Skip to main content

Applications and Future Perspectives of Agricultural Waste Biochar and Its Nanocomposites

  • Chapter
  • First Online:
Biochar-Based Nanocomposites for Contaminant Management

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 197 Accesses

Abstract

Many biomasses found in abundant quantities in nature are the type of agricultural waste materials. This plethora of biomass is an environmental nuisance. Biochar is a black carbon produced from the pyrolysis of biomass at higher temperatures in the absence of oxygen. Biochar performs multifunctional role due to its strong physicochemical characteristics such as adsorption, specific surface area, porosity, and crystallinity of carbon structure. The physical, chemical, and biological modifications of biochar lead to improved surface and adsorption properties of nanocomposites. The processed biochar has lots of importance due to the improved properties of pristine biochar. This chapter focuses on the application of agricultural waste biochar and its nanocomposites to waste water treatment, microbial fuel cell (MFC), and ceramic nanocomposites. The chapter is also intended to deliver the process, characterization, and mechanism of engineered biochar from pristine biochar. Further emphasis is given on applications of biochar in the development of advanced materials like graphene, carbon nanotubes (CNTs), and silicon carbide nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboul-enein AA, Awadallah AE, El-desouki DS, Aboul-gheit NAK (2021) Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes. Ranliao Huaxue Xuebao/J Fuel Chem Technol 49:1421–1434

    Google Scholar 

  • Allam F, Elnouby M, El-Khatib KM, El-Badan DE, Sabry SA (2020) Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell. Int J Hydrogen Energy 45:5911–5927

    Article  CAS  Google Scholar 

  • Amen R, Bashir H, Bibi I, Shaheen SM, Niazi NK, Shahid M, Hussain MM, Antoniadis V, Shakoor MB, Al-Solaimani SG, Wang H, Bundschuh J, Rinklebe J (2020) A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chem Eng J 396:125195

    Google Scholar 

  • Amin FR, Huang Y, He Y, Zhang R, Liu G, Chen C (2016) Biochar applications and modern techniques for characterization. Clean Technol Environ Policy 18:1457–1473

    Article  CAS  Google Scholar 

  • Atinafu DG, Yun BY, Wi S, Kang Y, Kim S (2021a) A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. Environ Res 195:110853

    Article  CAS  Google Scholar 

  • Atinafu DG, Wi S, Yun BY, Kim S (2021b) Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage. Energy 216:119294

    Article  CAS  Google Scholar 

  • Attolini G, Rossi F, Fabbri F, Bosi M, Salviati G, Watts BE (2010) Cubic SiC nanowires: growth, characterization and applications. Nanowires 1–23

    Google Scholar 

  • Bandara T, Xu J, Potter ID, Franks A, Chathurika JBAJ, Tang C (2020) Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere 254:126745

    Article  CAS  Google Scholar 

  • Biswas AK (2003) Water availability and use. In: Water resources of North America. Springer Berlin, Heidelberg

    Google Scholar 

  • Chakraborty I, Sathe SM, Dubey BK, Ghangrekar MM (2020a) Waste-derived biochar: applications and future perspective in microbial fuel cells. Bioresour Technol 312:123587

    Article  CAS  Google Scholar 

  • Chakraborty I, Bhowmick GD, Ghosh D, Dubey BK, Pradhan D, Ghangrekar MM (2020b) Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell. Sustain Energy Technol Assessments 42:100808

    Article  Google Scholar 

  • Chakraborty I, Das S, Dubey BK, Ghangrekar MM (2020c) Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Mater Chem Phys 239:122025

    Article  CAS  Google Scholar 

  • Chang HC, Gustave W, Yuan ZF, Xiao Y, Chen Z (2020) One-step fabrication of binder-free air cathode for microbial fuel cells by using balsa wood biochar. Environ Technol Innov 18:100615

    Article  Google Scholar 

  • Devanathan R, Ravikumar J, Boopathi S, Christopher Selvam D, Anicia SA (2019) Influence in mechanical properties of stir cast aluminium (AA6061) hybrid metal matrix composite (HMMC) with silicon carbide, fly ash and coconut coir ash reinforcement. Mater Today Proc 22:3136–3144

    Article  Google Scholar 

  • Dhiman R, Johnson E, Morgen P (2011) Growth of SiC nanowhiskers from wooden precursors, separation, and characterization. Ceram Int 37:3759–3764

    Article  CAS  Google Scholar 

  • Dixit P, Suhane A (2022) Aluminum metal matrix composites reinforced with rice husk ash: a review. Mater Today Proc 62:4194–4201

    Article  CAS  Google Scholar 

  • Gonçalves NPF, Lourenço MAO, Baleuri SR, Bianco S, Jagdale P, Calza P (2022) Biochar waste-based ZnO materials as highly efficient photocatalysts for water treatment. J Environ Chem Eng 10:107256

    Article  Google Scholar 

  • Hidalgo-Oporto P, Navia R, Hunter R, Coronado G, Gonzalez ME (2019) Synthesis of carbon nanotubes using biochar as precursor material under microwave irradiation. J Environ Manage 244:83–91

    Article  Google Scholar 

  • Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46:406–433

    Article  CAS  Google Scholar 

  • Jin Q, Wang Z, Feng Y, Kim YT, Stewart AC, O’Keefe SF, Neilson AP, He Z, Huang H (2020) Grape pomace and its secondary waste management: biochar production for a broad range of lead (Pb) removal from water. Environ Res 186:109442

    Article  CAS  Google Scholar 

  • Kandpal BC, Johri N, Kumar N, Srivastava A (2021) Effect of industrial/ agricultural waste materials as reinforcement on properties of metal matrix composites. Mater Today Proc 46:10736–10740

    Article  CAS  Google Scholar 

  • Kang Z, Wang E, Mao B, Su Z, Chen L, Xu L (2005) Obtaining carbon nanotubes from grass. Nanotechnology 16:1192–1195

    Article  CAS  Google Scholar 

  • Kumar MS, Vasumathi M, Begum SR, Luminita SM, Vlase S, Pruncu CI (2021) Influence of B4C and industrial waste fly ash reinforcement particles on the micro structural characteristics and mechanical behavior of aluminium (Al–Mg–Si–T6) hybrid metal matrix composite. J Mater Res Technol 15:1201–1216

    Article  CAS  Google Scholar 

  • Li B, Zhang Y, Xu J, Mei Y, Fan S, Xu H (2021) Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions. Chemosphere 267:129283

    Article  CAS  Google Scholar 

  • Li M, Zhang H, Xiao T, Wang S, Zhang B, Chen D, Su M, Tang J (2018) Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochim Acta 283:780–788

    Article  CAS  Google Scholar 

  • Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884

    Article  CAS  Google Scholar 

  • Li X, Li Y, Zhang X, Zhao X, Sun Y, Weng L, Li Y (2019) Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. Sci Total Environ 651:796–806

    Article  CAS  Google Scholar 

  • Lodhe M, Balasubramanian M (2022) Polycarbosilane facilitated growth of SiC nanowires from biowaste coconut shell. Adv Appl Ceram 121:39–45

    Article  CAS  Google Scholar 

  • Lodhe M, Selvam A, Udayakumar A, Balasubramanian M (2016a) Effect of polycarbosilane addition to a mixture of rice husk and coconut shell on SiC whisker growth. Ceram Int 42:2393–2401

    Article  CAS  Google Scholar 

  • Lodhe M, Chawake N, Yadav D, Balasubramanian M (2016b) On correlation between β → α transformation and densification mechanisms in SiC during spark plasma sintering. Scr Mater 115:137–140

    Article  CAS  Google Scholar 

  • Lodhe M, Logesh G, Balasubramanian M (2018) Twin induced fracture toughness in SiCW/SiC composites processed by spark plasma sintering. Mater Sci Eng A 730:280–283

    Google Scholar 

  • Makgabutlane B, Nthunya LN, Maubane-Nkadimeng MS, Mhlanga SD (2021) Green synthesis of carbon nanotubes to address the water-energy-food nexus: a critical review. J Environ Chem Eng 9:104736

    Article  CAS  Google Scholar 

  • Md Khudzari J, Gariépy Y, Kurian J, Tartakovsky B, Raghavan GSV (2019) Effects of biochar anodes in rice plant microbial fuel cells on the production of bioelectricity, biomass, and methane. Biochem Eng J 141:190–199

    Article  CAS  Google Scholar 

  • Milewski JV, Gac FD, Petrovic JJ, Skaggs SR (1985) Growth of beta-silicon carbide whiskers by the VLS process. J Mater Sci 20:1160–1166

    Article  CAS  Google Scholar 

  • Ok YS, Chang SX, Gao B, Chung HJ (2015) SMART biochar technology-A shifting paradigm towards advanced materials and healthcare research. Environ Technol Innov 4:206–209

    Article  Google Scholar 

  • Omoriyekomwan JE, Tahmasebi A, Dou J, Wang R, Yu J (2021a) A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process Technol 214:106686

    Article  CAS  Google Scholar 

  • Omoriyekomwan JE, Tahmasebi A, Dou J, Tian L, Yu J (2021b) Mechanistic study on the formation of silicon carbide nanowhiskers from biomass cellulose char under microwave. Mater Chem Phys 262:124288

    Article  CAS  Google Scholar 

  • Pepè Sciarria T, de Oliveira MAC, Mecheri B, D’Epifanio A, Goldfarb JL, Adani F (2020) Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells. J Power Sources 462:228183

    Google Scholar 

  • Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER (2017) Treatment technologies for emerging contaminants in water: a review. Chem Eng J 323:361–380

    Article  CAS  Google Scholar 

  • Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER (2019) Biochar-supported nanomaterials for environmental applications. J Ind Eng Chem 78:21–33

    Article  CAS  Google Scholar 

  • Sarkar S, Bhirangi A, Mathew J, Oyyaravelu R, Kuppan P, Balan ASS (2018) Fabrication characteristics and mechanical behavior of rice husk ash-silicon carbide reinforced Al-6061 alloy matrix hybrid composite. Mater Today Proc 5:12706–12718

    Article  CAS  Google Scholar 

  • Wang B, Gao B, Fang J (2017) Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol 47:2158–2207

    Article  CAS  Google Scholar 

  • Xia M, Ge C, Yan Q, Guo H, Yue L (2012) Ti-assisted β-SiC nanowhiskers by pyrolysis of PTFE: synthesis and mechanical properties. Appl Phys A Mater Sci Process 107:777–782

    Article  CAS  Google Scholar 

  • Yahya MA, Al-Qodah Z, Ngah CWZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev 46:218–235

    Article  CAS  Google Scholar 

  • Zhang J, Tahmasebi A, Omoriyekomwan JE, Yu J (2021) Microwave-assisted synthesis of biochar-carbon-nanotube-NiO composite as high-performance anode materials for lithium-ion batteries. Fuel Process Technol 213:106714

    Article  CAS  Google Scholar 

  • Zhong K, Li M, Yang Y, Zhang H, Zhang B, Tang J, Yan J, Su M, Yang Z (2019) Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells. Appl Energy 242:516–525

    Article  CAS  Google Scholar 

  • Zhou W, Zhang Y, Niu X, Min G (2008) One-dimensional SiC nanostructures: synthesis and properties. One-Dimens Nanostruct 17–58

    Google Scholar 

  • Zhou Y, He J, Chen R, Li X (2022) Recent advances in biomass-derived graphene and carbon nanotubes. Mater Today Sustain 18:100138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangesh Lodhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dixit, A., Senger, N., Bhoj, P., Parmar, R., Lodhe, M. (2023). Applications and Future Perspectives of Agricultural Waste Biochar and Its Nanocomposites. In: Mishra, D., Singh, R., Khare, P. (eds) Biochar-Based Nanocomposites for Contaminant Management. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-28873-9_11

Download citation

Publish with us

Policies and ethics