
Data Visualization 

Unlike content in the preceding chapters, data visualization is more an art than a 
science. Data visualization is heavily dependent on the type of data being presented, 
key messages that need to be conveyed, the unique characteristics of the audience 
to whom information needs to be communicated, and various contextual features 
germane to a proper interpretation and understanding of material. 

This chapter will provide general best practices as well as strategies specific 
to various types of data that will promote success when communicating data to 
technical and non-technical stakeholders alike. Since there is a considerable amount 
of code required to construct the plethora of graphics in this chapter, only the data 
prep code will be included. You can reference the “Appendix” for a curated set of 
fully reproducible code for each data visualization provided in this chapter. 

Best Practices 

While the type of visual depends on the nature of data being presented, there are 
general best practices for effectively communicating information that are applicable 
for all data types, audiences, and contexts. 

Color Palette 

There are several important considerations when choosing colors for data visualiza-
tion. 

Color Has Meaning 
The meaning of color is not consistent across the world. For example, in Western 
cultures red generally has unfavorable connotations (e.g., off track, danger), while 
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green signals a favorable status (e.g., on track, cash flow positive). However, in 
Asian cultures red indicates success. 

It is important to understand what color indicates in the contexts in which 
information is shared to ensure color choices are consistent with the messages that 
need to be conveyed. 

Respect Color Blindness 
Most estimates indicate that 1 in 12 men (8%) and 1 in 200 women (0.5%) are 
colorblind (~4.5% of the world population). Males are more likely to be colorblind 
because the X chromosome contains the genes responsible for the most common 
forms of color blindness. Trouble distinguishing between red and green is the most 
common manifestation of colorblindness (Gordon, 1998). 

This has important implications for data visualization, and it is generally best 
to avoid the use of red and green. One alternative is to leverage orange to indicate 
unfavorable data points and blue for favorable. This strategy will be implemented 
throughout this chapter. 

Adhere to Brand Colors 
In most organizations, the marketing team defines a color palette consistent with 
the branding used for consumer products and services. In this case, analysts may be 
constrained to the use of colors within the branding palette. 

Be sure to consult with marketing colleagues and adhere to any color palette 
requirements. 

Use Color Consistently 
To support a correct interpretation of information, it is important to use a consistent 
color scheme across the various visuals in dashboards, slides, and documents. 
For example, if blue is assigned to highlight how the Engineering department 
compares to other departments in a particular visual, blue should be assigned to 
the Engineering department in every visual in which department is a grouping 
dimension. The consistent use of color requires the audience to wield less effort 
to understand information, which in turn reduces the risk of incorrect interpretation. 

Chart Borders 

The goal in data visualization is to enable the most important data to take center 
stage. Formatting should support—not detract—from this objective. Chart borders 
are a usual suspect and prime example of formatting that can divert focus away from 
the data. 

Figure 1 illustrates the use of heavy and light borders for a tabular presentation 
of data. Formatting takes center stage in the first table due to heavy borders, while 
formatting is not the focus in the second table given the minimal light gray border.
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Fig. 1 Comparison of data tables with heavy (left) and light (right) borders 
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Fig. 2 Hires by year with zero baseline (left) and non-zero baseline (right) 

Zero Baseline 

The use of a non-zero baseline can exaggerate differences in metrics, resulting in 
misleading conclusions. 

Figure 2 illustrates how minor differences are exaggerated when a non-zero 
baseline is applied to the y-axis. The average number of hires across these four 
years is 1000, and the small variation YoY is accurately reflected in the bar chart 
with a zero baseline.



286 Data Visualization

Intuitive Layout 

When visualizing data, it is best not to deviate from the way in which the 
audience will naturally interpret the data. Outlined below are a few important 
considerations: 

• Numbers lower on a y-axis will naturally be interpreted to be smaller than 
numbers higher on the y-axis. 

• When there are both positive and negative numbers along an x-axis, negative 
metrics are best placed on the left and positive on the right since people 
naturally consume content from left to right. 

• Rotated axis labels require more time to read and interpret. If labels must be 
rotated to fit along an axis, a 45. ◦ angle is generally preferred over a more 
extreme 90. ◦ rotation. 

Figure 3 shows murders committed using firearms in Florida across time. This 
visual has an inverted y-axis, which is highly misleading since what appears to be 
spikes in murders are actually dips. Irrespective of whether this was politically moti-
vated or simply a failed attempt at creativity, this is a deceptive data visualization. 

Fig. 3 Misleading inverted 
y-axis 
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Fig. 4 The application of 
preattentive attributes to 
highlight labor costs as a key 
driver of increased operating 
expenses 

Preattentive Attributes 

Preattentive attributes signal where to look and help our audience focus on content 
we wish to emphasize (Knaflic, 2015). 

It is important to remember that data do not always need to be visualized with 
a chart. Sometimes communicating with text is a sufficient and effective way to 
convey information. In the case of text, preattentive attributes are often implemented 
using bold text and/or contrasting colors for keywords and phrases that need to take 
center stage. Bolded text is generally more effective than italicizing or underlining, 
as it highlights the chosen elements without unnecessary noise and compromised 
legibility. 

Gray is an important color in the implementation of preattentive attributes as it 
facilitates a move of less important data and design elements to the background 
to make room for more predominate colors to highlight the most important infor-
mation. Figure 4 illustrates the application of preattentive attributes to emphasize 
the key message in a sentence. This is accomplished by pushing the less important 
content to the background using gray text and using bold orange text to highlight 
the labor cost increase. 

Preattentive attributes can also be applied to data visualizations to focus the 
audience’s attention. Figure 5 illustrates the use of preattentive attributes by 
assigning a different color (orange) to the labor cost for the current year and muting 
the labor costs associated with prior years using a less predominate gray. 

Simply put, if something is really important, make sure it is different from other 
content on the page, slide, or section. 

Step-by-Step Visual Upgrade 

Software knows neither what we wish to highlight nor the audience to whom 
we intend to communicate the information. Therefore, regardless of the software, 
design defaults are rarely best. 

This section will implement data visualization best practices step by step to 
improve upon the design defaults for the ggplot2 library.
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Fig. 5 The application of preattentive attributes to highlight labor costs for the current year relative 
to prior years 

Step 1: Build Bar Chart with Defaults 

We will begin by building a bar chart that shows the distribution of active employ-
ees’ educational backgrounds. To simplify the data structure for data visualization, 
let us ingest our employees data and create an aggregated cube with counts by 
ed_field for active employees: 

# Load libraries 
library(peopleanalytics) 
library(dplyr) 

# Load data 
data("employees") 

# Create data cube for active employees 
smmry_ed_field <- employees |> 

dplyr::filter(active == 'Yes') |> 
dplyr::count(ed_field) 

A bar chart can be created using the geom_bar() function, and we will start with 
the ggplot2 library’s design defaults (Fig. 6):
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Fig. 6 Step 1: bar chart with defaults 

Step 2: Remove Legend 

Since the legend is not necessary for interpreting the education field to which each 
bar corresponds, we will remove it using theme(legend.position = "none"). 
Eliminating the legend also provides more real estate for the chart, which helps 
make the x-axis values more legible (Fig. 7). 

Step 3: Assign Colors Strategically 

There is a lot competing for attention due to this vibrant color palette. Let us assume 
that the objective is to highlight the education field pursued by the largest number of 
employees. Preattentive attributes lend well to this, and we can assign specific hex 
color codes to the education categories (Fig. 8). 

Since Life Sciences is the field pursued by the most employees, let us highlight 
the corresponding bar in blue and move the remaining bars to the background 
through the assignment of light gray. One method of accomplishing this is via the 
following explicit category assignments: 

scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 
"Life Sciences" = "#0070C0", "Marketing" = "#BFBFBF", "Medical" 
= "#BFBFBF", "Other" = "#BFBFBF", Technical Degree" = "#BFBFBF"))
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Fig. 7 Step 2: remove legend 

Fig. 8 Step 3: assign colors strategically
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Fig. 9 Step 4: add mixed case axis titles and margins 

Step 4: Add Axis Titles and Margins 

Axis titles are the column names by default, which is usually not the most user-
friendly option. We can assign new mixed case axis titles by chaining labs(x = 
'Education Field', y = 'Headcount') to the visualization code. 

Spacing can also be added between the axis titles and labels to improve upon 
the default formatting and reduce text congestion. The ggplot2::element_text 
(margin = margin(t = 0, r = 0, b = 0, l = 0)) parameter can be defined 
for the x and y axes via axis.title.x and axis.title.y, respectively, where: 

• t = space on the top of axis title 
• r = space on the right of axis title 
• b = space on the bottom of axis title 
• l = space on the left of axis title 

Let us create a margin of white space above the x-axis title and to the right of the 
y-axis title by defining the following parameters (Fig. 9): 

• axis.title.x = ggplot2::element_text(margin = margin(t = 
10,  r = 0, b = 0, l = 0))  

• axis.title.y = ggplot2::element_text(margin = margin(t = 
0, r = 10, b = 0, l = 0))
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Fig. 10 Step 5: add title 

Step 5: Add Left-Justified Title 

We can add a chart title via labs(title = 'This is a chart title.'). 
This title can be centered via theme(plot.title = ggplot2::element_text 
(hjust = 0.5), left justified via theme(plot.title = ggplot2::element_ 
text(hjust = 0), or right justified via theme(plot.title = ggplot2::ele 
ment_text(hjust = 1). 

It is a best practice to left justify titles since the readers consume information 
beginning with the left side of the page (like reading a book), and left justifying the 
title increases the probability that the audience will read the title and understand its 
purpose before engaging with the visual. Left justification is the default for ggplot2 
titles. 

It is also a best practice to assign a descriptive title to charts to highlight the key 
message(s) we want to convey to the audience through the visual. For longer titles, 
the new line character \n can be used to break titles into multiple lines (Fig. 10). 

Step 6: Remove Background 

The default gray background is a distraction from the data we need to take 
center stage. We can remove this background using panel.background = 
element_blank() to achieve a cleaner aesthetic and allow the bars in this chart to 
become more pronounced (Fig. 11).
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Fig. 11 Step 6: remove background 

Step 7: Remove Axis Ticks 

Axis ticks add noise to this visual and are not necessary to ascertain to which values 
along the axes the data align. Axis ticks can be removed for each axis independently 
with axis.ticks.x = element_blank() for the x-axis and axis.ticks.y = 
element_blank() for the y-axis (Fig. 12). 

Step 8: Mute Titles 

While the chart and axis titles are important for clarifying what information is 
represented in the visual, these should not be the focus. Just as we pushed the less 
important education categories to the background using gray text, we can mute the 
chart and axis titles with gray text to help draw attention to the data. 

We can change the color of the chart title to light gray with plot.title 
= ggplot2::element_text(colour = "#404040"). The axis titles can be 
changed to the same color using axis.title.x = ggplot2::element_text 
(colour = "#404040") for the x-axis and axis.title.y = ggplot2::element_ 
text(colour = "#404040") for the y-axis (Fig. 13).
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Fig. 12 Step 7: remove axis ticks 

Fig. 13 Step 8: mute titles
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Fig. 14 Step 9: flip axis 

Step 9: Flip Axes 

Flipping the coordinates of axes to convert the default vertical bar chart into a 
horizontal bar chart allows the audience to more easily scan down the right side of 
the visual to quickly identify and understand the relative frequencies of education 
categories (Fig. 14). 

Coordinates can be flipped using coord_flip(). 

Step 10: Sort Data 

This visual can be further simplified by sorting the bars from highest to lowest value. 
With sorted bars, the audience can more easily ascertain the relative ranking of each 
education field. 

We can pass reorder(ed_field, n) into the aes() function to sort the 
education field bars from highest to lowest n-count. If we needed to sort in 
the opposite direction, reorder(ed_field, -n) will reverse the sort direction 
(Fig. 15). 

As shown in Fig. 16, the final visual is a marked improvement over the initial 
design defaults.
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Fig. 15 Step 10: sort data 

Fig. 16 Enhanced design (top). Design defaults (bottom)
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Visualization Types 

There are some highly advanced and interactive data visualizations that can be built 
using JavaScript (JS) libraries such as D3. With some exceptions, JS libraries are 
generally out of scope for this book. ggplot2 is capable of building very elegant 
data visualizations, and this will be the tool used to implement most of the data 
visualizations in this chapter. 

All visuals will have a set of common parameters for design aesthetics, consistent 
with the themes used to produce the enhanced chart design shown in Fig. 16. There-
fore, each section will highlight the differences needed to achieve the respective 
data visualization. For production applications with many visualizations, it may be 
helpful to wrap common ggplot2 design elements in a function to simplify chart 
building. 

Tables 

Tables are the most basic way to organize data. Since tables generally contain many 
metrics, they are usually better situated as reference material in the Appendix of a 
doc/deck or within a metric drill-through in dashboards rather than occupying prime 
real estate that should be leveraged strategically to focus the audience’s attention on 
key messages. 

A simple cube containing employee counts by department and tenure band will 
be constructed for demonstrating how to display tabular output: 

# Append new tenure band column 
employees$tenure_band <- dplyr::case_when( 

employees$org_tenure < 1 ~ "Under 1 Year", 
employees$org_tenure < 2.5 ~ "1-2 Years", 
employees$org_tenure < 5.5 ~ "3-5 Years", 
employees$org_tenure <= 10 ~ "6-10 Years", 
TRUE ~ "Over 10 Years" 

) 

# Store aggregate measures to cube 
dept_tenure <- employees |> 

dplyr::filter(active == 'Yes') |> 
dplyr::group_by(dept, tenure_band) |> 
dplyr::summarise(cnt = dplyr::n()) 

# Specify ordered factor 
dept_tenure$tenure_band <- ordered(dept_tenure$tenure_band, 

levels = c("Under 1 Year", "1-2 Years", "3-5 Years", "6-10 
Years", "Over 10 Years"))

↪→
↪→
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The default display of a tibble (data frame produced by dplyr) is very basic: 

# Display output using default settings 
dept_tenure 

## # A tibble: 14 x 3 
## # Groups: dept [3] 
## dept tenure_band cnt 
## <chr> <ord> <int> 
## 1 Human Resources 1-2 Years 7 
## 2 Human Resources 3-5 Years 19 
## 3 Human Resources 6-10 Years 17 
## 4 Human Resources Over 10 Years 8 
## 5 Research & Development 1-2 Years 148 
## 6 Research & Development 3-5 Years 262 
## 7 Research & Development 6-10 Years 252 
## 8 Research & Development Over 10 Years 148 
## 9 Research & Development Under 1 Year 18 
## 10 Sales 1-2 Years 57 
## 11 Sales 3-5 Years 93 
## 12 Sales 6-10 Years 124 
## 13 Sales Over 10 Years 70 
## 14 Sales Under 1 Year 10 

While these data could easily be copied and pasted into presentation software 
for formatting, additional libraries exist in R for formatting tables. For example, 
R Markdown scripts can leverage the DT package to provide filtering, pagination, 
sorting, search, and other interactive features for HTML output. Field names can 
also be changed to proper case via the dplyr::rename() function (Fig. 17). 

# Assign proper case field names 
dept_tenure_proper <- dept_tenure |> 

rename('Department' = dept, 
'Tenure' = tenure_band, 
'Count' = cnt) 

Heatmaps 

Heatmaps use a shading scheme to highlight the relative magnitude of numbers in 
a tabular format. 

The geom_tile() function can be used to build a heatmap with ggplot2. 
The range of colors can be specified via the scale_fill_continuous(low =
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Fig. 17 Data table 

Fig. 18 Heatmap showing the concentration of employees within departments and tenure bands 

'minimum value color', high = 'maximum value color') function since 
the fill variable defined by aes(fill = cnt) is measured on a continuous scale 
(Fig. 18). 

This heatmap is excellent for focusing attention on the department + tenure 
segments with highest and lowest employee counts. However, if the specific 
employee counts are required, complimenting this heatmap with a basic table of 
metrics is a good option to avoid cluttering the heatmap with .3 ∗ 5 = 15 additional 
numbers.
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Fig. 19 Scatterplot showing the relationship between work experience and YTD sales for active 
salespeople 

Scatterplots 

Scatterplots are useful for visualizing relationships between numeric variables. 
Let us build a scatterplot to visualize the relationship between work_exp and 

ytd_sales, with a goal of focusing the audience’s attention on salespeople whose 
ytd_sales meets or exceeds the full year sales quota of .150,000 USD. Let us first 
subset employees data to active salespeople and append a flag to indicate sales 
quota attainment for use in shading data points in the scatterplot. 

# Subset df to active sales employees 
sales <- subset(employees, dept == 'Sales' & active == 'Yes') 

# Set quote attainment flag for data viz coloring 
sales$quota_flg <- ifelse(sales$ytd_sales >= 150000, 1, 0) 

The geom_point() function is used to create a scatterplot. The scale_y_ 
continuous() function can be used in conjunction with the scales library to 
override the default scale for the y-axis (scientific notation) with more intuitive 
values. 

While the basic scatterplot in Fig. 19 is effective in visualizing the relationship 
between work_exp and ytd_sales, additional design elements are needed to 
highlight the data points that meet or exceed the full year sales quota of . 150,000
USD.
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Fig. 20 Scatterplot with data points colored relative to the full year sales quota of 150k USD 

The color argument for the geom_point() function is used to apply 
preattentive attributes to this visual by specifying the field used for conditional 
data point shading. We can define the color for each of the field’s values using the 
scale_color_manual() function. Additionally, the geom_hline() function is 
used to add a dotted horizontal line at a specified position on the y-axis (at . 150,000
USD), and annotation is added at a specified pair of x and y coordinates using the 
annotate() function (Fig. 20). 

Line Graphs 

Line graphs are used for visualizing continuous data across time. 
When visualizing trended data, it is important to avoid cumulative trends because 

they suggest an upward trajectory (positive slope) even when the corresponding non-
cumulative metrics indicate a declining trend. 

Consider the following data frame with decreasing hire counts by year: 

# Print hires df 
print(hires_dat[order(hires_dat$year, decreasing = FALSE), ]) 

## year hires cum_hires 
## 4 2019 1020 980 
## 3 2020 1010 1970
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Fig. 21 Hires by year (left) and cumulative hires by year (right) 

## 2 2021 990 2980 
## 1 2022 980 4000 

Figure 21 juxtaposes a trended line chart with hires by year (left) against a 
cumulative version of the same (right). Since hires at each year are additive in the 
cumulative line chart, the slope is positive and misleading. 

Single Series 
The most basic type of line graph is a single series line graph, which reflects a 
trend for a single group. 

Let us generate some attrition data for illustrating various types of line graphs: 

# Set seed for reproducibility 
set.seed(1234) 

# Create data 
months = 1:24 
eng_rt = 5 - runif(1, 2.7, 2.9) + 2.41*months - .41*monthsˆ2 + 

.02*monthsˆ3↪→ 

fin_rt = runif(1, 5, 8) - 6.97 + 15*months - .53*monthsˆ2 
ppl_rt = 3 - runif(1, 5, 8) - 6.97 + 12*months - .4*monthsˆ2 
prd_rt = runif(1, 5, 8) - 6.97 + 13*months - .53*monthsˆ2
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Fig. 22 Single series line graph 

# Combine dimensions and metrics within df 
attrition_dat <- data.frame(month = rep(months, 4), 

dept = c(rep('Engineering', 
length(months)),↪→ 

rep('Finance', 
length(months)),↪→ 

rep('People', 
length(months)),↪→ 

rep('Product', 
length(months))),↪→ 

rate = c(eng_rt, 
fin_rt, 
ppl_rt, 
prd_rt)) 

Line graphs can be constructed using the geom_line() function in ggplot2. 
Figure 22 shows a single series line graph built in ggplot2. 

Two Series 
A two series line graph reflects trends for two groups, as shown in Fig. 23. 

The aes(color = group) parameter defines the group by which lines are 
stratified.
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Fig. 23 Two series line graph 

Multiple Series 
A multiple series line graph reflects trends for three or more groups. 

Note the preattentive attributes applied in Fig. 24. If the focus is on how a single 
group (Engineering in this case) compares to two or more other groups, there is no 
need to differentiate the other groups with respect to color—only label. 

Slopegraphs 

Slopegraphs are helpful in illustrating relative changes between two points in time. 
Common applications for slopegraphs in people analytics include survey variable 

score changes between two time periods, pre/post changes to outcome variables in 
an experimental context, and various metrics (e.g., headcount, TTM attrition) for 
which changes need to be evaluated MoM, QoQ, or YoY when data points between 
the start and end points are unimportant. 

The data structure needed to support a slopegraph is consistent with a line graph. 
To illustrate how to construct a slopegraph in R, a data frame will be constructed that 
holds engagement scores for two points in time for both a treatment and a control 
group. 

# Build data frame with YoY headcount metrics by department 
prepost_scores <- data.frame(date = c(rep('Time 1', 2), 

rep('Time 2', 2)),↪→
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Fig. 24 Multiple series line graph 

group = rep(c('Treatment', 
'Control'), 2),↪→ 

score = c(50, 53, 75, 56)) 

In ggplot2, a slopegraph is simply a line graph with only two values on the 
x-axis and some additional formatting including annotations and y-axis removal. 
Figure 25 is a slopegraph comparing the engagement score changes for treatment 
and control groups over an observation period, with preattentive attributes applied 
to focus attention on the treatment group. 

Bar Charts 

Bar charts are used to display categorical data. Four common types of bar charts 
are vertical, horizontal, stacked, and bidirectional. 

Vertical 
A vertical bar chart is the most basic and pervasive method of visualizing 
categorical data. Like line charts, bar charts can be single series, two series, or 
multiple series based on the data that need to be displayed. 

To demonstrate how to build bar charts, departmental engagement data will be 
simulated with some rank variables to support preattentive attributes.
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Fig. 25 Slopegraph 

### Data Prep ### 

# Set seed for reproducibility 
set.seed(1234) 

# Generate favorability distributions 
fav_pct <- round(runif(7, 20, 45), 0) 
neu_pct <- round(runif(7, 20, 45), 0) 
unfav_pct <- 100 - fav_pct - neu_pct 
scores <- c(fav_pct, neu_pct, unfav_pct) 

# Average top box (favorable) score 
topbox_avg <- round(mean(fav_pct), 0) 

# Build data frame with YoY headcount metrics by department 
engagement_scores <- data.frame(dept = rep(c('Engineering', 

'Finance', 'Legal', 'Marketing', 'People', 'Product', 
'Sales'), 3),

↪→
↪→ 

favorability = 
c(rep('Favorable', 7), 
rep('Neutral', 7), 
rep('Unfavorable', 7)),

↪→
↪→
↪→ 

pct = scores)
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# Rank departments by top box score to support sorting 
dept_rank <- engagement_scores |> 

dplyr::filter(favorability == 'Favorable') |> 
dplyr::arrange(desc(pct)) |> 
dplyr::mutate(rank = dense_rank(desc(pct))) |> 
dplyr::select(dept, rank) 

# Flag top department records in df to support conditional 
coloring↪→ 

engagement_scores$top_score = ifelse(engagement_scores$dept == 
dept_rank[1, 'dept'], 1, 0)↪→ 

# Add department rank based on top box scores 
engagement_scores <- left_join(engagement_scores, dept_rank, 

by = "dept")↪→ 

The geom_bar() function can be leveraged to construct a bar chart using 
ggplot2. The  geom_hline() and annotate() functions can be added to include 
a reference line with the average top box score. Preattentive attributes can also be 
applied by setting the derived top_score variable as the fill parameter in the 
aes() function (Fig. 26). 

Fig. 26 Vertical bar chart
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Fig. 27 Horizontal bar chart 

Horizontal 
The horizontal bar cart is a horizontal version of the vertical bar chart, and it tends 
to be easier to read. 

The vertical bar chart can be converted to a horizontal bar chart by adding 
coord_flip() to swap the axes (Fig. 27). 

Stacked 
The stacked bar chart is useful for illustrating the relative contribution of 
subcomponents to a whole. In a people analytics setting, a 100% stacked bar chart 
is an excellent tool for visualizing the favorability distribution across survey items 
and various categorical dimensions (e.g., departments, locations, job profiles). 

The only adjustment needed to build a stacked area chart is to specify 
the variable containing the favorability categories as an ordered factor for the 
fill parameter. Colors can be specified for each favorability category via the 
scale_fill_manual() parameter (Fig. 28). 

Bidirectional 
The bidirectional bar cart is an effective visual for comparing two metrics side by 
side across values of a categorical variable. The bidirectional bar chart is sometimes 
referred to as a divergent bar chart, back-to-back bar chart, ormirror bar chart. 

Let us illustrate two levers of departmental headcount change—hires and 
terminations—using a bidirectional bar chart. While the visualization code is
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Fig. 28 100% stacked bar chart 

consistent with that of horizontal bar charts, the data need to be transformed such 
that losses (terms) are negative numbers and gains (hires) are positive numbers. 

# Set seed for reproducibility 
set.seed(1234) 

# Build data frame with hire and term metrics by department 
hires_terms <- data.frame(dept = c('Engineering', 'Finance', 

'Legal', 'Marketing', 'People', 'Product', 'Sales'),↪→ 

metric = rep(c('Hires', 'Terms'), 
7),↪→ 

cnt = round(runif(14, 5, 150), 0)) 

# Append transformed count column to support bidirectional bar 
charts↪→ 

hires_terms$cnt_trans <- ifelse(hires_terms$metric == 'Terms', 
0 - hires_terms$cnt, hires_terms$cnt)↪→ 

Using the cnt_trans field containing both negative and positive integers, we 
can visualize net changes in departmental headcount (Fig. 29).
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Fig. 29 Bidirectional bar chart 

Combination Charts 

Combination charts display data using different types of visualizations within the 
same chart. 

In a people analytics context, we may wish to highlight differences between 
regrettable (bad) and non-regrettable (good) turnover trends relative to total vol-
untary turnover rates. It is usually more difficult to compare the magnitude of 
regrettable and non-regrettable rates across time using a stacked bar chart, and a 
combination chart is often a more intuitive method of presenting this information. 

As illustrated in Fig. 30, we can leverage a two-series line chart for monthly 
regrettable and non-regrettable rates relative to the total voluntary turnover rate 
visualized with a light gray vertical bar chart in the background. 

Waterfall Charts 

Waterfall charts are alternatives to stacked bar charts that aid in understanding 
events between two points in time that explain a change in a starting and ending 
period value. Explaining drivers of headcount changes over time is a common use 
case for waterfall charts in people analytics. 

Building a waterfall chart requires a bit more data prep relative to the data 
structure requirements for a stacked bar chart. Unlike a bar chart, a waterfall chart
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Fig. 30 Combination chart 

needs a start and an end value for each event type so that each bar beyond the first 
begins where the previous bar ends. 

# Generate headcount data with id field to define bar order 
hc_dat <- data.frame(id = 1:6, 

event = c("Starting HC", "Hires", 
"Transfers In", "Transfers Out", 
"Exits", "Ending HC"),

↪→
↪→ 

type = c("Headcount", "Growth", "Growth", 
"Loss", "Loss", "Headcount"),↪→ 

count = c(100, 50, 10, -10, -20, 130), 
start = NA, 
end = NA) 

# Define start and end values to support waterfall chart 
hc_dat$end <- cumsum(hc_dat$count) 
hc_dat$end <- c(head(hc_dat$end, -1), 0) 
hc_dat$start <- c(0, head(hc_dat$end, -1)) 

# Swap start/end values for last record (Ending HC) 
hc_dat[nrow(hc_dat), "end"] <- hc_dat[nrow(hc_dat), "start"] 
hc_dat[nrow(hc_dat), "start"] <- 0



312 Data Visualization

Fig. 31 Waterfall chart 

With data properly structured, we can use the geom_rect() function to build the 
waterfall chart. Strategies such as labeling only the Beginning HC and Ending HC 
reduces clutter and lends to a cleaner design aesthetic (Fig. 31). 

Waffle Charts 

Waffle charts, also known as square area charts, are well-suited for illustrating 
parts of a whole. 

A common application in people analytics is illustrating candidate movement 
through the recruiting funnel. It is often helpful to visualize a normalized applicant 
pool (e.g., per 100 applicants) to identify where bottlenecks exist across funnel 
stages and how pass-through rates are compared across business areas. 

Waffle charts require some data prep to visualize: 

# Create df with TA funnel metrics 
ta_dat <- data.frame(stage = c("Apply", "Phone Screen", 

"Interview", "Offer Extend", "Offer Accept"),↪→ 

cnt = c(60, 20, 10, 6, 4)) 

# Set depth of waffle chart (# of y-axis rows) 
depth <- 10
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Fig. 32 Waffle chart visualizing pass-through rates across recruitment stages per 100 job appli-
cants 

# Each observation needs an x and y coordinate, and y needs to 
be specified first for a waffle chart with horizontal 
accumulation

↪→
↪→ 

waffle_dat <- expand.grid(y =  1:depth, 
x =  seq_len(ceiling(sum(ta_dat$cnt) 

/ depth)))↪→ 

# Expand the applicant counts into a vector of stage labels 
stages <- rep(ta_dat$stage, ta_dat$cnt) 

# Integrate stages and fill any extra tiles with NA 
waffle_dat$stage <- c(stages, rep(NA, nrow(waffle_dat) -

length(stages)))↪→ 

With this data structure, a waffle chart can be produced using the geom_tile() 
function from ggplot2. 

The waffle chart in Fig. 32 illustrates how candidates for a set of filled requi-
sitions move from application through the phone screen, interview, offer extend, 
and offer acceptance stages of the recruiting lifecycle. Based on this chart, 60% of 
applicants are rejected without a conversation, 40% receive a phone screen, 20% 
land an interview, 10% receive an offer, and 4% accept an offer.
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Sankey Diagrams 

Sankey diagrams, or alternatives such as chord diagrams and alluvial plots, 
are flow diagrams that are particularly effective in depicting a many-to-many 
relationship between two domains. 

Sankey diagrams have many applications in people analytics. For example, 
sankeys may be used to understand internal transfers over a period of time (i.e., 
inflows and outflows among departments) or recruiting sources by which employees 
in various departments have been hired. To demonstrate how to implement a 
sankey diagram, let us use the sankeyNetwork() function from the networkD3 
library to visualize employee transfers between departments. D3 is an advanced 
JavaScript framework for creating interactive visualizations, and the networkD3 
library provides an easy interface for constructing sankey diagrams with interactive 
components. Building a sankey diagram using networkD3 requires data to be 
structured within two data frames: 

• Nodes: Defines the source and destination node names (i.e., the departments 
employees transfer into and out of) 

• Links: Connections between pairs of source and destination nodes using an 
index beginning at 0 to represent the corresponding node from the nodes data 
frame 

# Set seed for reproducibility 
set.seed(1234) 

# Create nodes df 
nodes <- data.frame(name = c('Engineering', 'Finance', 

'Legal', 'Marketing', 'People', 'Product', 'Sales', # 
source

↪→
↪→ 

'Engineering', 'Finance', 
'Legal', 'Marketing', 
'People', 'Product', 
'Sales')) # destination

↪→
↪→
↪→ 

# Create links df 
links <- expand.grid(source = 0:6, target = 7:13) 

# Append employee transfer counts per department pair to links 
df↪→ 

links$value <- ifelse(links$source == links$target-7, 
round(rnorm(1000, 150, 50), 0), round(rnorm(1000, 30, 5), 
0))

↪→
↪→ 

With data properly structured within the nodes and links data frames, these 
data can be passed into the sankeyNetwork() function to construct the sankey
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Fig. 33 Sankey diagram showing employee transfers between departments with default colors 

diagram. As illustrated in Fig. 33, hovering over a connection displays the count of 
employee transfers between the corresponding departments (.n = 222 moves within 
Product). 

Though it can quickly become noisy as the number of nodes increases, coloring 
connections based on the source departments from which each group flows can be 
helpful in tracing the employee flow to the various destination departments. 

A department variable needs to be defined and added to the links data frame 
in order to color connections based on the source department (transfers out). 
The NodeGroup and LinkGroup parameters in the call to the sankeyNetwork() 
function define the column in the nodes and links data frames, respectively, that 
specify the group values by which the nodes and links should be colored. 

# Append source department variable for colored connections 
links$dept <- dplyr::case_when( 

links$source == 0 ~ "Engineering", 
links$source == 1 ~ "Finance", 
links$source == 2 ~ "Legal", 
links$source == 3 ~ "Marketing", 
links$source == 4 ~ "People", 
links$source == 5 ~ "Product", 
links$source == 6 ~ "Sales", 
TRUE ~ "NA" 

)
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Fig. 34 Sankey diagram showing employee transfers between departments with connections 
shaded based on a source department color scheme 

We can add another grouping variable to support coloring intradepartmental 
(within) moves differently from interdepartmental (outside) moves (Fig. 34). 

# Append within/outside department transfer variable for 
colored connections↪→ 

links$wiout_dept <- dplyr::case_when( 
(links$source == 0 & links$target == 7) | (links$source == 1 

& links$target == 8) | (links$source == 2 & links$target 
== 9) | (links$source == 3 & links$target == 10) | 
(links$source == 4 & links$target == 11) | (links$source 
== 5 & links$target == 12) | (links$source == 6 & 
links$target == 13) ~ "Within",

↪→
↪→
↪→
↪→
↪→ 

TRUE ~ "Outside" 
) 

If the focus is on a single department’s transfers, preattentive attributes can 
be applied to help focus the audience’s attention and move the less important 
information to the background to reduce clutter (Figs. 35 and 36). 

To facilitate this, a grouping variable can be defined to differentiate a single 
department, such as Product, from remaining departments. The color of each group 
can then be specified using valid D3 code: d3.scaleOrdinal(["group_1_color", 
"group_2_color"]):
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Fig. 35 Sankey diagram showing employee transfers between departments with connections 
shaded based on an intradepartmental vs. interdepartmental color scheme 

Fig. 36 Sankey diagram with preattentive attributes to highlight employee transfers out of the 
product department
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# Append dichotomous product/other indicator to links and 
nodes data frames↪→ 

links$prod <- ifelse(links$dept == 'Product', 'Product', 
'Other')↪→ 

nodes$prod <- ifelse(nodes$name == 'Product', 'Product', 
'Other')↪→ 

Pie Charts 

Pie charts are rarely an effective way to visualize data, and this book does not 
generally endorse them. Pie charts can be appropriate in cases where there are two or 
three mutually exclusive and collectively exhaustive groups and we need to visualize 
the relative contribution of each to the whole. However, it quickly becomes difficult 
to ascertain relative size beyond a few groups with a pie chart, and labeling many 
slices adds a lot of clutter and noise. Proportions should always sum to 1, so if data 
are not mutually exclusive parts of a whole, a pie chart is not appropriate. 

Figure 37 shows a donut chart—which is simply a pie chart with the center 
cut out—that is intended to show Kane Williamson’s outsized contribution to New 

Fig. 37 Improper use of a 
donut chart
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Fig. 38 Pie chart showing gender representation for active employees 

Zealand’s cricket runs. However, top scorers from other countries are also included 
in this visual, so the metrics do not sum to 100%. Pie and donut charts are not 
appropriate for these data. 

There is no specific geom() function for building pie charts using ggplot2. 
Therefore, we need to create a bar chart and make it circular by adding a 
coord_polar("y", start = 0) transformation. The coord_polar() transfor-
mation complicates the positioning of labels, but we can add a position = 
position_stack(vjust = 0.5)) argument within the geom_text() function 
to easily achieve metric centering within the respective category. We can also easily 
improve the aesthetics with the theme_void() function, which removes the default 
background, grid, and labels (Fig. 38). 

The data need to be structured consistent with the requirements for a bar chart. 
A basic data cube with descriptive statistics by gender category will simplify the 
construction of the pie chart in ggplot2: 

# Create data cube for gender representation among active 
employees↪→ 

smmry_gender <- employees |> 
dplyr::filter(active == 'Yes') |> 
dplyr::group_by(gender) |> 
dplyr::summarise(cnt = dplyr::n()) |> 
dplyr::mutate(pct = round(cnt / sum(cnt) * 

100, 1)) |>↪→ 

dplyr::arrange(desc(pct))
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Fig. 39 Headcount by location misrepresented with a 3D pie chart 

3D Visuals 

An element of uncertainty is inherent in analytics, which is why this book avoids 
the use of categorical terms such as always and never. However, an exception will 
be made for this section. 3D visualizations are never appropriate. 3D visuals often 
misrepresent the data they are intended to visualize and are unnecessarily difficult 
to interpret. 

Figure 39 shows the distribution of headcount across locations using a 3D pie 
chart. Based on this visual, it may not be apparent that Los Angeles (25%) is 
considerably larger than New York (19%). The misleading perspective of this tilted 
visual causes locations on the back side of the pie chart to appear smaller relative to 
locations on the front side. 

A 3D bar chart is not an improvement over a 3D pie chart. As illustrated in 
Fig. 40, bars do not appear to align with the actual corresponding values (e.g., Los 
Angeles . = 25%). This is because software determines the height of bars in a 3D 
bar chart using an invisible tangent plane to intersect the bars at the correct y-axis 
location. 

As shown in Fig. 41, by leveraging a horizontal bar chart with labeled bars 
and preattentive attributes, it becomes easy to understand relative headcount across 
locations. 

Elegant Data Visualization 

This chapter has covered the fundamentals of effective data visualization. Applying 
these best practices will elevate impact when presenting results of analyses to 
stakeholders.
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Fig. 40 Headcount by location visualized with a misleading 3D bar chart 

Fig. 41 Headcount by location properly visualized with a horizontal bar chart 

Figure 42 is an example of an excellent data visualization that brings together 
many of the design elements promoted in this chapter. This visual shows seasonally 
adjusted jobless claims over a period of two decades to highlight the significance of 
the Coronavirus’s impact on the labor market using the following design elements: 

• Larger and darker text for the headline 
• Smaller and lighter text for the commentary 
• Gray axis labels and chart annotations to avoid competing with current 

statistics 
• Low-profile dotted horizontal lines to help connect bars across the long x-axis 

to their corresponding y-axis values 
• Orange coloring to represent jobless claims (an unfavorable event) 
• Creative use of a bar chart resembling an area chart to represent the weekly 

interval for jobless claims over the 20-year period
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Fig. 42 An archetype of data visualization elegance 

• Two helpful reference points to provide perspective: (1) 20-year weekly 
average and (2) cumulative jobless claims during the last significant US 
recession in 2008 

Review Questions 

1. What is the function of preattentive attributes in data visualization? 
2. Why is the use of red and green in data visualization potentially problematic? 
3. Why are horizontal bar charts easier to interpret than pie charts? 
4. What types of data are visualized in scatterplots? 
5. What advantages do heatmaps provide over tables? 
6. What are some people analytics use cases for slopegraphs? 
7. What are some people analytics use cases for sankey diagrams? 
8. Why is it important to use a zero baseline for y-axes? 
9. Why is it a best practice to avoid rotating axis labels? 

10. What is the primary purpose of applying a consistent color palette across 
visuals?
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.
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