Skip to main content

Discovering High-Pressure and High-Temperature Minerals

  • Chapter
  • First Online:
Celebrating the International Year of Mineralogy

Part of the book series: Springer Mineralogy ((MINERAL))

  • 568 Accesses

Abstract

Defining high-pressure (P) and high-temperature (T) minerals beyond vague conventions requires robust criteria. The conjunction of mineralogy and (mantle-)geochemistry suggests that pressure-dependent ionic radii provide such a criterion. A set of quantitative arguments is provided based on the pressure-dependent radii of several elements. Three categories and regimes of high-P minerals are defined. All approved high-pressure minerals are tabulated here. High-pressure minerals form under static and dynamic pressure. Under dynamic compression the short duration of the peak pressure state acts as a kinetic barrier for transformations. Only local high temperature (‘hotspots’) permits formation of high-pressure minerals. Very high temperature of extreme shock compression induces retrograde conversion of high-pressure minerals or melting during the passing of the rarefaction wave. Only few metastable high-pressure silicate minerals (and even synthetic phases) have been observed in shocked rocks and samples: Even along temperature gradients we find metastable formation of phases stable at lower static pressures but few minerals without stability field, despite the multitude of possible metastable structures. This suggests sterical hindrance of the Si[4] → [6] transition, besides the kinetic barrier. In the deep Earth high-pressure minerals in the deep Earth are hidden from direct observation. Hypothesized retrograde transformations in peridotites and of inclusions in diamonds remain to be confirmed. Few occurrences of high-pressure minerals as inclusions in diamonds have been reported. In conjunction with their hosting mineral, diamond, they appear to have formed in regions of mantle metasomatosis, and potentially mark regions or horizons of extensive chemical mobility within the mantle. Consistent with the definition of high-P minerals we define a high P–T regime and we propose to define high-T minerals that form at low or ambient pressure through the T-induced changes in redox buffer systems. This approach encompasses the rich mineralogy of presolar and early solar minerals which cover a compositional range far beyond the occurrences in differentiated planetary bodies like Earth, Mars, and Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi G, Imanaka N (1998) The binary rare earth oxides. Chem Rev 98:1479–1514

    Google Scholar 

  • Agarwal A, Reznik B, Kontny A, Schilling F (2016) Lingunite – a high-pressure plagioclase polymorph at mineral interfaces in doleritic rock if the Lockne impact structure (Sweden). Sci Rep 6:25991

    Google Scholar 

  • Ahrens TJ (1986) Application of shock wave data to earth and planetary science. In: Gupta YM (ed) Shock Waves in Condensed Matter. Plenum, New York, pp 571–588

    Google Scholar 

  • Angel RJ, Chopelas A, Ross NL (1992) Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358:322–324

    Google Scholar 

  • Anzolini C, Angel RJ, Merlini M, Derzsi M, Tokar K, Milani S, Krebs MY, Brenker FE, Nestola F, Harris JW (2016) Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 265:138–147. https://doi.org/10.1016/j.lithos.2016.09.025

  • Armstrong LS, Walter MJ (2012) Tetragonal almandine pyrope phase (TAPP): retrograde Mg-perovskite from subducted oceanic crust? Eur J Min 24:587–597

    Google Scholar 

  • Armstrong MR et al (2022) Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction. J Appl Phys 132:055901

    Google Scholar 

  • Asimow PD, Lin C, Bindi L, Ma C, Tschauner O, Hollister LS, Steinhardt PJ (2016) Shock synthesis of quasiecrystals with implications for their origin in asteroid collisions. Proc Nat Acad Sci USA 113:7077–7081

    Google Scholar 

  • Beck P, Gillet P, Gautron L, Daniel I, El Goresy A (2004) A new nat ural high-pressure (Na, Ca)-hexaluminosilicate [(CaxNa1 x)Al3+xSi3 xO11] in shocked Martian meteorites. Earth Planet Sci Lett 219:1–12

    Google Scholar 

  • Bercovici D, Karato S (2003) Whole-mantle convection and the transition-zone water filter. Nature 425:39–44

    Google Scholar 

  • Bindi L et al (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. Am Min 96:928–931

    Google Scholar 

  • Bindi L, Chen M, Xie XD (2017) Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Sci Rep 7:42674

    Google Scholar 

  • Bindi L, Xie XD (2018) Shenzhuangite, NiFeS2, the Ni-analogue of chalcopyrite from the suizhou L6 chondrite. Eur J Min 30:165–169

    Google Scholar 

  • Bindi L, Brenker FE, Nestola F, Koch TE, Prior DJ, Lilly K, Krot AN, Bizzarro M, Xie X (2019) Discovery of asimowite, the Fe-analog of wadsleyite, in shock-melted silicate droplets of the suizhou L6 and the quebrada chimborazo 001 CB3.0 chondrites. Am Min 104:775–778

    Google Scholar 

  • Bindi L, Shim S-H, Sharp TG, Xie X (2020) Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite. Sci. Adv. 6: EAAY7893.

    Google Scholar 

  • Bindi L, Sinmyo R, Bykova E, Ovsyannikov SV, McCammon C, Kupenko I, Ismailova L, Dubrovinsky L, Xie X (2021) Discovery of elgoresyite,(Mg, Fe)5Si2O9: implications for novel iron-magnesium silicates in rocky planetary interiors. ACS Earth Space Chem.\ 5:2124–2130

    Google Scholar 

  • Binns RA, Davis RJ, Reed SJB (1969) Ringwoodite, natural (Mg, Fe)2SiO4 spinel in Tenham meteorite. Nature 221:943–945

    Google Scholar 

  • Brenker FE, Nestola F, Brenker L, Peruzzo L, Harris JW (2021) Origin, properties, and structure of breyite. Am Min 106:38–43

    Google Scholar 

  • Britvin SN, Rudashevskii NS, Krivovichev SV, Burns PC, Polekhovsky YS (2002) Allabogdanite, (Fe, Ni)2P, a new mineral from the onello meteorite: the occurrence and crystal structure. Am Min 87:1245–1249

    Google Scholar 

  • Bulatov VK, Girnis AV, Brey GP, Woodland AB, Höfer HE (2019) Ferropericlase crystallization under upper mantle conditions. Contr Min Petr. https://doi.org/10.1007/s00410-019-1582-6.

  • Cavosie AJ, Erickson TM, Timms NE (2015) Nanoscale records of ancient shock deformation: reidite (ZrSiO4) in sandstone at the ordovician rock Elm impact crater. Geology 43:315–318

    Google Scholar 

  • Chao ECT, Shoemaker EM, Madsen MM (1960) First natural occurrence of coesite. Science 132:220–222

    Google Scholar 

  • Chao ECT, Fahey JJ, Littler J, Milton DJ (1962) Stishovite, SiO2, a very high pressure new mineral from meteor crater. Arizona J Geophys Res 67:419

    Google Scholar 

  • Chao ECT (1967) Shock effects, in certain rock-forming minerals. Science 156:192–194

    Google Scholar 

  • Chen M & El Goresy A (2000) The nature of maskelynite in shocked meteorites: not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures. Earth Planet Sci Lett 179:489–502

    Google Scholar 

  • Chen M, Shu JF, Mao HK, Xie XD, Hemley RJ (2003) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proc Nat Acad Sci USA 100:14651–14654

    Google Scholar 

  • Chen M, Shu J, Xie X, Tan D (2019) Maohokite, a post-spinel polymorph of MgFe2O4 in shocked gneiss from the Xiuyan crater in China. Met Planet Sci 54:495–502

    Google Scholar 

  • Collerson KD, Williams Q, Kamber BS, Omori S, Arai H, Ohtani E (2010) Majoritic garnet: A new approach to pressure estimation of shock events in meteorites and the encapsulation of sub-lithospheric inclusions in diamond. Geochim Cosmochim Acta 74:5939–5957

    Google Scholar 

  • Daulton TL, Eisenhour DD, Bernatowicz TJ, Lewis RS, Buseck PR (1996) Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim Cosmochim Acta 60:4853–4872

    Google Scholar 

  • Dera P, Prewitt CT, Boctor NZ, Hemley RJ (2002) Characterization of a high-pressure phase of silica from the martian meteorite shergotty. Am Min 87:1018–1023

    Google Scholar 

  • Dewaele A, et al (2012) High-pressure high-temperature equation of state of KCl and KBr. Phys Rev B 85: 214105. https://doi.org/10.1103/PhysRevB.85.214105

  • Dobrzhinetskaya LF et al (2009) High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proc Nat Acad Sci USA 106:19233–19238

    Google Scholar 

  • Dobrzhinetskaya LF, Wirth R, Yang JS, Green HW, Hutcheon ID, Weber PK, Grew ES (2014) Qingsongite, natural cubic boron nitride: The first boron mineral from the Earth’s mantle. Am Min 99:764–772

    Google Scholar 

  • Du X, Tse JS (2017) Oxygen packing fraction and the structure of silicon and germanium oxide glasses. J Phys Chem B 121:10726–10732

    Google Scholar 

  • El Goresy A, Gillet P, Chen M, Künstler F, Graup G, Stähle V (2001) In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the ries crater. Germany Am Min 86:611–621

    Google Scholar 

  • El Goresy A, Chen M, Gillet P, Dubrovinsky L, Graup G, Ahuja R (2001) A natural shock-induced dense polymorph of rutile with alpha-PbO2 structure in the suevite from the Ries crater in Germany. Earth Planet Sci Lett 192:485–495

    Google Scholar 

  • El Goresy A et al (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites shergotty and zagami. Eur J Min 20:523–528

    Google Scholar 

  • El Goresy A, Dubrovinsky LS, Gillet P, Graup G, Chen M (2010) Akaogiite: An ultra-dense polymorph of TiO2 with seven-coordinated titanium, in shocked garnet gneisses from the ries crater, germany. Am. Min. 95:892–895

    Google Scholar 

  • Essene EJ, Fisher DC (1986) Lightning strike fusion–extreme reduction and metal-silicate immiscibility. Science 234:189–193

    Google Scholar 

  • Fedoraeva AS, Shatskiy A, Litasov KD (2019) The Join CaCO3-CaSiO3 at 6 GPa with implication to Ca-Rich lithologies trapped by kimberlitic diamonds. High Pressure Res 39:547–560. https://doi.org/10.1080/08957959.2019.1660325

    Article  Google Scholar 

  • Fritz J, Greshake A, Klementova M, Wirth R, Palatinus L, Trønnes RG, Fernandes VA, Böttger U, Ferrière L (2020) Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. Am Min 105:1704–1711. https://doi.org/10.2138/am-2020-7393

    Article  Google Scholar 

  • Fritz J, Greshake A, Fernandes VA (2017) Revising the shock classification of meteorites. Met Planet Sci 52:1216–1232

    Google Scholar 

  • Galuskin EV, Kusz J, Galuskina IO, Książek M, Vapnik Y, Zieliński G (2022) Discovery of terrestrial andreyivanovite, FeCrP, and the effect of Cr and V substitution in barringerite-allabogdanite low-pressure transition. Am Min. (in press)

    Google Scholar 

  • Gibbs GV, Wang D, Hin C, Ross NL, Cox DF, Crawford TD, Spackman MA, Angel RJ (2012) Properties of atoms under pressure: bonded interactions of the atoms in three perovskites. J Chem Phys 137:164313

    Google Scholar 

  • Gillet P et al (2000) Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite. Science 287:1633–1636

    Google Scholar 

  • Glass BP, Liu SB, Leavens PB (2002) Reidite: An impact-produced high-pressure polymorph of zircon found in marine sediments. Am Min 87:562–565

    Google Scholar 

  • Ghosh S, Tiwari K, Miyahara M, Rohrbach A, Vollmer C, Stagno V, Ohtani E, Ray D (2021) Natural Fe-bearing aluminous bridgmanite in the Katol L6 chondrite. Proc Nat Acad Sci USA 118: 2108736118. https://doi.org/10.1073/pnas.2108736118

  • Greenwood RC, Schmitz B, Bridges JC, Hutchison R, Franchi IA (2007) Disruption of the L chondrite parent body: New oxygen isotope evidence from Ordovician relict chromite grains. Met Planet Sci 262:204–213

    Google Scholar 

  • Gu T, Pamato MG, Novella D, Alvaro M, Fournelle J, Brenker FE, ... & Nestola F (2022) Hydrous peridotitic fragments of Earth’s mantle 660 km discontinuity sampled by a diamond. Nature Geoscience, 15(11), 950–954

    Google Scholar 

  • Haggerty SE (1991) Oxide mineralogy of the upper mantle. Rev Min 25:355–416

    Google Scholar 

  • Harris J, Hutchison MT, Hursthouse M, Light M, Harte B (1997) A new tetragonal silicate mineral occurring as inclusions in lower-mantle diamonds. Nature 387:486–488

    Google Scholar 

  • Head JN, Melosh HJ, Ivanov BA (2002) Martian meteorite launch: high-speed ejecta from small craters. Science 298:1752–1756

    Google Scholar 

  • Hu JP, Sharp TG (2017) Back-transformation of high-pressure minerals in shocked chondrites: low-pressure mineral evidence for strong shock. Geochim Cosmochim Acta 215:277–294

    Google Scholar 

  • Huang S, Tschauner O, Yang S, Humayun M, Liu W, Gilbert Corder SN, Bechtel HA, Tischler J (2020) HIMU geochemical signature originating from the transition zone. Earth Planet Sci Lett 542:116323. https://doi.org/10.1016/j.epsl.2020.116323

    Article  Google Scholar 

  • Ivanova MA, Petaev MI, MacPherson GJ, Nazarov MA, Taylor LA, Wood JA (2002) The first known occurrence of calcium monoaluminate, in a calcium aluminum-rich inclusion from the CH chondrite northwest africa 470. Met Planet Sci 37:1337–1444

    Google Scholar 

  • Kagi H, Lu R, Davidson P, Goncharov AF, Mao HK, Hemley RJ (2000) Evidence for ice VI as an inclusion in cuboid diamonds from high P-T near infrared spectroscopy. Min Mag 64:1089–1097

    Google Scholar 

  • Kenkmann T, Hornemann U, Stöffler D (2000) Experimental generation of shock-induced pseudotachylites along lithological interfaces. Met Planet Sci 35:1275–1290

    Google Scholar 

  • Kimura M, Mikouchi T, Suzuki A, Miyahara M, Ohtani E, El Goresy A (2009) Kushiroite, CaAlAlSiO6: a new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. Am Min 94:1479–1482

    Google Scholar 

  • Ko B, Greenberg E, Prakapenka VB, Alp EE, Bi WL, Meng Y, Zhang DZ, Shin SH (2022) Calcium dissolution in bridgmanite in the Earth's deep mantle. Nature 611: 88–90. https://doi.org/10.1038/s41586-022-05237-4

  • Krot AN, Nagashima K, Rossman GR (2020) Machiite, Al2Ti3O9, a new oxide mineral from the Murchison carbonaceous chondrite: a new ultra-refractory phase from the solar nebula. Am Min 105:239–243

    Google Scholar 

  • Lazarz JD, Dera P, Hu Y, Meng Y, Bina CR, Jacobsen SD (2019) High-pressure phase transitions of clinoenstatite. Am Min 104: 897–904. https://doi.org/10.2138/am-2019-6740

  • Levien L, Prewitt CT, Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Min 65:920–930

    Google Scholar 

  • Li C, Soh KCK, Wu P (2004) Formability of ABO3 perovskites. J Alloy Comp 372:40–48

    Google Scholar 

  • Litasov KD, Shatskiy A, Ohtani E (2014) Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3–16 GPa. Earth Planet Sci Lett 391:87–99

    Google Scholar 

  • Luo SN, Tschauner O, Asimow PD, Ahrens TJ (2001) A new dense silica polymorph: A possible link between tetrahedrally and octahedrally coordinated silica. Am Min 86:327–332. https://doi.org/10.2138/am-2004-2-327

    Article  Google Scholar 

  • Ma C, Rossman GR (2008) Discovery of tazheranite (cubic zirconia) in the allende meteorite. Geochim Cosmochim Acta 72(12S):A577

    Google Scholar 

  • Ma C, Rossman GR (2009) Tistarite, Ti2O3, a new refractory mineral from the allende meteorite. Am Min 94:841–844

    Google Scholar 

  • Ma C, Rossman GR (2009) Davisite, CaScAlSiO6, a new pyroxene from the allende meteorite. Am Min 94:845–848

    Google Scholar 

  • Ma C, Rossman GR (2009) Grossmanite, CaTi3+AlSiO6, a new pyroxene from the Allende meteorite. Am Min 94:1491–1494

    Google Scholar 

  • Ma C, Simon SB, Rossman GR, Grossman L (2009) Calcium Tschermak’s pyroxene, CaAlAlSiO6, from the Allende and murray meteorites: EBSD and micro-raman characterizations. Am Min 94:1483–1486

    Google Scholar 

  • Ma C (2011) Discovery of meteoritic lakargiite (CaZrO3), a new ultra-refractory mineral from the Acfer 094 carbonaceous chondrite. Met Planet Sci 46(S1):A144

    Google Scholar 

  • Ma C, Beckett JR, Tschauner O, Rossman GR (2011) Thortveitite (Sc2Si2O7), the first solar silicate? Met Planet Sci 46(S1):A144

    Google Scholar 

  • Ma C, Kampf AR, Connolly HC Jr, Beckett JR, Rossman GR, Sweeney Smith SA, Schrader DL (2011) Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite. Am Min 96:709–715

    Google Scholar 

  • Ma C (2012) Discovery of meteoritic eringaite, Ca3(Sc, Y, Ti)2Si3O12, the first solar garnet? Met Planet Sci 47(S1):A256

    Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Rossman GR, Liu W (2012) Panguite, (Ti4+, Sc, Al, Mg, Zr, Ca)1.8O3, a new ultra-refractory titania mineral from the allende meteorite: synchrotron micro-diffraction and EBSD. Am Min 97:1219–1225

    Google Scholar 

  • Ma C, Krot AN, Bizzarro M (2013) Discovery of dmisteinbergite (hexagonal CaAl2Si2O8) in the allende meteorite: a new member of refractory silicates formed in the solar nebula. Am Min 98:1368–1371

    Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Rossman GR, Liu W (2013) Kangite, (Sc, Ti, Al, Zr, Mg, Ca,□)2O3, a new ultrarefractory scandia mineral from the allende meteorite: synchrotron micro-laue diffraction and electron backscatter diffraction. Am Min 98:870–878

    Google Scholar 

  • Ma C, Beckett JR, Rossman GR (2014) Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo, Ru, Fe), two new minerals from an ultrarefractory inclusion from the allende meteorite. Am Min 99:654–666

    Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Liu Y, Rossman GR, Zhuravlev K, Prakapenka VB, Dera P, Taylor LA (2015) Tissintite, (Ca, Na,□)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopy-roxene in the Tissint martian meteorite. Earth Planet Sci Lett 422:194–205

    Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Liu Y, Rossman GR, Sinogeikin SV, Smith JS, Taylor LA (2016) Ahrensite, gamma-Fe2SiO4, a new shock-metamorphic mineral from the tissint meteorite: im-plications for the tissint shock event on Mars. Geochim Cosmochim Acta 184:240–256

    Google Scholar 

  • Ma C, Tschauner O (2016) Discovery of tetragonal almandine, (Fe, Mg, Ca, Na)3(Al, Si, Mg)2Si3O12, a new high-pressure mineral in shergotty. Met Planet Sci 51:A434

    Google Scholar 

  • Ma C, Krot AN, Nagashima K (2017) Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from the Acfer 214 CH carbonaceous chondrite: a new refractory phase from the solar nebula. Am Min 102:1556–1560

    Google Scholar 

  • Ma C, Tschauner O, Beckett JR (2017b) A new high-pressure calcium aluminosilicate (CaAl2Si3.5O11) in martian meteorites: Another after-life for plagioclase and connections to the CAS phase. 48th Lun Planet Sci Conf 48: 1128.

    Google Scholar 

  • Ma C, Yoshizaki T, Krot AN, Beckett JR, Nakamura T, Nagashima K, Muto J, Ivanova MA (2017) Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. Met Planet Sci 52(S1):A6023

    Google Scholar 

  • Ma C (2018) Discovery of meteoritic baghdadite, Ca3(Zr, Ti)Si2O9, in Allende: The first solar silicate with structurally essential zirconium? Met Planet Sci 53(S1):A6358

    Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Rossman GR, Prescher C, Prakapenke VB, Bechtel HA, McDowell A (2018) Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the zagami martian meteorite. Met Planet Sci 53:50–61

    Google Scholar 

  • Ma C, Tschauner O, Beckett JR (2019a) A closer look at martian meteorites: discovery of the new mineral zagamiite, CaAl2Si3.5O11, a shock-metamorphic, high-pressure, calcium aluminosilicate. 9th Inter Conf Mars 9: 6138.

    Google Scholar 

  • Ma C, Tschauner O, Beckett JR (2019b) Discovery of a new high-pressure silicate phase, (Fe,Mg,Cr,Ti,Ca,□)2(Si,Al)O4 with a tetragonal spinelloid structure, in a shock melt pocket from the Tissint Martian meteorite. 50th Lun Planet Sci Conf 50: 1460.

    Google Scholar 

  • Ma C, Tschauner O, Beckett J, Greenberg E, Prakapenka VB (2019) Chenmingite, FeCr2O4 in the CaFe2O4-type structure, a shock-induced, high-pressure mineral in the tissint martian meteorite. Am Min 104:1521–1525

    Google Scholar 

  • Ma C, Tschauner O, Bindi L, Beckett JR, Greenberg E, Prakapenka VB (2019) A vacancy-rich, partially inverted spinelloid silicate, (Mg, Fe, Si)2(Si,□)O4, as a major matrix phase in shock melt veins of the Tenham and Suizhou L6 chondrites. Met Planet Sci 54:1907–1918

    Google Scholar 

  • Ma C (2020) Discovery of meteoritic calzirtite in leoville: a new ultrarefractory phase from the solar nebula. Goldschmidt 2020, Abstract No. 1674.

    Google Scholar 

  • Ma C, Krot AN, Beckett JR, Nagashima K, Tschauner O, Rossman GR, Simon SB, Bischoff A (2020) Warkite, Ca2Sc6Al6O20, a new mineral in carbonaceous chondrites and a key-stone phase in ultrarefractory inclusions from the solar nebula. Geochim Cosmochim Acta 277:52–86

    Google Scholar 

  • Ma C, Beckett JR (2021) Kaitianite, Ti3+2Ti4+O5, a new titanium oxide mineral from allende. Met Planet Sci 56:96–107

    Google Scholar 

  • Ma C, Beckett JR, Prakapenka V (2021a) Discovery of new high-pressure mineral tschaunerite, (Fe2+)(Fe2+Ti4+)O4, a shock-induced, post-spinel phase in the Martian meteorite Shergotty. 52nd Lun Planet Sci Conf 52: 1720.

    Google Scholar 

  • Ma C, Krot AN, Paque JM, Tschauner O, Nagashima K (2021) Beckettite, Ca2V6Al6O20, a new mineral in a type a refractory inclusion from allende and clues to processes in the early solar system. Geochim Cosmochim Acta 56:2265–2272

    Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Prakapenka V (2021c) Discovery of feiite (Fe2+2(Fe2+Ti4+)O5) and liuite (GdFeO3-Type FeTiO3), two new shock-induced, high-pressure minerals in the Martian meteorite Shergotty. 52nd Lun Planet Sci Conf 52: 1681.

    Google Scholar 

  • Ma C, Krot AN (2022) Louisfuchsite, IMA 2022–024, in: CNMNC Newsletter 68, Eur J Mineral 34. https://doi.org/10.5194/ejm-34-385-2022.

  • Ma C, Rubin AE (2022) Zolenskyite, FeCr2S4, a new sulfide mineral from the Indarch meteorite. Am Min 107:1030–1033

    Google Scholar 

  • Ma C, Beckett JR, Tissot FLH, Rossman GR (2022) New minerals in type a inclusions from allende and clues to processes in the early solar system: paqueite, Ca3TiSi2(Al, Ti, Si)3O14, and burnettite, CaVAlSiO6. Met Planet Sci 57:1300–1324

    Google Scholar 

  • Ma C, Tschauner O, Kong M, Beckett JR, Greenberg E, Prakapenka VB, Lee Y (2022) A high-pressure, clinopyroxene-structured polymorph of albite in highly shocked terrestrial and meteoritic rocks. Am Min 107:625–630

    Google Scholar 

  • Magna T, Deutsch A, Mezger K, Skala R, Seitz HM, Mizera J, Randa Z, Adolph L (2011) Lithium in tektites and impact glasses: Implications for sources, histories and large impacts. Geochim Cosmochim Acta 75: 2137–2158. https://doi.org/10.1016/j.gca.2011.01.032

  • Manjon FJ et al (2007) Crystal stability and pressure-induced phase transitions in scheelite AWO(4) (A = Ca, Sr, Ba, Pb, Eu) binary oxides. II: towards a systematic understanding. Phys Stat Sol B 244:295–302

    Google Scholar 

  • McCormick TC (1986) Crystal-chemical aspects of nonstoichiometric pyroxenes. Am Min 71:1434–1440

    Google Scholar 

  • Melosh HJ, Ivanov BA (2002) Impact crater collapse. Ann Rev Earth Planet Sci 27: 385–415. https://doi.org/10.1146/annurev.earth.27.1.385

  • Meyer NA, Wenz MD, Walsh JPS, Jacobsen SD, Locock AJ, Harris JW (2019) Goldschmidtite, (K, REE, Sr)(Nb, Cr) O3: A new perovskite supergroup mineral found in diamond from Koffiefontein, South Africa Am Min 104:1345–1350

    Google Scholar 

  • Mochalov AG et al (1998) Hexaferrum (Fe, Ru), (Fe, Os), (Fe, Ir)-A new mineral. Zap Vseross Mineral Obshch 127:41–51

    Google Scholar 

  • Murakami M et al (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Google Scholar 

  • Nada R, Catlow CRA, Dovesi R, Pisani C (1990) An ab ignition Hartee-fock study of alpha-quartz and stishovite. Phys Chem Min 17:353–362

    Google Scholar 

  • Navon O, Wirth R, Schmidt C, Jablon BM, Schreiber A, Emmanuel S (2017) Solid molecular nitrogen (delta-N-2) inclusions in juina diamonds: exsolution at the base of the transition zone. Earth Planet Sci Lett 464:237–247

    Google Scholar 

  • Nemeth P et al (2014) Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat Comm 5:5447

    Google Scholar 

  • Nestola F et al (2016) Tetragonal almandine-pyrope phase, TAPP: finally a name for it, the new mineral jeffbenite. Min Mag 80:1219–1232

    Google Scholar 

  • Nestola F et al (2018) CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555:237–239

    Google Scholar 

  • Nishi M et al (2022) Bridgmanite freezing in shocked meteorites due to amorphization-induced stress. Geophys Res Lett 49: 2022GL098231

    Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D layer. Nature 430:445–448

    Google Scholar 

  • Prewitt and Downs, 1998 Prewitt CT, Downs RT (1998) High-pressure crystal chemistry. Rev Min 37:283−317

    Google Scholar 

  • Price GD et al (1983) Wadsleyite, natural beta-(Mg, Fe)2SiO4 from the peace river Mmeteorite. Can Min 21:29–35

    Google Scholar 

  • Rahm, M, Ångqvist A, Rahm JM, Erhart P, Cammi R (2020) Non-bonded radii of the atoms under compression. Chem-Phys Chem 21: 2441–2453.

    Google Scholar 

  • Richet P, Mao HK, Bell PM (1988) Static compression and equation of state of CaO to 1.35 Mbar. J Geophys Res 93: 15279–15288. https://doi.org/10.1029/JB093iB12p15279

  • Rubin AE, Ma C (2017) Meteoritic minerals and their origins. Chemie der Erde–Geochem 77: 325–385.

    Google Scholar 

  • Schrauder M, Navon O (1993) Solid carbon-dioxide in a natural diamond. Nature 365:42–44

    Google Scholar 

  • Shannon RD, Prewitt CT (1969) Coordination and volume changes accompanying high-pressure phase transformations of oxides. Mat Res Bull 4:57–59

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767

    Google Scholar 

  • Sharp TG, Lingemann CM, Dupas C, Stöffler D (1997) Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science 280:352–355

    Google Scholar 

  • Sharp TG, DeCarli PS (2006). Shock effects in meteorites, In: Meteorites and the Early Solar System II. Publisher: University of Arizona Press, Tucson, pp 653-677.

    Google Scholar 

  • Smith JV, Mason B (1970) Pyroxene-garnet transformation in coorara meteorite. Science 168:832–834

    Google Scholar 

  • Stachel T et al (2000) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib Min Petr 140:16–27

    Google Scholar 

  • Stähle V, Altherr R, Nasdala L, Ludwig T (2011) Ca-rich majorite derived from high-temperature melt and thermally stressed hornblende in shock veins of crustal rocks from the Ries impact crater (Germany). Contrib Min Petr 161:275–291

    Google Scholar 

  • Stähle V, Chanmuang NC, Schwarz WH, Trieloff M, Varychev A (2022) Newly detected shock-induced high-pressure phases formed in amphibolite clasts of the suevite breccia (Ries impact crater, Germany): Liebermannite, kokchetavite, and other ultrahigh-pressure phases. Contrib Min Petr 177(8), 80

    Google Scholar 

  • Stöffler D, Hamann C, Metzler K (2018) Shock metamorphism of planetary silicate rocks and sediments: proposal for an updated classification system. Met Planet Sci 53:5–49

    Google Scholar 

  • Taggart JE, Foord E, Rosenzweig A, Hanson T (1988) Scrutinyite, natural occurrences of alpha PbO2 from bingham, new mexico. Can Min 26:905–910

    Google Scholar 

  • Tao R, Fei YW (2021) Recycled calcium carbonate is an efficient oxidation agent under deep upper mantle conditions. Comm Earth Environ 1. https://doi.org/10.1038/s43247-021-00116-8.

  • Tomioka N, Fujino K (1997) Natural (Mg, Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite. Science 277:1084–1086

    Google Scholar 

  • Tomioka N, Fujino K (1999) Akimotoite, (Mg, Fe)SiO(3), a new silicate mineral of the ilmenite group in the Tenham chondrite. Am Min 84:267–271

    Google Scholar 

  • Tomioka N, Miyahara M (2017) High-pressure minerals in shocked meteorites. Met Planet Sci 52:2017–2039

    Google Scholar 

  • Tomioka N, Bindi L, Okuchi T, Miyahara M, Iitaka T, Li Z, Kawatsu T, Xie X, Porevjav N, Tani R, Kodama Y (2021) Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites. Comm Earth & Environ 2:1–8

    Google Scholar 

  • Tschauner O et al (2009) Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes. Proc Nat Acad Sci USA 106:13691–13695

    Google Scholar 

  • Tschauner O, Ma C, Beckett JR, Prescher C, Prakapenka VB, Rossman GR (2014) Discovery of bridgmanite, the most abundant mineral in earth, in a shocked meteorite. Science 6213:1100–1102. https://doi.org/10.1126/science.1259369

    Article  Google Scholar 

  • Tschauner O et al (2018a) Ice-VII inclusions in diamonds–evidence for aqueous fluid in the Earth’s deep mantle. Science 359:1136–1139

    Google Scholar 

  • Tschauner O, Ma C, Prescher C, Prakapenka VB (2018b) Structure analysis and conditions of formation of akimotoite in the Tenham chondrite. Met Planet Sci 53:62–74

    Google Scholar 

  • Tschauner O (2019) High-pressure minerals. Am Min 104: 1701–1731. https://doi.org/10.2138/am-2019-6594.

  • Tschauner O, Ma C, Lanzirotti A, Newville MG (2020) Riesite, a new high pressure polymorph of TiO2 from the ries impact structure. Minerals 10:78

    Google Scholar 

  • Tschauner O, Ma C, Newville MG, Lanzirotti A (2020) Structure analysis of natural wangdao-deite-LiNbO3-Type FeTiO3. Minerals 10:1072

    Google Scholar 

  • Tschauner O, Ma C, Spray JG, Greenberg E, Prakapenka VB (2021a). Stöfflerite, (Ca, Na)(Si, Al) 4O8 in the hollandite structure: a new high-pressure polymorph of anorthite from martian meteorite NWA 856. Am Min 106: 650-655

    Google Scholar 

  • Tschauner O, Huang S, Yang S, Humayun M, Liu W, Gilbert Corder SN, Bechtel HA, Tischler J, Rossman GR (2021) Discovery of davemaoite, CaSiO3-Perovskite, as a mineral from the lower mantle. Science 6569:891–894. https://doi.org/10.1126/science.abl8568

    Article  Google Scholar 

  • Tschauner O (2022a) An observation related to the pressure dependence of ionic radii. Geosciences 12:246. https://doi.org/10.3390/geosciences12060246

  • Tschauner O (2022b) Corresponding states for volumes of elemental solids at their pressures of polymorphic transformation crystals 12: 1698. https://doi.org/10.3390/cryst12121698

  • Tschauner O, Navon O, Schmidt C (2022c) Deltanitrogen, IMA 2019–067b, in: CNMNC Newsletter 69, Eur J Mineral 34: 463. https://doi.org/10.5194/ejm-34-463-2022.

  • Tschauner O, Huang S, Humayun M, Liu W, Rossman GR (2022d) Response to Comment on ‘Discovery of Davemaoite, CaSiO3-Perovskite, as a mineral from the lower mantle’. Science 6593. https://doi.org/10.1126/science.abo2029.

  • Walter MJ, KohnSC PDG, Shirey SB, Speich L, Stachel T, Thomson AR, Yang J (2022) Comment on ‘discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle.’ Science 376(6593):590–590

    Google Scholar 

  • Wang LP, Essene EJ, Zhang YX (1999) Mineral inclusions in pyrope crystals from garnet ridge, arizona, USA: implications for processes in the upper mantle. Contr Min Petr 135:164–178

    Google Scholar 

  • Wang W, Tschauner O, Huang S, Wu Z, Meng Y, Bechtel HA, Mao HK (2021) Coupled deep-mantle carbon-water cycle: evidence from lower-mantle diamonds. The Innovation 2:100117. https://doi.org/10.1016/j.xinn.2021.100117

    Article  Google Scholar 

  • Willgallis A, Siegmann E, Hettiaratchi T (1983) Srilankite, a new Zr-Ti-oxide mineral. N Jahrb Min 4:151–157

    Google Scholar 

  • Woodland AB, Schollenbruch K, Koch M, Ballaran TB, Angel RJ, Frost DJ (2013) Fe4O5 and its solid solutions in several simple systems. Contrib Min Petr 166:1677–1686

    Google Scholar 

  • Xie XD, Chen M, Wang DQ (2001) Shock-related mineralogical features and P-T history of the Suizhou L6 chondrite. Eur J Min 13:1177–1190

    Google Scholar 

  • Xie XD, Minitti ME, Chen M, Mao HK, Wang DQ, Shu JF, Fei YW (2003) Tuite, gamma-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. Eur J Min 15:1001–1005

    Google Scholar 

  • Xie X, Gu X, Yang H, Chen M, Li K (2020) Wangdaodeite, the LiNbO3 -structured high-pressure polymorph of ilmenite, a new mineral from the Suizhou L6 chondrite. Met Planet Sci 55:184–192

    Google Scholar 

  • Xiong Y, Zhang A-C, Kawasaki N, Ma C, Sakamoto N, Chen J-N, Gu L-X, Yurimoto H (2020) Mineralogical and oxygen isotopic study of a new ultrarefractory inclusion in the Northwest Africa 3118 CV3 chondrite. Met Planet Sci 55:2164–2205

    Google Scholar 

  • Zhang AC, Ma C, Sakamoto N, Wang RC, Hsu WB, Yurimoto H (2015) Mineralogical anatomy and implications of a Ti–Sc-rich ultrarefractory inclusion from sayh al uhaymir 290 CH3 chondrite. Geochim Cosmochim Acta 163:27–29

    Google Scholar 

  • Zhu Q, Oganov AR, Lyakhov AO (2013) Novel stable compounds in the Mg-O system under high pressure. Phys Chem Chem Phys 15:7696–7700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Tschauner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tschauner, O., Ma, C. (2023). Discovering High-Pressure and High-Temperature Minerals. In: Bindi, L., Cruciani, G. (eds) Celebrating the International Year of Mineralogy. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-031-28805-0_8

Download citation

Publish with us

Policies and ethics