
Descriptive Statistics 

This chapter reviews essential univariate and bivariate analysis concepts that 
underpin the more complex statistical methods in subsequent chapters of this book. 
Univariate and bivariate analyses can be either descriptive or inferential; this chapter 
will cover descriptive techniques while chapter “Statistical Inference” will cover 
inferential methods. 

Descriptive statistics are rudimentary analysis techniques that help describe and 
summarize a variable’s data in a meaningful way. Descriptive statistics do not allow 
us to draw any conclusions beyond the available data but are helpful in interpreting 
the data at hand. 

Univariate Analysis 

Univariate analysis is the simplest form of statistical analysis, which explores each 
variable independently. 

There are two categories of univariate analyses: (a) measures of central 
tendency describe the central position in a set of data, and (b) measures of spread 
describe how dispersed the data are. 

Measures of Central Tendency 

Mean 

Perhaps the most intuitive measure of central tendency is the mean, which is often 
referred to as the average. The mean of a sample is denoted by . x̄ and is defined by: 
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. x̄ =

n∑

i=1

xi

n

The population mean is denoted by . μ and is defined by: 

. μ =

n∑

i=1

xi

N

The mean of a set of numeric values can be calculated using the mean() function 
in R: 

# Fill vector x with integers 
x <- c(1, 2, 3, 3, 100, 200, 300) 

# Calculate average of vector x 
mean(x) 

## [1] 87 

Median 

The median represents the midpoint in a sorted vector of numbers. For vectors with 
an even number of values, the median is the average of the middle two numbers; it 
is simply the middle number for vectors with an odd number of values. When the 
distribution of data is skewed or there is an extreme value, the median may be a 
better measure of central tendency. 

The median() function in R can be used to handle the sorting and midpoint 
selection: 

# Calculate median of vector x 
median(x) 

## [1] 3 

In this example, the median is only 3 while the mean is .x̄ = 87. Large 
deltas between mean and median values provide important information about the 
distribution of data. 

Here, a single value has significant leverage on these measures of central 
tendency. To demonstrate, let us eliminate one instance of 3 from the vector and 
recalculate the mean and median:
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# Fill vector x1 with integers 
x1 <- c(1, 2, 3, 100, 200, 300) 

# Calculate mean of vector x1 
mean(x1) 

## [1] 101 

# Calculate median of vector x1 
median(x1) 

## [1] 51.5 

By removing a single value from this vector, the mean increased from .x̄ = 87 to 
.x̄ = 101 and the median from 3 to 51.5! 

Note that differences in mean and median values for x and x1 are not due to an 
extreme value (outlier), as 3 is similar to half of the values in the vector. However, in 
some cases extreme values may be the cause of large discrepancies between mean 
and median values since the mean can be sensitive to extreme values. Consider the 
following set of values: 

# Fill vector x2 with integers 
x2 <- c(1, 2, 3, 4, 5, 1000) 

# Calculate mean of vector x2 
mean(x2) 

## [1] 169.1667 

# Calculate median of vector x2 
median(x2) 

## [1] 3.5 

In this case, the value of 1000 has a significant influence on the mean (.x̄ = 169.2) 
but the median of 3.5 is representative of the middle of values in this vector. 

The reality is that both the mean and median can be misleading—and even 
inappropriate. It is important to understand how the data are distributed around 
these centers. It would not be too useful to calculate median organization tenure, for 
example, for a hyper-growth company that has hired the majority of its workforce 
in the past few months; long-tenured employees would be lost in this metric.
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The larger the n-count, the less influential an extreme value will be on . x̄. As we  
will learn in chapter “Statistical Inference”, sample size is fundamental to our ability 
to achieve precise estimates of population parameters based on sample statistics. 

While the focus of this section is central tendency, it is important to recognize that 
outlying values are often the more actionable data points in an analysis since these 
cases may represent those with significantly different experiences relative to the 
average employee. Understanding the distribution of data is critical, and the spread 
of data around measures of central tendency will receive considerable attention 
throughout this book. 

Mode 

The mode is the most frequent number in a set of values. 
While mean() and median() are standard functions in R, mode() returns the 

internal storage mode of the object rather than the statistical mode of the data. We 
can easily create a function to return the statistical mode(s): 

# Fill vector x2 with integers 
x3 <- c(1, 2, 3, 3, 100, 200, 300, 300) 

# Create function to calculate statistical mode(s) 
stat.mode <- function(x) { 

ux <- unique(x) 
tab <- tabulate(match(x, ux)) 
ux[tab == max(tab)] 

} 

# Return mode(s) of vector x3 
stat.mode(x3) 

## [1] 3 300 

In this case, we have a bimodal distribution since both 3 and 300 occur most 
frequently. 

Range 

The range is the difference between the maximum and minimum values in a set of 
numbers. 

The range() function in R returns the minimum and maximum numbers: 

# Return lowest and highest values of vector x 
range(x)
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## [1] 1 300 

We can leverage the max() and min() functions to calculate the difference 
between these values: 

# Calculate range of vector x 
max(x, na.rm = TRUE) - min(x, na.rm = TRUE) 

## [1] 299 

In people analytics, there are many conventional descriptive metrics—largely 
counts, percentages, and averages cut by various time (e.g., day, month, quarter, 
year) and categorical (e.g., department, job, location, tenure band) dimensions. Here 
is a sample of common measures:

• Time to Fill: average days between job requisition posting and offer accep-
tance

• Offer Acceptance Rate: percent of offers extended to candidates that are 
accepted

• Pass-Through Rate: percent of candidates in a particular stage of the recruiting 
process who passed through to the next stage

• Progress to Goal: percent of approved positions that have been filled
• cNPS/eNPS: candidate and employee NPS (.−100 to 100)
• Headcount: counts and percent of workforce across worker types (employee, 

intern, contingent)
• Diversity: counts and percent of workforce across gender, ethnicity, and 

generational cohorts
• Positions: count and percent of open, committed, and filled seats
• Hires: counts and rates
• Career Moves: counts and rates
• Turnover: counts and rates (usually terms/average headcount over the period)
• Workforce Growth: net changes over time, accounting for hires, internal 

transfers, and exits
• Span of Control: ratio of people leaders to individual contributors
• Layers/Tiers: average and median number of layers removed from CEO
• Engagement: average score or top-box favorability score 

Measures of Spread 

Variance 

Variance is a measure of variability in the data. Variance is calculated using the 
average of squared differences—or deviations—from the mean.



102 Descriptive Statistics

Variance of a population is defined by: 

. σ 2 =

n∑

i=1

(xi − μ)2

N

Variance of a sample is defined by: 

. s2 =

n∑

i=1

(xi − x̄)2

n − 1

It is important to note that since differences are squared, the variance is always 
non-negative. In addition, we cannot compare these squared differences to the 
arithmetic mean since the units are different. For example, if we calculate the 
variance of annual compensation measured in USD, variance should be expressed 
as .USD2 while the mean exists in the original USD unit of measurement. 

In R, the sample variance can be calculated using the var() function: 

# Load library 
library(peopleanalytics) 

# Load data 
data("employees") 

# Calculate sample variance for annual compensation 
var(employees$annual_comp) 

## [1] 1788038934 

Sample statistics are the default in R. Since the population variance differs from 
the sample variance by a factor of .s2( n−1

n
), it is simple to convert output from var() 

to the population variance: 

# Store number of observations 
n = length(employees$annual_comp) 

# Calculate population variance for annual compensation 
var(employees$annual_comp) * (n - 1) / n 

## [1] 1786822581
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Standard Deviation 

The standard deviation is simply the square root of the variance. 
The standard deviation of a population is defined by: 

. σ =

√√√√√√

n∑

i=1

(xi − μ)2

N

The standard deviation of a sample is defined by: 

. s =

√√√√√√

n∑

i=1

(xi − x̄)2

n − 1

Since a squared value can be converted back to its original units by taking its 
square root, the standard deviation expresses variability around the mean in the 
variable’s original units. 

In R, the sample standard deviation can be calculated using the sd() function: 

# Calculate sample standard deviation for annual compensation 
sd(employees$annual_comp) 

## [1] 42285.21 

Since the population standard deviation differs from the sample standard devia-

tion by a factor of .s

√
n−1
n

, it is simple to convert output from sd() to the population 
standard deviation: 

# Calculate population standard deviation for annual 
compensation↪→ 

sd(employees$annual_comp) * sqrt((n - 1) / n) 

## [1] 42270.82 

Quartiles 

A quartile is a type of quantile that partitions data into four equally sized parts after 
ordering the data. Each quartile is equally sized with respect to the number of data 
points—not the range of values in each. Quartiles are also related to percentiles. 
For example, Q1 is the 25th percentile—the value at or below which 25% of values
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lie. Percentiles are likely more familiar than quartiles, as percentiles show up in the 
height and weight measurements of babies, performance on standardized tests like 
the SAT and GRE, among other things. 

The Interquartile Range (IQR) represents the difference between Q3 and Q1 
cut point values (the middle two quartiles). The IQR is sometimes used to detect 
extreme values in a distribution; values less than .Q1 − 1.5 ∗ IQR or greater than 
.Q3 + 1.5 ∗ IQR are generally considered outliers. 

In R, the quantile() function returns the values that bookend each quartile: 

# Return quartiles for annual compensation 
quantile(employees$annual_comp) 

## 0% 25% 50% 75% 100% 
## 62400 99840 137280 174200 208000 

Based on this output, we know that 25% of people in our data earn annual com-
pensation of .99,840 USD or less, .137,280 USD is the median annual compensation, 
and 75% of people earn annual compensation of .174,200 USD or less. 

We can also return a specific percentile value using the probs argument in the 
quantile() function. For example, if we want to know the 80th percentile annual 
compensation value, we can execute the following: 

# Return 80th percentile annual compensation value 
quantile(employees$annual_comp, probs = .8) 

## 80% 
## 180960 

In addition, the summary() function returns several common descriptive statis-
tics for an object: 

# Return common descriptives 
summary(employees$annual_comp) 

## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## 62400 99840 137280 137054 174200 208000 

Box plots are a common way to visualize the distribution of data. Box plots are not 
usually found in presentations to stakeholders, since they are a bit more technical 
and often require explanation, but these are very useful to analysts for understanding 
data distributions during the EDA phase. 

Let us visualize the spread of annual compensation by education level and gender 
using the geom_boxplot() function from the ggplot2 library:
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# Load library 
library(ggplot2) 

# Produce box plots to visualize compensation distribution by 
education level and gender↪→ 

ggplot2::ggplot(employees, aes(x =  as.factor(ed_lvl), y =  
annual_comp, color = gender)) +↪→ 

ggplot2::geom_boxplot() + 
ggplot2::labs(x =  "Education Level", y =  "Annual 

Compensation") +↪→ 

ggplot2::guides(col = guide_legend("Gender")) + 
ggplot2::theme_bw() 
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Box plots can be interpreted as follows: 

• Horizontal lines represent median compensation values.
• The box in the middle of each distribution represents the IQR.
• The end of the line above the IQR represents the threshold for outliers in the 

upper range: .Q3 + 1.5 ∗ IQR.
• The end of the line below the IQR represents the threshold for outliers in the 

lower range: .Q1 − 1.5 ∗ IQR.
• Data points represent outliers: .x > Q3 + 1.5 ∗ IQR or .x < Q1 − 1.5 ∗ IQR. 

While box plots are pervasive in statistically oriented disciplines, they can be 
misleading. Figure 1 illustrates how information about the shape of a distribution
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Fig. 1 The number range with the highest frequency (0–9) is not as apparent with a box plot (left) 
relative to the bar chart (right) 

can be lost on a box plot. The range with the highest frequency (0–9) is not as 
obvious in the box plot relative to the bar chart. 
Box plot alternatives such as violin plots, jittered strip plots, and raincloud plots 
are often more helpful in understanding data distributions. Figure 2 shows the 
juxtaposition of a raincloud plot against a box plot. While it may seem like an 
oxymoron, in this case the spread of data is clearer in the rain. 

Skewness 

Skewness is a measure of the horizontal distance between the mode and mean— 
a representation of symmetric distortion. In most practical settings, data are not 
normally distributed. That is, the data are skewed either positively (right-tailed 
distribution) or negatively (left-tailed distribution). The coefficient of skewness is 
one of many ways in which we can ascertain the degree of skew in the data. The 
skewness of sample data is defined as: 

.Sk = 1

n

n∑

i=1

(xi − x̄)3

s3
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Fig. 2 Raincloud plot superimposed on a box plot to illustrate the data distribution 

A positive skewness coefficient indicates positive skew, while a negative coef-
ficient indicates negative skew. The order of descriptive statistics can also be 
leveraged to ascertain the direction of skew in the data:

• Positive skewness: mode < median < mean
• Negative skewness: mode > median > mean
• Symmetrical distribution: mode = median = mean 

Figure 3 illustrates the placement of these descriptive statistics in each of the 
three types of distributions. The magnitude of skewness can be determined by 
measuring the distance between the mode and mean relative to the variable’s scale. 
Alternatively, we can simply evaluate this using the coefficient of skewness:

• If skewness is between . −0.5 and 0.5, the data are considered symmetrical.
• If skewness is between . −0.5 and .−1 or 0.5 and 1, the data are moderately 

skewed.
• If skewness is < .−1 or > 1, the data are highly skewed. 

Since there is not a base R function for skewness, we can leverage the moments 
library to calculate skewness:



108 Descriptive Statistics

Fig. 3 Skewness 

# Load library 
library(moments) 

# Calculate skewness for org tenure, rounded to two 
significant figures via the round() function↪→ 

round(moments::skewness(employees$org_tenure), 2) 

## [1] 2.27 

Statistical Moments, after which this library was named, play an important role in 
specifying the appropriate probability distribution for a set of data. Moments are a 
set of statistical parameters used to describe the characteristics of a distribution. 
Skewness is the third statistical moment in the set; hence the sum of cubed 
differences and cubic polynomial in the denominator of the formula above. The 
complete set of moments comprises: (1) expected value or mean, (2) variance and 
standard deviation, (3) skewness, and (4) kurtosis. 

We can verify that the skewness() function from the moments library returns 
the expected value (per the aforementioned formula) by validating against a manual 
calculation: 

# Store components of skewness calculation 
n = length(employees$org_tenure) 
x = employees$org_tenure
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x_bar = mean(employees$org_tenure) 
s = sd(employees$org_tenure) 

# Calculate skewness manually, rounded to two significant 
figures via the round() function↪→ 

round(1/n * (sum((x - x_bar)ˆ3) / sˆ3), 2) 

## [1] 2.27 

A skewness coefficient of 2.27 indicates that organization tenure is positively 
skewed. We can visualize the data to confirm the expected right-tailed distribution 
(Fig. 4): 

# Produce histogram to visualize sample distribution 
ggplot2::ggplot() + 
ggplot2::aes(employees$org_tenure) + 
ggplot2::labs(x =  "Organization Tenure", y =  "Density") + 
ggplot2::geom_histogram(aes(y =  ..density..), fill = 

"#414141") +↪→ 

ggplot2::geom_density(fill = "#ADD8E6", alpha = 0.6) + 
ggplot2::theme_bw() 

Kurtosis 

While skewness provides information on the symmetry of a distribution, kurtosis 
provides information on the heaviness of a distribution’s tails (“tailedness”). 
Kurtosis is the fourth statistical moment, defined by: 

. K = 1

n

n∑

i=1

(xi − x̄)4

s4

Note that the quartic functions characteristic of the fourth statistical moment are 
the only differences from the skewness formula we reviewed in the prior section 
(which featured cubic functions). 

The terms leptokurtic and platykurtic are often used to describe distributions 
with light and heavy tails, respectively. “Platy-” in platykurtic is the same root as 
“platypus,” and I have found it helpful to recall the characteristics of the flat platypus 
when characterizing frequency distributions as platykurtic (wide and flat) vs. its 
antithesis, leptokurtic (tall and skinny). The normal (or Gaussian) distribution is 
referred to as a mesokurtic distribution in the context of kurtosis. 

Figure 5 illustrates the three kurtosis categorizations.
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Kurtosis is measured relative to a normal distribution. Normal distributions have 
a kurtosis coefficient of 3. Therefore, the kurtosis coefficient is greater than 3 for 
leptokurtic distributions and less than 3 for platykurtic distributions. 

The moments library can also be used to calculate kurtosis in R: 

# Calculate kurtosis for org tenure, rounded to one 
significant figure↪→ 

round(moments::kurtosis(employees$org_tenure), 1) 

## [1] 13.4 

We can verify that the kurtosis() function returns the expected value (per the 
aforementioned formula) by validating against a manual calculation: 

# Calculate kurtosis manually, rounded to one significant 
figure↪→ 

round(1/n * (sum((x - x_bar)ˆ4) / sˆ4), 1) 

## [1] 13.4 

Our kurtosis coefficient of 13.4 indicates a leptokurtic distribution which is 
supported by the visual in Fig. 4. 

It is important not to characterize a distribution based on a single isolated metric; 
we need the complete set of statistical moments to fully understand the distribution 
of data. 

Bivariate Analysis 

As we covered, univariate analysis explores a single variable. This section will cover 
bivariate analysis, which explores statistical relationships between two variables. 

Covariance 

While variance provides an understanding of how values for a single variable vary, 
covariance is an unstandardized measure of how two variables vary together. Values 
can range from .−∞ to .+∞, and these values can be used to understand the 
direction of the linear relationship between variables. Positive covariance values 
indicate that the variables vary in the same direction (e.g., tend to increase or 
decrease together), while negative covariance values indicate that the variables vary 
in opposite directions (e.g., when one increases, the other decreases, or vice versa). 

Covariance of a sample is defined by:
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. covx,y =

n∑

i=1

(xi − x̄)(yi − ȳ)

n − 1

It is important to note that while covariance aids our understanding of the 
direction of the relationship between two variables, we cannot use it to understand 
the strength of the association since it is unstandardized. Due to differences in 
variables’ units of measurement, the strength of the relationship between two 
variables with large covariance could be weak, while the strength of the relationship 
between another pair of variables with relatively small covariance could be strong. 

In R, we can compute the covariance between a pair of numeric variables by 
passing the two vectors into the cov() function: 

# Calculate sample covariance between annual compensation and 
age using complete observations (missing values will cause 
issues if not addressed)

↪→
↪→ 

cov(employees$annual_comp, employees$age, use = 
"complete.obs")↪→ 

## [1] 9381.677 

In this example, using the default method the covariance between annual com-
pensation and age is 9381.7. The positive value indicates that annual compensation 
is generally higher for older employees and lower for younger employees. 

Just as we multiplied the sample variance by .(n − 1)/n to obtain the population 
variance, we can apply the same approach to convert the sample covariance returned 
by cov() to the population covariance: 

# Calculate population covariance between annual compensation 
and age↪→ 

cov(employees$annual_comp, employees$age, use = 
"complete.obs") * (n - 1) / n↪→ 

## [1] 9375.295 

Rather than looking at isolated pairwise relationships, we can produce a covari-
ance matrix to surface pairwise associations among many variables by passing a 
data frame or matrix object into the cov() function: 

# Generate a covariance matrix among select continuous 
variables↪→ 

cov(subset(employees, select = c("annual_comp", "age", 
"org_tenure", "job_tenure", "prior_emplr_cnt", 
"commute_dist")), use = "complete.obs")

↪→
↪→
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## annual_comp age org_tenure job_tenure 
## annual_comp 1.788039e+09 9381.6772019 -3921.9601469 -3693.1960749 
## age 9.381677e+03 83.4550488 17.9255146 7.0467503 
## org_tenure -3.921960e+03 17.9255146 39.7967987 16.9797312 
## job_tenure -3.693196e+03 7.0467503 16.9797312 13.1271220 
## prior_emplr_cnt 2.340406e+03 6.8377387 -1.8547177 -0.8213802 
## commute_dist 1.067158e+04 -0.1248728 0.7746438 0.5535206 
## prior_emplr_cnt commute_dist 
## annual_comp 2340.4057552 10671.5790741 
## age 6.8377387 -0.1248728 
## org_tenure -1.8547177 0.7746438 
## job_tenure -0.8213802 0.5535206 
## prior_emplr_cnt 6.2400490 -0.5923586 
## commute_dist -0.5923586 65.7212510 

Using the default Pearson method, the cov() function will return sample 
variances for each variable down the diagonal, since covariance is not applicable 
in the context of a variable with itself. We can confirm by calculating the variance 
for age and comparing it to the value at the intersection of the row and column 
corresponding to age in the matrix: 

# Return sample variance for age 
var(employees$age) 

## [1] 83.45505 

As expected, the variance for age (.s2 = 83.5) matches the value found in the age 
x age cell of the covariance matrix. 

Correlation 

Correlation is a scaled form of covariance. While covariance provides an unstan-
dardized measure of the direction of a relationship between variables, correlation 
provides a standardized measure that can be used to quantify both the direction 
and strength of bivariate relationships. Correlation coefficients range from .−1 to 1, 
where .−1 indicates a perfectly negative association, 1 indicates a perfectly positive 
association, and 0 indicates the absence of an association. Pearson’s product-
moment correlation coefficient r is defined by: 

. rx,y =

n∑

i=1

(xi − x̄)(yi − ȳ)

√√√√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

In R, Pearson’s r can be calculated using the cor() function:
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Fig. 6 Proper applications of correlation coefficients 

# Calculate the correlation between annual compensation and 
age↪→ 

cor(employees$annual_comp, employees$age, use = 
"complete.obs")↪→ 

## [1] 0.02428654 

While we already know that the relationship between annual compensation and 
age is positive based on the positive covariance coefficient, Pearson’s r of 0.02 
indicates that the strength of the positive association is weak (r = 0 represents the 
absence of a relationship). Though there are no absolute rules for categorizing the 
strength of relationships, as thresholds often vary by domain, the following is a 
general rule of thumb for interpreting the strength of bivariate associations:

• Weak = Absolute value of correlation coefficients between 0 and 0.3
• Moderate = Absolute value of correlation coefficients between 0.4 and 0.6
• Strong = Absolute value of correlation coefficients between 0.7 and 1 

There are several correlation coefficients, and the measurement scale of x and y 
determine the appropriate type (Fig. 6). Pearson’s r can be used when both variables 
are measured on continuous scales or when one is continuous and the other is 
dichotomous (point-biserial correlation). 

When one or both variables are ordinal, we can leverage Spearman’s . ρ or 
Kendall’s . τ , which are both standardized nonparametric measures of the association 
between one or two rank-ordered variables. Let us look at Spearman’s . ρ, which is 
defined as: 

.ρ = 1 − 6
∑

d2
i

n(n2 − 1)
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Fig. 7 2. ×2 table for random 
variables x and y 

We can override the default Pearson method in the cor() function to implement 
a specific form of rank correlation using the method argument: 

# Calculate the correlation between job level and education 
level using Spearman's method↪→ 

cor(employees$job_lvl, employees$ed_lvl, method = "spearman", 
use = "complete.obs")↪→ 

## [1] 0.1074192 

The . ρ coefficient of 0.11 indicates that the positive association between job level 
and education level is weak. We could also pass method = "kendall" to this 
cor() function to implement Kendall’s . τ . 

The Phi Coefficient (. φ), sometimes referred to as the mean square contingency 
coefficient or Matthews correlation in ML, can be used to understand the 
association between two dichotomous variables. 

For the 2. ×2 table for two random variables x and y depicted in Fig. 7, the . φ

coefficient is defined as: 

. φ = (AD − BC)√
(A + B)(C + D)(A + C)(B + D)

To illustrate, let us examine whether there is a relationship between gender and 
performance after transforming performance from its ordinal form to a dichotomous 
variable (high vs. low performance). We can leverage the psych library to calculate 
. φ in R: 

# Set females to 1 and everything else to 0 
employees$gender_code <- ifelse(employees$gender == 'Female', 

1, 0)↪→ 

# Set stock options to 1 if level > 0 
employees$stock_option_code <- ifelse(employees$stock_opt_lvl 

> 0, 1, 0)↪→ 

# Create a 2x2 contingency table
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contingency_tbl <- table(employees$gender_code, 
employees$stock_option_code)↪→ 

# Calculate the Phi Coefficient between dichotomous variables 
psych::phi(contingency_tbl) 

## [1] -0.01 

. φ is essentially 0, which means stock options are distributed equitably across 
gender categories (good news!). While there are not differences in the proportion 
of males and females who receive at least some stock options, examining whether 
there is equity in the amount of stock grants and refreshes may be a good next step. 

A correlation matrix can be produced to surface associations among many 
variables by passing a data frame or matrix object into the cor() function: 

# Generate a correlation matrix among select continuous 
variables↪→ 

cor(subset(employees, select = c("annual_comp", "age", 
"org_tenure", "job_tenure", "prior_emplr_cnt", 
"commute_dist")), use = "complete.obs")

↪→
↪→ 

## annual_comp age org_tenure job_tenure prior_emplr_cnt 
## annual_comp 1.00000000 0.02428654 -0.01470248 -0.02410622 0.02215688 
## age 0.02428654 1.00000000 0.31104359 0.21290106 0.29963476 
## org_tenure -0.01470248 0.31104359 1.00000000 0.74288567 -0.11769547 
## job_tenure -0.02410622 0.21290106 0.74288567 1.00000000 -0.09075393 
## prior_emplr_cnt 0.02215688 0.29963476 -0.11769547 -0.09075393 1.00000000 
## commute_dist 0.03113059 -0.00168612 0.01514695 0.01884500 -0.02925080 
## commute_dist 
## annual_comp 0.03113059 
## age -0.00168612 
## org_tenure 0.01514695 
## job_tenure 0.01884500 
## prior_emplr_cnt -0.02925080 
## commute_dist 1.00000000 

Based on this correlation matrix, most pairwise associations are weak with the 
exception of the relationship between org_tenure and job_tenure (.r = 0.7). 
The values down the diagonal are 1 because these represent the correlation between 
each variable with itself. You may also notice that the information above and below 
the diagonal is identical and, therefore, redundant. 

A great R library for visualizing correlation matrices is corrplot. Several argu-
ments can be specified for various visual representations of the relationships among 
variables, as illustrated in Fig. 8.
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Fig. 8 Corrplot correlation matrix 

# Store correlation matrix to object M 
M <- cor(subset(employees, select = c("annual_comp", "age", 

"org_tenure", "job_tenure", "prior_emplr_cnt", 
"commute_dist")), use = "complete.obs")

↪→
↪→ 

# Visualize correlation matrix 
corrplot::corrplot(M, method = "color", 

type = "upper", order = "hclust", # Apply 
hierarchical clustering for ordering 
coefficients above the diagonal

↪→
↪→ 

addCoef.col = "black", # Add correlation 
coefficient↪→ 

tl.col = "grey", tl.srt = 45, # Label color 
and rotation↪→ 

diag = FALSE # Hide correlation coefficient 
on the principal diagonal↪→ 

) 

The GGally library produces a variety of useful information, including correla-
tion coefficients, bivariate scatterplots, and univariate distributions, as illustrate in 
Fig. 9:
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Fig. 9 GGpairs bivariate correlations and data distributions 

# Visualize correlation matrix 
GGally::ggpairs(subset(employees, select = c("annual_comp", 

"age", "org_tenure", "job_tenure", "prior_emplr_cnt", 
"commute_dist")))

↪→
↪→ 

We may find that these bivariate associations look quite different for certain 
business areas or jobs, assuming departments and jobs were created at different 
points in the company’s history. There is often a lot of noise in data at the broader 
company level, so understanding the nature and nuance of associations is important. 

A classic example of this is a statistical phenomenon known as Simpson’s 
Paradox, which is particularly common in the social sciences. Simpson’s Paradox 
occurs when a correlation is present in subsets of data but disappears or reverses 
when the subsets are combined. The prototypical case is a study of gender 
discrimination at the University of California, Berkeley (Bickel et al., 1975). The 
overall data indicated that men were more likely than women to gain admission to 
the university’s graduate programs, though there was no evidence of bias in any 
individual department. Upon closer evaluation, researchers found that women were 
more likely to apply to departments with lower acceptance rates while men tended 
to apply to less selective departments. The more nuanced relationships, such as



Bivariate Analysis 119

2000 2001 2002 2003 

Margarine consumed 

M
argarine consum

ed 

Divorce rate in Maine 

2004 2005 2006 2007 2008 2009 

8Ibs 

6Ibs 

4Ibs 

2Ibs 

2000 

4.95 per 1,000 

4.62 per 1,000 

4.29 per 1,000 

D
iv

or
ce

 r
at

e 
in

 M
ai

ne

3.96 per 1,000 

2001 2002 2003 2004 2005 2006 2007 2008 2009 

Fig. 10 Correlation between Maine divorce rate and margarine consumption (r = 0.99) 
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Fig. 11 Correlation between mozzarella cheese consumption and civil engineering doctorate 
conferrals (r = 0.96) 

the association between gender and the partitioning variable (department) in this 
example, can lead to incorrect conclusions when examining relationships only at 
the broader population level. We will explore how to control for this in the context 
of linear regression beginning in chapter “Linear Regression”. 

Finally, it is important to remember that correlation is not causation. Correlations 
can be spurious (variables related by chance), and drawing conclusions based 
on bivariate associations alone—especially in the absence of sound theoretical 
underpinnings—can be dangerous. Figures 10 and 11 are two examples of nearly 
perfect correlations between variables for which there is likely no true direct 
association. 

Neither covariance nor correlation alone is sufficient for determining whether an 
observed association in sample data is also present in the population. For this, we 
need to graduate from descriptive to inferential statistics.



120 Descriptive Statistics

Review Questions 

1. How does the mean and median compare with respect to sensitivity to extreme 
values (outliers)? 

2. What does the standard deviation tell us about the spread of data, and how does 
it compare to the variance? 

3. How does the order of the mean, median, and mode differ between positively 
and negatively skewed distributions? 

4. Do large covariance coefficients always indicate strong bivariate associations? 
Why or why not? 

5. What information is represented in box plots? 
6. Do quartiles relate to percentiles? 
7. What type of correlation coefficient should be used when evaluating the 

relationship between a pair of rank-ordered variables? 
8. What type of correlation coefficient should be used when evaluating the 

relationship between a pair of dichotomous variables? 
9. How would you characterize the shape of platykurtic, leptokurtic, and mesokur-

tic distributions? 
10. When using the Pearson method, what do the values down the diagonal of a 

covariance matrix represent? 
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