prior. The normalizing constant
is useful for model comparison as it measures how well different probabilistic
models fit the data (a larger normalizing constant indicates a better fit).

We ran aligned and unaligned SMC with Miking CorePPL and the RootPPL
backend configured for a single-core (compiled with GCC 7.5.0). Lundén et
al. [25] shows that the RootPPL backend is significantly more efficient than other
state-of-the-art PPL SMC implementations. We ran aligned and unaligned SMC
inference 300 times (and with 3 warmup runs) for each experiment for 104, 105,
and 106 executions (also known as particles in SMC literature).

We compare aligned lightweight MCMC to lightweight MCMC.† We imple-
ment both versions as compilers from Miking CorePPL to Miking Core, which
in turn compiles to OCaml (version 4.12). The lightweight MCMC databases
are functional-style maps from the OCaml Map library. We set the global step
probability to 0.1 for both aligned lightweight MCMC and lightweight MCMC.
We ran aligned lightweight and lightweight MCMC inference 300 times for each
experiment. We burned 10% of samples in all MCMC runs.

For all experiments, we used an Intel Xeon 656 Gold 6136 CPU (12 cores)
and 64 GB of memory running Ubuntu 18.04.5.

7.1 SMC: Constant Rate Birth-Death (CRBD)

This experiment considers the CRBD diversification model from [39] applied to
the Alcedinidae phylogeny (Kingfisher birds, 54 extant species) [19]. We use fixed
diversification rates to simplify the model, as unaligned SMC inference accuracy
is too poor for the full model with priors over diversification rates. Aligned SMC
is accurate for both the full and simplified models. The source code consists of
130 lines of code.† The total experiment execution time was 16 hours.

Fig. 6 presents the experiment results. Aligned SMC is roughly twice as fast
and produces superior estimates of the normalizing constant. Unaligned SMC
has not yet converged to the correct value −304.75 (available for this particular
model due to the fixing the diversification rates) for 106 particles, while aligned
SMC produces precise estimates already at 104 particles. Excess resampling is a
significant factor in the increase in execution time for unaligned SMC, as each
execution encounters far more resampling checkpoints than in aligned SMC.

D. Lundén et al.554

106105104

57.49

5.410.4

122.53

11.910.82

(a) Execution times.

104 105 106

−315

−330

−304.75

(b) Log normalizing constant estimates.

Fig. 6: SMC experiment results for CRBD. The x-axes give the number of parti-
cles. Fig. (a) shows execution times (in seconds) for aligned (gray) and unaligned
(white) SMC. Error bars show one standard deviation. Fig. (b) shows box plot log
normalizing constant estimates for aligned (gray) and unaligned (white) SMC.
The analytically computed log normalizing constant is −304.75.

106105104

92.41
8.880.6

634.07

59.33.56

(a) Execution times.

104 105 106

−400

−500

−314.35

(b) Log normalizing constant estimates.

Fig. 7: SMC experiment results for ClaDS. The x-axes give the number of parti-
cles. Fig. (a) shows execution times (in seconds) for aligned (gray) and unaligned
(white) SMC. Error bars show one standard deviation. Fig. (b) shows box plot log
normalizing constant estimates for aligned (gray) and unaligned (white) SMC.
The average estimate for aligned SMC with 106 particles is −314.35.

7.2 SMC: Cladogenetic Diversification Rate Shift (ClaDS)

A limitation of CRBD is that the diversification rates are constant. ClaDS [28,39]
is a set of diversification models that allow shifting rates over phylogenies. We
evaluate the ClaDS2 model for the Alcedinidae phylogeny. As in CRBD, we use
fixed (initial) diversification rates to simplify the model on account of unaligned
SMC. The source code consists of 147 lines of code.† Automatic alignment sim-
plifies the ClaDS2 model significantly, as manual alignment requires collecting
and passing weights around in unaligned parts of the program, which are later
consumed by aligned weights. The total experiment execution time was 67 hours.

Fig. 7 presents the experiment results. 12 unaligned runs for 106 particles
and nine runs for 105 particles ran out of the preallocated stack memory for
each particle (10 kB). We omit these runs from Fig. 7. The consequence of not
aligning SMC is more severe than for CRBD. Aligned SMC is now almost seven
times faster than unaligned SMC and the unaligned SMC normalizing constant
estimates are significantly worse compared to the aligned SMC estimates. The
unaligned SMC estimates do not even improve when moving from 104 to 106

particles (we need even more particles to see improvements). Again, aligned
SMC produces precise estimates already at 104 particles.

Automatic Alignment in Higher-Order PPLs 555

106105104

4.22

0.420.05

6.07

0.590.06

(a) Execution times.

104 105 106

−55

−65
−61.26

(b) Log normalizing constant estimates.

Fig. 8: SMC experiment results for the state-space aircraft localization model.
The x-axes give the number of particles. Fig. (a) shows execution times (in
seconds) for aligned (gray) and unaligned (white) SMC. Error bars show one
standard deviation. Fig. (b) shows box plot log normalizing constant estimates on
the y-axis for aligned (gray) and unaligned (white) SMC. The average estimate
for aligned SMC with 106 particles is −61.26.

7.3 SMC: State-Space Aircraft Localization

This experiment considers an artificial but non-trivial state-space model for air-
craft localization. The source code consists of 62 lines of code.† The total exper-
iment execution time was 1 hour.

Fig. 8 presents the experiment results. The execution time difference is not as
significant as for CRBD and ClaDS. However, the unaligned SMC normalizing
constant estimates are again much less precise. Aligned SMC is accurate (cen-
tered at approximately −61.26) already at 104 particles. The model’s straightfor-
ward control flow explains the less dramatic difference in execution time—there
are at most ten unaligned likelihood updates in the aircraft model, while the
number is, in theory, unbounded for CRBD and ClaDS. Therefore, the cost of
extra resampling compared to aligned SMC is not as significant.

7.4 MCMC: Latent Dirichlet Allocation (LDA)

This experiment considers latent Dirichlet allocation (LDA), a topic model used
in the evaluations by Wingate et al. [47] and Ritchie et al. [38]. We use a synthetic
data set, comparable in size to the data set used by Ritchie et al. [38], with a
vocabulary of 100 words, 10 topics, and 25 documents each containing 30 words.
Note that we are not using methods based on collapsed Gibbs sampling [17], and
the inference task is therefore computationally challenging even with a rather
small number of words and documents. The source code consists of 31 lines of
code.† The total experiment execution time was 41 hours.

The LDA model consists of only aligned random draws. As a consequence,
aligned lightweight and lightweight MCMC reduces to the same inference algo-
rithm, and we can compare the algorithms by just considering the execution
times. The experiment also justifies the correctness of both algorithms.†

Fig. 9 presents the experiment results. Aligned lightweight MCMC is al-
most three times faster than lightweight MCMC. To justify the execution times
with our implementations, we also implemented and ran the experiment with

D. Lundén et al.556

105104103

125.24

11.821.17

325.25

32.473.23

Fig. 9: MCMC experiment results for LDA showing execution time (in seconds)
for aligned lightweight MCMC (gray) and lightweight MCMC (white). Error bars
show one standard deviation and the x-axis the number of MCMC iterations.

lightweight MCMC in WebPPL [14] for 105 iterations, repeated 50 times (and
with 3 warmup runs). The mean execution time was 383 s with standard devia-
tion 5 s. We used WebPPL version 0.9.15 and Node version 16.18.0.

7.5 MCMC: Constant Rate Birth-Death (CRBD)

This experiment again considers CRBD. MCMC is not as suitable for CRBD as
SMC, and therefore we use a simple synthetic phylogeny with six leaves and an
age span of 5 age units (Alcedinidae used for the SMC experiment has 54 leaves
and an age span of 35 age units). The source code for the complete model is the
same as in Section 7.1, but we now allow the use of proper prior distributions
for the diversification rates. The total experiment execution time was 7 hours.

Unlike LDA, the CRBD model contains both unaligned and aligned random
draws. Because of this, aligned lightweight MCMC and standard lightweight
MCMC do not reduce to the same algorithm. To judge the difference in infer-
ence accuracy, we consider the mean estimates of the birth diversification rate
produced by the two algorithms, in addition to execution times. The experiment
results shows that the posterior distribution over the birth rate is unimodal†,
which motivates using the posterior mean as a measure of accuracy.

Fig. 10 presents the experiment results. Aligned lightweight MCMC is ap-
proximately 3.5 times faster than lightweight MCMC. There is no obvious dif-
ference in accuracy. To justify the execution times and correctness of our im-
plementations, we also implemented and ran the experiment with lightweight
MCMC in WebPPL [14] for 3 · 106 iterations, repeated 50 times (and with 3
warmup runs). The mean estimates agreed with Fig. 10. The mean execution
time was 37.1 s with standard deviation 0.8 s. The speedup compared to stan-
dard lightweight MCMC in Miking CorePPL is likely explained by the use of
early termination in WebPPL, which benefits CRBD. Early termination easily
combines with alignment but relies on execution suspension, which we do not
currently use in our implementations. Note that aligned lightweight MCMC is
faster than WebPPL even without early termination.

In conclusion, the experiments clearly demonstrate the need for alignment.

Automatic Alignment in Higher-Order PPLs 557

3 · 1063 · 1053 · 104

18.54

1.820.2

63.95

6.210.63

(a) Execution times.

3 · 104 3 · 105 3 · 106

0.4

0.45

0.33

(b) Birth rate mean estimates.

Fig. 10: MCMC experiment results for CRBD. The x-axes give the number of
iterations. Fig. (a) shows execution times (in seconds) for aligned lightweight
MCMC (gray) and lightweight MCMC (white). Error bars show one standard
deviation. Fig. (b) shows box plot posterior mean estimates of the birth rate for
aligned lightweight MCMC (gray) and lightweight MCMC (white). The average
estimate for aligned lightweight MCMC with 3 · 106 iterations is 0.33.

8 Related Work

The approach by Wingate et al. [47] is closely related to ours. A key similarity
with alignment is that executions reaching the same aligned checkpoint also
have matching stack traces according to Wingate et al.’s addressing transform.
However, Wingate et al. do not consider the separation between unaligned and
aligned parts of the program, their approach is not static, and they do not
generalize to other inference algorithms such as SMC.

Ronquist et al. [39], Turing [12], Anglican [48], Paige and Wood [36], and van
de Meent et al. [46] consider the alignment problem. Manual alignment is critical
for the models in Ronquist et al. [39] to make SMC inference tractable, which
strongly motivates the automatic alignment approach. The documentation of
Turing states that: “The observe statements [i.e., likelihood updates] should be
arranged so that every possible run traverses all of them in exactly the same
order. This is equivalent to demanding that they are not placed inside stochastic
control flow” [1]. Turing does not include any automatic checks for this property.
Anglican [48] checks, at runtime (resulting in overhead), that all SMC executions
encounter the same number of likelihood updates, and thus resamples the same
number of times. If not, Anglican reports an error: “some observe directives [i.e.,
likelihood updates] are not global”. This error refers to the alignment problem,
but the documentation does not explain it further. Probabilistic C, introduced by
Paige and Wood [36], similarly assumes that the number of likelihood updates
is the same in all executions. Van de Meent et al. [46] state, in reference to
SMC: “Each breakpoint [i.e., checkpoint] needs to occur at an expression that
is evaluated in every execution of a program”. Again, they do not provide any
formal definition of alignment nor an automatic solution to enforce it.

Lundén et al. [24] briefly mention the general problem of selecting optimal
resampling locations in PPLs for SMC but do not consider the alignment problem
in particular. They also acknowledge the overhead resulting from not all SMC
executions resampling the same number of times, which alignment avoids.

D. Lundén et al.558

The PPLs Birch [31], Pyro [3], and WebPPL [14] support SMC inference.
Birch and Pyro enforce alignment for SMC as part of model construction. Note
that this is only true for SMC in Pyro—other Pyro inference algorithms use
other modeling approaches. The approaches in Birch and Pyro are sound but
demand more of their users compared to the alignment approach. WebPPL does
not consider alignment and resamples at all likelihood updates for SMC.

Ritchie et al. [38] and Nori et al. [35] present MCMC algorithms for proba-
bilistic programs. Ritchie et al. [38] optimize lightweight MCMC by Wingate et
al. [47] through execution suspensions and callsite caching. The optimizations are
independent of and potentially combines well with aligned lightweight MCMC.
Another MCMC optimization which potentially combines well with alignment
is due to Nori et al. [35]. They use static analysis to propagate observations
backwards in programs to improve inference.

Information flow analyses [40] may determine if particular parts of a program
execute as a result of different program inputs. Specifically, if program input is
random, such approaches have clear similarities to the alignment analysis.

Many other PPLs exist, such as Gen [10], Venture [29], Edward [44], Stan [8],
and AugurV2 [18]. Gen, Venture, and Edward focus on simplifying the joint
specification of a model and its inference to give users low-level control, and do
not consider automatic alignment specifically. However, the incremental inference
approach [9] in Gen does use the addressing approach by Wingate et al. [47]. Stan
and AugurV2 have less expressive modeling languages to allow more powerful
inference. Alignment is by construction due to the reduced expressiveness.

Borgström et al. [6], Staton et al. [43], Ścibior et al. [41], and Vákár et al. [45]
treat semantics and correctness for PPLs, but do not consider alignment.

9 Conclusion

This paper gives, for the first time, a formal definition of alignment in PPLs.
Furthermore, we introduce a static analysis technique and use it to align check-
points in PPLs and apply it to SMC and MCMC inference. We formalize the
alignment analysis, prove its correctness, and implement it in Miking CorePPL.
We also implement aligned SMC and aligned lightweight MCMC, and evaluate
the implementations on non-trivial CRBD and ClaDS models from phylogenet-
ics, the LDA topic model, and a state-space model, demonstrating significant
improvements compared to standard SMC and lightweight MCMC.

Acknowledgments We thank Lawrence Murray, Johannes Borgström, and Jan
Kudlicka for early discussions on the alignment idea, and Viktor Senderov for im-
plementing ClaDS in Miking CorePPL. We also thank the anonymous reviewers
at ESOP for their valuable comments.

Automatic Alignment in Higher-Order PPLs 559

References

1. Turing.jl. https://turing.ml/dev/ (2022), accessed: 2022-02-24
2. Miking DPPL. https://github.com/miking-lang/miking-dppl (2023), accessed:

2023-01-02
3. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karalet-

sos, T., Singh, R., Szerlip, P., Horsfall, P., Goodman, N.D.: Pyro: Deep universal
probabilistic programming. Journal of Machine Learning Research 20(28), 1–6
(2019)

4. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag (2006)

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

6. Borgström, J., Dal Lago, U., Gordon, A.D., Szymczak, M.: A lambda-calculus
foundation for universal probabilistic programming. In: Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming. pp. 33–46.
Association for Computing Machinery (2016)

7. Broman, D.: A vision of Miking: Interactive programmatic modeling, sound lan-
guage composition, and self-learning compilation. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Software Language Engineering. pp. 55–60.
Association for Computing Machinery (2019)

8. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., Riddell, A.: Stan: A probabilistic programming
language. Journal of Statistical Software, Articles 76(1), 1–32 (2017)

9. Cusumano-Towner, M., Bichsel, B., Gehr, T., Vechev, M., Mansinghka, V.K.: In-
cremental inference for probabilistic programs. In: Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation. pp.
571–585. Association for Computing Machinery, New York, NY, USA (2018)

10. Cusumano-Towner, M.F., Saad, F.A., Lew, A.K., Mansinghka, V.K.: Gen: A
general-purpose probabilistic programming system with programmable inference.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 221–236. Association for Computing Machinery
(2019)

11. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proceedings of the ACM SIGPLAN 1993 Conference on Pro-
gramming Language Design and Implementation. pp. 237–247. Association for
Computing Machinery, New York, NY, USA (1993)

12. Ge, H., Xu, K., Ghahramani, Z.: Turing: a language for flexible probabilistic in-
ference. In: International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. pp.
1682–1690 (2018)

13. Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence. pp. 220–229. AUAI Press
(2008)

14. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages. http://dippl.org (2014), accessed: 2022-02-24

15. Goodman, N.D., Tenenbaum, J.B., Contributors, T.P.: Probabilistic Models of
Cognition. http://probmods.org/v2 (2016), accessed: 2022-06-10

D. Lundén et al.560

https://turing.ml/dev/
https://github.com/miking-lang/miking-dppl
http://dippl.org
http://probmods.org/v2

16. Gothoskar, N., Cusumano-Towner, M., Zinberg, B., Ghavamizadeh, M., Pollok,
F., Garrett, A., Tenenbaum, J., Gutfreund, D., Mansinghka, V.: 3DP3: 3D scene
perception via probabilistic programming. In: Advances in Neural Information Pro-
cessing Systems. vol. 34, pp. 9600–9612. Curran Associates, Inc. (2021)

17. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National
academy of Sciences 101(suppl_1), 5228–5235 (2004)

18. Huang, D., Tristan, J.B., Morrisett, G.: Compiling markov chain monte carlo al-
gorithms for probabilistic modeling. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. p. 111–125.
Association for Computing Machinery, New York, NY, USA (2017)

19. Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O.: The global di-
versity of birds in space and time. Nature 491(7424), 444–448 (2012)

20. Kahn, G.: Natural semantics. In: Proceedings of the 4th Annual Symposium on
Theoretical Aspects of Computer Science. pp. 22–39. Springer-Verlag, Berlin, Hei-
delberg (1987)

21. Kiselyov, O.: Problems of the lightweight implementation of probabilistic program-
ming. In: Proceedings of Workshop on Probabilistic Programming Semantics (2016)

22. Kozen, D.: Semantics of probabilistic programs. Journal of Computer and System
Sciences 22(3), 328–350 (1981)

23. Lew, A., Agrawal, M., Sontag, D., Mansinghka, V.: PClean: Bayesian data cleaning
at scale with domain-specific probabilistic programming. In: Proceedings of The
24th International Conference on Artificial Intelligence and Statistics. vol. 130, pp.
1927–1935. PMLR (2021)

24. Lundén, D., Borgström, J., Broman, D.: Correctness of sequential monte carlo
inference for probabilistic programming languages. In: Programming Languages
and Systems. pp. 404–431. Springer International Publishing, Cham (2021)

25. Lundén, D., Öhman, J., Kudlicka, J., Senderov, V., Ronquist, F., Broman, D.:
Compiling universal probabilistic programming languages with efficient parallel
sequential monte carlo inference. In: Programming Languages and Systems. pp.
29–56. Springer International Publishing, Cham (2022)

26. Lundén, D., Caylak, G., Ronquist, F., Broman, D.: Artifact: Automatic alignment
in higher-order probabilistic programming languages (Jan 2023). https://doi.
org/10.5281/zenodo.7572555

27. Lundén, D., Caylak, G., Ronquist, F., Broman, D.: Automatic alignment in higher-
order probabilistic programming languages. arXiv e-prints p. arXiv:2301.11664
(2023)

28. Maliet, O., Hartig, F., Morlon, H.: A model with many small shifts for estimating
species-specific diversification rates. Nature Ecology & Evolution 3(7), 1086–1092
(2019)

29. Mansinghka, V.K., Schaechtle, U., Handa, S., Radul, A., Chen, Y., Rinard, M.:
Probabilistic programming with programmable inference. In: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. p. 603–616. Association for Computing Machinery, New York, NY, USA
(2018)

30. Midtgaard, J.: Control-flow analysis of functional programs. ACM Computing Sur-
veys 44(3) (2012)

31. Murray, L.M., Schön, T.B.: Automated learning with a probabilistic programming
language: Birch. Annual Reviews in Control 46, 29–43 (2018)

32. Naesseth, C., Lindsten, F., Schön, T.: Elements of Sequential Monte Carlo. Foun-
dations and Trends in Machine Learning Series, Now Publishers (2019)

Automatic Alignment in Higher-Order PPLs 561

https://doi.org/10.5281/zenodo.7572555
https://doi.org/10.5281/zenodo.7572555
https://doi.org/10.5281/zenodo.7572555
https://doi.org/10.5281/zenodo.7572555

33. Nee, S.: Birth-death models in macroevolution. Annual Review of Ecology, Evolu-
tion, and Systematics 37(1), 1–17 (2006)

34. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag (1999)

35. Nori, A., Hur, C.K., Rajamani, S., Samuel, S.: R2: An efficient MCMC sampler
for probabilistic programs. Proceedings of the AAAI Conference on Artificial In-
telligence 28(1) (2014)

36. Paige, B., Wood, F.: A compilation target for probabilistic programming languages.
In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference
on Machine Learning. vol. 32, pp. 1935–1943. PMLR, Bejing, China (22–24 Jun
2014)

37. Pierce, B.C.: Types and programming languages. MIT press (2002)
38. Ritchie, D., Stuhlmüller, A., Goodman, N.: C3: Lightweight incrementalized

MCMC for probabilistic programs using continuations and callsite caching. In:
Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics. vol. 51, pp. 28–37. PMLR, Cadiz, Spain (2016)

39. Ronquist, F., Kudlicka, J., Senderov, V., Borgström, J., Lartillot, N., Lundén, D.,
Murray, L., Schön, T.B., Broman, D.: Universal probabilistic programming offers a
powerful approach to statistical phylogenetics. Communications Biology 4(1), 244
(2021)

40. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21(1), 5–19 (2003)

41. Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K.,
Moss, S.K., Heunen, C., Ghahramani, Z.: Denotational validation of higher-order
Bayesian inference. Proceedings of the ACM on Programming Languages 2(POPL)
(2017)

42. Shivers, O.G.: Control-flow analysis of higher-order languages or taming lambda.
Carnegie Mellon University (1991)

43. Staton, S., Yang, H., Wood, F., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: Higher-order functions, continuous distributions, and soft
constraints. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science. pp. 525–534. Association for Computing Machinery (2016)

44. Tran, D., Hoffman, M.D., Saurous, R.A., Brevdo, E., Murphy, K., Blei, D.M.: Deep
probabilistic programming. In: International Conference on Learning Representa-
tions (2017)

45. Vákár, M., Kammar, O., Staton, S.: A domain theory for statistical probabilis-
tic programming. Proceedings of the ACM on Programming Languages 3(POPL)
(2019)

46. van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An introduction to probabilistic
programming. arXiv e-prints p. arXiv:1809.10756 (2018)

47. Wingate, D., Stuhlmueller, A., Goodman, N.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: Pro-
ceedings of the 14th International Conference on Artificial Intelligence and Statis-
tics. vol. 15, pp. 770–778. PMLR (2011)

48. Wood, F., Meent, J.W., Mansinghka, V.: A new approach to probabilistic program-
ming inference. In: Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics. vol. 33, pp. 1024–1032. PMLR (2014)

D. Lundén et al.562

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Automatic Alignment in Higher-Order PPLs 563

http://creativecommons.org/licenses/by/4.0/

	Automatic Alignment in Higher-Order Probabilistic Programming Languages
	1 Introduction
	2 A Motivating Example
	2.1 Aligned SMC
	2.2 Aligned Lightweight MCMC

	3 Syntax and Semantics
	3.1 Syntax
	3.2 Semantics

	4 Alignment Analysis
	4.1 A-Normal Form and Alignment
	4.2 Alignment Analysis
	4.3 Dynamic Alignment

	5 Aligned SMC and MCMC
	5.1 Aligned SMC
	5.2 Aligned Lightweight MCMC

	6 Implementation
	7 Evaluation
	7.1 SMC: Constant Rate Birth-Death (CRBD)
	7.2 SMC: Cladogenetic Diversi˝cation Rate Shift (ClaDS)
	7.3 SMC: State-Space Aircraft Localization
	7.4 MCMC: Latent Dirichlet Allocation (LDA)
	7.5 MCMC: Constant Rate Birth-Death (CRBD)

	8 Related Work
	9 Conclusion
	References

