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Abstract Knowledge-based programs specify multi-agent protocols with epi-
stemic guards that abstract from how agents learn and record facts or information
about other agents and the environment mutual dependency between the evaluation
of epistemic guards over the reachable states and the derivation of the reachable
states depending on the evaluation of epistemic guards synchronous programming
languages to the interpretation problem of knowledge-based programs and demon-
strate that the resulting constructive interpretation is monotone and has a least fixed
point. We relate our approach with existing interpretation schemes for both syn-
chronous and asynchronous programs interpretation and illustrate the procedure
by several examples and an application to the Java memory model.

1 Introduction

Knowledge-based programs [14] describe multi-agent systems based on explicit know-
ledge tests on what an agent knows or does not know about itself, other agents, and
the environment: Extending standard programs, an agent may look beyond what it can
directly observe by reasoning about the possible states of the other agents and the envir-
onment in all possible program executions. Such non-local, epistemic conditions abstract
from how an agent may learn and record particular environmental facts or information
about other agents. Thus knowledge-based programs rather are specifications of (multi-
agent) protocols that may be implemented by standard, directly executable programs. For
being implementable in the first place, however, it has to be ensured that the knowledge
guards can be resolved consistently given all possible program executions.

Consider for example a bit transmission [14, Ex. 4.1.1, Ex. 7.1.1], where a sender S
has to transmit a bit sbit over a lossy channel to a receiver R who has to acknowledge the
reception, again over a lossy channel. This can bemodelled by a knowledge-based program
over the state variables sbit ∈ {0, 1}, rval ∈ {⊥, 0, 1}, and ack ∈ {0, 1} as follows: S
can only directly observe (read) sbit and ack, and R only rval (but both may write all
variables); (KR sbit = 0) ∨ (KR sbit = 1) expresses that R knows sbit’s value and is
abbreviated byKR sbit . The behaviour description consists of a looping guarded command
with two branches that is started with rval = ⊥ and ack = 0, but sbit left undetermined:

do ¬KS KR sbit _ (rval← sbit or skip) — S
8 KR sbit ∧ ¬KR KS KR sbit _ (ack← 1 or skip) od — R

The guarded branches are separated by a 8, or means a non-deterministic choice, and
skip doing nothing: S sends the bit as long as it does not know that R received it, and R
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keeps acknowledging once it has learnt the bit and does not know that S knows this fact.
The epistemic formulæ Ka ϕ in the program are to be interpreted as in classical Kripke
semantics: ϕ holds in all states (or worlds) that agent a currently deems possible. Which
states these are is regulated on the one hand by what a can observe: any state that is
indistinguishable from the current one by the available observations is possible for the
agent. In the example only S can observe sbit, though, due to the protocol, it should be
possible that eventually R knows its value. On the other hand, the possible states depend
on which runs of the knowledge-based program may actually happen, i.e., which states
are reachable taking epistemically guarded transitions: If only the actions of the program
are taken, it is impossible to reach a state satisfying both rval 6= ⊥ and rval 6= sbit,
which, however, is present in the global state space; but it is decisive that it is not reachable
in any execution in order to have some execution where KR sbit can become true.

The interpretation of knowledge-based programs hinges precisely on this mutual
dependency between the evaluation of epistemic guards over the reachable states and the
derivation of the reachable states depending on the evaluation of the epistemic guards.
This implicit definition of the epistemic state of the agents by the observables and the
reachable states of the commonly known protocol is in stark contrast to Baltag’s epistemic
action models [4,31], where the epistemic state is given and manipulated explicitly. In
many cases, including the bit transmission protocol, the reachable state space may be
computed using static analysis techniques without taking into account the epistemic
nature of the guards. However, the interplay between knowledge and reachability may
sometimes become more intricate: The more states are reachable the less is known
definitely, and the guards will in turn influence what is reachable positively or negatively.

Consider, for another example, a variable setting problem [14, Exc. 7.5] involving
a single agent a and a single state variable x ∈ {0, 1, 2, 3}, where a cannot observe x
directly. The agent executes the following guarded command starting with x = 0:

if Ka x 6= 1 _ x← 3
8 Ka x 6= 3 _ x← 1 fi

Being an initial condition, x = 0 is reachable, whereas x = 2 is not reachable as 2 is
never assigned. However, two different sets of reachable states make for a consistent
interpretation of the knowledge guards for the remaining values: {x = 0, x = 1}, where
Ka x 6= 1 is false and Ka x 6= 3 is true, and {x = 0, x = 3}, with the opposite results.
The singleton set {x = 0} is ruled out, since both guards would be true such that x = 3
and x = 1 are reachable; and {x = 0, x = 1, x = 3} is impossible, since both guards are
false and thus neither x = 1 nor x = 3 are reachable. Breaking this cycle by making one
of the transitions unconditional on knowledge as, e.g., in

if Ka x 6= 1 _ x← 3
8 Ka x 6= 3 _ x← 2
8 true _ x← 1 fi

yields a knowledge-based program with the unique consistent interpretation {x = 1, x =
2}. For computing its behaviour, however, several steps are needed, first reasoning that
x = 1 is reachable, then that x = 3 is not reachable, and, finally, that x = 2 is reachable.
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Related Work. In their introduction and seminal treatise on knowledge-based pro-
grams [13,14], Fagin et al. characterise the unique interpretability of such programs by
their “dependence on the past” w.r. t. some non-empty class of transition systems: The eval-
uation of knowledge guards in a state coincides for all interpretations in the class that share
a common past of the state. A sufficient condition for this dependence is that the program
“provides epistemic witnesses” for all interpretations of the class such that not knowing
something at some point in time has a counter example in the past. A sufficient condition
for this provision, in turn, is that the program is “synchronous”, i.e., that all agents can de-
termine the global time from their local states. For example, the bit transmission protocol
provides epistemic witnesses and thus is uniquely interpretable; but it is not synchronous.
The cycle-breaking variable setting program is also uniquely interpretable, but does not
provide epistemic witnesses. For “asynchronous” knowledge-based programs, De Haan et
al. [10] suggest to rely on classical iteration of the non-monotone reachability functional
that interprets the knowledgemodalities according towhat currently is assumed to be reach-
able. The computation process is started with all states assumed to be reachable and stops
when some set of states is repeated. This approach fixes some semantics for all knowledge-
based programs, also for those which are cyclic and contradictory or only self-fulfilling.

The problem of mutual dependence of guard evaluation and reachability has also
occurred in the design of synchronous programming languages [6] for embedded systems,
like Esterel [7] or Lustre [18], which rely on “perfect synchrony”: a step for reacting to
some inputs takes zero time and output signals are produced at exactly the same time as the
input signals. Since thus the status of a signal to be produced can be queried at the same
time, this requires “logical coherence” saying that a (non-input) signal is present in a step of
execution if, and only if, a command emitting this signal is executed in this step. Whereas
Lustre forbids cyclic programs on a syntactic basis, Berry’s approach to the semantics
of Esterel [8] singles out “reactive” — at least one execution — and “determinate” —
at most one execution — programs using a static executability analysis: It is computed
which signals must be present, i.e., have to occur inevitably, and which signals cannot be
present, i.e., have no emitting execution. This is also referred to as must/cannot analysis
and has to be performed several times for finding a fixed point of all the signal statuses.

In logic programming involving “negation as failure” under- and over-approximations
in terms of three- and four-valued logics lead to the “Kripke-Kleene fixpoint” and “well-
founded” models; see [11] for an overview. There, however, the temporal dimension of
reachability or executability is not involved. The “stable model semantics” [16,5] stresses
the rational inclusion or exclusion of atoms: A set of atomsM is “stable” for a logic
programΠ if it coincides with the minimal set of atoms inferable from the “reduct”ΠM

which is obtained from Π by deleting each clause that has a negative literal ¬p in its
body with p ∈M , and all negative literals in the bodies of the remaining clauses. The
definition is not algorithmic or constructive; the minimality condition rules out self-
fulfilling solutions, the reduction process avoids contradictions. Gelfond’s “epistemic
specifications” [15] extend (disjunctive) logic programs with a modality K for “subjective
literals” for representing incomplete information in programs with several stable models.

Contributions. We apply the principles of the must/cannot analysis to the interpretability
problem of knowledge-based programs. After recalling some basic notions of epistemic
logic and epistemic transition structures (Sect. 2), we first recapitulate the approaches
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by Fagin et al. [14] and De Haan et al. [10] in terms of epistemically guarded transition
systems, a syntax-agnostic format for knowledge-based programs (Sect. 3). For a
more direct analysis, our account of those designs is state-based rather than run-based.
We demonstrate the results and the limits of both interpretation schemes by several
examples that illustrate (a-)synchronicity and non-monotone interpretation for cyclic,
contradictory, or self-fulfilling programs. The latter behaviour is the main motivation for
our reformulation of the interpretation problem in terms of epistemic must/can transition
structures which offer lower and upper bounds on the behaviour of a knowledge-based
program (Sect. 4). We show that this constructive interpretation is always monotone
and yields a least fixed point. However, lower and upper bound of the fixed point need
not always coincide and we relate decided fixed points with the notions of “providing
epistemic witnesses” and synchronicity. We then derive a representation of the behaviour
of a knowledge-based program as a general rule system with not only positive but
also negative premisses (Sect. 5). Such rule systems correspond to logic programs
involving “negation as failure” and the intended solutions form “stable models”. The
must/can approximation technique, its monotonicity, and it fixed point properties directly
transfer to such rule systems. We finally describe an implementation of our constructive
interpretation approach in the “Temporal Epistemic Model Interpreter and Checker”
(tEmIc, Sect. 6). For model checking interpreted knowledge-based programs, the tool
supports CTLK, the combination of “Computational Tree Logic” (CTL) with epistemic
logic. Moreover, this logic can also be used in program guards; the interpretation of
such temporal-epistemic programs extends the previous approaches. We give some
applications to the analysis of the Java memory model.

2 Epistemic Logic and Epistemic Transition Structures

We briefly summarise the basic notions of epistemic logic for expressing knowledge
guards [31,30]. We then define epistemic transition structures as the domain of interpret-
ation of knowledge-based programs. These transition structures combine the temporal
dimension of executing a program with the epistemic dimension for evaluating what
agents know. Both the logic and the transition structures are built over an epistemic
signature Σ = (P,A) that consists of a set of propositions P and a set of agents A.

2.1 Epistemic Logic

An epistemic structure K = (W,R,L) over (P,A) is given by a set of worldsW , an
A-family of epistemic accessibility relations R = (Ra ⊆W ×W )a∈A, and a labelling
L : W → ℘P assigning each world a set of propositions. In concrete examples, we will
require Ra to be an equivalence relation such that if (w1, w2) ∈ Ra, then agent a cannot
distinguish between the two worlds w1 and w2. The epistemic formulæ ϕ ∈ ΦP,A over
(P,A) are defined by the following grammar:

ϕ ::= p | false | ¬ϕ | ϕ1 ∧ ϕ2 | Ka ϕ
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where p ∈ P and a ∈ A. The epistemic formula Ka ϕ is to be read as “agent a knows ϕ”.
We use the usual propositional abbreviations true for¬false andϕ1∨ϕ2 for¬(¬ϕ1∧¬ϕ2).
Furthermore, we consider the epistemic modality M as the dual of K, such that Ma ϕ
abbreviates ¬Ka ¬ϕ and is to be read as “agent a deems ϕ possible”. The satisfaction
relation of an epistemic formula ϕ ∈ ΦP,A over an epistemic structureK = (W,R,L)
over (P,A) at a world w ∈W , writtenK,w |= ϕ, is inductively defined by

K,w |= p ⇐⇒ p ∈ L(w)

K,w 6|= false

K,w |= ¬ϕ ⇐⇒ K,w 6|= ϕ

K,w |= ϕ1 ∧ ϕ2 ⇐⇒ K,w |= ϕ1 andK,w |= ϕ2

K,w |= Ka ϕ ⇐⇒ K,w′ |= ϕ f. a. w′ ∈W with (w,w′) ∈ Ra

2.2 Epistemic Transition Structures

An epistemic transition structure combines a temporal transition relationwith an epistemic
accessibility relation over a common set of states. The transitions describe which states
can be reached from a set of initial states, the accessibilities specify which states are
indistinguishable. Knowledge formulæ are evaluated over the associated global epistemic
structure. This derived structure has the reachable states as its worlds and reuses the
accessibility relation and the labelling but restricted to the reachable states.

Formally, an epistemic transition structure M = (S,E,L, S0, T ) over (P,A) is
given by an epistemic structure (S,E,L), a set of temporally initial states S0 ⊆ S,
and a temporal transition relation T ⊆ S × S. We write S(M) for S, T (M) for T ,
etc. The (temporally) reachable states Sω(M) =

⋃
0≤k Sk(M) and transition relation

Tω(M) =
⋃

0≤k Tk(M) ofM are inductively defined by

S0(M) = S0, Sk+1(M) = Sk(M) ∪ {s′ | ex. s ∈ Sk(M) s. t. (s, s′) ∈ T} ;
T0(M) = ∅, Tk+1(M) = Tk(M) ∪ {(s, s′) ∈ T | s ∈ Sk(M)} .

The associated epistemic structure ofM is given by

K(M) = (Sω(M), E ∩ Sω(M)2, L�Sω(M))

where Sω(M)2 abbreviates Sω(M)×Sω(M) and L�Sω(M) denotes labelling L restric-
ted to domain Sω(M). The satisfaction relation of an epistemic formula ϕ ∈ ΦP,A over
M at an s ∈ Sω(M), writtenM, s |= ϕ, is defined as

M, s |= ϕ ⇐⇒ K(M), s |= ϕ .

The set of epistemic transition structures over Σ = (P,A) sharing the same epistemic
state basis B = (S,E,L, S0) is denoted by MΣ(B). We say that M1 ⊆ M2 for
M1,M2 ∈ MΣ(B) if T (M1) ⊆ T (M2) and similarly extend union and intersection
from transition relations to epistemic transition structures.
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3 Knowledge-based Programs

Knowledge-based programs extend standard programs by explicit knowledge tests. Their
interpretation involves a cycle: the evaluation of the epistemic guards depends on the
program’s reachable states, the derivation of the reachable states on the evaluation of the
program’s epistemic guards.

We render knowledge-based programs in a syntax-agnostic format as epistemically
guarded transition systems. Like epistemic transition structures, these guarded systems
operate on a global set of states with epistemic accessibilities and a propositional labelling.
All program steps are represented as knowledge-guarded actions of the form ϕ ⊃ B with
ϕ an epistemic formula and B a relation on the semantic states. Knowledge-independent
decisions are obtained by choosing ϕ = true, and any kind of program control structure
can be expressed by a judicious choice of guarded actions.

Breaking up the cyclic step of assigning meaning to a knowledge-based program,
an epistemically guarded transition system Γ is interpreted over an epistemic transition
structureM yielding another epistemic transition structure ΓM . A guarded action ϕ ⊃ B
of Γ contributes those (s, s′) ∈ B for which M, s |= ϕ, where, in particular, s is
reachable inM . What is sought for is a consistent interpretation with ΓM = M such
that reachability and knowledge are mutually justified. Finding such a balanced structure
is complicated by the fact that the interpretation functional is not monotone in general:
The more is reachable the less is known and this may make more or less states reachable.

After introducing and illustrating our format of knowledge-based programs we
summarise and adapt two existing approaches to their interpretation that have been devised
for run-based rather than state-based systems: De Haan et al. [10] propose to iterate the
interpretation functional starting from an epistemic transition structure where all states are
reachable. Iteration stops when either a fixed point is reached or, due to non-monotonicity,
a contradiction is found. In this way all knowledge-based programs are assigned some
semantics and there is no distinction between meaningful and contradictory or just self-
fulfilling programs. The original approach by Fagin et al. [13,14] characterises knowledge-
based programs that admit a unique consistent interpretation by the notion of dependence
on the past. A sufficient condition of providing epistemic witnesses is developed which,
in particular, applies to the subclass of synchronous knowledge-based programs.

3.1 Epistemically Guarded Transition Systems

An epistemically guarded transition system Γ = (S,E,L, S0, T ) over (P,A) is given by
an epistemic state basis (S,E,L, S0) over (P,A) and a set T of epistemically guarded
actions ϕ ⊃ B consisting of an epistemic formula ϕ ∈ ΦP,A as guard and a transition
relation B ⊆ S × S.

Example 1. (a) Consider the bit transmission problem of the introduction:

do ¬KS KR sbit _ (rval← sbit or skip)
8 KR sbit ∧ ¬KR KS KR sbit _ (ack← 1 or skip) od

A sender agent S sends a bit sbit ∈ {0, 1} to a receiver agent R over an unreliable channel
by setting rval ∈ {⊥, 0, 1}; and R acknowledges the reception over an unreliable channel
by setting ack ∈ {0, 1}. Again, we abbreviate (KR ¬sbit) ∨ (KR sbit) expressing that
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the receiver knows the bit to be sent by KR sbit . We concretise the problem into an epi-
stemically guarded transition system Γbt = (Bbt , Tbt) with Bbt = (Sbt , Ebt , Lbt , Sbt,0)
over Σbt = (Pbt , Abt) with Pbt = {sbit, rbit, snt, ack} and Abt = {S,R}. Since we
use a propositional encoding, we represent rval ∈ {⊥, 0, 1} by a proposition rbit for
the transmitted bit and a proposition snt for the validity of rbit. Further abbreviating
the knowledge guards KR sbit by kr , KS KR sbit by ksr , and KR KS KR sbit by krsr , the
transition system Γbt is graphically given by

z0

snt
z1

ack
z2

snt, ack
z3

sbit
z4

sbit, rbit, snt
z5

sbit, ack
z6

sbit, rbit, snt, ack
z7

Obt,S = {sbit, ack}
Obt,R = {rbit, snt}

¬ksr? kr ∧ ¬krsr?

kr ∧ ¬krsr? ¬ksr?

¬ksr?
kr ∧ ¬krsr?

¬ksr?
kr ∧ ¬krsr?

¬ksr?
kr ∧ ¬krsr?

¬ksr? kr ∧ ¬krsr?

kr ∧ ¬krsr? ¬ksr?

¬ksr?
kr ∧ ¬krsr?

¬ksr?
kr ∧ ¬krsr?

¬ksr?
kr ∧ ¬krsr?

The states Sbt comprise of {z0, z1, . . . , z7} with Lbt(z0) = ∅, Lbt(z1) = {snt}, . . . ,
Lbt(z7) = {sbit, rbit, snt, ack} as outlined in the graph above; the set of initial states is
Sbt,0 = {z0, z4}. The epistemic accessibility relations Ebt,a for a ∈ Abt are given by
observability setsObt,a that declare two states s1, s2 ∈ Sbt to beObt,a-indistinguishable,
written as s1 ∼Obt,a

s2, if for all p ∈ Obt,a it holds that p ∈ Lbt(s1) ⇐⇒ p ∈ Lbt(s2),
and consequently Ebt,a = ∼Obt,a

, such that Ebt,a forms an equivalence relation. Due to
sbit /∈ Obt,R, the receiver R cannot “see” sbit and hence cannot distinguish between
states z0 and z4, but S can. On the other hand, R can distinguish between z1 and z5 as R
has access to rbit. Finally, Tbt consists of two epistemically guarded actions

¬KS KR sbit ⊃ {(zi, zi) | 0 ≤ i ≤ 7} ∪ {(z0, z1), (z2, z3), (z4, z5), (z6, z7)} and
KR sbit ∧ ¬KR KS KR sbit ⊃ {(zi, zi) | 0 ≤ i ≤ 7} ∪

{(z0, z2), (z1, z3), (z4, z6), (z5, z7)} ,

which directly reflect the sending and acknowledging actions of the bit transmission
problem: The system can only advance from z0 to z1 (and z4 to z5), where sending has
been done successfully, if S does not know that R knows the bit; but it need not make
such progress, i.e., sending can be unsuccessful. Similarly, the system can only advance
from z1 to z3 (and z5 to z7), where an acknowledgement has been sent successfully, if R
knows the bit and R does not know that S knows that R knows the bit.

(b) Consider the variable setting problem of the introduction for a single agent a:

if Ka x 6= 1 _ x← 3
8 Ka x 6= 3 _ x← 1 fi

Encoding the integer x ∈ {0, 1, 2, 3} by two bits q1 and q2, we model the problem as the
following epistemically guarded transition system Γvs = (Bvs , Tvs) with Bvs = (Svs ,
Evs , Lvs , Svs,0) over Σvs = (Pvs , Avs) with Pvs = {q1, q2} and Avs = {a}:
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¬q1,¬q2

s0
x = 0

¬q1, q2

s1
x = 3 q1,¬q2

s2
x = 1 q1, q2

s3
x = 2

Ovs,a = ∅

Ka ¬(q1 ∧ ¬q2)?

Ka ¬(¬q1 ∧ q2)?

Ovs,a represents a “blind” agent a that deems all states equally accessible. State s3 is
definitely not reachable. Tvs consists of the epistemically guarded actions

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)} and Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s2)} .

3.2 Interpreting Epistemically Guarded Transition Systems

An epistemically guarded transition system Γ = (S,E,L, S0, T ) over (P,A) is inter-
preted over an epistemic transition structureM ∈MP,A(S,E,L, S0) by interpreting
each guarded action (ϕ ⊃ B) ∈ T w.r. t.M as

(ϕ ⊃ B)
M

= {(s, s′) ∈ B | s ∈ Sω(M) andM, s |= ϕ} ,

and combining these interpretations into the epistemic transition structure

ΓM = (S,E,L, S0,
⋃
τ∈T τ

M ) .

We callM a solution for Γ if ΓM = M .

Example 2. For the bit transmission problem as described in Ex. 1(a), the epistemic
transition structure Mbt = (Bbt , Tbt) with Tbt = {(zi, zi) | i ∈ {0, 1, 3, 4, 5, 7}} ∪
{(z0, z1), (z1, z3), (z4, z5), (z5, z7)} satisfies Γbt

Mbt = Mbt . This structure just omits
the states z2 and z6 withLbt(z2) = {ack} andLbt(z6) = {sbit, ack}which are definitely
not reachable, as KR sbit is false in z0 ∼Obt,R

z4. Indeed,

Mbt , s |= ¬KS KR sbit ⇐⇒ s ∈ {z0, z1, z4, z5}
Mbt , s |= KR sbit ⇐⇒ s ∈ {z1, z3, z5, z7}
Mbt , s |= ¬KR KS KR sbit ⇐⇒ s ∈ {z0, z1, z3, z4, z5, z7}

However, finding a solution is complicated by the fact that the functional of interpreting
an epistemically guarded transition system over an epistemic transition structure is not
monotone, in general, as illustrated by the following examples.

Example 3. (a) Continuing Ex. 1(b) for the variable setting problem Γvs , consider the
epistemic transition structure Mvs,0 ∈ MΣvs

(Bvs) with the empty transition relation
T (Mvs,0) = ∅, and hence S0(Mvs,0) = {s0}. SettingMvs,i+1 = Γvs

Mvs,i for 0 ≤ i ≤ 2
we obtain successively

τ τMvs,0 τMvs,1 τMvs,2

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)} {(s0, s1)} ∅ {(s0, s1)}
Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s2)} {(s0, s2)} ∅ {(s0, s2)}
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In particular,Mvs,2 = Γvs
Mvs,1 = Γvs

Γvs
Mvs,0

= Mvs,0. However, forMvs,4,Mvs,5 ∈
MΣvs (Bvs) with T (Mvs,4) = {(s0, s1)} and T (Mvs,5) = {(s0, s2)} we obtain that
Γvs

Mvs,4 = Mvs,4 and Γvs
Mvs,5 = Mvs,5.

(b) For capturing the cycle-breaking variable setting of the introduction consider the
following epistemically guarded transition system Γvsb = (Bvs , Tvsb) over Σvs that
shares the epistemic state basis Bvs with Ex. 1(b):

¬q1,¬q2

s0

x = 0

¬q1, q2

s1
x = 3 q1,¬q2

s2
x = 1 q1, q2

s3
x = 2

Ovs,a = ∅

Ka ¬(q1 ∧ ¬q2)? Ka ¬(¬q1 ∧ q2)?

ForMvsb,0 = (Bvs , ∅) with S0(Mvsb,0) = {s0}, and settingMvsb,i+1 = Γvsb
Mvsb,i for

0 ≤ i ≤ 3 we obtain successively

τ τMvsb,0 τMvsb,1 τMvsb,2 τMvsb,3

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)} {(s0, s1)} ∅ ∅ ∅
true ⊃ {(s0, s2)} {(s0, s2)} {(s0, s2)} {(s0, s2)} {(s0, s2)}

Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s3)} {(s0, s3)} ∅ {(s0, s3)} {(s0, s3)}

ForMvsb,3 with Sω(Mvsb,3) = {s0, s1, s3} it finally holds thatΓvsb
Mvsb,3 = Mvsb,3.

3.3 Iteration Semantics

For illustrating the non-monotonicity of the interpretation functional we have started
the interpretation sequence for Γ with the smallest epistemic transition structure which
suggests to look for a smallest fixed point—which need not exist. DeHaan et al. [10] argue
that a substitute consisting of the greatest fixed point would bemore liberal. They construct
a transfinite approximation sequence starting from anN0 having all states reachable. For a
successor ordinalα+1, the approximationNα+1 is just the interpretation ofΓ inNα; for a
limit ordinalλ, the approximationNλ =

⋂
α<λ

⋃
α≤β<λNβ is “the intersection of unions

of approximations that are sufficiently close to the limit” [10, p. 269]. The latter is preferred
over a union of intersections as it includes more states which implies less knowledge,
such that “agents [know] facts only when there are good reasons for them” (ibid.). Due to
cardinality reasons, the ordinal ηΓ = inf{α | ex. β s. t. α < β and Nα = Nβ} exists. If
Nα+1 ⊆ Nα for all α ≥ ηΓ , then NηΓ+1 = NηΓ ; otherwise there is some α ≥ ηΓ such
that Nα+1 6⊆ Nα. Thus αΓ = inf{α | ηΓ ≤ α and (Nα = Nα+1 or Nα+1 6⊆ Nα)}
exists and the iteration semantics of Γ is defined as NαΓ . This yields the greatest fixed
point if the interpretation functional is monotone.

Example 4. (a) For the variable setting problem Γvs of Ex. 1(b) the interpretation
sequence (Nvs,α)0≤α starts with Nvs,0 showing T (Nvs,0) = Svs × Svs . Using the
epistemic transition structures from Ex. 3(a) it holds that Nvs,k+1 = Γvs

Nvs,k = Mvs,2

for k even and Nvs,k+1 = Mvs,1 for k ≥ 1 odd. Thus, Nvs,1 = Nvs,3 such that
ηΓvs

= 1 = αΓvs
, since T (Nvs,2) = {(s0, s0), (s0, s1), (s0, s2)} 6⊆ ∅ = T (Nvs,1).

Hence the iteration semantics of Γvs is given by Nvs,1 = Mvs,2; since its transition
relation is empty, Γvs has the same iteration semantics as an epistemically guarded
transition system without any guarded actions.

Interpreting Knowledge-based Programs 261



(b) Computing the iteration semantics sequence (Nvsb,α)0≤k of the cycle-breaking
variable setting Γvsb of Ex. 3(b) proceeds as Nvsb,k = Mvsb,k+1. Since this time the
functional is monotone from α = 1 onwards, the iteration semantics is Nvsb,2.

(c) Consider the following epistemically guarded transition system Γnc = (Bvs , Tnc)
over Σvs that shares the epistemic basis Bvs with the variable setting problem Γvs of (a)
and only adds the guarded action Ka ¬q2 ⊃ {(s0, s3)}:

¬q1,¬q2

s0

¬q1, q2

s1
q1,¬q2

s2
q1, q2

s3
Ovs,a = ∅

Ka ¬(q1 ∧ ¬q2)?

Ka ¬(¬q1 ∧ q2)?

Ka ¬q2?

The interpretation process runs as for Γvs , and the epistemic transition structure with
the empty transition relation is also the iteration semantics of Γnc . This time, however,
there is a unique non-empty interpretation, viz. the transition structure consisting only of
(s0, s1). Finding this solution is not constructive and some speculation is necessary: there
is no solution where s2 is reachable; if s2 were reachable, then s1 would be reachable
leading to a contradiction due to the (non-)reachability of s3. Thus only the possibility of
s0 and s1 being reachable, and s2 and s3 unreachable, remains.

(d) For the epistemically guarded transition system Γmay over ({p}, {a}) given by

¬p
u0

p

u1

Omay,a = ∅
Ma p?

the iteration process when started withNmay,0 having T (Nmay,0) = {u0, u1}×{u0, u1}
evaluatesMa p to true and we obtainNmay,1 with T (Nmay,1) = {(u0, u1)}which in turn
is confirmed by the next iteration yielding a fixed point. This iteration semantics, however,
has a touch of a “vaticinium ex eventu”: p can be reached since p may be reached.

3.4 Unique Interpretation Solutions

A knowledge-based program can be executed reliably just step by step if each knowledge
guard can be stably decided based on what has been computed up to the current point of
execution. In particular, in order to obtain a solution by execution, knowledge must not
be invalidated by information only to be gained later on. Conversely, if all knowledge
guards can be decided by just looking to the past, there is at most a single solution.

Based on this observation, Fagin et al. [13,14] develop a formal characterisation of
unique interpretability by capturing the notion that solutions “depend on the past”. They
then show that “providing epistemic witnesses” is a sufficient criterion for “dependence on
the past”, which in turn always holds for “synchronous” programs. We briefly summarise
their main line of argument adapting the demonstration from their run-based account for
knowledge-based programs to our state-based epistemically guarded transition systems.3

3 The proofs are available in a long version at https://arxiv.org/abs/2301.10807.
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An epistemic formulaϕ ∈ ΦP,A is said to depend on the pastw.r. t. a class of epistemic
transition structuresM⊆MP,A(B) if for allM1,M2 ∈M and all k ∈ N it holds that
Tk(M1) = Tk(M2) impliesM1, s |= ϕ ⇐⇒ M2, s |= ϕ for all s ∈ Sk(M1)∩Sk(M2);
an epistemically guarded transition system Γ = (B, T ) over (P,A) is depending on the
past w.r. t.M if every ϕ in (ϕ ⊃ B) ∈ T depends on the past w.r. t.M.

Example 5. For Ex. 3(a) neitherKa ¬(q1∧¬q2) norKa ¬(¬q1∧q2) depends on the past
w.r. t. {Mvs,0,Mvs,1}. In particular, T0(Mvs,0) = ∅ = T0(Mvs,1) and S0(Mvs,0) =
{s0} = S0(Mvs,1), butMvs,0, s0 |= Ka ¬(q1 ∧ ¬q2) andMvs,1, s0 6|= Ka ¬(q1 ∧ ¬q2).
Similarly for Ex. 3(b), these two formulæ do not depend on the past w.r. t. {Mvsb,0,
Mvsb,1,Mvsb,2,Mvsb,3}, but they do w.r. t. {Mvsb,1,Mvsb,2,Mvsb,3}.

An epistemically guarded transition systemΓ has at most one solution if, and only if, it
depends on the past w.r. t. all its solutions. Due to the dependence on the past the successive
reachable transition relations Tk(M) of all solutionsM = ΓM , i.e., their pasts, coincide.

Proposition 1. Let Γ = (B, T ) be an epistemically guarded transition system over
Σ. Then Γ has at most one solution if, and only if, there is anM ⊆ MΣ(B) with
{M ∈MΣ(B) | ΓM = M} ⊆ M such that Γ depends on the past w.r. t.M.

In order to obtain a solution of Γ by execution, the system is interpreted repeatedly
to construct the approximations (Mk)0≤k withMk+1 = ΓMk for k ≥ −1 starting with
someM−1. Each approximationMk with k ≥ 0 contributes a transition relation Tk(Mk)
which can be combined into a limit Mω. If Γ depends on the past w.r. t. the class of
epistemic transition structures from which the approximands are constructed and which
also contains the limit, then the interpretation of the limitMω yields a fixed point.

Proposition 2. Let Γ = (B, T ) be an epistemically guarded transition system over Σ,
letM⊆MΣ(B) such that ΓM ∈M for everyM ∈M and (B,

⋃
0≤k Tk(Mk)) ∈M

for all (Mk)0≤k ⊆ M with Tk(Mk′) = Tk(Mk) for all k′ ≥ k ≥ 0, and let Γ
depend on the past w.r. t. M. Let M−1 ∈ M, Mi+1 = ΓMi for all i ≥ −1, and
Mω = (B,

⋃
0≤k Tk(Mk)). Then ΓMω = ΓΓ

Mω .

A sufficient criterion for obtaining a comprehensive class of epistemic transition
structuresM such thatΓ depends on the past w.r. t.M is provided by epistemic witnesses:
If some knowledge formula Ka ϕ of Γ does not hold at some state of an interpreting
epistemic transition structure there is evidence in the past of this structure why it does not
hold. Formally, a structureM ∈MP,A(B) provides epistemic witnesses for a formula
Ka ϕ ∈ ΦP,A if for all k ≥ 0, s ∈ Sk(M) it holds that ifM, s 6|= Ka ϕ, then there is an
s′ ∈ Sk(M) with (s, s′) ∈ Ea andM, s′ 6|= ϕ.

Lemma 1. Let Γ = (B, T ) be an epistemically guarded transition system over Σ and
letM⊆MΣ(B) such that allM ∈M provide epistemic witnesses for all knowledge
guards in Γ . Then Γ is depending on the past w.r. t.M.

A sufficient criterion, in turn, for a structure M ∈ MP,A(S,E,L, S0) to provide
epistemic witnesses is M being synchronous: if for all a ∈ A and all reachable s1 ∈
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Sk1(M) and s2 ∈ Sk2(M) with (s1, s2) ∈ Ea it holds that s1, s2 ∈ Smin{k1,k2}(M). In
a synchronous structure the temporal and the epistemic dimension for each agent are hence
tightly coupled and agents cannot access the future, but also do not need to know the future.

Example 6. The interpretation Mbt of the bit transmission problem given in Ex. 2
provides epistemic witnesses, but is not synchronous: the sender S cannot distinguish z0
reachable at depth 0 ofMbt from z1 that is only reachable at depth 1, and similarly the
receiver R cannot distinguish z1 from z3 at the respective depths of 1 and 2.

An epistemically guarded transition system Γ = (B, T ) over Σ provides epistemic
witnesses if for eachM ∈MΣ(B) the interpretation ΓM provides epistemic witnesses
for all knowledge formulæ occurring in some of the action guards of Γ ; Γ is synchronous
if each ΓM is synchronous. Moreover, Γ can syntactically be seen to be synchronous
(cf. [14, p. 135]) if it is round-based where all agents perform some action in each round
and record locally which actions they have taken.

4 (Re-)Interpreting Knowledge-based Programs

The results by Fagin et al. [13,14] guarantee a unique interpretation for all synchronous
knowledge-based programs; the approach by De Haan et al. [10] aims at extending the
interpretation to asynchronous programs, but assigns semantics also to contradictory or
self-fulfilling programs.

The necessity of avoiding contradictory or self-fulfilling behaviour already occurs in
the design of synchronous programming languages [6]: Their underlying principle is
“perfect synchrony”, that any reaction of a program takes zero time and that thus whatever
is output in reaction to some input is already present at the same time as the input. Since
the presence or absence of signals can be tested, this requires “logical coherence” saying
that a (non-input) signal is present in a reaction if, and only if, this signal is emitted in
this very reaction. A program needs to be both reactive in the sense of leading to some
logically coherent signal status, and determinate, i.e., not showing several such statuses.
For example, in Esterel [7], the program fragment

present S then nothing else emit S end

is not reactive, but contradictory: signal S is only emitted if it is not emitted; and

present S then emit S else nothing end

is not determinate, but self-fulfilling: S is emitted if it is emitted, and it is not emitted if it
is not. Such programs can be revealed by using a cycle-detecting static analysis, as is done
in Lustre [18], or, for including more intricate cases, by Berry’s “constructive semantics”
as for Esterel [8]. Building on a “logical semantics” recording what is emitted in each step
of execution, a must/cannot analysis is performed: what must/cannot be emitted, which
branch must/cannot be executed. It is then required that for each signal it can be decided
whether it must be present or it cannot be present. For example, in the parallel execution

[ present S1 then emit S1 end ]
|| [ present S1 then present S2 then nothing else emit S2 end end ]
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both signals can be emitted — if S1 is assumed to be present, and S2 absent —, but
none must be emitted. Thus the constructive semantics does not reach a decision of what
must/cannot be present and the program is not constructive. Intriguingly, however, there
is exactly one coherent signal status that can be reached by execution: S1 and S2 absent.

We adapt Berry’s constructive semantics approach to knowledge-based programs.
In fact, the first, non-reactive Esterel program fragment resembles the variable setting
problem described in Ex. 3(a), the second, non-determinate fragment directly corresponds
to Ex. 4(d), and the last, combined fragment is essentially the same as Ex. 4(c). We first
define a must/can version of epistemic transition structures with a lower (must) and an
upper bound (can). Based on a positive (must) and negative (cannot) satisfaction relation
of epistemic formulæ over these structures we show how an epistemically guarded
transition system can be interpreted yielding another epistemic must/can transition
structure. For uniformity, we rephrase this interpretation in terms of the negation normal
form of formulæ and demonstrate that the constructive interpretation is always monotone
and leads to a least fixed point. For any knowledge-based program, this fixed point
soundly shows which executions are necessary and which are possible. However, the
fixed point need not be decided, and more can be possible than is necessary. We show
that synchronous programs always lead to decided fixed points.

4.1 Epistemic Must/Can Transition Structures

An epistemic must/can transition structure Y = (S,E,L, S0, (Tµ, Tν)) overΣ = (P,A)
is given by an epistemic state basis B = (S,E,L, S0) and two lower and upper transition
relations Tµ, Tν ⊆ S × S with Tµ ⊆ Tν . In particular, Yµ = (B, Tµ) and Yν = (B, Tν)
are epistemic transition structures over Σ with Yµ ⊆ Yν .

The positive and negative satisfaction relations of an epistemic formulaϕ ∈ ΦP,A over
the epistemic must/can transition structure Y at a state s ∈ Sω(Yν), written Y, s |=p ϕ
and Y, s |=n ϕ, are defined as follows:

Y, s |=p p ⇐⇒ p ∈ L(s) Y, s |=n p ⇐⇒ p /∈ L(s)

Y, s 6|=p false Y, s |=n false

Y, s |=p ¬ϕ ⇐⇒ Y, s |=n ϕ Y, s |=n ¬ϕ ⇐⇒ Y, s |=p ϕ

Y, s |=p ϕ1 ∧ ϕ2 ⇐⇒ Y, s |=n ϕ1 ∧ ϕ2 ⇐⇒
Y, s |=p ϕ1 and Y, s |=p ϕ2 Y, s |=n ϕ1 or Y, s |=n ϕ2

Y, s |=p Ka ϕ ⇐⇒ Y, s′ |=p ϕ Y, s |=n Ka ϕ ⇐⇒ Y, s′ |=n ϕ

for all s′ ∈ Sω(Yν)
with (s, s′) ∈ Ea

for some s′ ∈ Sω(Yµ)
with (s, s′) ∈ Ea

A formula is positively satisfied over Y if it must be true given the upper bound Yν of
possible behaviour, it is negatively satisfied if it cannot be true given the lower bound Yµ
of necessary behaviour. In fact, it holds that what must be true can also be true:4

Lemma 2. Let Y = (S,E,L, S0, (Tµ, Tν)) be an epistemic must/can transition struc-
ture over (P,A) and ϕ ∈ ΦP,A. Then for all s ∈ Sω(Yν), Y, s |=p ϕ implies Y, s 6|=n ϕ.

4 The proofs are available in a long version at https://arxiv.org/abs/2301.10807.
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The set of epistemic must/can transition structures over Σ and the epistemic state
basis B is denoted by YΣ(B). We say that Y1 v Y2 for Y1, Y2 ∈ YΣ(B) if Y1,µ ⊆ Y2,µ
and Y1,ν ⊇ Y2,ν : an extension raises the lower bound and reduces the upper bound.

As with epistemic transition structures, an epistemically guarded transition system
Γ = (S,E,L, S0, T ) over (P,A) can be interpreted over an epistemicmust/can transition
structure Y ∈ YP,A(S,E,L, S0): The interpretation of a guarded action (ϕ ⊃ B) ∈ T
w.r. t. to Y is given by the pair (ϕ ⊃ B)

Y
= ((ϕ ⊃ B)

Y,µ
, (ϕ ⊃ B)

Y,ν
) with

(ϕ ⊃ B)
Y,µ

= {(s, s′) ∈ B | s ∈ Sω(Yµ) and Y, s |=p ϕ} ,

(ϕ ⊃ B)
Y,ν

= {(s, s′) ∈ B | s ∈ Sω(Yν) and Y, s 6|=n ϕ} .

By Lem. 2 it holds that τY,µ ⊆ τY,ν for each τ ∈ T . The constructive interpretation of
Γ w.r. t. Y is given by the epistemic must/can transition structure

ΓY = (S,E,L, S0, (
⋃
τ∈T τ

Y,µ,
⋃
τ∈T τ

Y,ν)) .

This is well defined, i.e., (ΓY )µ ⊆ (ΓY )ν . We call Y a constructive solution for Γ if
ΓY = Y ; a constructive solution is decided if Yµ = Yν .

Again as with epistemic transition structures, this interpretation over epistemic
must/can transition structures can be iterated for finally reaching a stable structure — and
this time interpretation turns out to be monotone.

Example 7. (a) Re-consider the cycle-breaking variable setting problem of Ex. 3(b). We
start the interpretation in Yvsb,0 = (Bvs , (∅, S2

vs)) and successively obtain the following
epistemic must/can transition structures:

τ τYvsb,0 τYvsb,1 τYvsb,2 τYvsb,3

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)}
∅ ∅ ∅ ∅

{(s0, s1)} ∅ ∅ ∅

true ⊃ {(s0, s2)}
{(s0, s2)} {(s0, s2)} {(s0, s2)} {(s0, s2)}
{(s0, s2)} {(s0, s2)} {(s0, s2)} {(s0, s2)}

Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s3)}
∅ ∅ {(s0, s3)} {(s0, s3)}

{(s0, s3)} {(s0, s3)} {(s0, s3)} {(s0, s3)}

Not only does it hold that Γvsb
Yvsb,3 = Yvsb,3, but the interpretations indeed evolve

monotonically w.r. t. v. Moreover, the structure Yvsb,3 is decided and everything what
can happen also must happen, i.e., (Yvsb,3)µ = (Yvsb,3)ν .
(b) For the cyclic variable setting problem, see Ex. 1(b) and Ex. 3(a), the interpretation
process is monotone, but only yields

τ τYvs,0 τYvs,1

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)} (∅, {(s0, s1)}) (∅, {(s0, s1)})
Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s2)} (∅, {(s0, s2)}) (∅, {(s0, s2)})

The epistemic must/can transition structure Yvs,1 is not decided, and indeed there are
two solutions of Γvs in terms of epistemic transition structures. However, the same
undecidedness holds true for Γnc of Ex. 4(c), that is, the unique solution is also missed
by the constructive interpretation.
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4.2 Constructive Interpretation
The separated positive (must) and negative (cannot) satisfaction relations over an epistemic
must/can transition structure Y ∈ YP,A(S,E,L, S0) can bemerged into a single, uniform
satisfaction relation relying on the negation normal form of epistemic formulæ where
negation only occurs in front of propositions. For an arbitrary ϕ ∈ ΦP,A there exists an
equivalent nnf(ϕ) ∈ ΦP,A in negation normal form, such that, in particular

nnf(¬p) = ¬p nnf(¬¬ϕ) = nnf(ϕ)

nnf(¬false) = true nnf(¬(ϕ1 ∧ ϕ2)) = nnf(¬ϕ1) ∨ nnf(¬ϕ2)

nnf(¬Ka ϕ) = Ma nnf(¬ϕ)

The constructive satisfaction relation Y, s |= ϕ for a state s ∈ Sω(Yν) and an epistemic
formula ϕ ∈ ΦP,A in negation normal form is defined just as for arbitrary epistemic
formulæ, but using the upper bound Yν for the universal quantifier of Ka and the lower
bound Yµ for the existential quantifier of Ma; in particular,

Y, s |= ¬p ⇐⇒ p /∈ L(s)

Y, s |= Ka ϕ ⇐⇒ Y, s′ |= ϕ f. a. s′ ∈ Sω(Yν) with (s, s′) ∈ Ea
Y, s |= Ma ϕ ⇐⇒ ex. s′ ∈ Sω(Yµ) s. t. (s, s′) ∈ Ea and Y, s′ |= ϕ

The constructive satisfaction relation indeed combines |=p and |=n:
Lemma 3. Let Y ∈ YP,A(B), ϕ ∈ ΦP,A, and s ∈ Sω(Yν). Then Y, s |=p ϕ iff
Y, s |= nnf(ϕ) and Y, s |=n ϕ iff Y, s |= nnf(¬ϕ).

It follows that if Yµ = Yν , then Y, s |= ϕ if, and only if, Yµ, s |= ϕ or, equivalently,
Yν , s |= ϕ. We also obtain that constructive satisfaction is preserved when extending
epistemic must/can transition structures:
Lemma 4. Let Y, Y ′ ∈ YP,A(B) with Y v Y ′ and let ϕ ∈ ΦP,A. Then Y, s |= nnf(ϕ)
implies Y ′, s |= nnf(ϕ) for all s ∈ Sω(Y ′ν).

This preservation of satisfaction yields that constructive interpretation is monotone.
Proposition 3. Let Γ = (B, T ) be an epistemically guarded transition system over Σ
and Y, Y ′ ∈ YΣ(B) such that Y v Y ′. Then ΓY v ΓY ′

.
Finally, we can observe that YΣ(B) for B = (S,E,L, S0) with the ordering v is

an inductive partial order: each directed subset ∆ ⊆ YΣ(B) has a least upper bound⊔
∆ w.r. t. v, where directed means that every two Y1, Y2 ∈ ∆ have an upper bound

Y ∈ ∆ such that Y1 v Y and Y2 v Y ; and there is also a bottom or least element
⊥Σ,B = (S,E,L, S0, (∅, S × S)) ∈ YΣ(B).
Proposition 4. (YΣ(B),v,⊥Σ,B) is an inductive partial order.

Pataraia’s fixed-point theorem [9, §8.22] now guarantees that the monotone operator
Y 7→ ΓY for each epistemically guarded transition system Γ = (B, T ) has a least fixed
point in the inductive partial order. It can be computed by, possibly transfinite, iterated
application of constructive interpretation to ⊥Σ,B, that is, Y0 = ⊥Σ,B, Yα+1 = ΓYα for
a successor ordinal α+ 1, and Yλ =

⊔
α<λ Yα until equality [9, Exc. 8.19]. Compared

to the iteration semantics of Sect. 3.3, the computation of the constructive semantics thus
does not have to record all previous approximations in order to find a repetition.
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4.3 (Un-)Decided Constructive Fixed Points

If any constructive fixed point Y = ΓY with Y ∈ YΣ(B) is decided, then there is
the solution Yµ = ΓYµ = ΓYν = Yν in terms of epistemic transition structures, and
Γ is not contradictory. Even if it is not decided, the must/can structures Yµµ = (B,
(T (Yµ), T (Yµ))) ∈ YΣ(B) and Yνν = (B, (T (Yν), T (Yν))) ∈ YΣ(B) satisfy Y v Yµµ
and Y v Yνν , such that by Prop. 3 we obtain Y = ΓY v ΓYµµ , ΓYνν which yields
Yµ ⊆ ΓYµ and ΓYν ⊆ Yν , but not equality, in general. For the least constructive fixed
point µΓ , any solutionM = ΓM thus satisfies (µΓ )µ ⊆ M ⊆ (µΓ )ν , always giving
sound lower and upper bounds and, if µΓ is decided, moreover unique solvability:

Proposition 5. Let Γ = (B, T ) be an epistemically guarded transition system over Σ
and assume µΓ ∈ YΣ(B) is decided. Then Γ has a unique solution in MΣ(B).

Still, even for epistemically guarded transition systems that provide epistemic
witnesses it is not guaranteed that the least constructive fixed point is decided:

Example 8. Consider the following epistemically guarded transition systemΓnd = (Bnd ,
Tnd) over Σnd = (Pnd , And) with Pnd = {p, q} and And = {a, b}:

p,¬q
u0

p, q

u1
Ond,a = {q}
Ond,b = ∅

Kb Ma p?

Constructive interpretation yields the non-decided fixed point Ynd with T (Ynd,µ) = ∅
and T (Ynd,ν) = {(u0, u1)}, as Ynd , u0 6|= Kb Ma p, but also Ynd , u0 6|= Mb Ka ¬p: the
states u0 and u1 can be distinguished by agent a, and agent b cannot tell whether a step
has been taken. In u0 the formula Ma p holds w.r. t. Ynd , but in u1 it does not, since
(u1, u0) 6∈ End,a. On the other hand, Γnd provides epistemic witnesses pathologically,
since Γnd

M , s |= Kb Ma p for anyM ∈MΣnd
(Bnd) and any s ∈ Sω(Γnd

M ), and hence
has a unique interpretation, which in this case is Γnd

Ynd,µ = Ynd,ν = Γnd
Ynd,ν .

For synchronous epistemically guarded transition systems, however, the least fixed
point is decided, since all knowledge refers to a past that must have happened:

Lemma 5. Let Γ = (B, T ) be an epistemically guarded transition system over Σ that is
synchronous. Let Y ∈ YΣ(B) satisfy ΓY = Y . Then Y is decided.

Summing up, the constructive approach to interpreting knowledge-based programs
subsumes the solutions for synchronous programs and provides a sound procedure for
obtaining lower and upper bounds for the execution of both synchronous and asynchronous
programs. The approach, however, is not complete: If the least constructive fixed point µΓ
is undecided, a system Γ may be contradictory without any solution (see Ex. 3(a)), self-
fulfilling with several solutions (see Ex. 4(d)), or it may have a unique solution in terms of
epistemic transition structures (see Ex. 4(c)). One strategy that suggests itself for analysing
Γ further is to check whether an interpretation using the lower bound (µΓ )µ of the
least fixed point satisfies Γ (µΓ )µ = (µΓ )ν = Γ (µΓ )ν , which means that when executing
according to what must happen all what can happen is already covered (see Ex. 8).
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5 Knowledge-based Programs as Rule Systems

The “executions” of an epistemically guarded transition system Γ can be captured as
derivations of two mutually dependent inductive rule systems, like used for inductive
definitions [1,19]. One rule system defines the reachability in Γ , the other one the
satisfaction of knowledge formulæ in negation normal form over Γ . When Γ provides
epistemic witnesses, the mutual dependence can be resolved by stratifying the rule system
for reachability according to the depth of the execution. In the general case, the non-
monotone dependence of the formula satisfaction system on the reachability system— the
more states are reachable, the less is known — can be mitigated by extending the notion
of rule systems to include also negative premisses: The conclusion of a rule is derivable if
all its (positive) premisses are derivable, but none of its negative premisses. When applied
to knowledge formulæ, negative premisses express that no counterexample is reachable.

The general rule systems can also be read as logic programs with “negation as
failure” [11]. A direct application of the must/can approximation technique to the general
rule system or, equivalently, the logic program resulting from a knowledge-based program
reconstructs the Kripke-Kleene fixed point; the possible solutions correspond to “stable
models” [16].

5.1 Inductive Rule Systems

An inductive rule systemR consists of rules of the formX/y where the premissesX ⊆ U
and the conclusion y ∈ U are drawn from some universe of judgements U . A rule X/y
is interpreted as “if all X can be inferred, then y can be inferred”. The derivations in R
together with their sets of premisses and conclusions are inductively defined as follows:

– a y ∈ U is itself a derivation; its set of premisses is {y}, its conclusion is y;
– if X/y ∈ R and (dx)x∈X a family of derivations with conclusions (x)x∈X , then

(dx)x∈X/y is a derivation; its set of premisses is the union of the premisses of (dx)x∈X ,
its conclusion is y.

A y ∈ U is derivable in R if there is a derivation in R with the empty set of premisses
and conclusion y. The set of derivable conclusions of R coincides with the least fixed
point µR̂ of R̂ : ℘U → ℘U defined by R̂(P ) = {y ∈ U | ex. X/y ∈ R s. t. X ⊆ P}.

In logic programming terms, a ruleX/y ∈ R yields a Horn clause y ← X [11]. The
least fixed point µR̂ coincides with minimal Herbrand model of the logic program corres-
ponding to R and thus with the single stable model, as no negation is involved [11,16].

For expressing reachability and the satisfaction of knowledge formulæ in an epi-
stemically guarded transition system Γ = (S,E,L, S0, T ) over (P,A) as inductive rule
systems, we use two types of judgements, one of the form s ∈Γ Sω with s ∈ S for “state
s is reachable in Γ ”, and one of the form s |=Γ ϕ with s ∈ S and ϕ ∈ ΦP,A in negation
normal form for “state s satisfies formula ϕ in Γ ”. The rules for reachability read:

s0 ∈Γ Sω
if s0 ∈ S0

s ∈Γ Sω
s′ ∈Γ Sω

if ex. (ϕ ⊃ B) ∈ T ,
(s, s′) ∈ B, and s |=Γ ϕ
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where s |=Γ ϕ in the side condition of the second rule requires this judgement to be
derivable in the rule system for satisfaction. The rules for this system read:

s |=Γ true
if s ∈Γ Sω

s |=Γ p

if s ∈Γ Sω ,
p ∈ L(s) s |=Γ ¬p

if s ∈Γ Sω ,
p /∈ L(s)

s |=Γ ϕ1 s |=Γ ϕ2

s |=Γ ϕ1 ∧ ϕ2

s |=Γ ϕ1

s |=Γ ϕ1 ∨ ϕ2

s |=Γ ϕ2

s |=Γ ϕ1 ∨ ϕ2

s′ |=Γ ϕ

s |=Γ Ma ϕ

if (s, s′) ∈ Ea,
s′ ∈Γ Sω

(s′ |=Γ ϕ)s′∈ΓSω, (s,s′)∈Ea

s |=Γ Ka ϕ

Here, the last rule for satisfaction in fact is not monotone w.r. t. reachability: In order
to infer s |=Γ Ka ϕ it is not necessary to infer s′ |=Γ ϕ for all s′ with (s, s′) ∈ Ea, but
only for those for which s′ ∈Γ Sω can be deduced — and also for all of those.

The notion of providing epistemic witnesses allows to stratify the inductive rule
systems according to the involved depth k ≥ 0: We specialise the judgement s ∈Γ Sω into
s ∈Γ Sk meaning “state s is reachable in Γ in up to k steps” and, similarly, the judgement
s |=Γ ϕ into s |=Γ

k ϕ meaning “formula ϕ is satisfied in Γ at state s considering states
reachable in up to k steps”. The rules for reachability become for all k ≥ 0:

s0 ∈Γ Sk
if s0 ∈Γ S0

s ∈Γ Sk
s′ ∈Γ Sk+1

if ex. (ϕ ⊃ B) ∈ T ,
(s, s′) ∈ B, and s |=Γ

k ϕ

Analogously the rules for satisfaction become for all k ≥ 0:

s |=Γ
k true

if s ∈Γ Sk
s |=Γ

k p

if s ∈Γ Sk,
p ∈ L(s) s |=Γ

k ¬p
if s ∈Γ Sk,
p /∈ L(s)

s |=Γ
k ϕ1 s |=Γ

k ϕ2

s |=Γ
k ϕ1 ∧ ϕ2

s |=Γ
k ϕ1

s |=Γ
k ϕ1 ∨ ϕ2

s |=Γ
k ϕ2

s |=Γ
k ϕ1 ∨ ϕ2

s′ |=Γ
k ϕ

s |=Γ
k Ma ϕ

if (s, s′) ∈ Ea,
s′ ∈Γ Sk

(s′ |=Γ
k ϕ)s′∈ΓSk, (s,s′)∈Ea

s |=Γ
k Ka ϕ

In particular, the rules for s |=Γ
k Ma ϕ and s |=Γ

k Ka ϕ are sound for epistemically guarded
transition systems providing epistemic witnesses. The notion of “providing epistemic
witnesses” requires that, if Ka ϕ does not hold at depth k, there is a counterexample to ϕ
at depth ≤ k. The general case can be covered by dropping the depths and taking into
account that Ka ϕ does not hold at some state s if, and only if, there is some reachable,
a-indistinguishable state s′ at which ϕ does not hold. Therefore, in order to derive that
Ka ϕ indeed holds at some reachable state s, it is necessary and sufficient to show that it
is not possible to derive that ¬ϕ holds at some reachable, a-indistinguishable state s′.

5.2 General Rule Systems with Positive and Negative Premisses

For expressing negative information in terms of a rule system, we complement the
positive premisses of the rules by negative ones: We consider general rule systemsR over
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a universe U consisting of rules of the form (X, /Z)/y whereX,Z ⊆ U are the positive
and negative premisses, and y ∈ U is the conclusion; it is interpreted as “if all X can be
inferred but no Z, then y can be inferred”. The derivations inR together with their sets of
positive and negative premisses and conclusions are again inductively defined as follows:

– a y ∈ U is itself a derivation; its set of positive premisses is {y}, its set of negative
premisses is ∅, and its conclusion is y;

– if (X, /Z)/y ∈ R and (dx)x∈X a family of derivations with conclusions (x)x∈X ,
then ((dx)x∈X , /Z)/y is a derivation; its set of positive premisses is the union of
the positive premisses of (dx)x∈X , its set of negative premisses is the union of the
negative premisses of (dx)x∈X together with Z, and its conclusion is y.

For a B ⊆ U , let R̄(B) be all those y ∈ U such that there is a derivation of y in R with
the empty set of positive premisses and no negative premisses in B. The set of derivable
conclusions of R is given by the least fixed point of R̄ if it exists.

From the logic programming perspective, a general rule (X, /Z)/y ∈ R can be seen
as a clause of the form y ← X, /Z with / read as “negation as failure” [5,11]. Checking
that a B ⊆ U is a “stable model” of the logic program obtained from R in this way
corresponds to the following process on general rule systems: first the reductRB is formed
by disregarding all rules (X, /Z)/y ∈ RwithB∩Z 6= ∅ and transforming the remaining
rules (X, /Z)/y ∈ R intoX/y ∈ RB ; thenRB is an inductive rule system andB is stable
if B = µR̂B . In particular, the stable models correspond to the solutions of R̄(B) = B.

With this generalised notion of rule systems we can reformulate and combine the two
inference systems for reachability and satisfaction in an epistemically guarded transition
system Γ = (S,E,L, S0, T ) over (P,A) by using a single judgement s |=Γ

ω ϕ for “state
s satisfies ϕ in Γ and state s is reachable in Γ ”. A negative premiss /(s |=Γ

ω true) thus
stands for “s ∈Γ Sω cannot be deduced”. The new rules with also negative premisses read:

s0 |=Γ
ω true

if s0 ∈ S0

s |=Γ
ω ϕ

s′ |=Γ
ω true

if ex. (ϕ ⊃ B) ∈ T ,
(s, s′) ∈ B

s |=Γ
ω true

s |=Γ
ω p

if p ∈ L(s)
s |=Γ

ω true

s |=Γ
ω ¬p

if p /∈ L(s)

s |=Γ
ω ϕ1 s |=Γ

ω ϕ2

s |=Γ
ω ϕ1 ∧ ϕ2

s |=Γ
ω ϕ1

s |=Γ
ω ϕ1 ∨ ϕ2

s |=Γ
ω ϕ2

s |=Γ
ω ϕ1 ∨ ϕ2

s′ |=Γ
ω ϕ

s |=Γ
ω Ma ϕ

if (s, s′) ∈ Ea
s |=Γ

ω true /(s′ |=Γ
ω nnf(¬ϕ))(s,s′)∈Ea

s |=Γ
ω Ka ϕ

The rule for s |=Γ
ω Ka ϕ checks that s is reachable, but that no counterexample to ϕ can

be reached at an a-undistinguishable state.
Using general rule systems, the solvability of an epistemically guarded transition

system is shifted to computing derivable conclusions. As for knowledge-based programs,
it is not obvious from just the rules of a system R whether there are solutions of
R̄(B) = B at all, and whether there is a least one.
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Example 9. (a) The general rule system

R0 =

{
x1

x1
,
/x1 /x2
x2

}
over {x1, x2}

has no set of derivable conclusions, since R̄0 has no fixed point; in particular, R̄0(∅) =
{x2} and R̄0({x1}) = ∅ = R̄0({x2}). In terms of stable models, computing R̄0(∅)
amounts to removing the negative premisses from the rule (∅, /{x1, x2})/x2, such that
the inductive rules {x1}/x1 and ∅/x2 remain; and computing R̄0({xi}) leads to the
single inductive rule {x1}/x1 for i ∈ {1, 2}.

R0 also demonstrates that the set of derivable conclusions of a general rule system R
need not coincidewith the least fixed point of the operator R̂ : ℘U → ℘U when transferred
from inductive rule systems by now setting R̂(P ) = {y ∈ U | ex. (X, /Z)/y ∈
R s.t. X ⊆ P , P ∩ Z = ∅}: µR̂0 = {x1}.

On the other hand, in view of the general rule system for epistemically guarded
transition systems R0 can also be rephrased as a knowledge-based program with a single
agent a and a single variable x ∈ {0, 1, 2}, which a cannot observe, started with x = 0:

if Ma x = 1 _ x← 1
8 Ka(x 6= 1 ∧ x 6= 2) _ x← 2 fi

(b) There may be several solutions of a general rule system, but no least one:

R1 =

{
/x1
x3

,
/x3
x1

}
over {x1, x3}

has the solutions {x1} and {x3}, but ∅ is no solution. It corresponds to the “variable
setting” knowledge-based program of the introduction, see Ex. 1(b):

if Ka x 6= 1 _ x← 3
8 Ka x 6= 3 _ x← 1 fi

(c) Combining a contradictory rule (∅, /{x1, x2})/x2 with the non-determined rules of
R1 we obtain the rule system

R2 =

{
/x1
x3

,
/x3
x1

,
/x1 /x2
x2

}
over {x1, x2, x3}

which has the unique solution {x1}: if x3 were inferable, i.e., x1 not inferable, this would
trigger the contradictory rule for x2 (see Ex. 4(c)).

5.3 Solving General Rule Systems

The observations and definitions for epistemic must/can transition structures and con-
structive interpretation, see Sect. 4.2, can now readily be transferred to a more abstract
account for general rule systems. In fact, this reconstructs the “Kripke-Kleene fixpoint”
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using under- and over-approximations [11], though now using an inductive partial order.
We also relate the case where the constructive interpretation is not only monotone, but
continuous to knowledge-based programs.

Define, for a universe U , the set ℘±U as {(P,Q) ∈ ℘U × ℘U | P ⊆ Q} and the
relation⊆± ⊆ ℘±U ×℘±U as (P,Q) ⊆± (P ′, Q′) if, and only if, P ⊆ P ′ andQ ⊇ Q′.

Lemma 6. (℘±U,⊆±,⊥±U ) with ⊥±U = (∅, U) is an inductive partial order.

For a general rule system R over U with positive and negative premisses define the
operator Ř : ℘±U → ℘±U that describes what must and what can be derived given what
is assumed to be definitely and potentially derivable:

Ř(P,Q) = ({y ∈ U | ex. (X, /Z)/y ∈ R s. t. X ⊆ P, Q ∩ Z = ∅},
{y ∈ U | ex. (X, /Z)/y ∈ R s. t. X ⊆ Q, P ∩ Z = ∅})

This is well-defined: if (P,Q) ∈ ℘±U , then Ř(P,Q) ∈ ℘±U , since for P ⊆ Q and each
(X, /Z)/y ∈ R with X ⊆ P and Q ∩ Z = ∅ it holds that X ⊆ Q and P ∩ Z = ∅. The
operator is always monotone:

Lemma 7. LetR be a rule system overU . If (P1, Q1) ⊆± (P2, Q2), then Ř(P1, Q1) ⊆±
Ř(P2, Q2).

As for constructive interpretation, Pataraia’s fixed-point theorem now guarantees that
the monotone operator Ř on the inductive partial order (℘±U,⊆±,⊥±U ) has a least fixed
point. Again, it can be “computed” by possibly transfinite iterated application of Ř to
⊥±U . If, however, Ř is even continuous, then, by Kleene’s fixed-point theorem, it suffices
to consider all finite approximations, i.e., µŘ =

⋃±
n∈N Ř

n(⊥±U ); that Ř is continuous
means that if ∆ ⊆ ℘±U is directed, then

⋃±
Ř(∆) = Ř(

⋃±
∆).

Lemma 8. Let R be a rule system over U such that every rule of R has only finitely
many positive and negative premisses. Then Ř is continuous.

The rule system for an epistemically guarded transition system Γ = (S,E,L, S0, T )
over (P,A) always has only finitely many positive premisses; if for each s ∈ S and each
a ∈ A the set {s′ ∈ S | (s, s′) ∈ Ea} is finite, then there are also only finitely many
negative premisses, such that the corresponding must/can operator is continuous.

6 Reasoning About Knowledge-based Programs

We have implemented the constructive interpretation of knowledge-based programs in
the prototypical “Temporal Epistemic Model Interpreter and Checker” (tEmIc5). The
tool first computes the least constructive fixed point of a (finite state) epistemically
guarded transition system. If the least fixed point is decided, the least solution in terms
of epistemic transition structures has been found; otherwise it is checked whether the re-
interpretation using the lower bound of the undecided least fixed point yields a solution.

5 https://bitbucket.org/knappale/temic
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If either succeeds, properties of the resulting model can be checked. These properties
can be expressed in CTLK, the combination of the branching “Computation Tree Logic”
(CTL) and epistemic logic [21]. What is more, CTLK can also be used in tEmIc for the
action guards. The constructive interpretation just evaluates each universal quantifier
of a CTL formula — A for “on all paths” — over the upper bound and each existential
quantifier — E for “on some path” — over the lower bound. This adds the temporal
dimension to the domain of application of knowledge-based programs. For the run-based
interpreted systems of Fagin et al. [13], Van der Hoek and Woolridge [20] and Su [27]
provide transformations for linear-time model checking based on local propositions,
though for a fixed set of runs that does not depend on the evaluation of knowledge guards.
The CTLK-model checker MCMAS [21] similarly operates on a fixed, predetermined
model. In dynamic epistemic logic and its model checker DEMO [31], the transition
structure is given by epistemic actions.

We first recapitulate briefly CTLK and then show its constructive evaluation over
epistemic must/can transition structures. We next describe tEmIc by means of the bit
transmission problem and the small paradoxical exercise of the “unexpected examination”;
the tEmIc distribution also contains specifications for the well-known problems “Muddy
Children” [31, pp. 93ff.] and “Sum-and-Product” [31, pp. 96f.]. Finally, we proceed to
an application where CTLK is also used in the action guards: the Java memory model.

6.1 CTLK

The CTLK-formulæ over (P,A) are defined by the following grammar:

ϕ ::= p | false | ¬ϕ | ϕ1 ∧ ϕ2 | Ka ϕ | EXϕ | EGϕ | E[ϕ1 U ϕ2]

where p ∈ P and a ∈ A. The path quantifier E is interpreted as “there is a path”, the
temporal modality X as “in the next step”, G as “always”, and U as “until”. We also
consider the path quantifier A for “on all paths” and the modalities F for “eventually”
and R for “release”, such that ¬EG¬ϕ is abbreviated by AFϕ and ¬E[¬ϕ1 U ¬ϕ2]
by A[ϕ1 R ϕ2]. The satisfaction relationM, s |= ϕ of a CTLK-formula ϕ over (P,A)
at state s ∈ S of an epistemic transition structure M = (S,E,L, S0, T ) over (P,A)
conservatively extends the satisfaction relation of epistemic formulæ by

M, s |= EXϕ ⇐⇒ ex. s0, s1, . . . ∈P(M, s) s. t.M, s1 |= ϕ

M, s |= EGϕ ⇐⇒ ex. s0, s1, . . . ∈P(M, s) s. t.M, si |= ϕ f. a. i ∈ N
M, s |= E[ϕ1 U ϕ2] ⇐⇒ ex. s0, s1, . . . ∈P(M, s) and l ∈ N s. t.

M, si |= ϕ1 f. a. 0 ≤ i < l andM, sl |= ϕ2

where P(M, s) denotes all paths ofM , i.e., the infinite state sequences s0, s1, . . . ∈ S
with s0 = s and (si, si+1) ∈ T for all i ∈ N. A CTLK-formula ϕ is valid inM , written
M |= ϕ, if it is satisfied in all initial states, i.e.,M, s0 |= ϕ for all s0 ∈ S0(M).

For a direct definition of the satisfaction of CTLK-formulæ with an A, the existential
path quantification for E has to be replaced by universal path quantification. As for simple
epistemic logic, CTLK including AXϕ, AGϕ etc. admits a negation normal form (see,
e.g., [3, pp. 333f.]). The constructive satisfaction relation of a CTLK-formula in negation
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normal form over an epistemic must/can transition structure Y = (S,E,L, S0, T ) over
(P,A) at a state s ∈ Sω(Yν), written Y, s |= ϕ, conservatively extends the constructive
satisfaction relation of epistemic formulæ and interprets E over the lower bound Yµ and
A over the upper bound Yν such that, in particular,

Y, s |= EFϕ ⇐⇒ ex. s0, s1, . . . ∈P(Yµ, s) and i ∈ N s. t. Y, si |= ϕ

Y, s |= AFϕ ⇐⇒ f. a. s0, s1, . . . ∈P(Yν , s) ex. i ∈ N s. t. Y, si |= ϕ

6.2 tEmIc

tEmIc is a symbolic model interpreter and checker for epistemically guarded transition
systems using CTLK. It is written in Java and uses binary decision diagrams for state
space representation [28]; it also supports bounded integers and their arithmetic. Given a
specification, tEmIc first computes the least constructive fixed point by iterated must/can
interpretation. If this fixed point is not decided it checks whether another interpretation
using the lower bound of the fixed point yields a solution. If either succeeds, tEmIc
proceeds with model checking given properties; these statements can be specified as
CTLK-formulæwhich have to hold in all initial states or as a reachability query. Reachable
deadlock states without outgoing transitions result in a warning.

For example, the bit transmission problem of the introduction as formalised in Ex. 1(a)
can be represented as a tEmIc specification as follows (rules are introduced by keyword
action followed by a name of the rule and the rule definition):
var sbit, ack, rbit, snt : boolean initial (ack | rbit | snt) <-> false;

agent S = { sbit, ack }; agent R = { rbit, snt };
let R_knows_bit = exists bit:boolean . K[R] sbit <-> bit;

action S_sends_bit_ok
guard not K[S] R_knows_bit do rbit := sbit, snt := true;
action S_sends_bit_failed
guard not K[S] R_knows_bit do ;
action R_sends_ack_ok
guard R_knows_bit and not K[R] K[S] R_knows_bit do ack := true;
action R_sends_ack_failed
guard R_knows_bit and not K[R] K[S] R_knows_bit do ;

Constructive interpretation yields in a few milliseconds the decided least fixed point
of Ex. 2, over which some CTLK-properties can be checked:
check initial EF R_knows_bit;
check initial EF K[S] R_knows_bit;
check initial EF K[R] K[S] R_knows_bit;

The first two are reported to hold, but the last does not since agent R cannot gather
enough information to be sure that the bit has been received by agent S.

For another example, consider the “unexpected examination” paradox [10, Sect. 4.7,
there called “unexpected hanging”] (for a detailed account see, e.g., [26, Sects. 5.2f.]): A
class is told that within the next week there will be an exam, but it will be a surprise. The
class might reason that the exam cannot happen on Friday, because if there has been no
exam up to Thursday it will not be a surprise on Friday any more; by backward induction
it might reason that there cannot be a surprise exam in the next week at all. This problem
statement can be readily expressed as a tEmIc specification:
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var day : 0..5 initial day = 0;
var exam : 0..4;
var written : boolean initial written <-> false;

agent P = { day, written };

action act1
guard day < 5 and (day = exam) and (not K[P] day = exam) and not written
do written := true, day := day+1;
action act2
guard day < 5 and (day != exam) do day := day+1;
action stutter
do ;

Again, constructive interpretation yields in a few milliseconds a decided least fixed
point. Over this epistemic transition structure we can check that on, e.g., Wednesday the
exam can be written and still is indeed a surprise:
check reachable exam = 2 & written;

For such a reachability check tEmIc also provides a witness that tells that act2 is
executed twice after which act1 follows. The following CTLK-property, however, is not
satisfied, as it would have to hold in all initial states — and with exam being 4 the class
cannot be surprised any more:
check initial EF written;

6.3 Memory Models

Memory models regulate the interaction between threads, their caches, and the main
memory [23]. The original Java memory model — one of the first formal such models —
has been harshly criticised for making several compiler optimisations impossible and
has subsequently been superseded by a more liberal model [17, Ch. 17]. Keeping strong
guarantees for sequentially consistent, well-synchronised programs, reorderings of data-
independent statements or early, “prescient” reads from other threads are allowed for
programs with data races. Still, some limits, like consistency with data or control flow
dependencies or no “out-of-thin-air” values, should be in force [25,2].

For example, in the following two-threaded Java-like program to the left it should be
possible that both thread-local registers r1 and r2 are assigned the value 1 when reading
the global, shared variables x and y: A compiler could reorder the data-independent
statements in both threads. This behaviour, however, should be forbidden in the example
to the right, since there is a symmetric data dependence.

x = y = 0
r1 = r2 = 0

r1 = x; r2 = y;
y = 1; x = 1;

r1 = r2 = 1?

x = y = 0
r1 = r2 = 0

r1 = x; r2 = y;
if (r1 == 1) if (r2 == 1)
y = 1; x = 1;

r1 = r2 = 1?

We want to capture the behaviour of a multi-threaded (Java) program with a liberal
memory model without having to check all possible compiler transformations — the
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correctness of such transformations would actually depend on the program semantics
including the memory model. In fact, in the current Java memory model out-of-order
executions have to be justified by other legal executions. We interpret these justifications
as witnesses in terms of knowledge-based programs; our current exposition, however,
neglects synchronisation. We first represent the state space of a two-threaded (Java)
program like the ones above by the following tEmIc declarations:
var x, y, r1, r2 : 0..2 initial x = 0 & y = 0 & r1 = 0 & r2 = 0;
var step1, step2 : 1..3 initial step1 = 1 & step2 = 1;

agent t1 = { step1, r1 }; agent t2 = { step2, r2 };

The thread agents t1 and t2 can only observe their local registers and their program
counters. The program steps for both threads are turned into actions like
action t1_1 guard step1 = 1 do r1 := x, step1 := step1+1;
action t1_2 guard step1 = 2 do y := 1, step1 := step1+1;

Additionally, we allow for a “prescient reading” of the value v from the main memory
variable x by thread θ into the local variable r at step s by the following action:
action readθ_x_v_r_s
guard stepθ = s and K[θ] (EF (r = 0 & x = v) and EF (r = v & x = v))
do r := v, stepθ := stepθ+1;

The thread θ can read v from x into r early on if it knows that there is an execution
where x has value v without dependence on already setting r to v, and, furthermore, that
there is an execution where the early setting is confirmed. The statement r1 = x; of the
first thread is expanded into three read actions read1_x_0_r1_1, read1_x_1_r1_1,
and read1_x_2_r1_1 plus the plain reading action t1_1. With this encoding, tEmIc
reports that for the first example to the left it is indeed possible to obtain r1 = r2 = 1 in
the least constructive fixed point, but that this is impossible for the example to the right.

A more intriguing case is presented by the following two examples: According
to Manson et al. [23, pp. 35f.] (cf. also [2]), the program to the left can result in
r1 = r2 = r3 = 1:

x = y = 0
r1 = r2 = r3 = 0

r1 = x; r3 = y;
if (r1 == 0) x = r3;
x = 1;
r2 = x;
y = r2;

r1 = r2 = r3 = 1?

x = y = 0
r1 = r2 = r3 = 0

r1 = x; r2 = x; r3 = y;
if (r1 == 0) y = r2; x = r3;
x = 1;

r1 = r2 = r3 = 1?

A compiler could see that only 0 and 1 are possible for x and y and “can then replace r2
= x by r2 = 1, because either 1 was read from x on line 1 and there is no intervening
write, or 0 was read from x on line 1, 1 was assigned to x on line 3, and there was
no intervening write”; this definite assignment can be used to transform the last line
to y = 1; which finally can be made the first action of the first thread, as there are no
dependencies. But the same transformation is not possible for the program to the right,
and there the same behaviour should be disallowed. Still, the left program is the result
of inlining the second thread into the first. Our encoding of the two programs in tEmIc

Interpreting Knowledge-based Programs 277



confirms these considerations and the witness for the left program indeed first sets r3 to
1 and confirms this only in the last step setting y to 1.

7 Conclusions and Future Work

We have introduced a must/can analysis for the interpretation of knowledge-based
programs inspired by the constructive semantics of synchronous programming languages.
The resulting constructive interpretation provides lower and upper bounds for the possible
executions. This interpretation has been shown to be monotone and to yield a least fixed
point. We have also transformed knowledge-based programs to general rule systems with
positive and negative premisses. Finally, we have described our tool tEmIc for constructive
interpretation and temporal-epistemic model checking over CTLK and demonstrated
some applications of interpreting knowledge-based programs including CTLK-guards.

Our epistemic logic could be complemented by group knowledge [14, Ch. 6], like
common or distributed knowledge. The temporal dimension could be extended to “Linear-
Time Logic” (LTL), and, more importantly, to include some notion of fairness. Criteria for
ensuring decided least fixed points for the must/can interpretation beyond synchronicity
would be desirable. Also a comparisonwith non-monotone inductive definitions [12], SOS
rules with negative premisses [24], and solution strategies for epistemic specifications [5],
would be of interest. On the other hand, the general constructive approach may be
useful to complement existing intuitionistic approaches to the semantics of synchronous
programming languages [22]. Finally, the domain of memory models should be covered
more comprehensively by interpreting knowledge-based programs.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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