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Abstract. Abstract interpretation is a framework to design sound static
analyses by over-approximating the set of program behaviours. While
over-approximations can prove correctness, they cannot witness incor-
rectness because false alarms may arise. An ideal, but uncommon, situ-
ation is completeness of the abstraction that can ensure no false alarm
is introduced by the abstract interpreter. Local Completeness Logic is a
proof system that can decide both correctness and incorrectness of a pro-
gram: any provable triple `A [P ] c [Q] in the logic implies completeness
of an intensional abstraction of program c on input P and is such that
Q can be used to decide (in)correctness. However, completeness itself is
an extensional property of the function computed by the program, while
the above intensional analysis depends on the way the program is written
and therefore not all valid triples can be derived in the proof system. Our
main contribution is the study of new inference rules which allow one to
perform part of the intensional analysis in a more precise abstract do-
main, and then to transfer the result back to the coarser domain. With
these new rules, all (extensionally) valid triples can be derived in the
proof system, thus untying the set of provable properties from the way
the program is written.

Keywords: Abstract interpretation, Completeness in abstract interpre-
tation, Hoare logic, Abstract domain refinement, Extensionality

1 Introduction

Static program analysis has been widely used to help developers produce valid
software. Among static analysis techniques, abstract interpretation [6,7] is a
general formalism to define sound-by-construction over-approximations that has
been successfully applied in many fields, such as model checking, security and
optimization [8]. Static analyses are often defined as over-approximations, that
is the analysis computes a superset of the behaviors. This leads to no false
negatives, that is all issues of the software are identified by the analysis, but it
can cause false alarms: an incorrect behavior may be an artifact of the analysis,
added by the over-approximation. While the absence of false negatives allowed
a wide applicability of abstract interpretation techniques, it also make tools less
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reliable to identify bugs. In fact, in many industrial applications any false alarm
reported by the analysis to the developers diminishes its credibility, making it
less effective in practice. This argument has recently led to the development of
a logic of under-approximations, called incorrectness logic [16,17].

The Problem. In abstract interpretation, an ideal situation is completeness.
Given an expressible specification, that is, one represented exactly in the abstract
domain, a complete abstraction reports no false alarms. In its most widespread
formulation [7], completeness is a global property: a program c is complete in the
abstraction A if a condition holds for all possible inputs. Let C be the concrete
domain and JcK : C → C be the (collecting) denotational semantics of c. Given
an abstract domain A, a concretization function γ : A → C and an abstrac-
tion function α : C → A, an abstract interpreter JcK]A : A → A is complete

in A if for all possible inputs P we have JcK]Aα(P ) = α(JcKP ). Unfortunately,
because of universal quantification over the possible inputs, this condition is dif-
ficult to meet in practice. Moreover, in most cases completeness is checked on
an intensional abstraction of JcK computed inductively on the syntax, through

inductive reasoning by an abstract interpreter JcK]A making completeness an in-
tensional property dependent on the program syntax [10]. However, in principle
completeness is an extensional property, that only depends on the best correct
abstraction JcKA of JcK in A, defined by JcKA , αJcKγ. We sum up what we may
call intensional (on the left) and extensional (on the right) completeness in the
following equations:

JcK]Aα = αJcK JcKAα = αJcKγα = αJcK (1)

We show the difference between JcKA and JcK]A in the following example.

Example 1 (Extensional and intensional properties). Consider the concrete do-
main of sets of integers and the abstract domain of signs:

∅

Z<0 Z=0 Z>0

Z≤0 Z 6=0 Z≥0

ZSign

The meaning of the abstract elements of Sign is to represent concrete values
that satisfy the respective property. So for instance, denoting with the function
γ the “meaning” of an abstract element, we have γ(Z<0) = {n ∈ Z |n < 0}.
Conversely, α “abstracts” a concrete set of values to the least abstract property
describing it, for instance α({0; 1; 100}) = Z≥0.

Consider the simple program fragment c , x := x + 1; x := x - 1. Its
denotational semantics JcK is the identity function idZ, so its best correct ab-
straction is the abstract identity idSign = α idZ γ. This is an extensional prop-
erty of the program because it only depends on the function it computes, i.e., its
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denotational semantics. However, an analyzer does not know the semantics of c,
so it has to analyze the program syntactically, breaking it down in elementary
pieces and gluing the results together. So for instance, starting from the concrete
point P = {1} the analysis first abstracts it to the property α(P ) = Z>0, then
it computes

JcK]Sign(Z>0) = Jx := x - 1K]SignJx := x + 1K]Sign(Z>0)

= Jx := x - 1K]Sign(Z>0) = Z≥0.

Analogous calculations for all properties in Sign yields the abstraction

JcK]Sign(a) =



⊥ if a = ⊥

Z≥0 if a ∈ { Z=0 , Z>0 ,Z≥0}

Z<0 if a = Z<0

> if a ∈ { Z≤0 , Z 6=0 ,>}

that, albeit sound, is less precise than idSign (we highlight with a gray background

all inputs on which JcK]Sign loses accuracy). If instead the program were written as

c′ , skip, the analysis in Sign would yield the best correct abstraction Jc′K]Sign =
idSign. Therefore, the abstraction depends on how the program is written and not
only on its semantics: it is what it is called an intensional property (see e.g. [1]
for more about intensional and extensional abstract properties). ut

To overcome the former limitation of “global” completeness, the concept of
local completeness [2] has been recently proposed that is related to some specific
input. While this condition is much more common in practice, it is also much
more complex to prove. In order to do so, the authors of [2] introduce a Local
Completeness Logic parametric with respect to an abstraction A (LCLA for
short), that is able to prove triples `A [P ] c [Q] with the following meaning

1. Q is an under-approximation of the concrete semantics JcKP ,
2. Q and JcKP have the same over-approximation in A,
3. A is locally complete for the intensional abstraction JcK]A on input P .

The important consequence of the previous points is the fact that a triple in
LCLA is able to prove both correctness and incorrectness of a program with
respect to a specification Spec expressible in A. By point (2), if the abstract
analysis reports no errors in Q then there are none because of the over-approxi-
mation. However, if the analysis does report an issue, this must be present in the
abstraction of JcKP as well, that is the same as the abstraction of Q: this means
that Q contains a witness of the violation of Spec, and this witness must be in
JcKP because of the under-approximation ensured by point (1). While local com-
pleteness of point (3) is a key property to prove point (1-2), it would be enough
to guarantee that (3) holds for the extensional best correct approximation JcKA

of JcK rather than for the intensional abstract interpreter JcK]A: this suggests that
it is possible to weaken the hypothesis (3) in order to make the proof system
able to derive more valid triples.
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Main Contributions. Building on the proof system of LCLA, we add new rules
to relax point (3) to local completeness of the extensional abstraction JcKA. This
way, while the proof system itself remains intensional as it deduces program
properties by working inductively on the syntax, the information it produces is
more precise. Specifically, since the property associated with triples is extensional
no precision is lost because of the intensional abstract interpreter, and in the
end allows us to prove more triples. In order to achieve this goal, we introduce
new rules to dynamically refine the abstract domain during the analysis. While
in general an analysis in a more concrete domain is more precise, LCLA requires
local completeness, which is not necessarily preserved by domain refinement [11].
For instance, a common way to combine two different abstract domains is their
reduced product [7], but it is not always the case that the analysis in the reduced
product is (locally) complete, even when it is such in the two domains.

To preserve local completeness, we introduce several rules for domain re-
finement in LCLA and compare their expressiveness and usability. All of them
provide extensional guarantees, in the sense that point (3) is replaced with local
completeness of the best correct abstraction JcKA on input P . The first one is
called (refine-ext). LCLA extended with (refine-ext) turns out to be logically com-
plete: any triple satisfying the above conditions (1–3) can be proved in our proof
system. This is a theoretical improvement with respect to LCLA, that instead
was intrinsically incomplete as a logic, i.e., for all abstractions A there exists a
sound triple that cannot be proved. While (refine-ext) is theoretically interesting,
one of its hypothesis is unfeasible to check in practice. To improve applicability,
we propose two derived rules, (refine-int) and (refine-pre), whose premises can
be checked effectively and imply the hypotheses of the more general (refine-ext).
Surprisingly, it turns out that (refine-int) enjoys a logical completeness result
too, while (refine-pre) is strictly weaker (in terms of strength of the logic, see
Example 6). Despite this, the latter is much simpler and preferable to use in
practice whenever possible (see Example 5), while the former can be used in
more situations and is at times the best choice.

We present a pictorial comparison among the expressiveness of the various
proof systems in Fig. 1. Each node represent the proof system LCLA extended
with one rule (the bottom one being plain LCLA). An arrow in the picture
means a more powerful proof system, i.e., a proof system that can prove more
triples, with its label pointing out the result justifying the claim. The two arrows
between the two topmost nodes are because the two proof systems are logically
equivalent, i.e., they can prove the same triples.

Structure of the paper. In Section 2 we explain the notation used in the paper
and recall the basics of abstract interpretation. In Section 3 we present LCLA,
mostly summarizing the content of [2], with a focus on what is used in the
following sections. In Section 4 we present and compare our new rules to refine
the abstract domain, namely (refine-ext) and the two derived rules (refine-int)
and (refine-pre). We conclude in Section 5. Some proofs and technical examples
are in Appendix A.
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LCLA

LCLA +
(refine-pre)

LCLA +
(refine-int)

LCLA +
(refine-ext)

Ex 5

Ex 6

Th 4

Th 5

Ex 6

Fig. 1: Relations between the new proof systems

2 Background

Notation. We write P(S) for the powerset of S and idS : S → S for the identity
function on a set S, with subscripts omitted when obvious from the context. If
f : S → T is a function, we overload the symbol f to denote also its lifting
f : P(S) → P(T ) defined as f(X) = {f(x) |x ∈ X} for any X ⊆ S. Given two
functions f : S → T and g : T → V we denote their composition as g ◦ f or
simply gf . For a function f : S → S, we denote fn : S → S the composition of
f with itself n times, i.e. f0 = idS and fn+1 = f ◦ fn.

In ordered structures, such as posets and lattices, with carrier set C, we
denote the ordering with ≤C , least upper bounds (lubs) with tC , greatest lower
bounds (glbs) with uC , least element with ⊥C and greatest element with >C . For
all these, we omit the subscript when evident from the context. Any powerset is
a complete lattice ordered by set inclusion. In this case, we use standard symbols
⊆, ∪, etc. Given a poset T and two functions f, g : S → T , the notation f ≤ g
means that, for all s ∈ S, f(s) ≤T g(s). A function f between complete lattices
is additive (resp. co-additive) if it preserves arbitrary lubs (resp. glbs).

2.1 Abstract Interpretation

Abstract interpretation [6,7,5] is a general framework to define static analyses
that are sound by construction. The main idea is to approximate the program
semantics on some abstract domain A instead of working on the concrete domain
C. The main tool used to study abstract interpretations are Galois connections.
Given two complete lattices C and A, a pair of monotone functions α : C → A
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and γ : A→ C define a Galois connection (GC) when

∀c ∈ C, a ∈ A. α(c) ≤A a ⇐⇒ c ≤C γ(a).

We call C and A the concrete and the abstract domain respectively, α the ab-
straction function and γ the concretization function. The functions α and γ are
also called adjoints. For any GC, it holds idC ≤ γα, αγ ≤ idA, γ is co-additive
and α is additive. A concrete value c ∈ C is called expressible in A if γα(c) = c.
We only consider GCs in which αγ = idA, called Galois insertions (GIs). In a
GI α is onto and γ is injective. A GI is said to be trivial if A is isomorphic to
the concrete domain or if it is the singleton {>A}.

We overload the symbol A to denote also the function γα : C → C: this
is always a closure operator, that is a monotone, increasing (i.e. c ≤ A(c) for
all c) and idempotent function. In the following, we use closure operators as
much as possible to simplify the notation. Particularly, they are useful to denote
domain refinements, as exemplified in the next paragraph. Note that they are
still very expressive because γ is injective: for instance A(c) = A(c′) if and only
if α(c) = α(c′). Nonetheless, the use of closure operators is only a matter of
notation and it is always possible to rewrite them using the adjoints.

We use Abs(C) to denote the set of abstract domains over C, and we write
Aα,γ ∈ Abs(C) when we need to make the two maps α and γ explicit (we omit
them when not needed). Given two abstract domains Aα,γ , A

′
α′,γ′ ∈ Abs(C)

over C, we say A′ is a refinement of A, written A′ � A, when γ(A) ⊆ γ′(A′).
When this happens, the abstract domain A′ is more expressive than A, and in
particular for all concrete elements c ∈ C the inequality A′(c) ≤C A(c) holds.

Abstracting Functions. Given a monotone function f : C → C and an abstract
domain Aα,γ ∈ Abs(C), a function f ] : A → A is a sound approximation (or
abstraction) of f if αf ≤ f ]α. Its best correct approximation (bca) is fA = αfγ,
and it is the most precise of all the sound approximations of f : a function f ] is
a sound approximation of f if and only if fA ≤ f ].

A sound abstraction f ] of f is complete if αf = f ]α. It turns out that there
exists a complete abstraction f ] if and only if the bca fA is complete. If this
is the case, we say that the abstract domain A is complete for f and denote
it with CA(f). Intuitively, completeness means that the abstract function f ] is
as precise as possible in the given abstract domain A, and in program analysis
this allows to have greater confidence in the alarms raised. We remark that A
is complete for f if and only if αf = fAα = αfγα. Since γ is injective, this is
true if and only if γαf = γαfγα, so that we define the (global) completeness
property CA(f) as follows:

CA(f) ⇐⇒ Af = AfA.

2.2 Regular Commands.

Following [2] (see also [16]) we consider a language of regular commands :

Reg 3 r ::= e | r; r | r ⊕ r | r∗
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This is a general language and can be instantiated differently changing the set
Exp of basic transfer expressions e. These determines the kind of operations
allowed in the language, and in our examples we assume to have deterministic
assignments and boolean guards. Using standard definitions for arithmetic and
boolean expressions a ∈ AExp and b ∈ BExp, we consider

Exp 3 e ::= skip | x := a | b?

skip does nothing, x := a is a standard deterministic assignment. The seman-
tics of b? is that of an “assume” statement: if its input satisfies b it does nothing,
otherwise it diverges. The term r; r represent the usual sequential composition,
and r⊕r is nondeterministic choice. The Kleene star r∗ denote a nondeterministic
iteration, where r can be executed any number of time (possibly 0) before exiting.
It can be thought as the solution of the recursive equation r∗ ≡ skip⊕(r; r∗). We
write rn to denote sequential composition of r with itself n times, analogously to
how we use fn for function composition.

This formulation can accommodate for a standard imperative programming
language [18] defining if and while statements as

if (b) then c1 else c2 , (b?; c1)⊕ ((¬b)?; c2)

while (b) do c , (b?; c)∗; (¬b)?

Concrete semantics. We assume the semantics L·M : Exp → C → C of basic
transfer expressions on a complete lattice C to be additive. We believe this
assumption not to be restrictive, and is always satisfied in collecting semantics.
For our instantiation of Exp, we consider a finite set of variables Var, then the
set of stores Σ = Var→ Z that are (total) functions σ from Var to integers. The
complete lattice C is then defined simply as P(Σ) with the usual poset structure
given by set inclusion. Given a store σ ∈ Σ, store update σ[x 7→ v] is defined
as usual for x ∈ Var and v ∈ Z. We consider standard, inductively defined
semantics L·M for arithmetic and boolean expressions. The concrete semantics of
regular commands J·K : Reg→ C → C is defined inductively as in Fig. 2a, where
the semantics of basic transfer expressions e ∈ Exp is defined as follows:

LskipMS , S

Lx := aMS , {σ[x 7→ LaMσ] |σ ∈ S}
Lb?MS , {σ ∈ S | LbMσ = tt}

Abstract Semantics. The (compositional) abstract semantics of regular com-

mands J·K]A : Reg → A → A on an abstract domain A ∈ Abs(C) is defined
inductively as in Fig. 2b. As common for abstract interpreters, we assume the
analyser knows the best correct abstraction of expression and thus is able to
compute JeKA. A straightforward proof by structural induction shows that the

abstract semantics is sound w.r.t. JrK (i.e., αJrK ≤ JrK]Aα) and monotone. How-

ever, in general it is less precise than the bca, i.e., JrK]A 6= JrKA = αJrKγ.
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JeKc , LeMc

Jr1; r2Kc , Jr2KJr1K(c)

Jr1 ⊕ r2Kc , Jr1Kc tC Jr2Kc

Jr∗Kc ,
⊔
n≥0

JrKnc

(a) Concrete semantics

JeK]Aa , JeKAa = αLeMγ(a)

Jr1; r2K]Aa , Jr2K]AJr1K]A(a)

Jr1 ⊕ r2K]Aa , Jr1K]Aa tA Jr2K]Aa

Jr∗K]Aa ,
⊔
n≥0

(JrK]A)na

(b) Abstract semantics

Fig. 2: Concrete and abstract semantics of regular commands, side by side

Shorthands. Throughout the paper, we present some simple examples of pro-
gram analysis. The programs discussed in the examples contain just one or two
variables (usually x and y), so we denote their sets of stores just as Σ = Z or
Σ = Z2. In these cases, the convention is that an element of Z is the value of
the single variable in Var, and a pair (n,m) ∈ Z2 denote the store σ(x) = n,
σ(y) = m. We also lift these conventions to sets of values in Z or Z2. At times,
to improve readability, we use logical formulas such as (y ∈ {1; 2; 99} ∧ x = y)
possibly using intervals, like in x ∈ [0; 5], to describe set of stores.

3 Local Completeness Logic

In this section we present the notion of local completeness and introduce the
proof system LCLA (Local Completeness Logic on A) as was defined in [2].

For a generic program and abstract domain, global completeness is a too
strong requirement: for conditionals to be complete the abstract domain should
basically contain a complete sublattice of the concrete domain. For this reason,
the weaker notion of local completeness can be more convenient in many cases.

Definition 1 (Local completeness, cf. [2]). Let f : C → C be a concrete
function, c ∈ C a concrete point and A ∈ Abs(C) and abstract domain for C.
Then A is locally complete for f on c, written CAc (f), iff

Af(c) = AfA(c).

A remarkable difference between global and local completeness is that, while the
former can be proved compositionally irrespective of the input [10], the latter
needs it. Consequently, to carry on a compositional proof of local completeness,
information on the input to each subpart of the program is also required, i.e., all
traversed states are important. However, local completeness enjoys an “abstract
convexity” property, that is, local completeness on a concrete point c implies
local completeness on any concrete point d between c and its abstraction A(c).
This observation has been exploited in the design of the proof system LCLA.
The system is able to prove triples `A [P ] r [Q] ensuring that:
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CA
P (JeK)

`A [P ] e [JeKP ]
(transfer)

P ′ ≤ P ≤ A(P ′) `A [P ′] r [Q′] Q ≤ Q′ ≤ A(Q)

`A [P ] r [Q]
(relax)

`A [P ] r1 [R] `A [R] r2 [Q]

`A [P ] r1; r2 [Q]
(seq)

`A [P ] r1 [Q1] `A [P ] r2 [Q2]

`A [P ] r1 ⊕ r2 [Q1 ∨Q2]
(join)

`A [P ] r [R] `A [P ∨R] r∗ [Q]

`A [P ] r∗ [Q]
(rec)

`A [P ] r [Q] Q ≤ A(P )

`A [P ] r∗ [P ∨Q]
(iterate)

Fig. 3: The proof system LCLA.

1. Q is an under-approximation of the concrete semantics JrKP ,
2. Q and JrKP have the same over-approximation in A,
3. A is locally complete for JrK on input P .

The second point means that, given a specification Spec expressible in A, any
provable triple `A [P ] r [Q] either proves correctness of r with respect to Spec or
expose some alerts in Q \ Spec. These in turns correspond to true ones because
of the first point, as spelled out by Corollary 1 below.

The proof system is defined in Fig. 3. The crux of the proof system is to con-
strain the under-approximation Q to have the same abstraction of the concrete
semantics JrKP , as for instance explicitly required in rule (relax). This, by the
abstract convexity property mentioned above, means that local completeness of
JrK on the under-approximation P of the concrete store is enough to prove local
completeness.

The three key properties (1–3) listed above are formalized by the following
(intensional) soundness result:

Theorem 1 (Soundness, cf. [2]). Let Aα,γ ∈ Abs(C). If `A [P ] r [Q] then:

1. Q ≤ JrKP ,
2. α(JrKP ) = α(Q),

3. JrK]Aα(P ) = α(Q).

As a consequence of this theorem, given a specification expressible in the abstract
domain A, a provable triple `A [P ] r [Q] can determine both correctness and
incorrectness of the program r:

Corollary 1 (Proofs of Verification, cf. [2]). Let Aα,γ ∈ Abs(C) and a ∈ A.
If `A [P ] r [Q] then

JrKP ≤ γ(a) ⇐⇒ Q ≤ γ(a).

The corollary is useful in program analysis and verification because, given a
specification a expressible in A and a provable triple `A [P ] r [Q], it allows to
distinguish two cases.

– If Q ⊆ γ(a), then we have also JrKP ⊆ γ(a), so that the program is correct
with respect to the specification.
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– If Q * γ(a), then also JrKP * γ(a), that means JrKP \ γ(a) is not empty and
thus contains a true alert of the program. Moreover, since Q ⊆ JrKP we have
that Q \ γ(a) ⊆ JrKP \ γ(a), so that already Q pinpoints some issues.

To better show how this work, we briefly introduce the following example (dis-
cussed also in [2] where it is possible to find all details of the derivation).

Example 2. Consider the concrete domain C = P(Z), the abstract domain Int of
intervals, the precondition P = {1; 999} and the command r , (r1 ⊕ r2)∗, where

r1 , (x > 0)?; x := x - 1

r2 , (x < 1000)?; x := x + 1

In LCLA it is possible to prove the triple `Int [P ] r [Q], whose postcondition
is Q = {0; 2; 1000}. Consider the two specification Spec = (x ≤ 1000) and
Spec′ = (x ≥ 100). The triple is then able to prove correctness of Spec and
incorrectness of Spec′. For the former, observe that Q ⊆ Spec. By Corollary 1
we then know JrKP ⊆ Spec, that is correctness. For the latter, Q exhibits two
witnesses to the violation of Spec′, that are 0, 2 ∈ Q \ Spec′. By point (1) of
soundness we then know that 0, 2 ∈ Q ⊆ JrKP are true alerts. ut

Strictly speaking, the proof of Corollary 1 only relies on points (1-2) of The-
orem 1. Point (3) is in turn needed to ensure the first two, but extensional
completeness would suffice to this aim. This means that we can weaken the
soundness theorem (logically speaking, that is we prove a stronger conclusion,
so the theorem as an implication is weaker) while still preserving the validity
of Corollary 1. To this end, we propose a new soundness result involving exten-
sional completeness: the important difference is that in point (3) we use the best

correct abstraction JrKA in place of the inductively defined JrK]A. Since Theorem 1

involves JrK]A, an intensional property of the program r that depends on how the
program is written (see Example 1 or Example 1 in Section 5 of [13]), while the
new statement we propose relies only on JrKA, an extensional property of the
computed function JrK and not of r itself, for the rest of the paper we use the
name intensional soundness for Theorem 1, and extensional soundness for the
following Theorem 2.

Theorem 2 (Extensional soundness). Let Aα,γ ∈ Abs(C). If `A [P ] r [Q]
then:

1. Q ≤ JrKP ,
2. α(JrKP ) = α(Q),
3. JrKAα(P ) = α(Q).

Lastly, we remark that the original LCLA is intrinsically logically incomplete
([2], cf. Theorem 5.12): for every non trivial abstraction A there exists a triple
that is intensionally sound (satisfies points (1-3) of Theorem 1) but cannot be
proved in LCLA. We will discuss logical (in)completeness for our extensional
framework in Section 4.1.
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`A′ [P ] r [Q] A′ � A AJrKA
′
A(P ) = A(Q)

`A [P ] r [Q]
(refine-ext)

Fig. 4: Rule refine for LCLA.

4 Refining Abstract Domain

LCLA can prove a triple [P ] r [Q] for some Q only when JrK]A is locally com-

plete, that is JrK]Aα(P ) = α(JrKP ) (see Theorem 1). Since JrK]A is computed in
a compositional way, the above condition strictly depends on how r is written:
to prove the local completeness of JrK]A, we need to prove that all its syntactic
components are locally complete, that is an intensional property. However, the
goal of the analysis is to study the behaviour of the function JrK, not how it is
encoded by r. Hence, our aim is to enhance the original proof system in order to
be able to handle triples where the extensional abstraction JrKA is proved to be
locally complete w.r.t. the given input, that is JrKAα(P ) = α(JrKP ). To this end,
we extend the proof system with a new inference rule, that is shown in Fig. 4. It
is named after “refine” because it allows to refine abstract domains A to some
A′ � A and “ext” since it involves the extensional bca JrKA

′
of JrK in A′ (to

distinguish it from the rules we will introduce in Section 4.2).
Using (refine-ext) it is possible to construct a derivation that proves local

completeness of portions of the whole program in a more precise abstract domain
A′ and then carries the result over to the global analysis in a coarser domain A.
The only requirement for the application of the rule is that domain A′ is chosen
in such a way that AJrKA

′
A(P ) = A(Q) is satisfied.

Formally, given the two abstract domains Aα,γ , A
′
α′,γ′ ∈ Abs(C), this last

premise of rule (refine-ext) should be written as αγ′JrKA
′
α′A(P ) = α(Q) to match

function domains and codomains. However we prefer the more concise, albeit a
little imprecise, notation used in Fig. 4. That writing is justified by the following
intuitive argument: since A′ � A we can consider with a slight abuse of notation
(seeing abstract domains as closures) A ⊆ A′ ⊆ C, so that for any element
a ∈ A ⊆ C we have γ(a) = γ′(a) = a and for any c ∈ C we have α′A(c) = A(c).
With these, it follows that

αγ′JrKA
′
α′A(P ) = αJrKA

′
A(P ) = AJrKA

′
A(P ).

With rule (refine-ext) we cannot prove intensional soundness (Theorem 1):
since this rule allows to perform part of the analysis in a more concrete domain
A′, we do not get any information on JrK]A. However, we can prove extensional
soundness (Theorem 2) and get all the benefits of Corollary 1.

Theorem 3 (Extensional soundness of (refine-ext)). The proof system in
Fig. 3 with the addition of rule (refine-ext) (see Fig. 4) is extensionally sound
(cf. Theorem 2).
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We also remark that a rule like (refine-ext), that allows to carry on part of the
proof in a different abstract domain, cannot come unconstrained. We present an
example showing that a similar inference rule only requiring the triple [P ] r [Q]
to be provable in an abstract domain A′ � A without any other constraint would
be unsound.

Example 3. Consider the concrete domain C = P(Z) of integers, the point P =
{−5;−1}, the abstract domain Sign of Example 1 and the program

r , x := x + 10.

Then C � Sign and we can prove `C [P ] r [{5; 9}] applying (transfer) since all
assignments are locally complete in the concrete domain. However, if f = JrK =

Lx := x + 10M, it is not the case that CSign
P (f): indeed

Sign(f(Sign(P ))) = Sign(f(Z<0)) = Sign({n ∈ Z |n < 10}) = >

while

Sign(f(P )) = Sign({5, 9}) = Z>0.

This means that a rule without any additional condition can prove a triple which
is not locally complete, hence it is unsound. ut

4.1 Logical Completeness

Among all the possible conditions that can be added to a rule like (refine-ext),
we believe ours to be very general since, differently than the original LCLA proof
system (see Section 5.2 of [2]), the introduction of (refine-ext) allows us to derive
a logical completeness result, i.e. the ability to prove any triple satisfying the
soundness properties guaranteed by the proof system.

However, to prove such a result, our extension need an additional rule to
handle loops, just like the original LCLA and Incorrectness Logic [16]. The nec-
essary infinitary rule, called (limit), allows the proof system to handle Kleene
star, and is the same as LCLA:

∀n ∈ N. `A [Pn] r [Pn+1]

`A [P0] r∗ [
∨
i∈N Pi]

(limit)

Theorem 4 (Logical completeness of (refine-ext)). Consider the proof sys-
tem of Fig. 3 with the addition of rules (refine-ext) and (limit). If Q ≤ JrKP and
JrKAα(P ) = α(Q) then `A [P ] r [Q].

The previous theorem proves the logical completeness of our proof system with
respect to the property of extensional soundness. Indeed, if Q ≤ JrKP and
JrKAα(P ) = α(Q) we also have:

α(Q) ≤ α(JrKP ) ≤ JrKAα(P ) = α(Q),
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hence all three conditions of Theorem 2 are satisfied.
An interesting consequence of this result is the existence of a refinement A′

in which it is possible to carry out the proof. In principle such a refinement
could be the concrete domain C (as shown in the proof in Appendix A), that
is not computable. However, it is worth nothing that for a sequential fragment
(a portion of code without loops) the concrete domain can be actually used
(for instance via first-order logic). This opens up the possibility, for instance, to
infer a loop invariant on the body using C, and then prove it using an abstract
domain. In Section 4.3 we discuss this issue further.

4.2 Derived Refinement Rules

The hypothesis AJrKA
′
A(P ) = A(Q) is added to rule (refine-ext) in order to

guarantee soundness: in general, the ability to prove a triple such as [P ] r [Q] in a
refined domain A′ only gives information on AJrKA

′
A′(P ) but not on AJrKA

′
A(P ).

In fact, the Example 4 shows that AJrKA
′
A′(P ) and AJrKA

′
A(P ) can be different.

Example 4. Consider the concrete domain P(Z), the abstract domain of signs
Signα,γ ∈ Abs(P(Z)) (introduced in Example 1) and its refinement Sign1 below

∅

Z<0 Z=0 Z>0

Z≤0 Z 6=0 Z≥0

ZSign

∅

Z<0 Z=0

Z=1

Z>0

Z≤0 Z 6=0 Z≥0

ZSign1

For the command r , x := x - 1 and the concrete point P = {1} we have

SignJrKSign1Sign1(P ) = SignJrKSign1(Z=1) = Z=0

but
SignJrKSign1Sign(P ) = SignJrKSign1(Z>0) = Z≥0. ut

Despite being necessary, the hypothesis of rule (refine-ext) cannot be checked
in practice because the bca JrKA

′
of a composite command r is not known by the

analyser. To mitigate this issue, we present two derived rules whose premises
imply the premises of Rule (refine-ext), hence ensuring extensional soundness by
means of Theorem 3.

The first rule we present replaces the requirement on the extensional bca JrKA
′

with requirements on the intensional compositional abstraction JrK]A′ computed
in A′. For this reason, we call this rule (refine-int).

Proposition 1. The following rule (refine-int) is extensionally sound:

`A′ [P ] r [Q] A′ � A AJrK]A′A(P ) = A(Q)

`A [P ] r [Q]
(refine-int)
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It is worth noting that now the condition on the compositional abstraction JrK]A′
can easily be checked by the analyser, possibly alongside the analysis of r with
LCL or using a stand-alone abstract interpreter. Moreover, this rule is as pow-
erful as the original (refine-ext) because it allows to prove a logical completeness
result akin to Theorem 4.

Theorem 5 (Logical completeness of (refine-int)). Consider the proof sys-
tem of Fig. 3 with the addition of rules (refine-int) and (limit). If Q ≤ JrKP and
JrKAα(P ) = α(Q) then `A [P ] r [Q].

Just like logical completeness for (refine-ext), this result implies the existence of a
refinement A′ in which it is possible to carry out the proof (possibly the concrete
domain C). The discussion about how to find one is sketched in Section 4.3.

The second derived rule we propose is simpler than (refine-ext), as it just
checks the abstractions A(P ) and A′(P ), with no reference to the regular com-
mand r nor to the postcondition Q. Since the premise is only on the precondition
P , we call this rule (refine-pre).

Proposition 2. The following rule (refine-pre) is extensionally sound:

`A′ [P ] r [Q] A′ � A A′(P ) = A(P )

`A [P ] r [Q]
(refine-pre)

Rule (refine-pre) only requires a simple check at the application site instead of
an expensive analysis of the program r, so it can be preferred in practice.

We present an example to highlight the advantages of this rule (as well as
(refine-int)), which allows us to use different domains in the proof derivation of
different parts of the program.

Example 5 (The use of (refine-pre)). Consider the two program fragments

r1 , (y != 0)?; y := abs(y)

r2 , x := y; while (x > 1) { y := y - 1; x := x - 1 }
= x := y; ((x > 1)?; y := y - 1; x := x - 1)∗; (x <= 1)?

and the program r , r1; r2. Here abs is a function to compute the absolute
value, and we assume, for the sake of simplicity, that the analyser knows its best
abstraction. Consider the concrete domain P(Z2) where a pair (n,m) denote
a state x = n, y = m, and the initial state P = (y ∈ [−100; 100]), a logical
description of the concrete {(n,m) |m ∈ [−100; 100]} ∈ P(Z2). The bca JrKInt in
the abstract domain of intervals is locally complete on P (since P is expressible

in Int), but the compositional abstraction JrK]Int is not:

JrKIntα(P ) = Int(Jr2KJr1K({(n,m) |m ∈ [−100; 100]}))
= Int(Jr2K({(n,m) |m ∈ [1; 100]}))
= Int({(1, 1)})
= ([1; 1]× [1; 1]),
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CInt 6=0

P (Jy != 0?K)
`Int 6=0 [P ] y != 0? [R1]

(transfer)

CInt 6=0

R1
(Jy := abs(y)K)

`Int 6=0 [R1] y := abs(y) [y ∈ [1; 100]]
(transfer)

`Int 6=0 [R1] y := abs(y) [R]
(relax)

`Int 6=0 [P ] r1 [R]
(seq)

Fig. 5: Derivation of `Int 6=0
[P ] r1 [R] for Example 5.

while

JrK]Intα(P ) = Jr2K
]
IntJr1K

]
Int([−∞; +∞]× [−100; 100])

= Jr2K
]
IntJy := abs(y)KInt([−∞; +∞]× [−100; 100])

= Jr2K
]
Int([−∞; +∞]× [0; 100])

= ([1; 1]× [0; 100]) 6= ([1; 1]× [1; 1]).

The issues are twofold. First, the analysis of r1 in Int is incomplete, so we need
a more concrete domain. For instance Int 6=0, the Moore closure of Int with the
addition of the element Z 6=0 representing the property of being nonzero would
work. Intuitively, Int 6=0 contains all intervals, possibly having a “hole” in 0.
Formally

Int 6=0 = Int ∪ {I 6=0 | I ∈ Int}
with γ′(I 6=0) = γ(I) \ {0}. However, note that there is no need for a relational
domain to analyze r1 since variable x is never mentioned in it. On the contrary,
the analysis of r2 requires a relational domain to track the information that the
value of variable x is equal to the value of variable y. This suggests, for instance,
to use the octagons domain Oct [15] to analyze r2. It is worth noting that the
domain of octagons Oct would not be able to perform a locally complete analysis
of r1 for the same reasons that the domain Int could not.

However, rule (refine-pre) allows us to combine these different proof deriva-
tions. Since the program state between r1 and r2 can be precisely represented in
Int, we use this domain as a baseline and refine it in Int 6=0 and Oct for the two
parts respectively.

Let R = (y ∈ {1; 2; 100}) that is an under-approximation of the concrete
state in between r1 and r2 with the same abstraction in Int, so we can prove
the triple `Int [P ] r1 [R]. Note that the concrete point 2 was added to R in
order to have local completeness for (x > 1)? in r2. However, this triple cannot
be proved in Int because Jr1K

]
Int is not locally complete on P , so we resort to

(refine-pre) to change the domain to Int 6=0. The full derivation in Int 6=0 is shown
in Fig. 5, where R1 = (y ∈ [−100; 100] ∧ y 6= 0) and we omitted for simplicity
the additional hypothesis of (relax).

Again Jr2K is locally complete on R in Int, but the compositional analysis

Jr2K
]
Int is not. Hence to perform the derivation we resort to (refine-pre) to intro-

duce relational information in the abstract domain, using Oct instead of Int. Let
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Q = (x = 1∧ y = 1), that is the concrete output of the program, so that we can
prove `Int [R] r2 [Q]. The derivation of this triple is only in Appendix A, Fig. 6.
However, the proof is just a straightforward application of rules (seq), (iterate)
and (transfer).

With those two derivation, the proof of the triple `Int [P ] r [Q] is straightfor-
ward using (refine-pre):

`Int 6=0
[P ] r1 [R]

`Int [P ] r1 [R]
(refine-pre)

`Oct [R] r2 [Q]

`Int [R] r2 [Q]
(refine-pre)

`Int [P ] r [Q]
(seq)

For the derivation to fit the page, we write here the additional hypotheses of the
rules. For the first application, Int 6=0 � Int and Int 6=0(P ) = P = Int(P ). For the
second, Oct � Int and Int(R) = (y ∈ [1; 100]) = Oct(R).

It is worth noting that, in this example, all applications of (refine-pre) can be
replaced by (refine-int). This means that also the latter is able to exploit Int 6=0

and Oct to prove the triple in the very same way, but its application requires
more expensive abstract analyses than the simple checks of (refine-pre). ut

While (refine-pre) is simpler than (refine-ext) and (refine-int), it is also weaker
in both a theoretical and practical sense. On the one hand, LCLA extended with
this rule does not admit a logical completeness result; on the other hand, there
are situations in which, even though (refine-pre) allows a derivation, the other
rules are more effective. We show these two points by examples. For the first,
we propose a sound triple that LCLA extended with (refine-pre) cannot prove.
Since the example is quite technical, here we only sketch the idea, and leave the
details only in Appendix A, Example 8.

Example 6 (Logical incompleteness of (refine-pre)). Consider the concrete do-
main C = P(Z) of integers, the abstract domain Int of intervals, the concrete
point P = {−1, 1} and commands r1 , x != 0?, r2 , x >= 0? and r , r1; r2.
Then the triple `Int [P ] r1; r2 [{1}] is sound but cannot be proved in LCLA
extended with (refine-pre).

The key observations for this example are two. First, all strict subset P ′ ⊂ P
are such that Int(P ′) ⊂ Int(P ). Moreover, for all refinements A′ � Int such
that A′(P ) = Int(P ) we have the same condition, namely if P ′ ⊂ P then
A′(P ′) ⊂ A′(P ). This is because for all P ′ ⊂ P we have A′(P ′) ⊆ Int(P ′) ⊂
Int(P ) = A′(P ). Second, Jr1KP = P . This means that all triples appearing in
the derivation tree of `Int [P ] r1; r2 [{1}] have the same precondition P . Since
(refine-pre) requires A′(P ) = Int(P ), all possible applications of this rule change
the abstract domain to some A′ satisfying the condition above. Since LCLA com-
putes under-approximations with the same abstraction of the strongest postcon-
dition, these two observations make it impossible to under-approximate P fur-
ther, both with (relax) and (refine-pre). This in turn make the triple not provable
because Jr2K is not locally complete on P in Int or in any refinement satisfying
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A′(P ) = Int(P ):

A′Jr2K(P ) = A′({1}) ⊆ Int({1}) = {1}
A′Jr2KA′(P ) ⊇ Jr2KA′(P ) = Jr2K(Int(P )) = {0, 1}.

Example 8 in Appendix A exhibits the formal argument showing that this triple
cannot be proved. ut

As a corollary, this example (and more in general logical incompleteness) shows
that is not always possible to find a refinement A′ to carry out the proof using
(refine-pre). Another consequence of this incompleteness result is the fact that,
even when a command is locally complete in an abstract domain A, we may need
to reason about properties that are not expressible in A in order to prove it, as
(refine-pre) may not be sufficient.

Second, we present an example to illustrate that there are situations in which
(refine-int) is more practical than (refine-pre), even though they are both able to
prove the same triple.

Example 7. Consider the two program fragments

r1 , (y != 0)?; x := y; y := abs(y)

r2 , x := y; while (x > 1) { y := y - 1; x := x - 1 }

and the program r , r1; r2. Consider also the initial state P = y ∈ [−100; 100].
This example is a variation of Example 5: the difference is the introduction

of the relational dependency x := y in r1, that is partially stored in the post-
condition R of r1. Because of this, Oct(R) and Int(R) are different, so we cannot
apply (refine-pre) to prove [R] r2 [Q] for some Q.

Following Example 5, the domain Int 6=0 is able to infer on r1 a subset R
of the strongest postcondition y ∈ [1; 100] ∧ y = abs(x) with the same ab-
straction Int 6=0(R) = [−100; 100] 6=0 × [1; 100]. However, for any such R we can-
not use (refine-pre) to prove the triple `Int [R] r2 [x = 1 ∧ y = 1] via Oct
because Int(R) = x ∈ [−100; 100] ∧ y ∈ [1; 100] while Oct(R) = 1 ≤ y ≤
100 ∧ −y ≤ x ≤ y. More in general, any subset of the strongest postcondition
contains the relational information y = abs(x), so relational domains like oc-
tagons and polyhedra [9] do not have the same abstraction as the non-relational
Int, preventing the use of (refine-pre). However, we can apply (refine-int): con-
sidering R = (y ∈ {1; 2; 100} ∧ y = abs(x)), Q = (x = 1 ∧ y = 1) and
rw , while (x > 1) { y := y - 1; x := x - 1 }, we have

IntJr2K
]
OctInt(R) = IntJr2K

]
Oct(x ∈ [−100; 100] ∧ y ∈ [1; 100])

= IntJrwK]OctJx := yK]Oct(x ∈ [−100; 100] ∧ y ∈ [1; 100])

= IntJrwK]Oct(1 ≤ y ≤ 100, y = x)

= Int(x = 1 ∧ y = 1)

= Int(Q).
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In this example, rule (refine-pre) can be applied to prove the triple, but it
requires to have relational information from the assignment x := y in r1, hence
forcing the use of a relational domain (eg. the reduced product [7] of Oct and
Int 6=0) for the whole r, making the analysis more expensive. ut

4.3 Choosing The Refinement

All three new rules allow to combine different domains in the same derivation,
but do not define an algorithm because of the choice of the right refinement to
use is nondeterministic. A crucial point to their applicability is a strategy to
select the refined abstract domain. While we have not addressed this problem
yet, we believe there are some interesting starting points in the literature.

As already anticipated in previous sections, we settled the question from
a theoretical point of view. Logical completeness results for (refine-ext) (Theo-
rem 4) and (refine-int) (Theorem 5) implies the existence of a domain in which it
is possible to complete the proof (if this were not the case, then the proof could
not be completed in any domain, against the logical completeness). However, the
proofs of those theorems exhibit the concrete domain C as an example, which is
unfeasible in general. Dually, as (refine-pre) is logically incomplete (Example 6),
there are triples that cannot be proved in any domain with it.

As more practical alternatives, we envisage some possibilities. First, we are
studying relationships with counterexample-guided abstraction refinement (CE-
GAR) [4], which is a technique that exploits refinement in the context of abstract
model checking. However, CEGAR and our approach seem complementary. On
the one hand, our refinement rules allow a dynamic change of domain, during
the analysis and only for a part of it, while CEGAR performs a static refinement
and then a new analysis of the whole transition system in the new, more precise
domain. On the other hand, our rules lack an instantiation technique, while for
CEGAR there are effective algorithms available to pick a suitable refinement.

Second, local completeness shell [3] were proposed as an analogous of com-
pleteness shell [11] for local completeness. In the article, the authors proposed to
use local completeness shells to perform abstract interpretation repair, a tech-
nique to refine the abstract domain depending on the program to analyse, just
like CEGAR does for abstract model checking. Abstract interpretation repair
works well with LCLA, and could be a way to decide the best refinement for
one of our rules in presence of a failed local completeness proof obligation. The
advantage of combining repair with our new rules is given by the possibility of
discarding the refined domain just after its use in a subderivation instead of using
it to carry out the whole derivation. Investigations in this direction is ongoing.

Another related approach, which shares some common ground with CEGAR,
is Lazy (Predicate) Abstraction [12,14]. Both ours and this approach exploits dif-
ferent abstract domains for different parts of the proof, refining it as needed. The
key difference is that Lazy Abstraction unwinds the control flow graph (CFG)
of the program (with techniques to handle loops) while we work inductively on
the syntax. This means that, when Lazy Abstraction refines a domain, it must
use it from that point onward (unless it finds a loop invariant). On the other
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Proof system Extensional Logical completeness

Plain LCLA 7 7

LCLA + (refine-ext) X X

LCLA + (refine-int) X X

LCLA + (refine-pre) X 7

Table 1: Comparison of the proof systems

hand, our method can change abstract domain even for different parts of se-
quential code. However, the technique used in Lazy Abstraction (basically to
trace a counterexample back with a theorem prover until it is either found to
be spurious or proved to be true) could be applicable to LCLA: a failed local
completeness proof obligation in (transfer) can be traced back with a theorem
prover and the failed proof can be used to understand how to refine the abstract
domain.

5 Conclusions

In this paper, we have proposed a logical framework to prove both correctness
and incorrectness of a program exploiting locally complete abstractions. Indeed,
from any provable triple [P ] r [Q] we can either prove that r meets an expressible
specification Spec or find a concrete counterexample in Q. Differently from the
original LCLA [2], that was proved to be intensionally sound, our framework
is extensionally sound, meaning that is able to prove more properties about
programs. To achieve this, our inference rules are based on the best correct
abstraction of a program behaviour instead of a generic abstract interpreter.
The key feature of our proof systems is the ability to exploit different abstract
domains to analyse different portions of the whole program. In particular, the
domains are selected among the refinements of a chosen abstract domain from
which the analysis begins. The main advantage of our extensional approach is
the possibility of proving many triples that could not be proved in LCLA because
of the way the program is written. More in details, we presented three new rules
to refine the abstract domain, each of which can be added independently to the
proof system with different complexity-precision trade-off.

Table 1 summarizes the properties LCLA enjoys when extended with differ-
ent rules, and Figure 1 from the Introduction graphically compare the logical
strength of these proof systems. (refine-ext) is the most general rule, from which
the other two (refine-int) and (refine-pre) are derived. The former turns out to be
as strong as (refine-ext), since they are both logically complete, while the latter
is simpler to use, although weaker.
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Future work. In principle completeness could be achieved either refining or sim-
plifying the abstract domain [11]. In this article we have only focused on refine-
ment rules for local completeness, but we are investigating some simplification
rules as well as their relation to the ones presented in this paper. To date, domain
simplification seems theoretically weaker, but apparently it can accommodate for
techniques useful in practice that are beyond the reach of refinement rules.

While the new rules we introduced are relevant from both a theoretical and
practical point of view, they do not define an algorithm because of their nonde-
terminism: we need techniques to determine when a change of abstract domain
is needed and how to choose the most convenient new domain. We believe these
two issues are actually related. For instance, if the analysis is unable to satisfy
a local completeness proof obligation to apply (transfer), an heuristics may de-
termine both what additional information is needed to make it true (i.e., how to
refine the abstract domain) and where that additional information came from
(i.e., when to refine). We briefly discussed in Section 4.3 some possibilities to
perform this choice. Ideally, one would systematically select an off-the- shelf ab-
stract domain best suited to deal with each code fragment and the heuristic
would inspect the proof obligations, and exploit some sort of catalog that can
track suitable abstract domains that are locally complete for the code and in-
put at hand or derive on-the-fly some convenient domain refinement as done,
e.g., by partition refinement. To this aim, we intend to investigate a mutual ex-
change of ideas between CEGAR and our approach, and to integrate abstract
interpretation repair into our framework.

Acknowledgments. We thank the anonymous referees for their helpful comments
that helped us to improve the presentation and the discussion with related work.

Appendix A Proofs and Supplementary Material

A.1 Extensional Soundness (Theorem 2)

Proof (Proof of Theorem 2). First we remark that points (1) and (3) implies
point (2):

α(Q) ≤ α(JrKP ) [(1) and monotonocity of α]

≤ JrKAα(P ) [soundness of JrKA]

= α(Q) [(3)]

So all the lines are equal, in particular α(Q) = α(JrKP ). The proof is then by
induction on the derivation tree of `A [P ] r [Q], but we only have to prove (1)
and (3) because of the observation above. We only include one inductive case as
an example, others are standard.
(seq): (1) Q ≤ Jr2KR ≤ Jr2K(Jr1KP ) = Jr1; r2KP , where the inequalities follow
from inductive hypotheses and monotonicity of Jr2K.
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(3) We recall that Jr1; r2KA ≤ Jr2KAJr1KA.

α(Q) ≤ α(Jr1; r2KP ) [(1) and monotonicity of α]

≤ Jr1; r2KAα(P ) [soundness of JrKA]

≤ Jr2KAJr1KAα(P ) [recalled above]

= Jr2KAα(R) [inductive hp]

= α(Q) [inductive hp]

So all the lines are equal, in particular Jr1; r2KAα(P ) = α(Q).
ut

A.2 Soundness and Completeness of (refine-ext)

This technical lemma is used in the following proofs.

Lemma 1. If A′ � A then A = AA′ = A′A

Proof. Fix a concrete element c ∈ C. Since A′ � A we have c ≤ A′(c) ≤ A(c).
Applying A, by monotonicity we get A(c) ≤ AA′(c) ≤ AA(c) = A(c), where
the last equality is idempotency of A. This means A = AA′. Now consider
A′A(c). Since A is a closure operator A′A(c) ≤ A(A′A(c)). But we just showed
AA′(A(c)) = A(A(c)) = A(c). Lastly, since A′ is a closure operator too, A(c) ≤
A′A(c). Hence A(c) ≤ A′A(c) ≤ A(c), so A(c) = A′A(c).

We point out that, by injectivity of γ, this also means αγ′α′ = α.

Proof (Proof of Theorem 3). We recall that the intuitive premise AJrKA
′
A(P ) =

A(Q) of the rule formally is αγ′JrKA
′
α′A(P ) = α(Q). Since the proof of The-

orem 2 is by induction, we can extend it just proving the inductive case for
(refine-ext).
(1) It’s the same as point (1) of extensional soundness (Theorem 2) applied to
`A′ [P ] r [Q], since this conclusion does not depend on the abstract domain.
(2-3)

α(Q) ≤ α(JrKP ) [(1) and monotonicity of α]

≤ JrKAα(P ) [soundness of JrKA]

= αJrKγα(P ) [definition]

= αγ′α′JrKγ′α′γα(P ) [Lemma 1]

= αγ′JrKA
′
α′A(P ) [definition]

= α(Q) [hypothesis of the rule]

Hence all the lines are equal; in particular α(JrKP ) = α(Q) and JrKAα(P ) =
α(Q). ut
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Proof (Proof of Theorem 4). First, the hypotheses of the theorem implies
CAP (JrK):

JrKAα(P ) = α(Q) [hp of the theorem]

≤ α(JrKP ) [monotonicity of α and hp of the theorem Q ≤ JrKP ]

≤ JrKAα(P ) [soundness of JrKA]

Hence α(JrKP ) = JrKAα(P ) = αJrKγα(P ), that is local completeness. Moreover
α(Q) = α(JrKP ).

Now consider a triple P, r, Q satisfying the hypotheses. If Q < JrKP , using
(relax) we get

P ≤ P ≤ A(P ) `A [P ] r [JrKP ] Q ≤ JrKP ≤ A(Q)

`A [P ] r [Q]
(relax)

But the first condition is trivial, and the third one is made of Q ≤ JrKP (the
hypothesis) and JrKP ≤ A(Q), that follows because α(JrKP ) = α(Q) (shown
above) and in a GC this implies JrKP ≤ γα(Q) = A(Q). Hence without loss of
generality we can assume Q = JrKP .

Now we want to apply (refine-ext) to move to the concrete domain C. Clearly
C � A. The last hypothesis of the rule can be readily verified recalling that
JrKC = JrK and α′ = γ′ = idC :

αJrKCA(P ) = αJrKA(P )

= JrKAα(P )

= α(JrKP )

so if we can show `C [P ] r [JrKP ] we can apply (refine-ext) to prove the triple
`A [P ] r [JrKP ]:

`C [P ] r [JrKP ] C � A AJrKCA(P ) = A(JrKP )

`A [P ] r [JrKP ]
(refine-ext)

Lastly, we resort to logical completeness of LCLA (cf. [2], Th 5.11) to say that
the triple `C [P ] r [JrKP ] is provable. The hypothesis of that theorem are satisfied:
all expressions are globally complete in the concrete domain C, JrKP ≤ JrKP and

JrK]C idC(P ) = JrKP = idC(JrKP ), where we used α′ = idC and JrK]C = JrK. ut

A.3 Derived Refinement Rules

Proof (Proof of Proposition 1). We show that the hypotheses of (refine-int)
implies those of (refine-ext). This means than whenever we can apply the former
we could also apply the latter, that in turn means Theorem 3 ensures extensional
soundness.
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The first two hypotheses `A′ [P ] r [Q] and A′ � A are shared among the
two rules, so we only have to show αγ′JrKA

′
α′A(P ) = α(Q). We recall that

`A′ [P ] r [Q] implies Q ≤ JrKP by extensional soundness.

α(Q) ≤ α(JrKP ) [Q ≤ JrKP and monotonicity of α]

≤ JrKAα(P ) [soundness of JrKA]

= αJrKA(P ) [definition]

= αγ′α′JrKA′A(P ) [Lemma 1]

= αγ′JrKA
′
α′A(P ) [definition]

≤ αγ′JrK]A′α
′A(P ) [JrKA

′
≤ JrK]A′ ]

= α(Q) [Last hypothesis of the rule]

Hence all the lines are equal, and in particular αγ′JrKA
′
α′A(P ) = α(Q). ut

Proof (Proof of Theorem 5). The proof is the same as that of Theorem 4, the

only difference being that to apply (refine-int) we need to show AJrK]CA(P ) =
A(JrKP ) instead of AJrKCA(P ) = A(JrKP ). However, since in the concrete domain

JrK]C = JrKC = JrK the proof still holds. ut

Proof (Proof of Proposition 2). As in the proof or Proposition 1 above, we show
that the hypotheses of (refine-pre) implies those of (refine-ext).

The first two hypotheses `A′ [P ] r [Q] and A′ � A are shared among the
two rules, so we only have to show αγ′JrKA

′
α′A(P ) = α(Q). We recall that

`A′ [P ] r [Q] implies by extensional soundness (1) Q ≤ JrKP and (3) JrKA
′
α′(P ) =

α′(Q).

α(Q) ≤ α(JrKP ) [Q ≤ JrKP and monotonicity of α]

≤ JrKAα(P ) [soundness of JrKA]

= αJrKA(P ) [definition]

= αJrKA′(P ) [hp of the rule]

= αγ′α′JrKA′(P ) [Lemma 1]

= αγ′JrKA
′
α′(P ) [definition]

= αγ′α′(Q) [extensional soundness (3)]

= α(Q) [Lemma 1]

Hence all the lines are equal, and in particular αγ′JrKA
′
α′A(P ) = α(Q). ut

Details about Example 5. The full derivation of the triple `Oct [R] r2 [Q] for
Example 5 is shown in Fig. 6, rotated and split to fit the page. The command
ri = (x > 1)?; y := y - 1; x := x - 1 is iterated with the Kleene star and
we let R2 = (y ∈ {1; 2; 100} ∧ x = y). We also used the logical implication
R2 =⇒ (y ∈ {1; 99} ∧ x = y), both explicitly and implicitly in the equivalence
R2 ∨ (y ∈ {1; 99} ∧ x = y) = R2.
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CIntP
P (Jx != 0?K)

`IntP [P ] x != 0? [P ]
(transfer)

CIntP
P (Jx >= 0?K)

`IntP [P ] x >= 0? [Q]
(transfer)

`IntP [P ] r1; r2 [Q] IntP � Int Int(JrK]IntP (Int(P ))) = Int(Q)
(seq)

`Int [P ] r1; r2 [Q]
(refine-int)

Fig. 7: Derivation of `Int [P ] r [Q] for Example 8.

Example 8 (Supplement to Example 6). Consider the concrete domain C = P(Z)
of integers, the abstract domain Int of intervals, the concrete points P = {−1, 1}
and Q = {1}, commands r1 , x != 0?, r2 , x >= 0? and r , r1; r2. Let f1 =
Jr1K, f2 = Jr2K and f = JrK = f2 ◦ f1. Observe that in the concrete semantics
f1(P ) = P and f(P ) = f2(P ) = {1}. Consider LCLA extended with (refine-pre),
and let us show that we cannot prove `Int [P ] r [Q]. Inspecting the logic, we
can only apply three rules to prove this triple: (relax), (refine-pre) or (seq). To
apply rule (relax) we would need either an under-approximation P ′ of P with the
same abstraction, that does not exist, or an over-approximation of Q, that would
be unsound since Q = f(P ). Hence we cannot apply (relax). Suppose to apply
(refine-pre): any A′ used in the rule should satisfy A′ � Int and A′(P ) = Int(P );
as we remarked in Example 6 this means that P ′ ⊂ P implies A′(P ′) ⊂ A′(P ).
Again this means we cannot apply (relax) even after the domain refinement. The
only rule that can be applied is then (seq): to do that, we must prove two triples
`A′ [P ] r1 [R] and `A′ [R] r2 [Q]. Irrespective of how we prove the first triple,
by soundness (Theorem 2) we have R ⊆ f1(P ) = P and A′(R) = A′(f1(P )) =
A′(P ), so again R = P . Now we should prove a triple `A′ [P ] r2 [Q], but this is
impossible since by soundness this would imply local completeness of Jr2K = f2
on P in A′, that does not hold:

A′f2(P ) = A′({1}) ⊆ Int({1}) = {1}
A′f2A

′(P ) ⊇ f2A′(P ) = f2(Int(P )) = {0, 1}

Observe that, if we add (refine-int) to the proof system, we can use it to
change the domain to one where we can express P (for instance, the concrete
domain P(Z) or the refinement Int∪{P}) to prove the triple applying (seq) and
then (transfer) on both subtrees, as shown in Fig. 7. ut
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