
Introduction to R

This chapter covers how to install R, R Studio, and required packages for replicating
examples in this book. This chapter also covers R basics such as objects, data
structures, and data types that are fundamental to working in R. In addition, many
common functions will be covered in this chapter, and many more will be introduced
throughout later chapters.

Getting Started

This section will cover some fundamental concepts and best practices for working
in R.

Installing R

R can be compiled and run on a variety of platforms including UNIX, Windows,
and MacOS. R can be downloaded here: https://www.r-project.org/.

When installing R, you will need to select a CRAN mirror. The Comprehensive
R Archive Network (CRAN) is a network of servers around the world that store
identical, current versions of code and documentation for R. You should select the
CRAN mirror nearest you to minimize network load.

© The Author(s) 2023
C. Starbuck, The Fundamentals of People Analytics,
https://doi.org/10.1007/978-3-031-28674-2_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28674-2protect T1	extunderscore 2&domain=pdf
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2
https://doi.org/10.1007/978-3-031-28674-2_2

12 Introduction to R

Installing R Studio

R Studio is an Integrated Development Environment (IDE) for R. This IDE
provides a console with syntax editing that is helpful for debugging code as well
as tools for plotting, history, and workspace management. Both open source and
commercial editions are available, but the open-source option is sufficient for
replicating everything in this book.

R Studio can be downloaded here: https://posit.co/download/rstudio-desktop/#
download.

Installing Packages

This book will utilize libraries from many R packages, and all are available on
CRAN. The line of code below can be executed within either the R console or IDE
to install all at once:

install.packages(c("peopleanalytics", "tidyverse", "corrplot",
"psych", "moments", "ggpubr", "ggdist", "GGally",
"networkD3", "sqldf", "caret", "car", "reshape2",
"effsize", "lmtest", "pwr", "nnet", "MASS", "brant",
"lme4", "lmerTest", "rpart", "rpart.plot", "lavaan",
"lavaanPlot", "factoextra", "cluster"), dependencies =
TRUE, repos = "http://cran.us.r-project.org")

↪→
↪→
↪→
↪→
↪→
↪→

Loading Data

To load the data sets for this book from the peopleanalytics package, we need
to load the library using the library() function and then load the data using the
data() function.

Load library
library(peopleanalytics)

Load data set named "employees"
data("employees")

https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download

Getting Started 13

To view a list of available data sets, execute data(package = "peopleanalyt
ics").

Files stored locally, or hosted on an online service such as GitHub, can be
imported into R using the read.table() function. For example, the following
line of code will import a comma-separated values file named employees.csv
containing a header record (row with column names) from a specified GitHub
directory, and then store the data in a R object named data:

Load data from GitHub file
data <- read.table(file =

'https://raw.githubusercontent.com/crstarbuck/peopleanalytics/data/employees.csv',
header = TRUE, sep = ",")

↪→
↪→

Case Sensitivity

It is important to note that everything in R is case-sensitive. When working with
functions, be sure to match the case when typing the function name. For example,
Mean() is not the same as mean(); since mean() is the correct case for the function,
capitalized characters will generate an error when executing the function.

Help

Documentation for functions and data is available via the ? command or help()
function. For example, ?sentiment or help(sentiment) will display the avail-
able documentation for the sentiment data set, as shown in Fig. 1.

Objects

Objects underpin just about everything we do in R. An object is a container for
various types of data. Objects can take many forms, ranging from simple objects
holding a single number or character to complex structures that support advanced
visualizations. The assignment operator <- is used to assign values to an object,
though = serves the same function.

Let us use the assignment operator to assign a number and character to separate
objects. Note that non-numeric values must be enveloped in either single ticks '' or
double quotes "":

obj_1 <- 1
obj_1

14 Introduction to R

Fig. 1 R documentation for sentiment data set

[1] 1

obj_2 <- 'a'
obj_2

[1] "a"

Several functions are available for returning the type of data in an object, such as
typeof() and class():

typeof(obj_2)

[1] "character"

class(obj_2)

[1] "character"

Getting Started 15

Comments

The # symbol is used for commenting/annotating code. Everything on a line that
follows # is treated as commentary rather than code to execute. This is a best
practice to aid in quickly and easily deciphering the role of each line or block of
code. Without comments, troubleshooting large scripts can be a more challenging
task.

Assign a new number to the object named obj_1
obj_1 <- 2

Display value in obj_1
obj_1

[1] 2

Assign a new character to the object named obj_2
obj_2 <- 'b'

Display value in obj_2
obj_2

[1] "b"

In-line code comments can also be added where needed to reduce the number of
lines in a script:

Assign a new number to the object named obj_1
obj_1 <- 3

obj_1 # Display value in obj_1

[1] 3

Assign a new character to the object named obj_2
obj_2 <- 'c'

obj_2 # Display value in obj_2

[1] "c"

16 Introduction to R

Testing Early and Often

A best practice in coding is to run and test your code frequently. Writing many
lines of code before testing will make debugging issues far more difficult and time-
intensive than it needs to be.

Vectors

A vector is the most basic data object in R. Vectors contain a collection of data
elements of the same data type, which we will denote as .x1, x2, . . . , xn in this book,
where n is the number of observations or length of the vector. A vector may contain
a series of numbers, set of characters, collection of dates, or logical TRUE or FALSE
results.

In this example, we introduce the combine function c(), which allows us to fill
an object with more than one value:

Create and fill a numeric vector named vect_num
vect_num <- c(2,4,6,8,10)

vect_num

[1] 2 4 6 8 10

Create and fill a character vector named vect_char
vect_char <- c('a','b','c')

vect_char

[1] "a" "b" "c"

We can use the as.Date() function to convert character strings containing dates
to an actual date data type. By default, anything within single ticks or double
quotes is treated as a character, so we must make an explicit type conversion from
character to date. Remember that R is case-sensitive. Therefore, as.date() is not
a valid function; the D must be capitalized.

Create and fill a date vector named vect_dt
vect_dt <- c(as.Date("2021-01-01"), as.Date("2022-01-01"))

vect_dt

Vectors 17

[1] "2021-01-01" "2022-01-01"

We can use the sequence generation function seq() to fill values between a start and
end point using a specified interval. For example, we can fill vect_dt with the first
day of each month between 2021-01-01 and 2022-01-01 via the seq() function
and its by = "months" argument:

Create and fill a date vector named vect_dt
vect_dt <- seq(as.Date("2021-01-01"), as.Date("2022-01-01"),

by = 'months')↪→

vect_dt

[1] "2021-01-01" "2021-02-01" "2021-03-01" "2021-04-01" "2021-05-01"
[6] "2021-06-01" "2021-07-01" "2021-08-01" "2021-09-01" "2021-10-01"
[11] "2021-11-01" "2021-12-01" "2022-01-01"

We can also use the : operator to fill integers between a starting and ending
number:

Create and fill a numeric vector with values between 1 and
10↪→

vect_num <- 1:10

vect_num

[1] 1 2 3 4 5 6 7 8 9 10

We can access a particular element of a vector using its index. An index
represents the position in a set of elements. In R, the first element of a vector has an
index of 1, and the final element of a vector has an index equal to the vector’s length.
The index is specified using square brackets, such as [5] for the fifth element of a
vector.

Return the value in position 5 of vect_num
vect_num[5]

[1] 5

When applied to a vector, the length() function returns the number of elements
in the vector, and this can be used to dynamically return the last value of vectors.

Return the last element of vect_num
vect_num[length(vect_num)]

[1] 10

18 Introduction to R

Vectorized Operations

Vectorized operations (or vectorization) underpin mathematical operations in
R and greatly simplify computation. For example, if we need to perform a
mathematical operation to each data element in a numeric vector, we do not need
to specify each and every element explicitly. We can simply apply the operation at
the vector level, and the operation will be applied to each of the vector’s individual
elements.

Create a numeric vector named x and fill with values between
1 and 10↪→

x <- 1:10

Add 2 to each element of x
x_plus2 <- x+2

x_plus2

[1] 3 4 5 6 7 8 9 10 11 12

Multiply each element of x by 2
x_times2 <- x*2

x_times2

[1] 2 4 6 8 10 12 14 16 18 20

Square each element of x
x_sq <- xˆ2

x_sq

[1] 1 4 9 16 25 36 49 64 81 100

Many built-in arithmetic functions are available and compatible with vectors:

Aggregate sum of x elements
sum(x)

[1] 55

Vectorized Operations 19

Count of x elements
length(x)

[1] 10

Square root of x elements
sqrt(x)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427
[9] 3.000000 3.162278

Natural logarithm of x elements
log(x)

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
[8] 2.0794415 2.1972246 2.3025851

Exponential of x elements
exp(x)

[1] 2.718282 7.389056 20.085537 54.598150 148.413159
[6] 403.428793 1096.633158 2980.957987 8103.083928 22026.465795

We can also perform various operations on multiple vectors. Vectorization will
result in an implied ordering of elements, in that the specified operation will be
applied to the first elements of the vectors and then the second, then third, etc.

Create vectors x1 and x2 and fill with integers
x1 <- 1:10
x2 <- 11:20

Store sum of vectors to new x3 vector
x3 <- x1 + x2

x3

[1] 12 14 16 18 20 22 24 26 28 30

Using vectorization, we can also evaluate whether a specified condition is true or
false for each element in a vector:

20 Introduction to R

Evaluate whether each element of x is less than 6, and store
results to a logical vector↪→

logical_rslts <- x<6

logical_rslts

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
FALSE

Matrices

A matrix is like a vector in that it represents a collection of data elements of the
same data type; however, the elements of a matrix are arranged into a fixed number
of rows and columns.

We can create a matrix using the matrix() function. Per ?matrix, the nrow and
ncol arguments can be used to organize like data elements into a specified number
of rows and columns.

Create and fill matrix with numbers
mtrx_num <- matrix(data = 1:10, nrow = 5, ncol = 2)

mtrx_num

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

As long as the argument values are in the correct order per the documentation,
the argument names are not required. Per ?matrix, the first argument is data,
followed by nrow and then ncol. Therefore, we can achieve the same result using
the following:

Create and fill matrix with numbers
mtrx_num <- matrix(1:10, 5, 2)

mtrx_num

Matrices 21

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

Several functions are available to quickly retrieve the number of rows and
columns in a rectangular object like a matrix:

Return the number of rows in mtrx_num
nrow(mtrx_num)

[1] 5

Return the number of columns in mtrx_num
ncol(mtrx_num)

[1] 2

Return the number of columns and rows in mtrx_num
dim(mtrx_num)

[1] 5 2

The head() and tail() functions return the first and last pieces of data,
respectively. For large matrices (or other types of objects), this can be helpful for
previewing the data:

Return the first five rows of a matrix containing 1,000 rows
and 10 columns↪→

head(matrix(1:10000, 1000, 10), 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1001 2001 3001 4001 5001 6001 7001 8001 9001
[2,] 2 1002 2002 3002 4002 5002 6002 7002 8002 9002
[3,] 3 1003 2003 3003 4003 5003 6003 7003 8003 9003
[4,] 4 1004 2004 3004 4004 5004 6004 7004 8004 9004
[5,] 5 1005 2005 3005 4005 5005 6005 7005 8005 9005

Return the last five rows of a matrix containing 1,000 rows
and 10 columns↪→

tail(matrix(1:10000, 1000, 10), 5)

22 Introduction to R

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[996,] 996 1996 2996 3996 4996 5996 6996 7996 8996 9996
[997,] 997 1997 2997 3997 4997 5997 6997 7997 8997 9997
[998,] 998 1998 2998 3998 4998 5998 6998 7998 8998 9998
[999,] 999 1999 2999 3999 4999 5999 6999 7999 8999 9999
[1000,] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Using vectorization, we can easily perform matrix multiplication.

Create 3x3 matrix
matrix(1:9, 3, 3)

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

Multiply each matrix value by 2
matrix(1:9, 3, 3) * 2

[,1] [,2] [,3]
[1,] 2 8 14
[2,] 4 10 16
[3,] 6 12 18

Factors

A factor is a data structure containing a finite number of categorical values. Each
categorical value of a factor is known as a level, and the levels can be either ordered
or unordered. This data structure is a requirement for several statistical models we
will cover in later chapters.

We can create a factor using the factor() function:

Create and fill factor with unordered categories
education <- factor(c("undergraduate", "post-graduate",

"graduate"))↪→

education

[1] undergraduate post-graduate graduate
Levels: graduate post-graduate undergraduate

Data Frames 23

Since education has an inherent ordering, we can use the ordered and levels
arguments of the factor() function to order the categories:

Create and fill factor with unordered categories
education <- factor(education, ordered = TRUE, levels =

c("undergraduate", "graduate", "post-graduate"))↪→

education

[1] undergraduate post-graduate graduate
Levels: undergraduate < graduate < post-graduate

The ordering of factors is critical to a correct interpretation of statistical model
output as we will cover later.

Data Frames

A data frame is like a matrix in that it organizes elements within rows and columns
but unlike matrices, data frames can store multiple types of data. Data frames are
often the most appropriate data structures for the data required in people analytics.

A data frame can be created using the data.frame() function:

Create three vectors containing integers (x), characters
(y), and dates (z)↪→

x <- 1:10
y <- c('a','b','c','d','e','f','g','h','i','j')
z <- seq(as.Date("2021-01-01"), as.Date("2021-10-01"), by =

'months')↪→

Create a data frame with 3 columns (vectors x, y, and z) and
10 rows↪→

df <- data.frame(x, y, z)

df

x y z
1 1 a 2021-01-01
2 2 b 2021-02-01
3 3 c 2021-03-01
4 4 d 2021-04-01
5 5 e 2021-05-01
6 6 f 2021-06-01

24 Introduction to R

7 7 g 2021-07-01
8 8 h 2021-08-01
9 9 i 2021-09-01
10 10 j 2021-10-01

The structure of an object can be viewed using the str() function:

Describe the structure of df
str(df)

'data.frame': 10 obs. of 3 variables:
$ x: int 1 2 3 4 5 6 7 8 9 10
$ y: chr "a" "b" "c" "d" ...
$ z: Date, format: "2021-01-01" "2021-02-01" ...

Specific columns in the data frame can be referenced using the operator $
between the data frame and column names:

Return data in column x in df
df$x

[1] 1 2 3 4 5 6 7 8 9 10

Another method that allows for efficient subsetting of rows and/or columns is
the subset() function. The example below illustrates how to subset df using
conditions on x and y while only displaying z in the output. The logical operator |
is used for OR conditions, while & is the logical operator for AND conditions:

Return z values for rows where x is at least 7 OR y is a, b,
or c.↪→

subset(df, x >= 7 | y %in% c('a','b','c'), select = z)

z
1 2021-01-01
2 2021-02-01
3 2021-03-01
7 2021-07-01
8 2021-08-01
9 2021-09-01
10 2021-10-01

Loops 25

Lists

Lists are versatile objects that can contain elements with different types and lengths.
The elements of a list can be vectors, matrices, data frames, functions, or even other
lists.

A list can be created using the list() function:

Store vectors x, y, and z as well as df to a list
lst <- list(x, y, z, df)

str(lst)

List of 4
$: int [1:10] 1 2 3 4 5 6 7 8 9 10
$: chr [1:10] "a" "b" "c" "d" ...
$: Date[1:10], format: "2021-01-01" "2021-02-01" ...
$:'data.frame': 10 obs. of 3 variables:
..$ x: int [1:10] 1 2 3 4 5 6 7 8 9 10
..$ y: chr [1:10] "a" "b" "c" "d" ...
..$ z: Date[1:10], format: "2021-01-01" "2021-02-01" ...

Unlike vectors, accessing elements of a list requires double brackets, such as
[[3]] for the third element.

Return data from the third element of lst
lst[[3]]

[1] "2021-01-01" "2021-02-01" "2021-03-01" "2021-04-01" "2021-05-01"
[6] "2021-06-01" "2021-07-01" "2021-08-01" "2021-09-01" "2021-10-01"

Loops

In many cases, the need arises to perform an operation a variable number of times.
Loops are available to avoid the cumbersome task of writing the same statement
many times. The two most common types of loops are while and for loops.

Let us use a while loop to square integers between 1 and 5:

Initialize variable
i <- 1

Using a 'while' loop, square the values 1 through 5 and
print results to the screen↪→

26 Introduction to R

'i' is a variable that takes on a value between 1 and 5 for
the respective loop↪→

while (i < 6) {

print(iˆ2)
i <- i + 1 # increment i by 1

}

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25

With a while loop, we needed to initialize the variable i as well as increment it
by 1 within the loop. With a for loop, we can accomplish the same goal with less
code:

Using a 'for' loop, square the values 1 through 5 and print
results to the screen↪→

for (i in 1:5) {

print(iˆ2)

}

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25

User-Defined Functions (UDFs)

Though many built-in functions are available, R provides the flexibility to create our
own.

Functions can be an effective alternative to loops. For example, here is a basic
function that achieves the same goal as our while and for loop examples (i.e.,
squaring integers 1 through 5):

Graphics 27

Create a function named square.val() with one argument (x)
that squares given x values↪→

square.val <- function(x) {

xˆ2
}

Pass integers 1 through 5 into the new square.val() function
and display results↪→

square.val(1:5)

[1] 1 4 9 16 25

While many projects warrant UDFs and/or loops, we do not actually need either
to square a set of integers thanks to vectorization. As you gain experience writing R
code, you will naturally discover ways to write more performant and terse code:

Square integers
(1:5)ˆ2

[1] 1 4 9 16 25

Graphics

While base R has native plotting capabilities, we will use more flexible and
sophisticated visualization libraries such as ggplot2 in this book. ggplot2 is one
of the most versatile and popular data visualization libraries in R.

We can load the ggplot2 library by executing the following command:

Load library
library(ggplot2)

When working with functions beyond what is available in base R, entering ::
between the library and function names is a best practice for efficient coding. R
Studio will provide a menu of available functions within the specified library upon
typing library_name::.

The ggplot2 library contains many types of visualizations. For example, we can
build a line chart to show how the values of vector x relate to values of vector y in a
data frame named data:

28 Introduction to R

Create data frame containing two related columns, combining
columns via the cbind() function↪→

x <- 1:10
y <- (1:10)ˆ2
data <- as.data.frame(cbind(x, y))

Produce line chart
ggplot2::ggplot(data, aes(x = x, y = y)) +
ggplot2::geom_line()

0

25

50

75

100

2.5 5.0 7.5 10.0
x

y

Furthermore, we can use ggplot parameters and themes to adjust the aesthetics of
visuals:

Produce line chart
ggplot2::ggplot(data, aes(x = x, y = y)) +
ggplot2::geom_line(size = .4, colour = "blue") + # Reduce line

thickness and change color to blue↪→

ggplot2::theme(panel.background = element_blank()) + # Remove
the default grey background↪→

ggplot2::labs(title = 'Chart Title', # Assign a chart title
x = 'Title for x-axis', # Title the x-axis
y = 'Title for y-axis') # Title the y-axis

Review Questions 29

0

25

50

75

100

2.5 5.0 7.5 10.0
Title for x−axis

Ti
tle

 fo
r y

−a
xi

s
Chart Title

ggplot2::theme(plot.title = element_text(hjust = 0.5)) #
Center plot title↪→

Review Questions

1. What is the difference between a factor and character vector?
2. What is vectorization?
3. How do data frames differ from matrices?
4. Does executing the Sum() function achieve the same result as executing sum()?
5. Does seq(1,10) return the same output as 1:10?
6. Is the following command sufficient for creating a vector recognized by

R as having three dates: dates <- c("2022-01-01", "2022-01-02",
"2022-01-03").

7. How are while and for loops different?
8. If vectors x1 and x2 each hold 100 integers, how can we add each element of

one to the respective element of the other using a single line of code?
9. How are slots in a list object referenced?

10. What are some examples in which a user-defined function (UDF) is needed?

30 Introduction to R

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Introduction to R
	Getting Started
	Installing R
	Installing R Studio
	Installing Packages
	Loading Data
	Case Sensitivity
	Help
	Objects
	Comments
	Testing Early and Often

	Vectors
	Vectorized Operations
	Matrices
	Factors
	Data Frames
	Lists
	Loops
	User-Defined Functions (UDFs)
	Graphics
	Review Questions

