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Abstract This chapter landscapes the field of Language Technology (LT) and lan-
guage-centric AI by assembling a comprehensive state-of-the-art of basic and ap-
plied research in the area. It sketches all recent advances in AI, including the most
recent deep learning neural technologies. The chapter brings to light not only where
language-centric AI as a whole stands, but also where the required resources should
be allocated to place European LT at the forefront of the AI revolution. We identify
key research areas and gaps that need to be addressed to ensure LT can overcome
the current inequalities.1

1 Introduction

Interest in the computational processing of human languages led to the establishment
of specialised fields known as Computational Linguistics (CL), Natural Language
Processing (NLP) and Language Technology (LT). CL is more informed by linguis-
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tics and NLP by computer science, LT is a more neutral term. In practice, these
communities work closely together, sharing the same publishing venues and confer-
ences, combining methods and approaches inspired by both, and together making up
language-centric AI. In this chapter we treat them interchangeably.

Over the years, LT has developed different methods to make the information con-
tained in written and spoken language explicit or to generate or synthesise written
or spoken language. Despite the inherent difficulties in many of the tasks performed,
current LT support allows many advanced applications which were unthinkable only
a few years ago. LT is present in our daily lives, for example, through search en-
gines, recommendation systems, virtual assistants, chatbots, text editors, text predic-
tors, automatic translation systems, automatic subtitling, automatic summarisation
and inclusive technology. Its recent accelerated development promises even more
encouraging and exciting results in the near future.

This state-of-the-art in LT and language-centric AI begins with a brief historical
account in Section 2 on the development of the field from its inception through the
current deep learning era. The following three sections are neural language models
(Section 3), research areas (Section 4) and LT beyond language (Section 5). They
offer a survey that maps today’s LT and language-centric AI landscape. Finally, a
discussion and various conclusions are outlined in Section 6.

2 Language Technology: Historical Overview

2.1 A Brief History

The 1950smark the beginning of Language Technology as a discipline. In the middle
of the 20th century, Alan Turing proposed his famous test, which defines a criterion
to determine whether a machine can be considered intelligent (Turing 1950). A few
years later, Noam Chomsky laid the foundations to formalise, specify and automate
linguistic rules with his generative grammar (Chomsky 1957). For a long period
of time, the horizon defined by Turing and the instrument provided by Chomsky
influenced the majority of NLP research.

The early years of LT were closely linked to Machine Translation (MT), a well-
defined task, and also relevant from a political and strategic point of view. In the
1950s it was believed that a high-quality automatic translator would be available
soon. By the mid-1960s, however, the Automatic Language Processing Advisory
Committee (ALPAC) report revealed the true difficulty of the task and NLP in gen-
eral. The following two decades were heavily influenced by Chomsky’s ideas, with
increasingly complex systems of handwritten rules. At the end of the 1980s, a revo-
lution began which irreversibly changed the field of NLP. This change was driven
mainly by four factors: 1. the clear definition of individual NLP tasks and correspond-
ing rigorous evaluation methods; 2. the availability of relatively large amounts of
data; 3. machines that could process these large amounts of data; and 4. the gradual
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introduction of more robust approaches based on statistical methods and machine
learning (ML), that would pave the way for subsequent major developments.

Since the 1990s, NLP has moved forward with new resources, tools and appli-
cations. An effort was made to create wide-coverage linguistic resources, such as
annotated corpora, thesauri, etc., from which WordNet (Miller 1992) is one of the
main results. Data-driven systems displaced rule-based systems, leading to the al-
most ubiquitous presence of ML components in NLP systems. In the 2010s we ob-
served a radical technological shift in NLP. Collobert et al. (2011) presented a multi-
layer neural network (NN) adjusted by backpropagation that solved various sequen-
tial labeling problems. Word embeddings gained particular relevance due to their
role in the incorporation of pre-trained external knowledge into neural architectures
(Mikolov et al. 2013). Large volumes of unannotated texts, together with progress in
self-supervisedML and the rise of high-performance hardware (Graphics Processing
Units, GPU), enabled highly effective deep learning systems to be developed across
a range of application areas. These and other breakthroughs helped launch today’s
Deep Learning Era.

2.2 The Deep Learning Era

Today, LT is moving away from a methodology in which a pipeline of multiple mod-
ules is utilised to implement solutions to architectures based on complex neural net-
works trained on vast amounts of data. Four research trends are converging: 1.mature
deep neural network technology, 2. large amounts of multilingual data, 3. increased
High Performance Computing (HPC) power, and 4. the application of simple but ef-
fective self-learning approaches (Devlin et al. 2019; Yinhan Liu et al. 2020). These
advancements have produced a new state-of-the-art through systems that are claimed
to obtain human-level performance in laboratory benchmarks on difficult language
understanding tasks. As a result, various large IT enterprises have started deploying
large language models (LLMs) in production.

Despite their notable capabilities, however, LLMs have certain drawbacks that
will require interdisciplinary collaboration and research to resolve. First, we have
no clear understanding of how they work, when they fail, or what emergent prop-
erties they present. Indeed, some authors call these models “foundation models” to
underscore their critically central yet incomplete character (Bommasani et al. 2021).
Second, the systems are very sensitive to phrasing and typos, are not robust enough,
and perform inconsistently (Ribeiro et al. 2019). Third, these models are expensive
to train, which means that only a limited number of organisations can currently af-
ford their development (Ahmed and Wahed 2020). Fourth, large NLP datasets used
to train these models have been ‘filtered’ to remove targeted minorities (Dodge et al.
2021). In addition, LLMs can sometimes produce unpredictable and factually inac-
curate text or even recreate private information. Finally, computing large pre-trained
models comes with a substantial carbon footprint (Strubell et al. 2019).
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The implications of LLMs may extend to questions of language-centred AI
sovereignty. Given the impact of LT in everyone’s daily lives, many LT practi-
tioners are particularly concerned by the need for digital language equality (DLE)
across all aspects of our societies. As expected, only a small number of the world’s
more than 6,000 languages are represented in the rapidly evolving LT field. This
disproportionate representation is further exacerbated by systematic inequalities in
LT across the world’s languages (Joshi et al. 2020). Interestingly, the application of
zero-shot to few-shot transfer learning with multilingual pre-trained language mod-
els, prompt learning and self-supervised systems opens a path to leverage LT for
less-developed languages. However, the development of these new LT systems will
require resources along with carefully designed evaluation benchmarks and anno-
tated datasets for every language and domain of application.

Forecasting the future of LT and language-centric AI is a challenge. It is, neverthe-
less, safe to assume that many more advances will be achieved utilising pre-trained
language models and that they will substantially impact society. Future users are
likely to discover novel applications and wield them positively or negatively. In
either case, as Bender et al. (2021) argue, it is important to understand the current
limitations of LLMs, which they refer to as “stochastic parrots”. Focusing on state-of-
the-art results exclusively with the help of leaderboards, without encouraging deeper
understanding of themechanisms bywhich they are attained, can give rise tomislead-
ing conclusions. These, in turn, may direct resources away from efforts that would
facilitate long-term progress towards multilingual, efficient, accurate, explainable,
ethical and unbiased language understanding and communication.

3 Neural Language Models

LT is undergoing a paradigm shift with the rise of neural language models that are
trained on broad data at scale and are adaptable to a wide range of monolingual and
multilingual downstream tasks (Devlin et al. 2019; Yinhan Liu et al. 2020). These
models are based on standard self-supervised deep learning and transfer learning, but
their scale results in emergent and surprising capabilities. One of the advantages is
their ability to alleviate the feature engineering problem by using low-dimensional
and dense vectors (distributed representation) to implicitly represent the language
examples (Collobert et al. 2011). In self-supervised learning, the language model
is derived automatically from large volumes of unannotated language data (text or
voice). There has been considerable progress in self-supervised learning since word
embeddings associated word vectors with context-independent vectors.

With transfer learning, the learning process starts from patterns that have been
learned when solving a different problem, i. e., leveraging previous learning to avoid
starting from scratch. Within deep learning, pre-training is the dominant approach
to transfer learning: the objective is to pre-train a deep Transformer model on large
amounts of data and then reuse this pre-trained language model by fine-tuning it on
small amounts of (usually annotated) task-specific data. Recent work has shown that
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pre-trained language models can robustly perform tasks in a few-shot or even zero-
shot fashion when given an adequate task description in its natural language prompt
(Brown et al. 2020). Unlike traditional supervised learning, which trains a model to
take in an input and predict an output, prompt-based learning or in-context learning is
based on exploiting pre-trained language models to solve a task using text directly.
This framework is very promising since some NLP tasks can be solved in a fully
unsupervised fashion by providing a pre-trained language model with task descrip-
tions in natural language (Raffel et al. 2020). Surprisingly, fine-tuning pre-trained
language models on a collection of tasks described via instructions (or prompts) sub-
stantially boosts zero-shot performance on unseen tasks (Wei et al. 2021).

Multilingual Large Language Models (MLLMs) such as mBERT (Devlin et al.
2019), XLM-R (Conneau et al. 2020), mBART (Yinhan Liu et al. 2020), mT5 (Xue et
al. 2021), etc. have emerged as viable options for bringing the power of pre-training
to a large number of languages. For example, mBERT is pre-trained on Wikipedia
corpora in 104 languages. mBERT can generalise cross-lingual knowledge in zero-
shot scenarios. This indicates that even with the same structure of BERT, using mul-
tilingual data can enable the model to learn cross-lingual representations. The sur-
prisingly good performance of MLLMs in cross-lingual transfer as well as bilingual
tasks suggests that these language models are learning universal patterns (Doddapa-
neni et al. 2021). Thus, one of the main motivations of training MLLMs is to enable
transfer from high-resource languages to low-resource languages.

New types of processing pipelines and toolkits have arisen in recent years due
to the fast-growing collection of efficient tools. Libraries that are built with NN
components are increasingly common, including pre-trained models that perform
multilingual NLP tasks. Neural language models are adaptable to a wide spectrum
of monolingual and multilingual tasks. These models are currently often considered
black boxes, in that their inner mechanisms are not clearly understood. Nonethe-
less, Transformer architectures may present an opportunity to offer advances to the
broader LT community if certain obstacles can be successfully overcome. One is the
question of the resources needed to design the best-performing neural language mod-
els, currently done almost exclusively at large IT companies. Another is the problem
of stereotypes, prejudices and personal information within the corpora used to train
the models. The predominance of English as the default language in NLP can be
successfully addressed if there is sufficient will and coordination. The continued
consolidation of large infrastructures will help determine how this is accomplished
in the near future. Their successful implementation would mark a crucial first step
towards the development, proliferation and management of language resources for
all European languages. This capability would, in turn, enable Europe’s languages
to enjoy full and equal access to digital language technology.
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4 Research Areas

Section 4 introduces some of the more prominent research areas in the field: Lan-
guage Resources (Section 4.1), Text Analysis (Section 4.2), Speech Processing (Sec-
tion 4.3), Machine Translation (Speech 4.4), Information Extraction and Retrieval
(Section 4.5), NLG and Summarisation (Section 4.6) as well as HCI (Section 4.7).

4.1 Language Resources

The term Language Resource (LR) refers to a set of speech or written data and
descriptions in machine readable form. These are utilised for building, improving
or evaluating text- and speech-based algorithms or systems. They also serve as re-
sources for the software localisation and language services industries, language stud-
ies, digital publishing, international transactions, subject-area specialists and end
users. Although no widely standardised typology of LRs exists, they are usually
classified as: 1. Data (i. e., corpora and lexical/conceptual resources); 2. Tools/Ser-
vices (i. e., linguistic annotations; tools for creating annotations; search and retrieval
applications; applications for automatic annotation) and 3. Metadata and vocabular-
ies (i. e., vocabularies or repositories of linguistic terminology; language metadata).
In this section we will focus on the first two categories.

A main objective of the LR community is the development of infrastructures and
platforms for presenting and disseminating LRs. There are numerous repositories
in which resources for each language are documented. Among the major European
catalogues are European Language Grid (ELG, Rehm 2023),2 ELRC-SHARE, 3 Eu-
ropean Language Resources Association (ELRA), 4 Common Language Resources
and Technology Infrastructure (CLARIN)5 and META-SHARE.6 The Linguistic
Data Consortium,7 which operates outside of Europe, should also be highlighted.

In addition, there are several relevant multilingual public domain initiatives.
Among these are the Common Voice Project,8 designed to encourage the develop-
ment of ASR systems; theM-AILABS SpeechDataset,9 for text-to-speech synthesis;
the Ryerson Audio-Visual Database of Emotional Speech and Song,10 for research

2 https://www.european-language-grid.eu
3 http://www.elrc-share.eu
4 http://catalogue.elra.info
5 https://www.clarin.eu/content/language-resources
6 http://www.meta-share.org
7 https://catalog.ldc.upenn.edu
8 https://commonvoice.mozilla.org
9 https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/
10 https://zenodo.org/record/1188976

https://www.european-language-grid.eu
http://www.elrc-share.eu
http://catalogue.elra.info
https://www.clarin.eu/content/language-resources
http://www.meta-share.org
https://catalog.ldc.upenn.edu
https://commonvoice.mozilla.org
https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/
https://zenodo.org/record/1188976
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on emotional multimedia content; and LibriVox,11 an audiobook repository that can
be used in different research fields and applications.

A cursory glance at these repositories not only gives us an idea of the amount
of resources available for Europe’s languages, but also reveals the clear inequality
between official and minority languages. Moreover, although the four European lan-
guages with the most resources are English, French, German and Spanish, English
is far ahead of the rest, with more than twice as many resources as the next language
(see Figure 1, p. 50). At the same time, the languages without official status trail
significantly behind in terms of LR development, demonstrating the critical impact
that official status has on the extent of available resources.

4.2 Text Analysis

Text Analysis (TA) aims to extract relevant information from large amounts of un-
structured text in order to enable data-driven approaches to manage textual content.
In other words, its purpose is to create structured data out of unstructured text con-
tent by identifying entities, facts and relationships that are buried in the textual data.
TA employs a variety of methodologies to process text. It is crucial for establishing
“who did what, where and when,” a technology that has proven to be key for ap-
plications such as Information Extraction, Question Answering, Summarisation and
nearly every linguistic processing task involving semantic interpretation, including
Opinion Mining and Aspect-based Sentiment Analysis (ABSA).

The best results for TA tasks are generally obtained by means of supervised,
corpus-based approaches. In most cases, manually annotating text for every sin-
gle specific need is extremely time-consuming and not affordable in terms of hu-
man resources and economic costs. To make the problem more manageable, TA is
addressed in several tasks that are typically performed in order to preprocess the
text to extract relevant information. The most common tasks currently available in
state-of-the-art NLP tools and pipelines include Part-of-Speech (POS) tagging, Lem-
matisation, Word Sense Disambiguation (WSD), Named Entity Recognition (NER),
Named Entity Disambiguation (NED) or Entity Linking (EL), Parsing, Coreference
Resolution, Semantic Role Labelling (SRL), Temporal Processing, ABSA and, more
recently, Open Information Extraction (OIE).

Today, all these tasks are addressed in an end-to-end manner, i. e., even for a tradi-
tionally complex task such as Coreference Resolution (Pradhan et al. 2012), current
state-of-the-art systems are based on an approach in which no extra linguistic anno-
tations are required. These systems typically employ LLMs. Similarly, most state-
of-the-art TA toolkits, including AllenNLP and Trankit, among others (Gardner et
al. 2018; M. V. Nguyen et al. 2021), use a highly multilingual end-to-end approach.
Avoiding intermediate tasks has helped to mitigate the common cascading errors
problem that was pervasive in more traditional TA pipelines. As a consequence, the

11 https://librivox.org

https://librivox.org


20 Rodrigo Agerri, Eneko Agirre, Itziar Aldabe, Nora Aranberri et al.

appearance of end-to-end systems has helped bring about a significant jump in per-
formance across every TA task.

4.3 Speech Processing

Speech processing aims at allowing humans to communicate with digital devices
through voice. This entails developing machines that understand and generate not
only oral messages, but also all the additional information that we can extract from
the voice, like who is speaking, their age, their personality, their mood, etc. Some of
the main areas in speech technology are text-to-speech synthesis (TTS), automatic
speech recognition (ASR) and speaker recognition (SR).

TTS attempts to produce the oral signal that corresponds to an input text with
an intelligibility, naturalness and quality similar to a natural speech signal. Statisti-
cal parametric speech synthesis techniques generate speech by means of statistical
models trained to learn the relation between linguistic labels derived from text and
acoustic parameters extracted from speech by means of a vocoder. HMM (Hidden
MarkovModels) andmore recently DNN (DeepNeural Networks) have been used as
statistical frameworks. Various architectures have been tested, such as feed-forward
networks (Qian et al. 2014), recurrent networks (Y. Fan et al. 2014) and WaveNet
(Oord et al. 2016). Among the criteria used for training, the most common is mini-
mum generation error (Z. Wu and King 2016), although recently newmethods based
on Generative Adversarial Networks (GAN, Saito et al. 2017) have been proposed
with excellent results in terms of naturalness of the produced voice.

ASR, producing a transcription from a speech signal, has been long sought after.
The intrinsic difficulty of the task has required a step-by-step effort, with increasingly
ambitious objectives. Only in the last two decades has this technology jumped from
the laboratory to production. The first commercial systems were based on statistical
models, i. e., HMMs (Juang and Rabiner 2005; Gales and Young 2008). While this
technology was the standard during the first decade of the century, in the 2010s,
the increase in computing power and the ever-growing availability of training data
allowed for the introduction of DNN techniques for ASR.

More recently, end-to-end or fully differentiable architectures have appeared that
aim to simplify a training process that is capable of exploiting the available data.
In these systems, a DNN maps the acoustic signal in the input directly to the textual
output. Thus, the neural network models the acoustic information, the time evolution
and some linguistic information, learning everything jointly. New architectures, in
the form of Transformers (Gulati et al. 2020; Xie Chen et al. 2021) and teacher-
student schemes (Z. Zhang et al. 2020; Jing Liu et al. 2021), have been applied to
ASR with great success. Recently, Whisper, a Transformer sequence-to-sequence
model trained on very large amounts of data that can perform several tasks such as
multilingual ASR, translation and language identification, has been developed by
OpenAI (Radford et al. 2022) showing the potential of weakly supervised systems.



2 State-of-the-Art in Language Technology and Language-centric AI 21

A similar evolution has taken place in the area of SR. Part of the widespread emer-
gence of biometric identification techniques, exemplified by the now commonplace
ability to unlock a smartphone with a fingerprint or an iris, speaker recognition in-
volves the automatic identification of people based on their voice. Nowadays, the
classical systems have been outperformed by end-to-end neural network based sys-
tems, which are being improved using widespread databases (Nagrani et al. 2017)
and enforcing research (Nagrani et al. 2020), obtaining better recognition rates by
means of new network architectures and techniques (Safari et al. 2020; H. Zhang
et al. 2020; R. Wang et al. 2022).

4.4 Machine Translation

Machine Translation (MT) is the automatic translation from one natural language
into another. Since its first implementation (Weaver 1955) it has remained a key
application in LT/NLP. While a number of approaches and architectures have been
proposed and tested over the years, Neural MT (NMT) has become the most popular
paradigm for MT development both within the research community (Vaswani et al.
2018; Yinhan Liu et al. 2020; Zhu et al. 2020; Sun et al. 2022) and for large-scale pro-
duction systems (Y.Wu et al. 2016). This is due to the good results achieved by NMT
systems, which attain state-of-the-art results for many language pairs (Akhbardeh et
al. 2021; Adelani et al. 2022; Min 2023). NMT systems use distributed representa-
tions of the languages involved, which enables end-to-end training of systems. If we
compare them with classical statistical MT models (Koehn et al. 2003), we see that
they do not require word aligners, translation rule extractors, and other feature ex-
tractors; the embed – encode – attend – decode paradigm is the most common NMT
approach (Vaswani et al. 2017; You et al. 2020; Dione et al. 2022).

Thanks to current advances in NMT it is common to find systems that can easily
incorporate multiple languages simultaneously. We refer to these types of systems
as Multilingual NMT (MNMT) systems. The principal goal of an MNMT system is
to translate between as many languages as possible by optimising the linguistic re-
sources available.MNMTmodels (Aharoni et al. 2019; B. Zhang et al. 2020; Emezue
and Dossou 2022; Siddhant et al. 2022) are interesting for several reasons. On the
one hand, they can address translations among all the languages involved within a
single model, which significantly reduces training time and facilitates deployment
of production systems. On the other hand, by reducing operational costs, multilin-
gual models achieve better results than bilingual models for low- and zero-resource
language pairs: training is performed jointly and this generates a positive transfer of
knowledge from high(er)-resource languages (Aharoni et al. 2019; Arivazhagan et
al. 2019). This phenomenon is known as translation knowledge transfer or transfer
learning (Zoph et al. 2016; T. Q. Nguyen and Chiang 2017; Hujon et al. 2023).

For instance, A. Fan et al. (2021) have created severalMNMTmodels by building
a large-scale many-to-many dataset for 100 languages. They significantly reduce the
complexity of this task, employing automatic building of parallel corpora (Artetxe
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and Schwenk 2019; Schwenk et al. 2021) with a novel data mining strategy that ex-
ploits language similarity in order to avoid mining all directions. The method allows
for direct translation between 100 languages without using English as a pivot and it
performs as well as bilingual models on many competitive benchmarks. Addition-
ally, they take advantage of backtranslation to improve the quality of their model on
zero-shot and low-resource language pairs.

4.5 Information Extraction and Information Retrieval

Deep learning has had a tremendous impact on Information Retrieval (IR) and In-
formation Extraction (IE). The goal of IR is to meet the information needs of users
by providing them with documents or text snippets that contain answers to their
queries. IR is a mature technology that enabled the development of search engines.
The area has been dominated by classic methods based on vector space models that
use manually created sparse representations such as TF-IDF or BM25 (Robertson
and Zaragoza 2009), but recent approaches that depend on dense vectors and deep
learning have shown promising results (Karpukhin et al. 2020; Izacard and Grave
2021). Dense representations are often combined with Question Answering (QA) to
develop systems that are able to directly answer specific questions posed by users,
either by pointing at text snippets that answer the questions (Karpukhin et al. 2020;
Izacard and Grave 2021) or by generating the appropriate answers themselves (P.
Lewis et al. 2021).

IE aims to extract structured information from text. Typically, IE systems recog-
nise the main events described in a text, as well as the entities that participate in
those events. Modern techniques mostly focus on two challenges: learning textual se-
mantic representations for events in event extraction (both at sentence and document
level) and acquiring or augmenting labeled instances for model training (K. Liu et al.
2020). Regarding the former, early approaches relied onmanually coded lexical, syn-
tactic and kernel-based features (Ahn 2006). With the development of deep learning,
however, researchers have employed neural networks, including CNNs (Y. Chen et
al. 2015), RNNs (T. H. Nguyen and Grishman 2016) and Transformers (Yang et al.
2019). Data augmentation has been typically performed by using methods such as
distant supervision or employing data from other languages to improve IE on the tar-
get language, which is especially useful when the target language is under-resourced.
Deep learning techniques utilised in NMT (Jian Liu et al. 2018) and pre-trained mul-
tilingual LLMs (Jian Liu et al. 2019) have also helped in this task.

Another important task within IE is Relation Extraction (RE), whose goal is to
predict the semantic relationship between two entities, if any. The best results on RE
are obtained by fine-tuning LLMs, which are suppliedwith a classification head. One
of the most pressing problems in RE is the scarcity of manually annotated examples
in real-world applications, particularly when there is a domain and language shift.
In recent years, new methods have emerged that only require a few-shot or zero-
shot examples. Prompt-based learning, e. g., uses task and label verbalisations that
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can be designed manually or learned automatically (Schick and Schütze 2021) as an
alternative to fine-tuning. In these methods, the inputs are augmented with prompts
and the LM objective is used in learning and inference. This paradigm shift has
allowed IE tasks to be framed as aQAproblem (Sulem et al. 2022) or as a constrained
text generation problem (S. Li et al. 2021) using prompts, questions or templates.

4.6 Natural Language Generation and Summarisation

Natural Language Generation (NLG) has become one of themost important and chal-
lenging tasks in NLP (Gehrmann et al. 2021). NLG automatically generates under-
standable texts, typically using a non-linguistic or textual representation of informa-
tion as input (Reiter and Dale 1997; Gatt and Krahmer 2018; Junyi Li et al. 2021a).
Applications that generate new texts from existing text include MT from one lan-
guage to another (see Section 4.4), fusion and summarisation, simplification, text
correction, paraphrase generation, question generation, etc. With the recent resur-
gence of deep learning, new ways to solve text generation tasks based on different
neural architectures have arisen (Junyi Li et al. 2021b). One advantage of these neu-
ral models is that they enable end-to-end learning of semantic mappings from input
to output in text generation. Existing datasets for most supervised text generation
tasks are small (except MT). Therefore, researchers have proposed various meth-
ods to solve text generation tasks based on LLMs. Transformer models such as T5
(Raffel et al. 2020) and BART (M. Lewis et al. 2020) or a single Transformer de-
coder block such as GPT (Brown et al. 2020) are currently standard architectures for
generating high quality text.

Due to the rapid growth of information generated daily online (Gambhir and
Gupta 2017), there is a growing need for automatic summarisation techniques that
produce short texts from one or more sources efficiently and precisely. Several ex-
tractive approaches have been developed for automatic summary generation that
implement a number of machine learning and optimisation techniques (J. Xu and
Durrett 2019). Abstractive methods are more complex as they require NLU capabil-
ities. Abstractive summarisation produces an abstract with words and phrases that
are based on concepts that occur in the source document (Du et al. 2021). Both ap-
proaches can now be modeled using Transformers (Yang Liu and Lapata 2019).

4.7 Human-Computer Interaction

The demand for technologies that enable users to interact with machines at any time
utilising text and speech has grown,motivating the use of dialogue systems. Such sys-
tems allow the user to converse with computers using natural language and include
Siri, Google Assistant, Amazon Alexa, and ChatGPT, among others. Dialogue sys-
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tems can be divided into three groups: task-oriented systems, conversational agents
(also known as chatbots) and interactive QA systems.

The distinguishing features of task-oriented dialogue systems are that they are
designed to perform a concrete task in a specific domain and that their dialogue flow
is defined and structured beforehand. For example, such systems are used to book a
table at a restaurant, call someone or check the weather forecast. The classical im-
plementation of this type of system follows a pipeline architecture based on three
modules: the NLU module, the dialogue manager and the NLG module. While clas-
sical dialogue systems trained and evaluated these modules separately, more recent
systems rely on end-to-end trainable architectures based on neural networks (Bordes
et al. 2017; Hosseini-Asl et al. 2020).

Conversational agents enable engaging open-domain conversations, often by em-
ulating the personality of a human (S. Zhang et al. 2018). The Alexa prize,12 for
instance, focused on building agents that could hold a human in conversation as
long as possible. These kinds of agents are typically trained in conversations mined
from social media using end-to-end neural architectures (Roller et al. 2021).

Interactive QA systems try to respond to user questions by extracting answers
from either documents (Rajpurkar et al. 2018) or knowledge bases (T. Yu et al. 2018).
In order to be able to have meaningful interactions, interactive QA systems have
a simple dialogue management procedure taking previous questions and answers
into account (Choi et al. 2018). The core technology is commonly based on LLMs
(Qiu et al. 2020) where some mechanism is included to add context representation
(Vakulenko et al. 2021).

5 Language Technology beyond Language

Knowledge about our surrounding world is required to properly understand natural
language utterances (Bender and Koller 2020). That knowledge is known as world
knowledge and many authors argue that it is a key ingredient to achieve human-level
NLU (Storks et al. 2019). One of the ways to acquire this knowledge is to explore
the visual world together with the textual world (Elu et al. 2021). CNNs have been
the standard architecture for generating representations for images (LeCun and Ben-
gio 1995) during the last decade. Recently, self-attention-based Transformer models
(Vaswani et al. 2017) have emerged as an alternative architecture, leading to excit-
ing progress on a number of vision tasks (Khan et al. 2021). Compared to previous
approaches, Transformers allow multiple modalities to be processed (e. g., images,
videos, text and speech) using similar processing blocks and demonstrate excellent
scalability properties. Encoder-decoder models in particular have been gaining trac-
tion recently due to their versatility on solving different generative tasks (Junnan Li
et al. 2022; Xi Chen et al. 2022).

12 https://developer.amazon.com/alexaprize

https://developer.amazon.com/alexaprize
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Regarding downstream tasks, caption generation is a typical visio-linguistic task,
where a textual description of an image must be generated. The first approaches to
solve this problem combined CNNs with RNNs in an encoder-decoder architecture
(Vinyals et al. 2015). Further improvements were achieved when attention was in-
cluded (K. Xu et al. 2015) and some researchers have proposed utilising object-based
attention instead of spatial attention (Anderson et al. 2018). Although it is not cur-
rently clear which attention mechanism is better, the quality of the text generated by
these models is high as measured by metrics such as BLEU (Papineni et al. 2002)
and METEOR (Banerjee and Lavie 2005)

Visual generation, in contrast to caption generation, requires an image to be gen-
erated from a textual description. One of this task’s most significant challenges is to
develop automatic metrics to evaluate the quality of the generated images and their
coherence with the input text. The first effective approaches were based on Gener-
ative Adversarial Networks (Goodfellow et al. 2014) and Variational Autoencoders
(Kingma and Welling 2013). Cho et al. (2020) demonstrate that multimodal Trans-
formers can also generate impressive images from textual input. Nevertheless, novel
advancements in diffusion models (Sohl-Dickstein et al. 2015; Ho et al. 2020) have
defined the current state-of-the-art in image generation (Ramesh et al. 2022). These
models learn to iteratively reconstruct noisy images and, recently, their size and com-
putational cost has been reduced as diffusion can be now applied in a reduced latent
space instead of an image’s pixel space (Rombach et al. 2022).

Another typical task is Visual Question Answering (VQA), where given an image
and a question about the contents of that image, the right textual answer must be
found. There are many VQA datasets in the literature (Antol et al. 2015; Johnson et
al. 2017). Some demand leveraging external knowledge to infer an answer and, thus,
they are known as knowledge-based VQA tasks (P.Wang et al. 2017a,b; Marino et al.
2019). These VQA tasks demand skills to understand the content of an image and
how it is referred to in the textual question, as well as reasoning capabilities to infer
the correct answer. Multimodal Transformers, such as OFA (P.Wang et al. 2022) and
PaLI (Xi Chen et al. 2022), define the state-of-the-art in several of these tasks.

Visual Referring Expressions are one of the multimodal tasks that may be con-
sidered an extension of a text-only NLP task, i. e., referring expressions (Krahmer
and Deemter 2012) in NLG systems. Its objective is to ground a natural language
expression to objects in a visual input. There are several approaches to solve this task
(Golland et al. 2010; Kazemzadeh et al. 2014). The most recent ones use attention
mechanisms to merge both modalities (L. Yu et al. 2018) or are based on multimodal
Transformers (Ding et al. 2022).

A natural extension of textual entailment, Visual Entailment is an inference task
for predicting whether an image semantically entails a text. Vu et al. (2018) initially
proposed a visually-grounded version of the textual entailment task, where an im-
age is augmented to include a textual premise and hypothesis. However, Xie et al.
(2019) propose visual entailment, where the premise is an image and the hypothesis
is textual. As an alternative to entailment, there are other grounding tasks that clas-
sify whether an image and its caption match (Suhr et al. 2018; F. Liu et al. 2022) or
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tasks that measure the similarity between sentences with visual cues, such as vSTS
(Lopez de Lacalle et al. 2020).

Multimodal MT (MMT) seeks to translate natural language sentences that de-
scribe visual content in a source language into a target language by taking the visual
content as an additional input to the source language sentences (Elliott et al. 2017;
Barrault et al. 2018). Different approaches have been proposed to handle MMT, al-
though attention models that associate textual and visual elements with multimodal
attention mechanisms are the most common (Huang et al. 2016; Calixto et al. 2017).

6 Conclusions

Language tools and resources have increased and improved since the end of the
last century, a process further catalysed by the advent of deep learning and LLMs
over the past decade. Indeed, we find ourselves today in the midst of a significant
paradigm shift in LT and language-centric AI. This revolution has brought notewor-
thy advances to the field along with the promise of substantial breakthroughs in the
coming years. However, this transformative technology poses problems, from a re-
search advancement, environmental, and ethical perspective. Furthermore, it has also
laid bare the acute digital inequality that exists between languages. In fact, as em-
phasised in this chapter, many sophisticated NLP systems are unintentionally exac-
erbating this imbalance due to their reliance on vast quantities of data derived mostly
from English-language sources. Other languages lag far behind English in terms of
digital presence and even the latter would benefit from greater support. Moreover,
the striking asymmetry between official and non-official European languages with
respect to available digital resources is concerning. The unfortunate truth is that DLE
in Europe is failing to keep pace with the newfound and rapidly evolving changes in
LT. One need look no further than what is happening today across the diverse topog-
raphy of state-of-the-art LT and language-centric AI for confirmation of the current
linguistic unevenness. The paradox at the heart of LT’s recent advances is evident
in almost every LT discipline. Our ability to reproduce ever better synthetic voices
has improved sharply for well-resourced languages, but dependence on large vol-
umes of high-quality recordings effectively undermines attempts to do the same for
low-resource languages. Multilingual NMT systems return demonstrably improved
results for low- and zero-resource language pairs, but insufficient model capacity
continues to haunt transfer learning because large multilingual datasets are required,
forcing researchers to rely on English as the best resourced language.

Nonetheless, we believe this time of technological transition represents an op-
portunity to achieve full DLE in Europe. There are ample reasons for optimism. Re-
cent research in the field has considered the implementation of cross-lingual transfer
learning and multilingual language models for low-resource languages, an example
of how the state-of-the-art in LT could benefit from better digital support for low-
resource languages.
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Forecasting the future of LT and language-centric AI is a challenge. Just a few
years ago, nobody would have predicted the recent breakthroughs that have resulted
in systems able to deal with unseen tasks or maintaining natural conversations. It is,
however, safe to predict that even more advances will be achieved in all LT research
areas and domains in the near future. Despite claims of human parity in many LT
tasks, Natural Language Understanding is still an open research problem far from
being solved since all current approaches have severe limitations. Interestingly, the
application of zero-shot to few-shot transfer learning with multilingual LLMs and
self-supervised systems opens up the way to leverage LT for less developed lan-
guages. However, the development of these new LT systems would not be possible
without sufficient resources (experts, data, HPC facilities, etc.) as well as the cre-
ation of carefully designed and constructed evaluation benchmarks and annotated
datasets for every language and domain of application. Focusing on state-of-the-art
results exclusively with the help of leaderboards without encouraging deeper under-
standing of the mechanisms by which they are achieved can generate misleading
conclusions, and direct resources away from efforts that would facilitate long-term
progress towards multilingual, efficient, accurate, explainable, ethical and unbiased
language understanding and communication, to create transparent digital language
equality in Europe in all aspects of society, from government to business to citizen.
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