Skip to main content

Advanced Technologies for Potency Assay Measurement

  • Chapter
  • First Online:
Potency Assays for Advanced Stem Cell Therapy Medicinal Products

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1420))

  • 473 Accesses

Abstract

Crucial for their application, cell products need to be well-characterized in the cell manufacturing facilities and conform to regulatory approval criteria before infusion into the patients. Mesenchymal Stromal Cells (MSCs) are the leading cell therapy candidate in clinical trials worldwide. Early phase clinical trials have demonstrated that MSCs display an excellent safety profile and are well tolerated. However, MSCs have also exhibited contradictory efficacy in later-phase clinical trials with reasons for this discrepancy including poorly understood mechanism of MSC therapeutic action. With likelihood that a number of attributes are involved in MSC derived clinical benefit, an assay that measures a single quality of may not adequately reflect potency, thus a combination of bioassays and analytical methods, collectively called “assay matrix” are favoured for defining the potency of MSC more adequately. This chapter highlights advanced technologies and targets that can achieve quantitative measurement for a range of MSC attributes, including immunological, genomic, secretome, phosphorylation, morphological, biomaterial, angiogenic and metabolic assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdeen AA, Saha K (2017) Manufacturing cell therapies using engineered biomaterials. Trends Biotechnol 35(10):971–982. https://doi.org/10.1016/j.tibtech.2017.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abdi J, Rashedi I, Keating A (2018) Concise review: TLR pathway-miRNA interplay in mesenchymal stromal cells: regulatory roles and therapeutic directions. Stem Cells 36(11):1655–1662. https://doi.org/10.1002/stem.2902

    Article  CAS  PubMed  Google Scholar 

  3. Allen A, Vaninov N, Li M, Nguyen S, Singh M, Igo P, Tilles AW, O’Rourke B, Miller BLK, Parekkadan B, Barcia RN (2020) Mesenchymal stromal cell bioreactor for ex vivo reprogramming of human immune cells. Sci Rep 10(1):10142. https://doi.org/10.1038/s41598-020-67039-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amarandi RM, Becheru DF, Vlasceanu GM, Ionita M, Burns JS (2018) Advantages of graphene biosensors for human stem cell therapy potency assays. Biomed Res Int 2018:1676851. https://doi.org/10.1155/2018/1676851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32(3):252–260. https://doi.org/10.1038/nbt.2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, Buscher D, Fibbe W, Foussat A, Kwa M, Lantz O, Maciulaitis R, Palomaki T, Schneider CK, Sensebe L, Tachdjian G, Tarte K, Tosca L, Salmikangas P (2013) Risk of tumorigenicity in mesenchymal stromal cell-based therapies--bridging scientific observations and regulatory viewpoints. Cytotherapy 15(7):753–759. https://doi.org/10.1016/j.jcyt.2013.03.005

    Article  PubMed  Google Scholar 

  7. Bloom DD, Centanni JM, Bhatia N, Emler CA, Drier D, Leverson GE, McKenna DH Jr, Gee AP, Lindblad R, Hei DJ, Hematti P (2015) A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression. Cytotherapy 17(2):140–151. https://doi.org/10.1016/j.jcyt.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  8. Boregowda SV, Krishnappa V, Haga CL, Ortiz LA, Phinney DG (2016) A clinical indications prediction scale based on TWIST1 for human mesenchymal stem cells. EBioMedicine 4:62–73. https://doi.org/10.1016/j.ebiom.2015.12.020

    Article  PubMed  Google Scholar 

  9. Bravery CA, Carmen J, Fong T, Oprea W, Hoogendoorn KH, Woda J, Burger SR, Rowley JA, Bonyhadi ML, Van’t Hof W (2013) Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy 15(1):9–19. https://doi.org/10.1016/j.jcyt.2012.10.008

    Article  PubMed  Google Scholar 

  10. Brennen WN, Nguyen H, Dalrymple SL, Reppert-Gerber S, Kim J, Isaacs JT, Hammers H (2016) Assessing angiogenic responses induced by primary human prostate stromal cells in a three-dimensional fibrin matrix assay. Oncotarget 7(44):71298–71308. https://doi.org/10.18632/oncotarget.11347

    Article  PubMed  PubMed Central  Google Scholar 

  11. Burns JS, Abdallah BM, Schrøder HD, Kassem M (2008) The histopathology of a human mesenchymal stem cell experimental tumor model: support for an hMSC origin for Ewing’s sarcoma. Histol Histopathol 23:1229–1240.

    Google Scholar 

  12. Chen D, Dunkers JP, Losert W, Sarkar S (2021) Early time-point cell morphology classifiers successfully predict human bone marrow stromal cell differentiation modulated by fiber density in nanofiber scaffolds. Biomaterials 274:120812.

    Google Scholar 

  13. Chinnadurai R, Rajakumar A, Schneider AJ, Bushman WA, Hematti P, Galipeau J (2019) Potency analysis of mesenchymal stromal cells using a Phospho-STAT matrix loop analytical approach. Stem Cells 37(8):1119–1125. https://doi.org/10.1002/stem.3035

    Article  CAS  PubMed  Google Scholar 

  14. Chinnadurai R, Rajan D, Ng S, McCullough K, Arafat D, Waller EK, Anderson LJ, Gibson G, Galipeau J (2017) Immune dysfunctionality of replicative senescent mesenchymal stromal cells is corrected by IFNgamma priming. Blood Adv 1(11):628–643. https://doi.org/10.1182/bloodadvances.2017006205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chinnadurai R, Rajan D, Qayed M, Arafat D, Garcia M, Liu Y, Kugathasan S, Anderson LJ, Gibson G, Galipeau J (2018) Potency analysis of mesenchymal stromal cells using a combinatorial assay matrix approach. Cell Rep 22(9):2504–2517. https://doi.org/10.1016/j.celrep.2018.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark EA, Kalomoiris S, Nolta JA, Fierro FA (2014) Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells 32(5):1074–1082. https://doi.org/10.1002/stem.1623

    Article  CAS  PubMed  Google Scholar 

  17. Cuende N, Rasko JEJ, Koh MBC, Dominici M, Ikonomou L (2018) Cell, tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy 20(11):1401–1413. https://doi.org/10.1016/j.jcyt.2018.09.010

    Article  PubMed  Google Scholar 

  18. Dunn CM, Kameishi S, Grainger DW, Okano T (2021) Strategies to address mesenchymal stem/stromal cell heterogeneity in immunomodulatory profiles to improve cell-based therapies. Acta Biomater S1742–7061(21)00227

    Google Scholar 

  19. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–7. https://doi.org/10.1080/14653240600855905. PubMed PMID: 16923606

  20. Follin B, Juhl M, Cohen S, Pedersen AE, Kastrup J, Ekblond A (2016) Increased paracrine immunomodulatory potential of mesenchymal stromal cells in three-dimensional culture. Tissue Eng Part B Rev 22(4):322–329. https://doi.org/10.1089/ten.TEB.2015.0532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Francois M, Romieu-Mourez R, Li M, Galipeau J (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20(1):187–195. https://doi.org/10.1038/mt.2011.189

    Article  CAS  PubMed  Google Scholar 

  22. Galipeau J (2013) The mesenchymal stromal cells dilemma--does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15(1):2–8. https://doi.org/10.1016/j.jcyt.2012.10.002

    Article  PubMed  Google Scholar 

  23. Galipeau J (2021) Macrophages at the nexus of mesenchymal stromal cell potency: the emerging role of chemokine cooperativity. Stem Cells. https://doi.org/10.1002/stem.3380

  24. Galipeau J, Krampera M (2015) The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria. Cytotherapy 17(2):125–127. https://doi.org/10.1016/j.jcyt.2014.12.008

    Article  PubMed  Google Scholar 

  25. Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, Dominici M, Fibbe WE, Gee AP, Gimble JM, Hematti P, Koh MB, LeBlanc K, Martin I, McNiece IK, Mendicino M, Oh S, Ortiz L, Phinney DG, Planat V, Shi Y, Stroncek DF, Viswanathan S, Weiss DJ, Sensebe L (2016) International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 18(2):151–159. https://doi.org/10.1016/j.jcyt.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  26. Galipeau J, Sensebe L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22(6):824–833. https://doi.org/10.1016/j.stem.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gee AP, Sumstad D, Stanson J, Watson P, Proctor J, Kadidlo D, Koch E, Sprague J, Wood D, Styers D, McKenna D, Gallelli J, Griffin D, Read EJ, Parish B, Lindblad R (2008) A multicenter comparison study between the Endosafe PTS rapid-release testing system and traditional methods for detecting endotoxin in cell-therapy products. Cytotherapy 10(4):427–435. https://doi.org/10.1080/14653240802075476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guan Q, Li Y, Shpiruk T, Bhagwat S, Wall DA (2018) Inducible indoleamine 2,3-dioxygenase 1 and programmed death ligand 1 expression as the potency marker for mesenchymal stromal cells. Cytotherapy 20(5):639–649. https://doi.org/10.1016/j.jcyt.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  29. Han ZC, Du WJ, Han ZB, Liang L (2017) New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed Mater Eng 28:S29–S45.

    Google Scholar 

  30. Iqbal F, Szaraz P, Librach M, Gauthier-Fisher A, Librach CL (2017) Angiogenic potency evaluation of cell therapy candidates by a novel application of the in vitro aortic ring assay. Stem Cell Res Ther 8(1):184. https://doi.org/10.1186/s13287-017-0631-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, O’Kane CM, Krasnodembskaya AD (2016) Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34(8):2210–2223. https://doi.org/10.1002/stem.2372

    Article  CAS  PubMed  Google Scholar 

  32. Jorgensen C, Khoury M (2021) Musculoskeletal Progenitor/Stromal Cell-Derived Mitochondria Modulate Cell Differentiation and Therapeutical Function. Front Immunol 12:606781.

    Google Scholar 

  33. Kabat M, Bobkov I, Kumar S, Grumet M (2020) Trends in mesenchymal stem cell clinical trials 2004-2018: is efficacy optimal in a narrow dose range? Stem Cells Transl Med 9(1):17–27. https://doi.org/10.1002/sctm.19-0202

    Article  CAS  PubMed  Google Scholar 

  34. Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 107(11):4872–4877. https://doi.org/10.1073/pnas.0903269107

    Article  PubMed  PubMed Central  Google Scholar 

  35. Killer MC, Nold P, Henkenius K, Fritz L, Riedlinger T, Barckhausen C, Frech M, Hackstein H, Neubauer A, Brendel C (2017) Immunosuppressive capacity of mesenchymal stem cells correlates with metabolic activity and can be enhanced by valproic acid. Stem Cell Res Ther 8(1):100. https://doi.org/10.1186/s13287-017-0553-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim IL, Khetan S, Baker BM, Chen CS, Burdick JA (2013) Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues. Biomaterials 34(22):5571–5580. https://doi.org/10.1016/j.biomaterials.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kizilay Mancini O, Lora M, Cuillerier A, Shum-Tim D, Hamdy R, Burelle Y, Servant MJ, Stochaj U, Colmegna I (2018) Mitochondrial oxidative stress reduces the immunopotency of mesenchymal stromal cells in adults with coronary artery disease. Circ Res 122(2):255–266. https://doi.org/10.1161/CIRCRESAHA.117.311400

    Article  CAS  PubMed  Google Scholar 

  38. Klinker MW, Marklein RA, Lo Surdo JL, Wei CH, Bauer SR (2017) Morphological features of IFN-gamma-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc Natl Acad Sci U S A 114(13):E2598–E2607. https://doi.org/10.1073/pnas.1617933114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kota DJ, Prabhakara KS, Toledano-Furman N, Bhattarai D, Chen Q, DiCarlo B, Smith P, Triolo F, Wenzel PL, Cox CS Jr, Olson SD (2017) Prostaglandin E2 indicates therapeutic efficacy of mesenchymal stem cells in experimental traumatic brain injury. Stem Cells 35(5):1416–1430. https://doi.org/10.1002/stem.2603

    Article  CAS  PubMed  Google Scholar 

  40. Kowal JM, Schmal H, Halekoh U, Hjelmborg JB, Kassem M (2020) Single-cell high-content imaging parameters predict functional phenotype of cultured human bone marrow stromal stem cells. Stem Cells Transl Med 9:189–202.

    Google Scholar 

  41. Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L, Therapy MSCCotISfC (2013) Immunological characterization of multipotent mesenchymal stromal cells--the International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15(9):1054–1061. https://doi.org/10.1016/j.jcyt.2013.02.010

    Article  PubMed  Google Scholar 

  42. Kurtzberg J, Abdel-Azim H, Carpenter P, Chaudhury S, Horn B, Mahadeo K, Nemecek E, Neudorf S, Prasad V, Prockop S, Quigg T, Satwani P, Cheng A, Burke E, Hayes J, Skerrett D, Group M-GS (2020) A phase 3, single-arm, prospective study of Remestemcel-L, ex vivo culture-expanded adult human mesenchymal stromal cells for the treatment of pediatric patients who failed to respond to steroid treatment for acute graft-versus-host disease. Biol Blood Marrow Transplant 26(5):845–854. https://doi.org/10.1016/j.bbmt.2020.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kwon OS, Park SJ, Hong JY, Han AR, Lee JS, Lee JS, Oh JH, Jang J (2012) Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2):1486–1493. https://doi.org/10.1021/nn204395n

    Article  CAS  PubMed  Google Scholar 

  44. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ, Canadian Critical Care Trials G (2012) Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 7(10):e47559. https://doi.org/10.1371/journal.pone.0047559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63. https://doi.org/10.1016/j.stem.2009.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee RH, Yu JM, Foskett AM, Peltier G, Reneau JC, Bazhanov N, Oh JY, Prockop DJ (2014) TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proc Natl Acad Sci U S A 111(47):16766–16771. https://doi.org/10.1073/pnas.1416121111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lehman N, Cutrone R, Raber A, Perry R, Van’t Hof W, Deans R, Ting AE, Woda J (2012) Development of a surrogate angiogenic potency assay for clinical-grade stem cell production. Cytotherapy 14(8):994–1004. https://doi.org/10.3109/14653249.2012.688945

    Article  CAS  PubMed  Google Scholar 

  48. Lin CW, Wei KC, Liao SS, Huang CY, Sun CL, Wu PJ, Lu YJ, Yang HW, Ma CC (2015) A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosens Bioelectron 67:431–437. https://doi.org/10.1016/j.bios.2014.08.080

    Article  CAS  PubMed  Google Scholar 

  49. Marklein RA, Lam J, Guvendiren M, Sung KE, Bauer SR (2018) Functionally-relevant morphological profiling: a tool to assess cellular heterogeneity. Trends Biotechnol 36(1):105–118. https://doi.org/10.1016/j.tibtech.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  50. Marklein RA, Lo Surdo JL, Bellayr IH, Godil SA, Puri RK, Bauer SR (2016) High content imaging of early morphological signatures predicts long term mineralization capacity of human mesenchymal stem cells upon osteogenic induction. Stem Cells 34(4):935–947. https://doi.org/10.1002/stem.2322

    Article  CAS  PubMed  Google Scholar 

  51. Martin I, Galipeau J, Kessler C, Le Blanc K, Dazzi F (2019) Challenges for mesenchymal stromal cell therapies. Sci Transl Med 11(480). https://doi.org/10.1126/scitranslmed.aat2189

  52. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103(12):4619–4621. https://doi.org/10.1182/blood-2003-11-3909

    Article  CAS  PubMed  Google Scholar 

  53. Mendicino M, Bailey AM, Wonnacott K, Puri RK, Bauer SR (2014) MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14(2):141–145. https://doi.org/10.1016/j.stem.2014.01.013

    Article  CAS  PubMed  Google Scholar 

  54. Michaeloudes C, Li X, Mak JCW, Bhavsar PK (2021) Study of Mesenchymal Stem Cell-Mediated Mitochondrial Transfer in In Vitro Models of Oxidant-Mediated Airway Epithelial and Smooth Muscle Cell Injury. Methods Mol Biol 2269:93–105.

    Google Scholar 

  55. Moll G, Geissler S, Catar R, Ignatowicz L, Hoogduijn MJ, Strunk D, Bieback K, Ringden O (2016) Cryopreserved or fresh mesenchymal stromal cells: only a matter of taste or key to unleash the full clinical potential of MSC therapy? Adv Exp Med Biol 951:77–98. https://doi.org/10.1007/978-3-319-45457-3_7

    Article  CAS  PubMed  Google Scholar 

  56. Murgia A, Veronesi E, Candini O, Caselli A, D’Souza N, Rasini V, Giorgini A, Catani F, Iughetti L, Dominici M, Burns JS (2016) Potency biomarker signature genes from multiparametric osteogenesis assays: will cGMP human bone marrow mesenchymal stromal cells make bone? PLoS One 11(10):e0163629. https://doi.org/10.1371/journal.pone.0163629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nomura Y, Fukui C, Morishita Y, Haishima Y (2017) A biological study establishing the endotoxin limit for in vitro proliferation of human mesenchymal stem cells. Regenerative therapy 7:45–51.

    Google Scholar 

  58. Nomura Y, Fukui C, Morishita Y, Haishima Y (2018) A biological study establishing the endotoxin limit for osteoblast and adipocyte differentiation of human mesenchymal stem cells. Regen Ther 8:46–57.

    Google Scholar 

  59. Ofiteru AM, Becheru DF, Gharbia S, Balta C, Herman H, Mladin B, Ionita M, Hermenean A, Burns JS (2020) Qualifying osteogenic potency assay metrics for human multipotent stromal cells: TGF-beta2 a telling eligible biomarker. Cell 9(12). https://doi.org/10.3390/cells9122559

  60. Pattappa G, Heywood HK, de Bruijn JD, Lee DA (2011) The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol 226(10):2562–2570. https://doi.org/10.1002/jcp.22605

    Article  CAS  PubMed  Google Scholar 

  61. Perez LM, Bernal A, de Lucas B, San Martin N, Mastrangelo A, Garcia A, Barbas C, Galvez BG (2015) Altered metabolic and stemness capacity of adipose tissue-derived stem cells from obese mouse and human. PLoS One 10(4):e0123397. https://doi.org/10.1371/journal.pone.0123397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Phinney DG, Sensebe L (2013) Mesenchymal stromal cells: misconceptions and evolving concepts. Cytotherapy 15(2):140–145. https://doi.org/10.1016/j.jcyt.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  63. Piekarska K, Urban-Wójciuk Z, Kurkowiak M, Pelikant-Małecka I, Schumacher A, Sakowska J, Spodnik JH, Arcimowicz Ł, Zielińska H, Tymoniuk B, Renkielska A, Siebert J, Słomińska E, Trzonkowski P, Hupp T, Marek-Trzonkowska NM (2022) Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity. Nat Commun 13:856.

    Google Scholar 

  64. Prockop DJ (2016) Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biol 51:7–13. https://doi.org/10.1016/j.matbio.2016.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Radrizzani M, Soncin S, Lo Cicero V, Andriolo G, Bolis S, Turchetto L (2016) Quality control assays for clinical-grade human mesenchymal stromal cells: methods for ATMP release. Methods Mol Biol 1416:313–337. https://doi.org/10.1007/978-1-4939-3584-0_19

    Article  CAS  PubMed  Google Scholar 

  66. Rezaie J, Heidarzadeh M, Hassanpour M, Amini H, Shokrollahi E, Ahmadi M, Rahbarghazi R (2019) The Angiogenic Paracrine Potential of Mesenchymal Stem Cells. Update on Mesenchymal and Induced Pluripotent Stem Cells.

    Google Scholar 

  67. Ribeiro A, Ritter T, Griffin M, Ceredig R (2016) Development of a flow cytometry-based potency assay for measuring the in vitro immunomodulatory properties of mesenchymal stromal cells. Immunol Lett 177:38–46. https://doi.org/10.1016/j.imlet.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  68. Robb KP, Fitzgerald JC, Barry F, Viswanathan S (2019) Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy 21(3):289–306. https://doi.org/10.1016/j.jcyt.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  69. Roh KH, Nerem RM, Roy K (2016) Biomanufacturing of therapeutic cells: state of the art, current challenges, and future perspectives. Annu Rev Chem Biomol Eng 7:455–478. https://doi.org/10.1146/annurev-chembioeng-080615-033559

    Article  CAS  PubMed  Google Scholar 

  70. Sherman SE, Kuljanin M, Cooper TT, Putman DM, Lajoie GA, Hess DA (2017) High aldehyde dehydrogenase activity identifies a subset of human mesenchymal stromal cells with vascular regenerative potential. Stem Cells 35(6):1542–1553. https://doi.org/10.1002/stem.2612

    Article  CAS  PubMed  Google Scholar 

  71. Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102(4):407–410. https://doi.org/10.1016/s0092-8674(00)00046-5

    Article  CAS  PubMed  Google Scholar 

  72. Su N, Gao PL, Wang K, Wang JY, Zhong Y, Luo Y (2017) Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction. Biomaterials 141:74–85. https://doi.org/10.1016/j.biomaterials.2017.06.028

    Article  CAS  PubMed  Google Scholar 

  73. Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors (Basel) 17(10). https://doi.org/10.3390/s17102161

  74. Tan YL, Eng SP, Hafez P, Abdul Karim N, Law JX, Ng MH (2022) Mesenchymal Stromal Cell Mitochondrial Transfer as a Cell Rescue Strategy in Regenerative Medicine: A Review of Evidence in Preclinical Models. Stem Cells Transl Med 11:814–827.

    Google Scholar 

  75. Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, Tchirkov A, Rouard H, Henry C, Splingard M, Dulong J, Monnier D, Gourmelon P, Gorin NC, Sensebe L, de Greffe SF, de Moelleet Therapie C (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115(8):1549–1553. https://doi.org/10.1182/blood-2009-05-219907

    Article  CAS  PubMed  Google Scholar 

  76. Thej C, Ramadasse B, Walvekar A, Majumdar AS, Balasubramanian S (2017) Development of a surrogate potency assay to determine the angiogenic activity of Stempeucel(R), a pooled, ex-vivo expanded, allogeneic human bone marrow mesenchymal stromal cell product. Stem Cell Res Ther 8(1):47. https://doi.org/10.1186/s13287-017-0488-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Veronesi E, Murgia A, Caselli A, Grisendi G, Piccinno MS, Rasini V, Giordano R, Montemurro T, Bourin P, Sensebé L, Rojewski MT, Schrezenmeier H, Layrolle P, Ginebra MP, Panaitescu CB, Gómez-Barrena E, Catani F, Paolucci P, Burns JS, Dominici M (2014) Transportation conditions for prompt use of ex vivo expanded and freshly harvested clinical-grade bone marrow mesenchymal stromal/stem cells for bone regeneration. Tissue Eng Part C Methods 20:239–251.

    Google Scholar 

  78. Viswanathan S, Keating A, Deans R, Hematti P, Prockop D, Stroncek DF, Stacey G, Weiss DJ, Mason C, Rao MS (2014) Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation. Stem Cells Dev 23(11):1157–1167. https://doi.org/10.1089/scd.2013.0591

    Article  PubMed  PubMed Central  Google Scholar 

  79. von Bahr L, Batsis I, Moll G, Hagg M, Szakos A, Sundberg B, Uzunel M, Ringden O, Le Blanc K (2012) Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30(7):1575–1578. https://doi.org/10.1002/stem.1118

    Article  CAS  Google Scholar 

  80. Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15(11):1009–1016. https://doi.org/10.1038/ni.3002

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, Meng L, Yang S, Yan S, Mao A, Zhang J, Yang Y, Wang S, Cui J, Liang L, Ji Y, Han ZB, Fang X, Han ZC (2013) Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 4:e950. https://doi.org/10.1038/cddis.2013.480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Williams EK, Garcia JR, Mannino RG, Schneider RS, Lam WA, Garcia AJ (2019) Enabling mesenchymal stromal cell immunomodulatory analysis using scalable platforms. Integr Biol (Camb) 11(4):154–162. https://doi.org/10.1093/intbio/zyz014

    Article  PubMed  Google Scholar 

  83. Yan W, Diao S, Fan Z (2021) The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells. Stem Cell Res Ther 12:140.

    Google Scholar 

  84. Yang G, Mahadik B, Choi JY, Fisher JP (2020) Vascularization in tissue engineering: fundamentals and state-of-art. Progress in Biomedical Engineering 2:012002.

    Google Scholar 

  85. Yin JQ, Zhu J, Ankrum JA (2019) Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 3(2):90–104. https://doi.org/10.1038/s41551-018-0325-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavan Chinnadurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chinnadurai, R. (2023). Advanced Technologies for Potency Assay Measurement. In: Burns, J.S. (eds) Potency Assays for Advanced Stem Cell Therapy Medicinal Products. Advances in Experimental Medicine and Biology, vol 1420. Springer, Cham. https://doi.org/10.1007/978-3-031-30040-0_6

Download citation

Publish with us

Policies and ethics