
Data Visualization

Unlike content in the preceding chapters, data visualization is more an art than a
science. Data visualization is heavily dependent on the type of data being presented,
key messages that need to be conveyed, the unique characteristics of the audience
to whom information needs to be communicated, and various contextual features
germane to a proper interpretation and understanding of material.

This chapter will provide general best practices as well as strategies specific
to various types of data that will promote success when communicating data to
technical and non-technical stakeholders alike. Since there is a considerable amount
of code required to construct the plethora of graphics in this chapter, only the data
prep code will be included. You can reference the “Appendix” for a curated set of
fully reproducible code for each data visualization provided in this chapter.

Best Practices

While the type of visual depends on the nature of data being presented, there are
general best practices for effectively communicating information that are applicable
for all data types, audiences, and contexts.

Color Palette

There are several important considerations when choosing colors for data visualiza-
tion.

Color Has Meaning
The meaning of color is not consistent across the world. For example, in Western
cultures red generally has unfavorable connotations (e.g., off track, danger), while

© The Author(s) 2023
C. Starbuck, The Fundamentals of People Analytics,
https://doi.org/10.1007/978-3-031-28674-2_15

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28674-2protect T1	extunderscore 15&domain=pdf
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15
https://doi.org/10.1007/978-3-031-28674-2_15

284 Data Visualization

green signals a favorable status (e.g., on track, cash flow positive). However, in
Asian cultures red indicates success.

It is important to understand what color indicates in the contexts in which
information is shared to ensure color choices are consistent with the messages that
need to be conveyed.

Respect Color Blindness
Most estimates indicate that 1 in 12 men (8%) and 1 in 200 women (0.5%) are
colorblind (~4.5% of the world population). Males are more likely to be colorblind
because the X chromosome contains the genes responsible for the most common
forms of color blindness. Trouble distinguishing between red and green is the most
common manifestation of colorblindness (Gordon, 1998).

This has important implications for data visualization, and it is generally best
to avoid the use of red and green. One alternative is to leverage orange to indicate
unfavorable data points and blue for favorable. This strategy will be implemented
throughout this chapter.

Adhere to Brand Colors
In most organizations, the marketing team defines a color palette consistent with
the branding used for consumer products and services. In this case, analysts may be
constrained to the use of colors within the branding palette.

Be sure to consult with marketing colleagues and adhere to any color palette
requirements.

Use Color Consistently
To support a correct interpretation of information, it is important to use a consistent
color scheme across the various visuals in dashboards, slides, and documents.
For example, if blue is assigned to highlight how the Engineering department
compares to other departments in a particular visual, blue should be assigned to
the Engineering department in every visual in which department is a grouping
dimension. The consistent use of color requires the audience to wield less effort
to understand information, which in turn reduces the risk of incorrect interpretation.

Chart Borders

The goal in data visualization is to enable the most important data to take center
stage. Formatting should support—not detract—from this objective. Chart borders
are a usual suspect and prime example of formatting that can divert focus away from
the data.

Figure 1 illustrates the use of heavy and light borders for a tabular presentation
of data. Formatting takes center stage in the first table due to heavy borders, while
formatting is not the focus in the second table given the minimal light gray border.

Best Practices 285

Fig. 1 Comparison of data tables with heavy (left) and light (right) borders

0

250

500

750

1000

2019 2020 2021 2022
Year

H
ire

s

Zero Baseline

980

990

1000

1010

1020

2019 2020 2021 2022
Year

Non−Zero Baseline

Fig. 2 Hires by year with zero baseline (left) and non-zero baseline (right)

Zero Baseline

The use of a non-zero baseline can exaggerate differences in metrics, resulting in
misleading conclusions.

Figure 2 illustrates how minor differences are exaggerated when a non-zero
baseline is applied to the y-axis. The average number of hires across these four
years is 1000, and the small variation YoY is accurately reflected in the bar chart
with a zero baseline.

286 Data Visualization

Intuitive Layout

When visualizing data, it is best not to deviate from the way in which the
audience will naturally interpret the data. Outlined below are a few important
considerations:

• Numbers lower on a y-axis will naturally be interpreted to be smaller than
numbers higher on the y-axis.

• When there are both positive and negative numbers along an x-axis, negative
metrics are best placed on the left and positive on the right since people
naturally consume content from left to right.

• Rotated axis labels require more time to read and interpret. If labels must be
rotated to fit along an axis, a 45. ◦ angle is generally preferred over a more
extreme 90. ◦ rotation.

Figure 3 shows murders committed using firearms in Florida across time. This
visual has an inverted y-axis, which is highly misleading since what appears to be
spikes in murders are actually dips. Irrespective of whether this was politically moti-
vated or simply a failed attempt at creativity, this is a deceptive data visualization.

Fig. 3 Misleading inverted
y-axis

0

200

Number of murders committed using firearms

Gun deaths in Florida

873

721

400

600

800

1,000
1990s 2000s

2005
Florida enacted
its ‘Stand Your
Ground’ law

2010s

Step-by-Step Visual Upgrade 287

Fig. 4 The application of
preattentive attributes to
highlight labor costs as a key
driver of increased operating
expenses

Preattentive Attributes

Preattentive attributes signal where to look and help our audience focus on content
we wish to emphasize (Knaflic, 2015).

It is important to remember that data do not always need to be visualized with
a chart. Sometimes communicating with text is a sufficient and effective way to
convey information. In the case of text, preattentive attributes are often implemented
using bold text and/or contrasting colors for keywords and phrases that need to take
center stage. Bolded text is generally more effective than italicizing or underlining,
as it highlights the chosen elements without unnecessary noise and compromised
legibility.

Gray is an important color in the implementation of preattentive attributes as it
facilitates a move of less important data and design elements to the background
to make room for more predominate colors to highlight the most important infor-
mation. Figure 4 illustrates the application of preattentive attributes to emphasize
the key message in a sentence. This is accomplished by pushing the less important
content to the background using gray text and using bold orange text to highlight
the labor cost increase.

Preattentive attributes can also be applied to data visualizations to focus the
audience’s attention. Figure 5 illustrates the use of preattentive attributes by
assigning a different color (orange) to the labor cost for the current year and muting
the labor costs associated with prior years using a less predominate gray.

Simply put, if something is really important, make sure it is different from other
content on the page, slide, or section.

Step-by-Step Visual Upgrade

Software knows neither what we wish to highlight nor the audience to whom
we intend to communicate the information. Therefore, regardless of the software,
design defaults are rarely best.

This section will implement data visualization best practices step by step to
improve upon the design defaults for the ggplot2 library.

288 Data Visualization

2019

2020

2021

2022

0 50 100 150 200
Labor Cost (in millions of USD)

Ye
ar

Fig. 5 The application of preattentive attributes to highlight labor costs for the current year relative
to prior years

Step 1: Build Bar Chart with Defaults

We will begin by building a bar chart that shows the distribution of active employ-
ees’ educational backgrounds. To simplify the data structure for data visualization,
let us ingest our employees data and create an aggregated cube with counts by
ed_field for active employees:

Load libraries
library(peopleanalytics)
library(dplyr)

Load data
data("employees")

Create data cube for active employees
smmry_ed_field <- employees |>

dplyr::filter(active == 'Yes') |>
dplyr::count(ed_field)

A bar chart can be created using the geom_bar() function, and we will start with
the ggplot2 library’s design defaults (Fig. 6):

Step-by-Step Visual Upgrade 289

Fig. 6 Step 1: bar chart with defaults

Step 2: Remove Legend

Since the legend is not necessary for interpreting the education field to which each
bar corresponds, we will remove it using theme(legend.position = "none").
Eliminating the legend also provides more real estate for the chart, which helps
make the x-axis values more legible (Fig. 7).

Step 3: Assign Colors Strategically

There is a lot competing for attention due to this vibrant color palette. Let us assume
that the objective is to highlight the education field pursued by the largest number of
employees. Preattentive attributes lend well to this, and we can assign specific hex
color codes to the education categories (Fig. 8).

Since Life Sciences is the field pursued by the most employees, let us highlight
the corresponding bar in blue and move the remaining bars to the background
through the assignment of light gray. One method of accomplishing this is via the
following explicit category assignments:

scale_fill_manual(values = c("Human Resources" = "#BFBFBF",
"Life Sciences" = "#0070C0", "Marketing" = "#BFBFBF", "Medical"
= "#BFBFBF", "Other" = "#BFBFBF", Technical Degree" = "#BFBFBF"))

290 Data Visualization

Fig. 7 Step 2: remove legend

Fig. 8 Step 3: assign colors strategically

Step-by-Step Visual Upgrade 291

Fig. 9 Step 4: add mixed case axis titles and margins

Step 4: Add Axis Titles and Margins

Axis titles are the column names by default, which is usually not the most user-
friendly option. We can assign new mixed case axis titles by chaining labs(x =
'Education Field', y = 'Headcount') to the visualization code.

Spacing can also be added between the axis titles and labels to improve upon
the default formatting and reduce text congestion. The ggplot2::element_text
(margin = margin(t = 0, r = 0, b = 0, l = 0)) parameter can be defined
for the x and y axes via axis.title.x and axis.title.y, respectively, where:

• t = space on the top of axis title
• r = space on the right of axis title
• b = space on the bottom of axis title
• l = space on the left of axis title

Let us create a margin of white space above the x-axis title and to the right of the
y-axis title by defining the following parameters (Fig. 9):

• axis.title.x = ggplot2::element_text(margin = margin(t =
10, r = 0, b = 0, l = 0))

• axis.title.y = ggplot2::element_text(margin = margin(t =
0, r = 10, b = 0, l = 0))

292 Data Visualization

Fig. 10 Step 5: add title

Step 5: Add Left-Justified Title

We can add a chart title via labs(title = 'This is a chart title.').
This title can be centered via theme(plot.title = ggplot2::element_text
(hjust = 0.5), left justified via theme(plot.title = ggplot2::element_
text(hjust = 0), or right justified via theme(plot.title = ggplot2::ele
ment_text(hjust = 1).

It is a best practice to left justify titles since the readers consume information
beginning with the left side of the page (like reading a book), and left justifying the
title increases the probability that the audience will read the title and understand its
purpose before engaging with the visual. Left justification is the default for ggplot2
titles.

It is also a best practice to assign a descriptive title to charts to highlight the key
message(s) we want to convey to the audience through the visual. For longer titles,
the new line character \n can be used to break titles into multiple lines (Fig. 10).

Step 6: Remove Background

The default gray background is a distraction from the data we need to take
center stage. We can remove this background using panel.background =
element_blank() to achieve a cleaner aesthetic and allow the bars in this chart to
become more pronounced (Fig. 11).

Step-by-Step Visual Upgrade 293

Fig. 11 Step 6: remove background

Step 7: Remove Axis Ticks

Axis ticks add noise to this visual and are not necessary to ascertain to which values
along the axes the data align. Axis ticks can be removed for each axis independently
with axis.ticks.x = element_blank() for the x-axis and axis.ticks.y =
element_blank() for the y-axis (Fig. 12).

Step 8: Mute Titles

While the chart and axis titles are important for clarifying what information is
represented in the visual, these should not be the focus. Just as we pushed the less
important education categories to the background using gray text, we can mute the
chart and axis titles with gray text to help draw attention to the data.

We can change the color of the chart title to light gray with plot.title
= ggplot2::element_text(colour = "#404040"). The axis titles can be
changed to the same color using axis.title.x = ggplot2::element_text
(colour = "#404040") for the x-axis and axis.title.y = ggplot2::element_
text(colour = "#404040") for the y-axis (Fig. 13).

294 Data Visualization

Fig. 12 Step 7: remove axis ticks

Fig. 13 Step 8: mute titles

Step-by-Step Visual Upgrade 295

Fig. 14 Step 9: flip axis

Step 9: Flip Axes

Flipping the coordinates of axes to convert the default vertical bar chart into a
horizontal bar chart allows the audience to more easily scan down the right side of
the visual to quickly identify and understand the relative frequencies of education
categories (Fig. 14).

Coordinates can be flipped using coord_flip().

Step 10: Sort Data

This visual can be further simplified by sorting the bars from highest to lowest value.
With sorted bars, the audience can more easily ascertain the relative ranking of each
education field.

We can pass reorder(ed_field, n) into the aes() function to sort the
education field bars from highest to lowest n-count. If we needed to sort in
the opposite direction, reorder(ed_field, -n) will reverse the sort direction
(Fig. 15).

As shown in Fig. 16, the final visual is a marked improvement over the initial
design defaults.

296 Data Visualization

Fig. 15 Step 10: sort data

Fig. 16 Enhanced design (top). Design defaults (bottom)

Visualization Types 297

Visualization Types

There are some highly advanced and interactive data visualizations that can be built
using JavaScript (JS) libraries such as D3. With some exceptions, JS libraries are
generally out of scope for this book. ggplot2 is capable of building very elegant
data visualizations, and this will be the tool used to implement most of the data
visualizations in this chapter.

All visuals will have a set of common parameters for design aesthetics, consistent
with the themes used to produce the enhanced chart design shown in Fig. 16. There-
fore, each section will highlight the differences needed to achieve the respective
data visualization. For production applications with many visualizations, it may be
helpful to wrap common ggplot2 design elements in a function to simplify chart
building.

Tables

Tables are the most basic way to organize data. Since tables generally contain many
metrics, they are usually better situated as reference material in the Appendix of a
doc/deck or within a metric drill-through in dashboards rather than occupying prime
real estate that should be leveraged strategically to focus the audience’s attention on
key messages.

A simple cube containing employee counts by department and tenure band will
be constructed for demonstrating how to display tabular output:

Append new tenure band column
employees$tenure_band <- dplyr::case_when(

employees$org_tenure < 1 ~ "Under 1 Year",
employees$org_tenure < 2.5 ~ "1-2 Years",
employees$org_tenure < 5.5 ~ "3-5 Years",
employees$org_tenure <= 10 ~ "6-10 Years",
TRUE ~ "Over 10 Years"

)

Store aggregate measures to cube
dept_tenure <- employees |>

dplyr::filter(active == 'Yes') |>
dplyr::group_by(dept, tenure_band) |>
dplyr::summarise(cnt = dplyr::n())

Specify ordered factor
dept_tenure$tenure_band <- ordered(dept_tenure$tenure_band,

levels = c("Under 1 Year", "1-2 Years", "3-5 Years", "6-10
Years", "Over 10 Years"))

↪→
↪→

298 Data Visualization

The default display of a tibble (data frame produced by dplyr) is very basic:

Display output using default settings
dept_tenure

A tibble: 14 x 3
Groups: dept [3]
dept tenure_band cnt
<chr> <ord> <int>
1 Human Resources 1-2 Years 7
2 Human Resources 3-5 Years 19
3 Human Resources 6-10 Years 17
4 Human Resources Over 10 Years 8
5 Research & Development 1-2 Years 148
6 Research & Development 3-5 Years 262
7 Research & Development 6-10 Years 252
8 Research & Development Over 10 Years 148
9 Research & Development Under 1 Year 18
10 Sales 1-2 Years 57
11 Sales 3-5 Years 93
12 Sales 6-10 Years 124
13 Sales Over 10 Years 70
14 Sales Under 1 Year 10

While these data could easily be copied and pasted into presentation software
for formatting, additional libraries exist in R for formatting tables. For example,
R Markdown scripts can leverage the DT package to provide filtering, pagination,
sorting, search, and other interactive features for HTML output. Field names can
also be changed to proper case via the dplyr::rename() function (Fig. 17).

Assign proper case field names
dept_tenure_proper <- dept_tenure |>

rename('Department' = dept,
'Tenure' = tenure_band,
'Count' = cnt)

Heatmaps

Heatmaps use a shading scheme to highlight the relative magnitude of numbers in
a tabular format.

The geom_tile() function can be used to build a heatmap with ggplot2.
The range of colors can be specified via the scale_fill_continuous(low =

Visualization Types 299

Fig. 17 Data table

Fig. 18 Heatmap showing the concentration of employees within departments and tenure bands

'minimum value color', high = 'maximum value color') function since
the fill variable defined by aes(fill = cnt) is measured on a continuous scale
(Fig. 18).

This heatmap is excellent for focusing attention on the department + tenure
segments with highest and lowest employee counts. However, if the specific
employee counts are required, complimenting this heatmap with a basic table of
metrics is a good option to avoid cluttering the heatmap with .3 ∗ 5 = 15 additional
numbers.

300 Data Visualization

Fig. 19 Scatterplot showing the relationship between work experience and YTD sales for active
salespeople

Scatterplots

Scatterplots are useful for visualizing relationships between numeric variables.
Let us build a scatterplot to visualize the relationship between work_exp and

ytd_sales, with a goal of focusing the audience’s attention on salespeople whose
ytd_sales meets or exceeds the full year sales quota of .150,000 USD. Let us first
subset employees data to active salespeople and append a flag to indicate sales
quota attainment for use in shading data points in the scatterplot.

Subset df to active sales employees
sales <- subset(employees, dept == 'Sales' & active == 'Yes')

Set quote attainment flag for data viz coloring
sales$quota_flg <- ifelse(sales$ytd_sales >= 150000, 1, 0)

The geom_point() function is used to create a scatterplot. The scale_y_
continuous() function can be used in conjunction with the scales library to
override the default scale for the y-axis (scientific notation) with more intuitive
values.

While the basic scatterplot in Fig. 19 is effective in visualizing the relationship
between work_exp and ytd_sales, additional design elements are needed to
highlight the data points that meet or exceed the full year sales quota of . 150,000
USD.

Visualization Types 301

Fig. 20 Scatterplot with data points colored relative to the full year sales quota of 150k USD

The color argument for the geom_point() function is used to apply
preattentive attributes to this visual by specifying the field used for conditional
data point shading. We can define the color for each of the field’s values using the
scale_color_manual() function. Additionally, the geom_hline() function is
used to add a dotted horizontal line at a specified position on the y-axis (at . 150,000
USD), and annotation is added at a specified pair of x and y coordinates using the
annotate() function (Fig. 20).

Line Graphs

Line graphs are used for visualizing continuous data across time.
When visualizing trended data, it is important to avoid cumulative trends because

they suggest an upward trajectory (positive slope) even when the corresponding non-
cumulative metrics indicate a declining trend.

Consider the following data frame with decreasing hire counts by year:

Print hires df
print(hires_dat[order(hires_dat$year, decreasing = FALSE),])

year hires cum_hires
4 2019 1020 980
3 2020 1010 1970

302 Data Visualization

Fig. 21 Hires by year (left) and cumulative hires by year (right)

2 2021 990 2980
1 2022 980 4000

Figure 21 juxtaposes a trended line chart with hires by year (left) against a
cumulative version of the same (right). Since hires at each year are additive in the
cumulative line chart, the slope is positive and misleading.

Single Series
The most basic type of line graph is a single series line graph, which reflects a
trend for a single group.

Let us generate some attrition data for illustrating various types of line graphs:

Set seed for reproducibility
set.seed(1234)

Create data
months = 1:24
eng_rt = 5 - runif(1, 2.7, 2.9) + 2.41*months - .41*monthsˆ2 +

.02*monthsˆ3↪→

fin_rt = runif(1, 5, 8) - 6.97 + 15*months - .53*monthsˆ2
ppl_rt = 3 - runif(1, 5, 8) - 6.97 + 12*months - .4*monthsˆ2
prd_rt = runif(1, 5, 8) - 6.97 + 13*months - .53*monthsˆ2

Visualization Types 303

Fig. 22 Single series line graph

Combine dimensions and metrics within df
attrition_dat <- data.frame(month = rep(months, 4),

dept = c(rep('Engineering',
length(months)),↪→

rep('Finance',
length(months)),↪→

rep('People',
length(months)),↪→

rep('Product',
length(months))),↪→

rate = c(eng_rt,
fin_rt,
ppl_rt,
prd_rt))

Line graphs can be constructed using the geom_line() function in ggplot2.
Figure 22 shows a single series line graph built in ggplot2.

Two Series
A two series line graph reflects trends for two groups, as shown in Fig. 23.

The aes(color = group) parameter defines the group by which lines are
stratified.

304 Data Visualization

Fig. 23 Two series line graph

Multiple Series
A multiple series line graph reflects trends for three or more groups.

Note the preattentive attributes applied in Fig. 24. If the focus is on how a single
group (Engineering in this case) compares to two or more other groups, there is no
need to differentiate the other groups with respect to color—only label.

Slopegraphs

Slopegraphs are helpful in illustrating relative changes between two points in time.
Common applications for slopegraphs in people analytics include survey variable

score changes between two time periods, pre/post changes to outcome variables in
an experimental context, and various metrics (e.g., headcount, TTM attrition) for
which changes need to be evaluated MoM, QoQ, or YoY when data points between
the start and end points are unimportant.

The data structure needed to support a slopegraph is consistent with a line graph.
To illustrate how to construct a slopegraph in R, a data frame will be constructed that
holds engagement scores for two points in time for both a treatment and a control
group.

Build data frame with YoY headcount metrics by department
prepost_scores <- data.frame(date = c(rep('Time 1', 2),

rep('Time 2', 2)),↪→

Visualization Types 305

Fig. 24 Multiple series line graph

group = rep(c('Treatment',
'Control'), 2),↪→

score = c(50, 53, 75, 56))

In ggplot2, a slopegraph is simply a line graph with only two values on the
x-axis and some additional formatting including annotations and y-axis removal.
Figure 25 is a slopegraph comparing the engagement score changes for treatment
and control groups over an observation period, with preattentive attributes applied
to focus attention on the treatment group.

Bar Charts

Bar charts are used to display categorical data. Four common types of bar charts
are vertical, horizontal, stacked, and bidirectional.

Vertical
A vertical bar chart is the most basic and pervasive method of visualizing
categorical data. Like line charts, bar charts can be single series, two series, or
multiple series based on the data that need to be displayed.

To demonstrate how to build bar charts, departmental engagement data will be
simulated with some rank variables to support preattentive attributes.

306 Data Visualization

Fig. 25 Slopegraph

Data Prep ###

Set seed for reproducibility
set.seed(1234)

Generate favorability distributions
fav_pct <- round(runif(7, 20, 45), 0)
neu_pct <- round(runif(7, 20, 45), 0)
unfav_pct <- 100 - fav_pct - neu_pct
scores <- c(fav_pct, neu_pct, unfav_pct)

Average top box (favorable) score
topbox_avg <- round(mean(fav_pct), 0)

Build data frame with YoY headcount metrics by department
engagement_scores <- data.frame(dept = rep(c('Engineering',

'Finance', 'Legal', 'Marketing', 'People', 'Product',
'Sales'), 3),

↪→
↪→

favorability =
c(rep('Favorable', 7),
rep('Neutral', 7),
rep('Unfavorable', 7)),

↪→
↪→
↪→

pct = scores)

Visualization Types 307

Rank departments by top box score to support sorting
dept_rank <- engagement_scores |>

dplyr::filter(favorability == 'Favorable') |>
dplyr::arrange(desc(pct)) |>
dplyr::mutate(rank = dense_rank(desc(pct))) |>
dplyr::select(dept, rank)

Flag top department records in df to support conditional
coloring↪→

engagement_scores$top_score = ifelse(engagement_scores$dept ==
dept_rank[1, 'dept'], 1, 0)↪→

Add department rank based on top box scores
engagement_scores <- left_join(engagement_scores, dept_rank,

by = "dept")↪→

The geom_bar() function can be leveraged to construct a bar chart using
ggplot2. The geom_hline() and annotate() functions can be added to include
a reference line with the average top box score. Preattentive attributes can also be
applied by setting the derived top_score variable as the fill parameter in the
aes() function (Fig. 26).

Fig. 26 Vertical bar chart

308 Data Visualization

Fig. 27 Horizontal bar chart

Horizontal
The horizontal bar cart is a horizontal version of the vertical bar chart, and it tends
to be easier to read.

The vertical bar chart can be converted to a horizontal bar chart by adding
coord_flip() to swap the axes (Fig. 27).

Stacked
The stacked bar chart is useful for illustrating the relative contribution of
subcomponents to a whole. In a people analytics setting, a 100% stacked bar chart
is an excellent tool for visualizing the favorability distribution across survey items
and various categorical dimensions (e.g., departments, locations, job profiles).

The only adjustment needed to build a stacked area chart is to specify
the variable containing the favorability categories as an ordered factor for the
fill parameter. Colors can be specified for each favorability category via the
scale_fill_manual() parameter (Fig. 28).

Bidirectional
The bidirectional bar cart is an effective visual for comparing two metrics side by
side across values of a categorical variable. The bidirectional bar chart is sometimes
referred to as a divergent bar chart, back-to-back bar chart, ormirror bar chart.

Let us illustrate two levers of departmental headcount change—hires and
terminations—using a bidirectional bar chart. While the visualization code is

Visualization Types 309

Fig. 28 100% stacked bar chart

consistent with that of horizontal bar charts, the data need to be transformed such
that losses (terms) are negative numbers and gains (hires) are positive numbers.

Set seed for reproducibility
set.seed(1234)

Build data frame with hire and term metrics by department
hires_terms <- data.frame(dept = c('Engineering', 'Finance',

'Legal', 'Marketing', 'People', 'Product', 'Sales'),↪→

metric = rep(c('Hires', 'Terms'),
7),↪→

cnt = round(runif(14, 5, 150), 0))

Append transformed count column to support bidirectional bar
charts↪→

hires_terms$cnt_trans <- ifelse(hires_terms$metric == 'Terms',
0 - hires_terms$cnt, hires_terms$cnt)↪→

Using the cnt_trans field containing both negative and positive integers, we
can visualize net changes in departmental headcount (Fig. 29).

310 Data Visualization

Fig. 29 Bidirectional bar chart

Combination Charts

Combination charts display data using different types of visualizations within the
same chart.

In a people analytics context, we may wish to highlight differences between
regrettable (bad) and non-regrettable (good) turnover trends relative to total vol-
untary turnover rates. It is usually more difficult to compare the magnitude of
regrettable and non-regrettable rates across time using a stacked bar chart, and a
combination chart is often a more intuitive method of presenting this information.

As illustrated in Fig. 30, we can leverage a two-series line chart for monthly
regrettable and non-regrettable rates relative to the total voluntary turnover rate
visualized with a light gray vertical bar chart in the background.

Waterfall Charts

Waterfall charts are alternatives to stacked bar charts that aid in understanding
events between two points in time that explain a change in a starting and ending
period value. Explaining drivers of headcount changes over time is a common use
case for waterfall charts in people analytics.

Building a waterfall chart requires a bit more data prep relative to the data
structure requirements for a stacked bar chart. Unlike a bar chart, a waterfall chart

Visualization Types 311

Fig. 30 Combination chart

needs a start and an end value for each event type so that each bar beyond the first
begins where the previous bar ends.

Generate headcount data with id field to define bar order
hc_dat <- data.frame(id = 1:6,

event = c("Starting HC", "Hires",
"Transfers In", "Transfers Out",
"Exits", "Ending HC"),

↪→
↪→

type = c("Headcount", "Growth", "Growth",
"Loss", "Loss", "Headcount"),↪→

count = c(100, 50, 10, -10, -20, 130),
start = NA,
end = NA)

Define start and end values to support waterfall chart
hc_dat$end <- cumsum(hc_dat$count)
hc_dat$end <- c(head(hc_dat$end, -1), 0)
hc_dat$start <- c(0, head(hc_dat$end, -1))

Swap start/end values for last record (Ending HC)
hc_dat[nrow(hc_dat), "end"] <- hc_dat[nrow(hc_dat), "start"]
hc_dat[nrow(hc_dat), "start"] <- 0

312 Data Visualization

Fig. 31 Waterfall chart

With data properly structured, we can use the geom_rect() function to build the
waterfall chart. Strategies such as labeling only the Beginning HC and Ending HC
reduces clutter and lends to a cleaner design aesthetic (Fig. 31).

Waffle Charts

Waffle charts, also known as square area charts, are well-suited for illustrating
parts of a whole.

A common application in people analytics is illustrating candidate movement
through the recruiting funnel. It is often helpful to visualize a normalized applicant
pool (e.g., per 100 applicants) to identify where bottlenecks exist across funnel
stages and how pass-through rates are compared across business areas.

Waffle charts require some data prep to visualize:

Create df with TA funnel metrics
ta_dat <- data.frame(stage = c("Apply", "Phone Screen",

"Interview", "Offer Extend", "Offer Accept"),↪→

cnt = c(60, 20, 10, 6, 4))

Set depth of waffle chart (# of y-axis rows)
depth <- 10

Visualization Types 313

Fig. 32 Waffle chart visualizing pass-through rates across recruitment stages per 100 job appli-
cants

Each observation needs an x and y coordinate, and y needs to
be specified first for a waffle chart with horizontal
accumulation

↪→
↪→

waffle_dat <- expand.grid(y = 1:depth,
x = seq_len(ceiling(sum(ta_dat$cnt)

/ depth)))↪→

Expand the applicant counts into a vector of stage labels
stages <- rep(ta_dat$stage, ta_dat$cnt)

Integrate stages and fill any extra tiles with NA
waffle_dat$stage <- c(stages, rep(NA, nrow(waffle_dat) -

length(stages)))↪→

With this data structure, a waffle chart can be produced using the geom_tile()
function from ggplot2.

The waffle chart in Fig. 32 illustrates how candidates for a set of filled requi-
sitions move from application through the phone screen, interview, offer extend,
and offer acceptance stages of the recruiting lifecycle. Based on this chart, 60% of
applicants are rejected without a conversation, 40% receive a phone screen, 20%
land an interview, 10% receive an offer, and 4% accept an offer.

314 Data Visualization

Sankey Diagrams

Sankey diagrams, or alternatives such as chord diagrams and alluvial plots,
are flow diagrams that are particularly effective in depicting a many-to-many
relationship between two domains.

Sankey diagrams have many applications in people analytics. For example,
sankeys may be used to understand internal transfers over a period of time (i.e.,
inflows and outflows among departments) or recruiting sources by which employees
in various departments have been hired. To demonstrate how to implement a
sankey diagram, let us use the sankeyNetwork() function from the networkD3
library to visualize employee transfers between departments. D3 is an advanced
JavaScript framework for creating interactive visualizations, and the networkD3
library provides an easy interface for constructing sankey diagrams with interactive
components. Building a sankey diagram using networkD3 requires data to be
structured within two data frames:

• Nodes: Defines the source and destination node names (i.e., the departments
employees transfer into and out of)

• Links: Connections between pairs of source and destination nodes using an
index beginning at 0 to represent the corresponding node from the nodes data
frame

Set seed for reproducibility
set.seed(1234)

Create nodes df
nodes <- data.frame(name = c('Engineering', 'Finance',

'Legal', 'Marketing', 'People', 'Product', 'Sales', #
source

↪→
↪→

'Engineering', 'Finance',
'Legal', 'Marketing',
'People', 'Product',
'Sales')) # destination

↪→
↪→
↪→

Create links df
links <- expand.grid(source = 0:6, target = 7:13)

Append employee transfer counts per department pair to links
df↪→

links$value <- ifelse(links$source == links$target-7,
round(rnorm(1000, 150, 50), 0), round(rnorm(1000, 30, 5),
0))

↪→
↪→

With data properly structured within the nodes and links data frames, these
data can be passed into the sankeyNetwork() function to construct the sankey

Visualization Types 315

Fig. 33 Sankey diagram showing employee transfers between departments with default colors

diagram. As illustrated in Fig. 33, hovering over a connection displays the count of
employee transfers between the corresponding departments (.n = 222 moves within
Product).

Though it can quickly become noisy as the number of nodes increases, coloring
connections based on the source departments from which each group flows can be
helpful in tracing the employee flow to the various destination departments.

A department variable needs to be defined and added to the links data frame
in order to color connections based on the source department (transfers out).
The NodeGroup and LinkGroup parameters in the call to the sankeyNetwork()
function define the column in the nodes and links data frames, respectively, that
specify the group values by which the nodes and links should be colored.

Append source department variable for colored connections
links$dept <- dplyr::case_when(

links$source == 0 ~ "Engineering",
links$source == 1 ~ "Finance",
links$source == 2 ~ "Legal",
links$source == 3 ~ "Marketing",
links$source == 4 ~ "People",
links$source == 5 ~ "Product",
links$source == 6 ~ "Sales",
TRUE ~ "NA"

)

316 Data Visualization

Fig. 34 Sankey diagram showing employee transfers between departments with connections
shaded based on a source department color scheme

We can add another grouping variable to support coloring intradepartmental
(within) moves differently from interdepartmental (outside) moves (Fig. 34).

Append within/outside department transfer variable for
colored connections↪→

links$wiout_dept <- dplyr::case_when(
(links$source == 0 & links$target == 7) | (links$source == 1

& links$target == 8) | (links$source == 2 & links$target
== 9) | (links$source == 3 & links$target == 10) |
(links$source == 4 & links$target == 11) | (links$source
== 5 & links$target == 12) | (links$source == 6 &
links$target == 13) ~ "Within",

↪→
↪→
↪→
↪→
↪→

TRUE ~ "Outside"
)

If the focus is on a single department’s transfers, preattentive attributes can
be applied to help focus the audience’s attention and move the less important
information to the background to reduce clutter (Figs. 35 and 36).

To facilitate this, a grouping variable can be defined to differentiate a single
department, such as Product, from remaining departments. The color of each group
can then be specified using valid D3 code: d3.scaleOrdinal(["group_1_color",
"group_2_color"]):

Visualization Types 317

Fig. 35 Sankey diagram showing employee transfers between departments with connections
shaded based on an intradepartmental vs. interdepartmental color scheme

Fig. 36 Sankey diagram with preattentive attributes to highlight employee transfers out of the
product department

318 Data Visualization

Append dichotomous product/other indicator to links and
nodes data frames↪→

links$prod <- ifelse(links$dept == 'Product', 'Product',
'Other')↪→

nodes$prod <- ifelse(nodes$name == 'Product', 'Product',
'Other')↪→

Pie Charts

Pie charts are rarely an effective way to visualize data, and this book does not
generally endorse them. Pie charts can be appropriate in cases where there are two or
three mutually exclusive and collectively exhaustive groups and we need to visualize
the relative contribution of each to the whole. However, it quickly becomes difficult
to ascertain relative size beyond a few groups with a pie chart, and labeling many
slices adds a lot of clutter and noise. Proportions should always sum to 1, so if data
are not mutually exclusive parts of a whole, a pie chart is not appropriate.

Figure 37 shows a donut chart—which is simply a pie chart with the center
cut out—that is intended to show Kane Williamson’s outsized contribution to New

Fig. 37 Improper use of a
donut chart

Visualization Types 319

Fig. 38 Pie chart showing gender representation for active employees

Zealand’s cricket runs. However, top scorers from other countries are also included
in this visual, so the metrics do not sum to 100%. Pie and donut charts are not
appropriate for these data.

There is no specific geom() function for building pie charts using ggplot2.
Therefore, we need to create a bar chart and make it circular by adding a
coord_polar("y", start = 0) transformation. The coord_polar() transfor-
mation complicates the positioning of labels, but we can add a position =
position_stack(vjust = 0.5)) argument within the geom_text() function
to easily achieve metric centering within the respective category. We can also easily
improve the aesthetics with the theme_void() function, which removes the default
background, grid, and labels (Fig. 38).

The data need to be structured consistent with the requirements for a bar chart.
A basic data cube with descriptive statistics by gender category will simplify the
construction of the pie chart in ggplot2:

Create data cube for gender representation among active
employees↪→

smmry_gender <- employees |>
dplyr::filter(active == 'Yes') |>
dplyr::group_by(gender) |>
dplyr::summarise(cnt = dplyr::n()) |>
dplyr::mutate(pct = round(cnt / sum(cnt) *

100, 1)) |>↪→

dplyr::arrange(desc(pct))

320 Data Visualization

Fig. 39 Headcount by location misrepresented with a 3D pie chart

3D Visuals

An element of uncertainty is inherent in analytics, which is why this book avoids
the use of categorical terms such as always and never. However, an exception will
be made for this section. 3D visualizations are never appropriate. 3D visuals often
misrepresent the data they are intended to visualize and are unnecessarily difficult
to interpret.

Figure 39 shows the distribution of headcount across locations using a 3D pie
chart. Based on this visual, it may not be apparent that Los Angeles (25%) is
considerably larger than New York (19%). The misleading perspective of this tilted
visual causes locations on the back side of the pie chart to appear smaller relative to
locations on the front side.

A 3D bar chart is not an improvement over a 3D pie chart. As illustrated in
Fig. 40, bars do not appear to align with the actual corresponding values (e.g., Los
Angeles . = 25%). This is because software determines the height of bars in a 3D
bar chart using an invisible tangent plane to intersect the bars at the correct y-axis
location.

As shown in Fig. 41, by leveraging a horizontal bar chart with labeled bars
and preattentive attributes, it becomes easy to understand relative headcount across
locations.

Elegant Data Visualization

This chapter has covered the fundamentals of effective data visualization. Applying
these best practices will elevate impact when presenting results of analyses to
stakeholders.

Elegant Data Visualization 321

Fig. 40 Headcount by location visualized with a misleading 3D bar chart

Fig. 41 Headcount by location properly visualized with a horizontal bar chart

Figure 42 is an example of an excellent data visualization that brings together
many of the design elements promoted in this chapter. This visual shows seasonally
adjusted jobless claims over a period of two decades to highlight the significance of
the Coronavirus’s impact on the labor market using the following design elements:

• Larger and darker text for the headline
• Smaller and lighter text for the commentary
• Gray axis labels and chart annotations to avoid competing with current

statistics
• Low-profile dotted horizontal lines to help connect bars across the long x-axis

to their corresponding y-axis values
• Orange coloring to represent jobless claims (an unfavorable event)
• Creative use of a bar chart resembling an area chart to represent the weekly

interval for jobless claims over the 20-year period

322 Data Visualization

Fig. 42 An archetype of data visualization elegance

• Two helpful reference points to provide perspective: (1) 20-year weekly
average and (2) cumulative jobless claims during the last significant US
recession in 2008

Review Questions

1. What is the function of preattentive attributes in data visualization?
2. Why is the use of red and green in data visualization potentially problematic?
3. Why are horizontal bar charts easier to interpret than pie charts?
4. What types of data are visualized in scatterplots?
5. What advantages do heatmaps provide over tables?
6. What are some people analytics use cases for slopegraphs?
7. What are some people analytics use cases for sankey diagrams?
8. Why is it important to use a zero baseline for y-axes?
9. Why is it a best practice to avoid rotating axis labels?

10. What is the primary purpose of applying a consistent color palette across
visuals?

Review Questions 323

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Data Visualization
	Best Practices
	Color Palette
	Chart Borders
	Zero Baseline
	Intuitive Layout
	Preattentive Attributes

	Step-by-Step Visual Upgrade
	Step 1: Build Bar Chart with Defaults
	Step 2: Remove Legend
	Step 3: Assign Colors Strategically
	Step 4: Add Axis Titles and Margins
	Step 5: Add Left-Justified Title
	Step 6: Remove Background
	Step 7: Remove Axis Ticks
	Step 8: Mute Titles
	Step 9: Flip Axes
	Step 10: Sort Data

	Visualization Types
	Tables
	Heatmaps
	Scatterplots
	Line Graphs
	Slopegraphs
	Bar Charts
	Combination Charts
	Waterfall Charts
	Waffle Charts
	Sankey Diagrams
	Pie Charts
	3D Visuals

	Elegant Data Visualization
	Review Questions

