Skip to main content

Federated Learning with GAN-Based Data Synthesis for Non-IID Clients

  • Conference paper
  • First Online:
Trustworthy Federated Learning (FL 2022)

Abstract

Federated learning (FL) has recently emerged as a popular privacy-preserving collaborative learning paradigm. However, it suffers from the non-independent and identically distributed (non-IID) data among clients. In this chapter, we propose a novel framework, named Synthetic Data Aided Federated Learning (SDA-FL), to resolve this non-IID challenge by sharing synthetic data. Specifically, each client pretrains a local generative adversarial network (GAN) to generate differentially private synthetic data, which are uploaded to the parameter server (PS) to construct a global shared synthetic dataset. To generate confident pseudo labels for the synthetic dataset, we also propose an iterative pseudo labeling mechanism performed by the PS. The assistance of the synthetic dataset with confident pseudo labels significantly alleviates the data heterogeneity among clients, which improves the consistency among local updates and benefits the global aggregation. Extensive experiments evidence that the proposed framework outperforms the baseline methods by a large margin in several benchmark datasets under both the supervised and semi-supervised settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acar, D.A.E., Zhao, Y., Matas, R., Mattina, M., Whatmough, P., Saligrama, V.: Federated learning based on dynamic regularization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  2. Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning with personalization layers. arXiv preprint arXiv:1912.00818 (2019)

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)

    Google Scholar 

  4. Chen, D., Yu, N., Zhang, Y., Fritz, M.: GAN-leaks: a taxonomy of membership inference attacks against generative models. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 343–362 (2020)

    Google Scholar 

  5. Diao, E., Ding, J., Tarokh, V.: Semifl: Communication efficient semi-supervised federated learning with unlabeled clients. arXiv e-prints, p. arXiv-2106 (2021)

    Google Scholar 

  6. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clustered federated learning. In: Conference on Neural Information Processing Systems (NIPS) (2020)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  9. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NIPS (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Conference on Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  11. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: federated distillation and augmentation under non-IID private data. arXiv preprint arXiv:1811.11479 (2018)

  12. Jeong, W., Yoon, J., Yang, E., Hwang, S.J.: Federated semi-supervised learning with inter-client consistency & disjoint learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  13. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich, S.U., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning. In: ICML (2020)

    Google Scholar 

  14. Kopparapu, K., Lin, E., Zhao, J.: FedCD: improving performance in non-IID federated learning. arXiv preprint arXiv:2006.09637 (2020)

  15. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Tront (2009)

    Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on non-IID data silos: an experimental study (2021). https://doi.org/10.48550/ARXIV.2102.02079, https://arxiv.org/abs/2102.02079

  18. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Proceedings of Machine Learning and Systems (MLSys) (2020)

    Google Scholar 

  19. Li, X., JIANG, M., Zhang, X., Kamp, M., Dou, Q.: FedBN: federated learning on non-IID features via local batch normalization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  20. Li, X.C., Zhan, D.C.: FedRS: federated learning with restricted softmax for label distribution non-IID data. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 995–1005 (2021)

    Google Scholar 

  21. Liang, P.P., et al.: Think locally, act globally: federated learning with local and global representations. arXiv preprint arXiv:2001.01523 (2020)

  22. Luo, M., Chen, F., Hu, D., Zhang, Y., Liang, J., Feng, J.: No fear of heterogeneity: classifier calibration for federated learning with non-IID data. Adv. Neural Inf. Process. Syst. 34 (2021)

    Google Scholar 

  23. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Agüera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics (AISTATS) (2017)

    Google Scholar 

  24. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  25. Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Zomaya, A.Y.: Federated learning for COVID-19 detection with generative adversarial networks in edge cloud computing. IEEE Internet Things J. 9, 0257–10271 (2021)

    Google Scholar 

  26. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: International Conference on Machine Learning, pp. 2642–2651. PMLR (2017)

    Google Scholar 

  27. Oh, S., Park, J., Jeong, E., Kim, H., Bennis, M., Kim, S.L.: Mix2fld: downlink federated learning after uplink federated distillation with two-way mixup. IEEE Commun. Lett. 24, 2211–2215 (2020)

    Article  Google Scholar 

  28. Shao, J., Sun, Y., Li, S., Zhang, J.: DReS-FL: dropout-resilient secure federated learning for non-IID clients via secret data sharing (2022)

    Google Scholar 

  29. Shin, M., Hwang, C., Kim, J., Park, J., Bennis, M., Kim, S.L.: XOR mixup: privacy-preserving data augmentation for one-shot federated learning. In: International Workshop on Federated Learning for User Privacy and Data Confidentiality in Conjunction with ICML 2020 (FL-ICML 2020) (2020)

    Google Scholar 

  30. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  31. Tang, Z., Zhang, Y., Shi, S., He, X., Han, B., Chu, X.: Virtual homogeneity learning: defending against data heterogeneity in federated learning. arXiv preprint arXiv:2206.02465 (2022)

  32. Wang, H., Muñoz-González, L., Eklund, D., Raza, S.: Non-IID data re-balancing at IoT edge with peer-to-peer federated learning for anomaly detection. In: Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 153–163 (2021)

    Google Scholar 

  33. Wang, H., Kaplan, Z., Niu, D., Li, B.: Optimizing federated learning on non-IID data with reinforcement learning. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1698–1707. IEEE (2020)

    Google Scholar 

  34. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural Inf. Process. Syst. 33, 7611–7623 (2020)

    Google Scholar 

  35. Wang, L., Lin, Z.Q., Wong, A.: COVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10(1), 19549 (2020). https://doi.org/10.1038/s41598-020-76550-z

    Article  Google Scholar 

  36. Wicaksana, J., Yan, Z., Yang, X., Liu, Y., Fan, L., Cheng, K.T.: Customized federated learning for multi-source decentralized medical image classification. IEEE J. Biomed. Health Inform. 26, 5596–5607 (2022)

    Article  Google Scholar 

  37. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  38. Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative adversarial network. arXiv preprint arXiv:1802.06739 (2018)

  39. Yoon, T., Shin, S., Hwang, S.J., Yang, E.: FedMix: approximation of mixup under mean augmented federated learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  40. Yoshida, N., Nishio, T., Morikura, M., Yamamoto, K., Yonetani, R.: Hybrid-FL for wireless networks: Cooperative learning mechanism using non-IID data. In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2020)

    Google Scholar 

  41. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  42. Zhang, L., Shen, B., Barnawi, A., Xi, S., Kumar, N., Wu, Y.: FedDPGAN: federated differentially private generative adversarial networks framework for the detection of COVID-19 pneumonia. Inf. Syst. Front. 23, 1–13 (2021)

    Article  Google Scholar 

  43. Zhang, W., Wang, X., Zhou, P., Wu, W., Zhang, X.: Client selection for federated learning with non-IID data in mobile edge computing. IEEE Access 9, 24462–24474 (2021)

    Article  Google Scholar 

  44. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

  45. Zhou, T., Zhang, J., Tsang, D.: FedFA: federated learning with feature anchors to align feature and classifier for heterogeneous data. arXiv preprint arXiv:2211.09299 (2022)

  46. Zhu, H., Xu, J., Liu, S., Jin, Y.: Federated learning on non-IID data: a survey. Neurocomputing 465, 371–390 (2021)

    Article  Google Scholar 

  47. Zhu, Z., Hong, J., Zhou, J.: Data-free knowledge distillation for heterogeneous federated learning. In: International Conference on Machine Learning, pp. 12878–12889. PMLR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Shao, J., Mao, Y., Wang, J.H., Zhang, J. (2023). Federated Learning with GAN-Based Data Synthesis for Non-IID Clients. In: Goebel, R., Yu, H., Faltings, B., Fan, L., Xiong, Z. (eds) Trustworthy Federated Learning. FL 2022. Lecture Notes in Computer Science(), vol 13448. Springer, Cham. https://doi.org/10.1007/978-3-031-28996-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28996-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28995-8

  • Online ISBN: 978-3-031-28996-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics