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Abstract. With the high mutation rate in viruses, a mixture of closely
related viral strains (called viral quasispecies) often co-infect an indi-
vidual host. Reconstructing individual strains from viral quasispecies is
a key step to characterizing the viral population, revealing strain-level
genetic variability, and providing insights into biomedical and clinical
studies. Reference-based approaches of reconstructing viral strains suffer
from the lack of high-quality references due to high mutation rates and
biased variant calling introduced by a selected reference. De novo meth-
ods require no references but face challenges due to errors in reads, the
high similarity of quasispecies, and uneven abundance of strains.

In this paper, we propose VStrains, a de novo approach for recon-
structing strains from viral quasispecies. VStrains incorporates contigs,
paired-end reads, and coverage information to iteratively extract the
strain-specific paths from assembly graphs. We benchmark VStrains
against multiple state-of-the-art de novo and reference-based approaches
on both simulated and real datasets. Experimental results demonstrate
that VStrains achieves the best overall performance on both simulated
and real datasets under a comprehensive set of metrics such as genome
fraction, duplication ratio, NGA50, error rate, etc.

Availability: VStrains is freely available at https://github.com/
MetaGenTools/VStrains.

Keywords: De Novo Assembly · Viral Quasispecies · Assembly
Graph · Path Extraction

1 Introduction

Viruses are the most abundant biological entities on Earth and have high muta-
tion rates, up to a million times higher than their hosts [11,26]. Variations in
viral genetic sequences lead to the emergence of new viral strains during evolu-
tion and are also known to be associated with many diseases [31]. One challenge
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in viral studies is to analyze a mixture of closely related viral strains, referred
to as viral quasispecies. The problem of inferring individual viral strains from
sequencing data of viral quasispecies is called strain-aware assembly or viral
haplotype reconstruction. Viral haplotype reconstruction in individual patients
provides a signature of genetic variability and thus informs us about disease sus-
ceptibilities and evolutionary patterns of distinct viral strains [10]. Sequencing
data of viral quasispecies from next-generation sequencing (NGS) techniques are
short and have a low error rate [33] (≤0.5%) while that from third-generation
sequencing (TGS) techniques are long and have a high error rate [9] (1.6–2.7% for
deletions, 1.2–2.2% for mismatches and 1.1–2.4% for insertions). Due to the low
pairwise strain divergence in viral quasispecies, it is challenging to distinguish
the sequencing error in TGS data and highly similar viral strains. Therefore, var-
ious approaches have been proposed to infer individual viral strains from NGS
data and can mainly be classified into two categories [15], reference-based and de
novo (or reference-free). Reference-based approaches (such as PredictHaplo [30]
and NeurHap [36]) rely on the alignment between reads and references and thus
suffer from the lack of high-quality references due to high mutation rates [8],
and biased variant calling introduced by a selected reference [3,34]. De novo
approaches directly assemble viral strains from sequencing reads without ref-
erences and have the potential to identify novel viral strains and provide deep
insights for viral genetic novelty [31].

While de novo (meta)-genomic assemblers such as SPAdes-series [1,5,7,24,28]
could be applied to assemble individual strains, they tend to produce fragmented
contigs rather than complete viral strains, or collapsed contigs ignoring dif-
ferences between strains, as they are not specifically designed to distinguish
closely related viral strains. Specialized de novo assemblers such as SAVAGE [3],
PEHaplo [8], viaDBG [12] and Haploflow [13] directly assemble reads into strains
from viral quasispecies and have achieved promising results. More recently, VG-
Flow [4] was proposed to extend pre-assembled contigs (produced by the spe-
cialized assembler SAVAGE [3]) into full-length viral strains using flow varia-
tion graphs and significantly outperformed other approaches on recovering viral
strains from viral quasispecies. While VG-Flow [4] guarantees its runtime to be
polynomial in the genome size, all the recovered viral strains must be selected
from a set of candidate paths inferred by greedy path extraction strategies and
thus some viral strains not covered by the candidate set are infeasible to be
reconstructed.

Here we propose VStrains, a de novo approach for reconstructing strains from
viral quasispecies. VStrains employs SPAdes [5] to build the assembly graph from
paired-end reads and incorporates contigs and coverage information to iteratively
extract distinct paths as reconstructed strains. We benchmark VStrains against
multiple state-of-the-art de novo and reference-based approaches on both simu-
lated and real datasets. Experimental results demonstrate that VStrains achieves
the best overall performance on both simulated and real datasets under a com-
prehensive set of metrics such as genome fraction, duplication ratio, NGA50,
error rate, etc. In particular, in more challenging real datasets, VStrains achieves
remarkable improvements in recovering viral strains compare to other methods.
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2 Methods

2.1 Preliminary

An assembly graph generated by SPAdes is a directed graph G = (V,E). Each
vertex v ∈ V represents a double-stranded DNA segment where its forward and
reverse strands are denoted by seq(v+) and seq(v−), respectively. A distinctive
feature of assembly graphs built by SPAdes (with iterative k-mer sizes up to
kmax) is that each (kmax+1)-mer appears in at most one vertex and thus can
be used to uniquely identify the corresponding vertex in the assembly graph.
Two vertices u and v can be connected by an edge e = (uou , vov ) ∈ E, where
ou, ov ∈ {+,−} denote the strandedness of u and v, respectively. Note that
the suffix of uou overlaps kmax positions with the prefix of vov under the de
Bruijn graph model [29] behind SPAdes. Moreover, the assembly graphs built
by SPAdes also contain contigs information, i.e., a contig in G(V,E) is defined
as a path of vertices together with their strandedness information. The coverage
of a vertex v is estimated by the number of reads containing the DNA segment
corresponding to v and denoted by cov(v). The coverage of a contig c is estimated
by the average coverage along all the vertices in c and denoted by cov(c).

2.2 Algorithm Overview

VStrains takes paired-end reads from viral quasispecies as the input and aims
to recover individual viral strains. During pre-processing, VStrains first employs
SPAdes to construct an assembly graph and contigs from paired-end reads, then
canonizes the strandedness of vertices and edges, and further complements the
assembly graph with additional linkage information from paired-end reads. After
pre-processing, VStrains makes use of the contigs, paired-end links, and cover-
age information to perform branch splitting and non-branching path contrac-
tion to disentangle the assembly graph. Finally, VStrains outputs strain-specific
sequences from the assembly graph via iterative contig-based path extraction.
Refer to Fig. 1 for an overview of our algorithm. Details of each step are explained
in the following sections.

Fig. 1. The framework of VStrains
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2.3 Preprocessing

2.3.1 Canonize Strandedness
Recall that each vertex in the assembly graph produced by SPAdes represents
both the forward and reverse strands of a DNA segment, and thus contigs
reported by SPAdes may refer to two different strands of the same DNA seg-
ment. Therefore, there is no obvious correspondence between a viral strain and
a directed path in the assembly graph. To unravel this correspondence, VStrains
performs the strandedness canonization to choose the strandedness ov ∈ {+,−}
for each vertex v ∈ V where all adjacent edges only use vov . VStrains first
chooses an arbitrary vertex s ∈ V as the starting vertex and fixes its stranded-
ness to os. Let ōs denotes the opposite strandedness of os, i.e., ōs = {+,−}\{os}.
VStrains flips its adjacent edges if necessary to ensure these edges only use sos ,
e.g., (uou , sōs) and (sōs , uou) will be flipped into (sos , uōu) and (uōu , sos), respec-
tively. VStrains iteratively performs the above step until all the vertices have a
fixed strandedness or one vertex has to use both strandedness. VStrains resolves
the latter case by splitting this vertex into a pair of vertices, representing its
forward and reverse strands, respectively. As a result, seq(vov ) can be simpli-
fied to seq(v) where ov is the chosen strandedness of v, and (uou , vov ) ∈ E can
be simplified to (u, v), where ou and ov are the chosen strandedness of u and
v, respectively. The vertices without any in-coming edges are defined as source
vertices, whereas the vertices without any out-going edges are defined as sink
vertices.

2.3.2 Inferring Paired-End Links
While SPAdes uses paired-end reads to construct contigs as paths in the assembly
graph, VStrains uses unique k-mers of vertices in the assembly graph to establish
mappings between paired-end reads and pairs of vertices and thus infers paired-
end links.

VStrains uses minimap2 [20] to find exact matches of (kmax+1)-mers between
pairs of vertices in the assembly graph produced by SPAdes (with iterative k-mer
sizes up to kmax) and paired-end reads. Assume u and v are a pair of vertices in
the assembly graph. A PE link is added between u and v if a paired-end read
contains at least one (kmax+1)-mer in u and at least one (kmax+1)-mer in v.
Note that the (kmax+1)-mer can uniquely identify the corresponding vertex and
thus makes it extremely unlikely to produce false-positive PE links unless errors
in reads coincide with rare variations between strains. Since (kmax+1)-mer is
usually smaller than the read length, even erroneous paired-end reads may infer
paired-end links as long as they still contain error-free (kmax+1)-mers.

Note that paired-end reads are commonly used to infer paired-end links
between vertices in the assembly graph. For example, overlap-graph-based assem-
blers, such as SAVAGE [3] and PEHaplo [8], use pairwise alignments between
paired-end reads to build overlap graphs [27], and thus face challenges to choose
appropriate parameters (e.g., the overlap length cutoff along with allowed mis-
matches) to distinguish false-positive links between perfect reads from different
strains and true positive links between erroneous reads from the same strain in
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overlap graphs. De Bruijn graph-based assemblers, such as SPAdes and viaDBG,
split paired-end reads into k-bimers [5] or bilabel [23], pairs of k-mers of exact (or
near exact) distances, one from the forward read and the other from the reverse
read. Although this split strategy helps adjust k-bimers/bilabel distances [5,23]
and efficiently construct de Bruijn graphs, it does not make full use of all avail-
able k-mer pairs (with varying distances) between forward and reverse reads to
further simplify their assembly graphs. To overcome this limitation, VStrains
uses all available k-mer pairs without any distance constraints between forward
and reverse reads to create PE links between vertices in the assembly graph,
which unravels its potential to further simplify the assembly graph produced by
SPAdes.

2.4 Graph Disentanglement

After pre-processing, paired-end link information has been incorporated, and
viral strains are expected to correspond to directed paths in the assembly graph.
However, strains may share vertices and edges, and thus result in an entan-
gled assembly graph. In this section, the graph disentanglement iteratively splits
branching vertices and contracts non-branching paths as follows.

2.4.1 Branching Vertex Splitting
A vertex v ∈ V is called a branching vertex if either the in-degree or out-degree
of v is greater than 1. A branching vertex is non-trivial if both its in-degree and
out-degree are greater than 1, and trivial otherwise. For example, vertex L is a
trivial branching vertex while vertices D, G, K, and P are non-trivial branching
vertices in Fig. 2(a).

Without loss of generality, assume a trivial branching vertex v has multiple
in-coming edges {(ui, v) ∈ E |i = 1, . . . , n}. In a trivial split, vertex v will be
replaced by vertices {v1, . . . , vn}, and each in-coming edge (ui, v) will be replaced
by (ui, vi), respectively. The coverage of vi and the capacity of (ui, vi) are set to
the capacity of (ui, v). If v has an out-going edge (v, w), (v, w) will be replaced
by edges {(vi, w)|i = 1, . . . , n} where the capacity of (vi, w) is set to the coverage
of vi.

A non-trivial branching vertex v is called balanced if v has the same number of
in-coming edges {(ui, v) ∈ E |i = 1, . . . , n} and out-going edges {(v, wj) ∈ E |j =
1, . . . , n}. For example, vertex P is a balanced branching vertex in Fig. 2(a). Let
U = {ui|i = 1, . . . , n} and W = {wj |j = 1, . . . , n}. In a balanced split, the
balanced branching vertex v will be replaced by vertices {v1, . . . , vn}, and an
in-coming edge (ui, v) and out-going edge (v, wi) will be replaced by (ui, vi) and
(vi, wi) if ui and wi are both contained in at least one contig or connected by a
PE link. The above balanced split of v corresponds to a bijection between U and
W , and most of these one-to-one mappings can be perfectly inferred by contigs
and PE links between U and W . For example, a balanced split of P from Fig. 2(a)
to (b) corresponds to two one-to-one mappings, O↔R and N↔Q, inferred by the
contig and PE link information, respectively. In case U and W form a partial
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Fig. 2. Graph disentanglement of VStrains. (a) P is a balanced branching vertex. (b)
P is split into P1 and P2 in a balanced split corresponding to O↔R (contig path) and
N↔Q (PE link). (c) A trivial branching vertex L in (b) is split into L1 and L2 in a
trivial split, and thus previously unbalanced branching vertex K becomes a balanced
branching vertex. (d) K is split into K1, K2 and K3 in a balanced split, corresponding
to three one-to-one mappings, I↔L1NP1Q (contig path), J↔L2OP2R (PE link), and
H↔M (coverage compatible pair). D and G are not split during graph disentanglement.
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bijection using contigs and PE links information, VStrains further uses coverage
information and aims to find more one-to-one mappings. For the ui ∈ U and
wj ∈ W not in the current partial bijection, an one-to-one mapping is established
between ui and wj if and only if ui and wj form a coverage compatible pair, i.e.,
ui = arg min

u
|cap(v, wj)−cap(u, v)| and wj = arg min

w
|cap(v, w)−cap(ui, v)|. For

example in Fig. 2(c) to (d), vertices H and M form a coverage compatible pair,
together with two other one-to-one mappings I↔L1NP1Q (from contig path) and
J↔L2OP2R (from PE link), lead to a balanced split on the balanced branching
vertex K in Fig. 2(d).

Note that not all non-trivial branching vertices are balanced (e.g., vertex K
is an unbalanced branching vertex in Fig. 2(a)). For such unbalanced vertex v,
VStrains performs a trivial split on its adjacent trivial branching vertices and
aims to convert v into a balanced vertex. For example, after performing a trivial
split on vertex L in Fig. 2(b) to (c), vertex K now becomes a balanced branching
vertex in Fig. 2(c) and becomes a candidate for a balanced split. VStrains per-
forms a balanced split on v if the above bijection can be established by contigs,
PE links, and coverage information.

2.4.2 Non-branching Path Contraction
The above branch split operation in the assembly graph creates non-branching
paths, i.e., path p = (v1, v2, . . . , vn), vi ∈ V ∀i = 1, . . . , n, where the in-degree of
v2, ...vn and the out-degree of v1, ...vn−1 are all 1. Following the similar idea of
graph simplification in SPAdes, VStrains contracts all the non-branching paths.
For example, the above non-branching path p is contracted into one vertex vp,
and each in-coming edge (u, v1) of v1 is replaced by (u, vp) and each out-going
edge (vn, w) is replaced by (vp, w) with the same capacity, the coverage of vp is set
to be the average coverage of v1, . . . , vn. Moreover, vp inherits all the PE links of
vertices in non-branching path p. For example in Fig. 2(d), three non-branching
paths in three different colors on the right are contracted, respectively.

2.5 Contig-Based Path Extraction

While VStrains effectively disentangles the assembly graph through branching
vertex splitting and non-branching path contraction in the above step, there
still exist branching vertices (e.g., D and G in Fig. 2(d)) which may introduce
ambiguity in distinguishing full paths that correspond to individual viral strains.

Recall SPAdes outputs contigs as paths of vertices on the assembly graph,
which are usually sub-paths of viral strain induced paths on the assembly graph.
The remaining problem is to extend these contigs (sub-paths) into corresponding
viral strains (full paths) on the assembly graph. Note that a full path on the
assembly graph starts from a source vertex and ends at a sink vertex or is a
cyclic path (i.e., its first and the last vertex coincide). Ideally, the strain-specific
(not shared by multiple viral strains) contigs should be extended and extracted
first. The longer a contig is, the more likely that this contig is strain-specific.

Therefore, VStrains iteratively selects the longest contig and extends its cor-
responding sub-path on both ends. Without loss of generality, consider the right
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Fig. 3. The contig-based path extraction of VStrains. (a) Assembly graph after
graph disentanglement with three contigs: I→K1→L1→N, O→P2→R, K3→M. (b) The
longest contig I→K1→L1→N is firstly extended to I→K1 . . . →P1→Q (terminated at
I due to the lack of coverage compatible pair with respect to 200x). Afterwards, the
second longest contig O→P2→R is extended to J→K2→ . . . →P2→R (terminated at J
due to the lack of coverage compatible pair with respect to 300x). At last, the shortest
contig K3→M is extended to C→D1→ . . . →K3→M (thanks to the coverage compati-
ble pairs with respect to 400x) (c) Contigs J→ . . . →R and I→ . . . →Q are extended
to full paths (thanks to the path extraction and coverage/topology update in (b)).

extension of the current contig C = (v1, v2, . . . , vn). If vn has only one out-
going edge (vn, vn+1), the current contig will be extended into (v1, . . . , vn, vn+1).
If vn has multiple out-going edges {(vn, v1n+1), . . . , (vn, v

m
n+1)}, we follow the

same strategy in Sect. 2.4.1 to look for one-to-one mapping between vn−1 and
{v1n+1, . . . , v

m
n+1} using contigs, paired-end reads and coverage information. If

vn−1 forms the one-to-one mapping with v
′
n+1, the current contig will be

extended into (v1, . . . , vn, v
′
n+1), otherwise, the extension to the right termi-

nates. If vn is a sink vertex (without any out-going edges), the extension to the
right terminates. If vn is a visited vertex during extension on the other end, the
extension to the right terminates and a cyclic path is obtained by combining
both left and right extensions.

If the currently selected contig can be extended into a full path, VStrains will
include this extended path as one of the output strains. Otherwise, VStrains will
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contract this extended path as a single vertex, and wait for confident extension
in the future step. VStrains will also update the coverage information of the
assembly graph. More specifically, VStrains estimates the path coverage as the
median coverage of all the non-branching vertices along the path, and reduces
the path coverage from all the traversed vertices. For example, VStrains extends
the contig H→K3→M into the full path C→D1→ . . . →K3→M (using coverage
compatible pairs F↔H and C↔F described in Sect. 2.4.1) in Fig. 3(b).

By iteratively extending and extracting the contig from the assembly graph,
VStrains obtains a set of distinct paths as the final viral strains. This iterative
strategy contracts/extracts the most confident sub-paths/full-paths first, and
updates topology and coverage information of the assembly graph on the fly,
which in turn reveals more strain-specific paths in the updated graph and facil-
itates the subsequent path extractions. For example, after extracting the full
path C→D1→ . . . →K3→M in Fig. 3(b), the (sub)-paths I→K1→ . . . →P1→Q
and J→K2→ . . . →P2→R are able to further extend to the left (using coverage
compatible pairs A↔I and B↔J) into two full paths A→D3→ . . . →P1→Q and
B→D2→ . . . →P2→R.

Note that, unlike other greedy path finding strategies [4,8,13] deriving a set of
candidate paths based on the original flow-variation graph, VStrain iteratively
extracts the most confident path and updates the assembly graph on the fly,
which results in more accurate reconstruction of viral strains. For example, VG-
Flow employs three greedy strategies (maximum capacity, minimum capacity,
shortest paths) to derive the set of candidate paths, from which the final output
strains will be selected. However, such greedy strategies are directly applied
on the original flow-variation graph, making it likely to find erroneous paths
(e.g., the maximum-capacity path C→D→E→G→H→K3→M and the minimum-
capacity path A→D→F→G→I→ . . . →P1→Q in Fig. 3(a) are both erroneous
paths).

3 Experimental Setup

3.1 Experimental Datasets

3.1.1 Simulated Datasets
To evaluate the performance and scalability of VStrains, we used three simulated
viral quasispecies datasets from [3] consisting of 6 Poliovirus, 10 hepatitis C virus
(HCV), and 15 Zika virus (ZIKV) mixed strains, respectively. These datasets
were commonly used to benchmark strain-aware viral assemblers and simulated
from known reference genomes using SimSeq [6] with the default error profile.

3.1.2 Real Datasets
Two real datasets with different coverages are obtained from the NCBI database.
The first 5-HIV-labmix (20,000x) dataset [14] is a lab mix of 5 known real human
immunodeficiency virus (HIV) strains (NCBI accession number SRR961514).
The second 2-SARS-COV-2 (4,000x) dataset [37] is a mixture of 2 real severe
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acute respiratory syndrome coronavirus 2 (SARS-COV-2) strains (BA.1 and
B.1.1). Two independently assembled strains, BA.1 (NCBI accession number
SRR18009684) and B.1.1 (NCBI accession number SRR18009686), are used as
the ground-truth for evaluation. Table 1 presents a summary of the simulated
and real datasets.

Table 1. Quasispecies characteristics of the simulated and real benchmarking datasets.

Dataset Virus type Genome
size

Strain
abundance

Pairwise
divergence

Data type Sequencing
coverage

Read length

6 Poliovirus Poliovirus 7.5 kbp 1.6–51% 1.2–7% Simulated 20,000x 2×250 bp

10 HCV HCV-1a 9.3 kbp 5–19% 6–9% Simulated 20,000x 2×250 bp

15 ZIKV ZIKV 10.3 kbp 2–13% 1–10% Simulate 20,000x 2×250 bp

5 HIV-labmix HIV-1 9.6 kbp 10–30% 1–6% Real 20,000x 2×250 bp

2 SARS-COV-2 SARS-COV-2 30.3 kbp 47.6–52.4% 0.28% Real 4,000x 2×75 bp

All datasets consist of Illumina Miseq paired-end reads.

3.2 Baselines and Evaluation Metrics

VStrains was benchmarked against the state-of-the-art methods on assembling
viral strains including SPAdes [5], SAVAGE [3], VG-Flow [4], PEHaplo [8],
viaDBG [12], Haploflow [13], and PredictHaplo [30]. Three recent reference-based
machine-learning approaches GAEseq [17], CAECseq [16] and NeurHap [36] were
not included for comparison because all of them have only been applied to a
gene segment of viral strains in their experiments and failed to handle the above
datasets on whole viral strains (i.e., memory usage exceeding 300 GB). Note
that PredictHaplo [30] is a reference-based approach and needs an accurate ref-
erence as the input. Therefore, we randomly select a ground-truth viral strain
and provide it to PredictHaplo [30] for each dataset. All above tools under eval-
uation use default settings unless specified otherwise. Refer to Section S3 in the
Supplementary Materials for a detailed description of baselines.

Similar to previous studies, we employ MetaQUAST [25] to evaluate all
assembly results of viral strains. As viral quasispecies contains highly similar
strains, we run MetaQUAST with the “--unique-mapping” option to minimize
ambiguous false positive mapping. For each assembly, we report the genome
fraction, duplication ratio, NGA50, error rate, and number of contigs. Genome
fraction is defined as the total number of aligned bases in the reference, divided
by the genome size. A base in the reference genome is counted as aligned if there
is at least one contig with at least one alignment to this base. Duplication ratio
is defined as the total number of aligned bases in the assembly, divided by the
total number of aligned bases in the reference. NG50 is the contig length such
that using longer or equal length contigs produce half of the bases of the ref-
erence genome, whereas NGA50 counts the lengths of aligned blocks instead of
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contig lengths, such that the contig is broken into smaller pieces when it has a
misassembly with respect to the reference genome. Error rate is defined as the
sum of mismatch rate, indel rate, and N’s rate, which reflects the number of
errors with respect to the reference genome size.

4 Experimental Results

In this section, we show the performance of VStrains and other baselines on both
simulated and real datasets. In consistent with previous observations [4,12], we
found that SPAdes in general outperforms metaSPAdes [28] and other specialized
versions (refer to Section S1 in the Supplementary Materials for detailed compar-
ison among SPAdes-series assemblers) and thus is employed to build assembly
graphs for VStrains.

4.1 Performance on Simulated Datasets

Table 2 summarizes the performance of de novo and reference-based approaches
on reconstructing viral strains in three simulated datasets. Note that special-
ized strain-aware assemblers such as PEHaplo, viaDBG, and SAVAGE typi-
cally outperform the general-purpose assembler SPAdes, especially in genome
fraction. One possible reason is that SPAdes is not designed to distinguish
highly similar viral strains. When two or more strains share long and identi-
cal sequences, SPAdes may result in fragmented assemblies (i.e., low NGA50)
and keep only one copy of such shared sequences (i.e., low genome fraction). VG-
Flow uses assembled contigs from SAVAGE (VG-Flow+SAVAGE) and SPAdes
(VG-Flow+SPAdes) to build flow-variation graphs and effectively improves their
genome fraction and NGA50. While the greedy strategies in building candidate
paths make VG-Flow tractable, VG-Flow may be forced to use more (incorrect)
paths to cover all strains (i.e. high duplication ratio and error rate) when not all
the ground-truth paths have been included in its selected candidate set. VStrains
uses contigs, paired-end reads, and coverage information to extract strain-specific
paths iteratively from assembly graphs built by SPAdes (VStrains+SPAdes)
and achieves the best overall performance on a comprehensive set of metrics
(including genome fraction, duplication ratio, NGA50, error rate and number of
contigs). It is worth noting that VStrains is able to adapt the general-purpose
assembler SPAdes to assemble highly similar strains and even outperform exist-
ing specialized strain-aware assemblers.
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Table 2. Performance of de novo and reference-based approaches on reconstructing
viral strains in simulated datasets

6 Poliovirus Strains Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 16.68% 1.00 7459(1) 0.871% 1

PEHaplo 82.68% 1.00 7393(5) 0.160% 5

Haploflow 61.40% 1.00 6671(3) 0.517% 5

viaDBG 68.80% 2.51 2535(6) 0.018% 48

SAVAGE 85.03% 1.70 2930(5) 0.014% 50

VG-Flow+SAVAGE 61.69% 1.27 5656(4) 0.020% 8

SPAdes 43.82% 1.01 5706(2) 0.228% 8

VG-Flow+SPAdes – – – – –

VStrains+SPAdes 89.67% 1.00 6682(6) 0.087% 6

10 HCV Strains Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 89.97% 1.00 9292(9) 0.325% 9

PEHaplo 95.95% 1.01 8859(10) 0.013% 12

Haploflow 62.09% 1.55 8893(6) 3.834% 22

viaDBG 97.66% 2.18 9033(10) 0.002% 24

SAVAGE 99.52% 1.07 9059(10) 0.002% 18

VG-Flow+SAVAGE 99.67% 1.00 9264(10) 0.003% 10

SPAdes 90.81% 1.00 8840(10) 0.006% 10

VG-Flow+SPAdes 94.11% 1.10 8687(10) 0.016% 12

VStrains+SPAdes 98.16% 1.00 9124(10) 0.046% 10

15 ZIKV Strains Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 46.66% 1.00 10269(7) 0.427% 7

PEHaplo 84.24% 1.5 6256(15) 0.402% 46

Haploflow 21.82% 4.25 10198(3) 4.167% 26

viaDBG 93.04% 2.97 5136(15) 0.028% 276

SAVAGE 98.85% 1.47 4031(15) 0.011% 116

VG-Flow+SAVAGE 98.23% 1.20 10081(15) 0.077% 18

SPAdes 66.71% 1.00 6447(11) 0.037% 27

VG-Flow+SPAdes – – – – –

VStrains+SPAdes 98.87% 1.00 10130(15) 0.068% 16

Three simulated datasets consist of 6-Poliovirus (20,000x), 10-HCV (20,000x), and 15-
ZIKV (20,000x). ‘-’ indicates that the corresponding approach failed to complete on the
given dataset or exceeded the peak memory limit (500 GB) or CPU time limit (800 h).
Refer to Section S2 Table S2.1.x, S2.2.x and S2.3.x in the Supplementary Materials for
the detailed strain-level results reported by MetaQUAST.

4.2 Performance on Real Datasets

Table 3 summarizes the performance of VStrains and other de novo and
reference-based approaches on two real datasets, 5-HIV-labmix [14] and 2-SARS-
COV-2 [37]. While viaDBG results in high genome fraction and low error rate,
it comes at a cost of (extremely) high duplication ratio and an excessive number
of contigs, making it infeasible to distinguish correct and incorrect contigs from
its output. As a reference-based approach, PredictHaplo achieves a high genome
fraction (99.22%) and high NGA50 (9604) for 5-HIV-labmix dataset because a
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ground-truth viral strain was provided as its input. However, in reality, accurate
reference genomes are usually not available and species are unknown in viral qua-
sispecies, it is impossible to provide good reference genomes for PredictHaplo.

Similar to the performance on the simulated datasets, SPAdes results in very
fragmented assemblies with low genome fraction (49.11%) and NGA50 (614) for
5-HIV-labmix dataset. SAVAGE as a specialized strain-aware assembler produces
almost double the genome fraction (87.34%) and NGA50 (1397) compare to
SPAdes. While VG-Flow+SAVAGE increases the NGA50 to 7235, it decreases
the genome fraction to 77.7%, doubles the duplication ratio (from 1.56 to 3.12),
and significantly increase the error rate from 0.115% to 1.038%, which indicates
its limitation on handling real datasets. On the other hand, VStrains+SPAdes
significantly improves the overall performance on SPAdes, e.g., increase genome
fraction from 49.11% to 86.42%, NGA50 from 614 to 7583, and decreases the
error rate from 0.515% to 0.237%. Note that VG-Flow+SPAdes fails to achieve
such an improvement as VG-Flow is mainly designed to couple with SAVAGE.
However, SAVAGE typically assumes at least 10,000x total coverage of viral
sequencing data (quote from its GitHub site), which limits the application of
VG-Flow on datasets without ultra-high coverage (e.g., on the 2-SARS-COV-2
dataset with only 4,000x coverage).

Table 3. Performance of de novo and reference-based approaches on reconstructing
viral strains in real datasets

5 HIV-labmix
Strains

Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 99.22% 1.00 9604(5) 1.259% 5

PEHaplo 84.19% 1.55 1915(5) 0.300% 41

Haploflow 56.80% 1.26 4832(4) 2.675% 18

viaDBG 92.80% 13.54 5942(5) 0.071% 228

SAVAGE 87.34% 1.56 1397(5) 0.115% 72

VG-Flow+SAVAGE 77.70% 3.12 7235(4) 1.038% 23

SPAdes 49.11% 1.07 614(3) 0.515% 33

VG-Flow+SPAdes 79.75% 2.27 1938(5) 1.137% 78

VStrains+SPAdes 86.42% 1.30 7583(5) 0.237% 12

2 SARS-COV-2
Strains

Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 50.02% 9.00 30347(1) 0.024% 9

PEHaplo 67.10% 1.24 21822(1) 0.073% 4

Haploflow 54.78% 1.12 30308(1) 0.059% 3

viaDBG 80.96% 1.52 5501(2) 0.004% 20

SAVAGE – – – – –

VG-Flow+SAVAGE – – – – –

SPAdes 48.44% 1.00 795(1) 0.014% 7

VG-Flow+SPAdes – – – – –

VStrains+SPAdes 63.37% 1.00 12272(2) 0.013% 3

Two real datasets consist of 5-HIV-labmix (20,000x) and 2-SARS-COV-2 (4,000x). ‘–’
indicates that the corresponding approach failed to complete on the given dataset or
exceeded the peak memory limit (500 GB) or CPU time limit (800 h). Refer to Section
S2 Table S2.4.x and S2.5.x in the Supplementary Materials for the detailed strain-level
results reported by MetaQUAST.

https://github.com/HaploConduct/HaploConduct
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5 Software and Resource Usage

All the experiments were run under the National Computational Infrastructure
(NCI) Gadi supercomputer by submitting jobs to the Gadi biodev queue with
the default job dependencies. The allocated RAM size was limited to 500 GB
and CPU time was limited to 800 h. The peak memory (maximum resident set
size) refers to the peak amount of memory throughout the program execution.
Table 4 summarize the CPU time and peak memory for different approaches on
all viral quasispecies benchmarks, respectively.

From Table 4, we observe that Haploflow is much more efficient than all other
approaches in runtime and peak memory, but may not be a preferred tool due
to its extremely high error rate and low genome fraction (as shown in Table 2
and 3). The general-purpose assembler SPAdes is more efficient than specialized
strain-aware assemblers such as PEHaplo, Haploflow, viaDBG and SAVAGE in
terms of runtime and peak memory. To reconstruct full-length viral strains from
pre-assembled contigs, VG-Flow and VStrains cost comparable running time
and memory usage. However, since VG-Flow employs SAVAGE to generate the
pre-assembled contigs and the running time and memory usage of SAVAGE are
almost the most expensive when compared to other tools, which results in high
memory usage and running time of “SAVAGE+VG-Flow”. On the contrary, the
running time and memory usage of “SPAdes+VStrains” are comparable with
other specialized assemblers.

Table 4. CPU Time and peak memory usage of de novo and reference-based approaches
on viral haplotype reconstruction

CPU time (hours) Peak memory (GB)

Poliovirus HCV ZIKV HIV SARS Poliovirus HCV ZIKV HIV SARS

PredictHaplo 0.96 2.03 1.99 1.22 19.10 0.77 1.12 1.11 0.91 1.33

PEHaplo 571.93 0.79 127.48 1.20 1.40 5.52 8.98 7.17 4.31 2.36

Haploflow 0.02 0.03 0.03 0.03 0.01 0.45 1.11 1.25 0.43 0.22

viaDBG 0.15 0.24 0.30 0.25 0.18 12.24 15.77 15.85 13.81 8.78

SAVAGE 33.15 18.80 14.84 71.05 – 51.34 26.42 13.39 52.19 –

VG-Flow 1.92 5.93 22.32 10.87 – 0.81 6.93 1.07 1.02 –

SPAdes 0.27 0.41 0.43 0.50 0.10 0.59 0.61 0.60 0.57 0.58

VStrains 3.20 3.76 5.22 6.50 0.23 1.72 1.52 1.78 1.62 0.87

To test the scalability of VStrains, we further compared its runtime and peak
memory usage to VG-Flow on simulation datasets with increasing genome size
and a variable number of strains (Fig. 4). VG-Flow was selected to compare as it
is the most state-of-the-art viral quasispecies assembly post-processing tool. The
runtime and memory usage of VStrains do not demonstrate significant correla-
tions with respect to the increase in the number of strains while the runtime of
VG-Flow increases with the number of strains. When increasing the genome size,
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the runtime and memory usage of both VStrain and VG-Flow increased (Fig. 4(a)
and (c)). It is worth noting that, when including the runtime and memory usage
of the pre-assemblers (SAVAGE and SPAdes), SAVAGE+VG-Flow is much more
sensitive to the genome size than VStrains+SPAdes (Fig. 4(b) and (d)). Thus,
we concluded that VStrains+SPAdes is more efficient than VG-Flow+SAVAGE
in the analysis of large-scale datasets. Taking into account the good performance
of VStrains+SPAdes at Table 2 and Table 3, it is more cost-effective to employ
VStrains as a postprocessing tool for SPAdes in terms of both performance and
program efficiency compare to VG-Flow.

Fig. 4. CPU time and peak memory for VG-Flow, VStrains, VG-Flow+SAVAGE, and
VStrains+SPAdes on simulated datasets consist of 2, 4, 6, 8 strains with increas-
ing genome size (bp) (2500, 5000, 10.000, 20.000, 40.000, 100.000, 200.000). The x-
axis is plotted on a logarithmic scale. The CPU time for VStrains+SPAdes (VG-
Flow+SAVAGE) is the addition of VStrains (VG-Flow) and SPAdes (SAVAGE), and
the peak memory for VStrains+SPAdes (VG-Flow+SAVAGE) is the maximum between
VStrains (VG-Flow) and SPAdes (SAVAGE).
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6 Conclusion and Discussion

In VStrains, we first introduce a strategy to canonize the strandedness of assem-
bly graphs from SPAdes, which reduces the strain reconstruction problem into
the path extraction problem. Secondly, we use all available k-mer pairs in paired-
end reads to infer PE links in the assembly graph produced by SPAdes. Thirdly,
we propose an effective way to incorporate PE links together with contigs and
coverage information to disentangle the assembly graphs. Finally, we demon-
strate how to extract confident strain-specific paths via iterative contig-based
path extraction. Experimental results on both simulated and real datasets show
that VStrains achieves the best overall performance among the state-of-the-art
approaches.

Currently, VStrains relies on both assembly graphs and contigs from SPAdes
and thus cannot couple with assemblers which does not explicitly output assem-
bly graphs such as SAVAGE. The current implementation of VStrains requires
additional alignments of paired-end reads to vertices in assembly graphs to infer
PE links, which dominates the total runtime and peak memory usage. It is worth
exploring how to make VStrains more flexible and efficient.

With the advance of third-generation sequencing (TGS), multiple approaches
(including Strainline [22], Strainberry [35], VirStrain [21], viralFlye [2], etc.)
have been proposed for strain-aware assembly using TGS data. VStrains has the
potential to be extended to handle TGS data by taking advantages of assembly
graphs built from Canu [19], Flye [18], wtdbg [32] and others.
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