
Unsupervised Learning 

The inferential and predictive models covered thus far can be categorized as 
supervised learning models. For each observation xi in the data, there is an 
associated response yi in a supervised learning setting, and the goal is to fit a model 
that relates y to one or more predictors to understand relationships or predict future 
values on the basis of the identified associations. However, in an unsupervised 
learning setting, no response yi is associated with xi . As a result, we cannot 
supervise the analysis and are limited to understanding how observations cluster 
or group together based on patterns across the available p attributes. 

People analytics often involves the unique challenge of analyzing high-
dimensional data with a large number of p attributes but relatively few n 
observations—a phenomenon often referred to as the curse of dimensionality. 
Given the sample size requirements covered in previous chapters, we ideally want n 
to be an order of magnitude larger than p to support statistical power and increase 
our chances of detecting meaningful patterns and population effects in sample data. 
Since people data sets are often wide and short, dimension reduction is important 
for reducing the dimensions to a limited subset that captures the majority of the 
information and optimizes the n : p ratio. 

Consider a case in which a colleague uses verbose rhetoric to convey a simple 
message that could be effectively communicated with fewer words. The superfluous 
language is unnecessary and does not provide additional information or value. This 
is analogous to dimension reduction in that we are interested in identifying a limited 
set of meaningful attributes and discarding redundant and unimportant information 
that does not contribute to the analysis objectives. 

Dimensionality reduction techniques project data onto a lower dimensional 
subspace that retains the majority of the variance in the data points. If we take 
a picture of a group of colleagues during a team outing, for example, we would 
lose some 3D information by encoding the information into a 2D image. This 2D 
representation is a subspace of the 3D coordinates. While we would not know how 
far one person is from another in the 2D representation, we could see that people 
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in the back may appear smaller than people in the front. Therefore, the perspective 
in the 2D image would still capture some information about distance. The limited 
information loss in moving from three to two dimensions is likely acceptable, 
assuming the objective is to capture the memory of the team in a photograph. 

Dimension reduction is particularly important in survey research because longer 
surveys are costly and may result in lower response rates due to the increased 
completion time requirements. Survey instrumentation with strong psychometric 
properties features highly correlated survey items for multidimensional constructs 
that are relatively uncorrelated with survey items used to measure other independent 
constructs. Intuitively, we know that highly correlated variables do not capture 
unique information, as one is often a sufficient proxy to capture most of the available 
signal in the larger number of features. As we have covered, models with highly 
correlated variables can create problems due to multicollinearity, and dimension 
reduction is an alternative approach to variable selection techniques such as the 
backward stepwise procedure covered in chapter “Linear Regression”. 

This chapter will cover dimension reduction fundamentals as well as technical 
implementations. 

Factor Analysis 

The development of survey instrumentation, whether a single item or a larger 
multidimensional scale, begins with a good theory. The theory provides conceptual 
support for the construct—the particular dimensions that characterize the construct, 
the antecedent variables which theoretically influence it, and the outcomes it will 
likely drive.With a strong theoretical framework, the researcher can begin proposing 
ways of operationalizing the conceptual scheme into a measurement approach. 

There are clear measurement approaches for business metrics such as leads 
generated, new business growth, cNPS, and net revenue but in the social sciences, 
we often need indicators of latent constructs that are difficult—or impossible— 
to directly measure. If we want to understand the extent to which employees 
are engaged in their work, we need a comprehensive measure that captures 
facets of the theoretical frame. For example, vigor, absorption, and dedication are 
dimensions of Schaufeli et al.’s (2006) conception of work engagement which were 
operationalized in the Utrecht Work Engagement Scale (UWES). 

Quantifying the energy levels one brings to work (vigor), the extent to which 
one feels time passes quickly while working (absorption), and the level of one’s 
commitment to seeing tasks through to completion (dedication) is challenging 
since we cannot leverage transactional data or digital exhaust to directly quantify 
this as we can with operational business metrics. We need a comprehensive—yet 
parsimonious—set of survey items that function as indicators of the dimensions of 
the latent work engagement construct. Constructing a larger aggregate measure from 
the individual indicators, such as the average or sum of all survey items, enables us
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to reduce the number of variables and optimize the n : p ratio in supervised learning 
settings. 

Exploratory Factor Analysis (EFA) 

Exploratory factor analysis (EFA) is a variable reduction technique by which 
factors are extracted from data—usually as part of the development process for new 
survey instruments. 

A researcher may work with a panel of experts in a particular domain to develop 
an inventory of items that tap various aspects of the construct per the theoretical 
framework that underpins it. Based on how the items cluster together, the empirical 
data will be reconciled against the theoretical conception to define dimensions of 
the measure. Within a cluster of highly correlated items for a particular dimension, 
the researcher needs to decide which items are essential and which are redundant 
and eligible for removal. Aside from the principal clusters (or factors), remaining 
items also need to be evaluated for their relevance and support for the underlying 
theory. If items are believed to be members of the theoretical dimensions but do 
not cluster together with other similar items, it may be indicative of poorly written 
items that have different interpretations among survey takers. EFA is the empirical 
process that supports these objectives. 

To illustrate the steps for EFA, we will leverage the survey_responses data. 

# Load library 
library(peopleanalytics) 

# Load data 
data("survey_responses") 

# Store data in df with curtailed name 
survey_dat <- survey_responses 

# Show dimensions of survey data 
dim(survey_dat) 

## [1] 400 12 

EFA is implemented via a three-step procedure: 

1. Assess the factorability of the data. 
2. Extract the factors. 
3. Rotate and interpret the factors.
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Step 1: Factorability Assessment 
With respect to factorability, there needs to be some correlation among variables 
in order for a dimension reduction technique to collapse variables into linear 
combinations that capture a large portion of the variance in the data. The data feature 
sufficient factorability if we achieve a Kaiser–Meyer–Olkin (KMO) statistic of 
at least 0.60 (Kaiser, 1974) and Bartlett’s Test of Sphericity reaches statistical 
significance (Bartlett, 1954). The KMO statistic estimates the proportion of variance 
that may be common variance; the lower the proportion, the greater the factorability. 
Bartlett’s test essentially measures the degree of redundancy in the data, where the 
null hypothesis states that the variables are orthogonal (uncorrelated); rejecting this 
null hypothesis indicates that there is sufficient correlation for dimension reduction. 

The KMO() and cortest.bartlett() functions from the psych library can be 
used for the KMO statistic and Bartlett’s test, respectively: 

# Load library 
library(psych) 

# Kaiser-Meyer-Olkin (KMO) statistic 
psych::KMO(survey_dat) 

## Kaiser-Meyer-Olkin factor adequacy 
## Call: psych::KMO(r = survey_dat) 
## Overall MSA = 0.9 
## MSA for each item = 
## belong effort incl eng_1 eng_2 eng_3 happ psafety ret_1 ret_2 
## 0.94 0.86 0.86 0.86 0.89 0.89 0.92 0.90 0.91 0.89 
## ret_3 ldrshp 
## 0.90 0.93 

# Bartlett's Test of Sphericity 
psych::cortest.bartlett(cor(survey_dat), nrow(survey_dat)) 

## $chisq 
## [1] 2933.161 
## 
## $p.value 
## [1] 0 
## 
## $df 
## [1] 66 

Data satisfy the factorability requirements since KMO = 0.90 (Overall MSA) 
and Bartlett’s test is significant at the p < 0.001 level. 

Step 2: Factor Extraction 
For the second step, we will visually inspect a scree plot and determine how many 
factors are necessary to explain most of the variance in the data. A scree plot is
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a line plot that helps visualize the portion of the total variance explained by each 
factor using eigenvalues. While the linear algebraic underpinnings are out of scope 
for this book, it is important to understand that eigenvectors are vectors of a linear 
transformation which have corresponding eigenvalues λ that represent factors by 
which the vectors are scaled. As a general rule, factors with λ ≥ 1 are extracted 
when running a factor analysis. 

The scree() function from the psych library can be used to generate a scree 
plot: 

# Produce scree plot 
psych::scree(survey_dat, pc = FALSE) 

Based on Fig. 1, factors 1 and 2 appear to provide relatively outsized information 
gain as λ >  1 for both. 

You may notice the pc = FALSE argument in the scree() function call. This 
relates to principal components analysis (PCA), which is an alternative method 
of dimension reduction. Principal components are new independent variables that 
represent linear transformations of scaled ((x − x̄)/s) versions of the observed 
variables. While we will focus on factor analysis and PCA in this section, which 
are most common in the social sciences, there are additional dimension reduction 
techniques one could explore (e.g., parallel analysis). 

Though there are similarities between factor analysis and PCA, the mathematics 
are fundamentally different. PCA approaches dimension reduction by creating one 
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Fig. 1 Scree plot showing eigenvalues by factor relative to the extraction threshold (horizontal 
line)
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or more index variables (linear combinations of original variables) from a larger set 
of measured variables; these new index variables are referred to as components. On 
the other hand, factor analysis can be viewed as a set of regression equations with 
weighted relationships that represent the measurement of a latent variable. Most 
variables are latent in social psychology contexts since we cannot directly measure 
constructs like psychological safety or belonging. 

To illustrate how to extract principal components, we can use base R’s prcomp() 
function: 

# Load library 
library(ggplot2) 

# Perform PCA 
pca <- prcomp(survey_dat, scale = TRUE) 

# Calculate explained variance for each principal component 
pca_var = (pca$sdevˆ2 / sum(pca$sdevˆ2)) * 100 

# Create scree plot 
ggplot2::qplot(1:length(pca_var), pca_var) + 
ggplot2::geom_line() + 
ggplot2::scale_x_continuous(breaks = 1:length(pca_var)) + 
ggplot2::labs(x =  "Principal Component", y =  "Variance 

Explained (%)") +↪→ 

ggplot2::theme_bw() 

Note that while we can theoretically have as many factors as we have variables 
(p = 12), this defeats the purpose of dimension reduction—whether PCA or factor 
analysis. The objective of dimension reduction is to reduce the number of factors 
(or components) to a subset that captures the majority of the information in the data. 

As shown in Fig. 2, principal components are sorted in descending order 
according to the percent of total variance they explain. The first principal component 
alone explains nearly half of the total variance in the data. We are looking for 
the elbow to ascertain the inflection point at which explained variance plateaus. 
It is clear that the slope of the line begins to flatten beyond the third principal 
component, indicating that components 4–12 provide relatively little information. 
Put differently, we could extract only the first three components without sacrificing 
much information and gain the benefit of fewer, more meaningful variables. 

As an aside, in a supervised learning context, we could insert these principal 
components as predictors in a regression model in lieu of a larger number of 
original variables. This is known as principal components regression (PCR). 
However, given the importance of explaining models in a people analytics setting, 
PCR will not be covered since inserting index variables as predictors in the model 
compromises interpretability.
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Fig. 2 Plot showing the percent of total variance explained by 12 principal components 

Step 3: Factor Rotation and Interpretation 
For the third step, we will use an Oblimin method to rotate the factor matrix. The 
Oblimin rotation is an oblique—rather than orthogonal—rotation and is selected 
here since it is best suited when underlying dimensions are assumed to be correlated 
(Hair et al., 2006). 

The fa() (factor analysis) function from the psych package can be used for the 
implementation in R. Based on the scree plot, we will specify three factors for this 
analysis. Note that the Oblimin rotation is the default for factor analysis, while a 
varimax (orthogonal) rotation is the default for PCA. Many other rotations can be 
implemented based on the nature of data and n-count. 

# Principal axis factoring using 3 factors and oblimin 
rotation↪→ 

efa.fit <- psych::fa(survey_dat, nfactors = 3, rotate = 
'oblimin')↪→ 

# Display factor loadings 
efa.fit$loadings 

## 
## Loadings: 
## MR1 MR2 MR3



268 Unsupervised Learning

## belong 0.283 0.456 
## effort -0.114 0.869 
## incl 0.747 
## eng_1 0.886 
## eng_2 0.172 0.782 
## eng_3 0.799 
## happ 0.558 0.355 
## psafety 0.609 
## ret_1 0.791 
## ret_2 0.922 -0.111 
## ret_3 0.822 
## ldrshp 0.556 0.276 
## 
## MR1 MR2 MR3 
## SS loadings 2.906 2.817 1.363 
## Proportion Var 0.242 0.235 0.114 
## Cumulative Var 0.242 0.477 0.590 

The sum of squared loadings (SS loadings) represents the eigenvalues for 
each factor. It is also helpful to review the percent of total variance explained by 
each factor (Proportion Var) along with the cumulative percent of total variance 
(Cumulative Var). We can see that the three factors have λ ≥ 1, which together 
explain 59% of the total variance in the data. 

By reviewing the factor loadings, we gain an understanding of which variables 
are part of each factor (i.e., highly correlated variables which cluster together). 
Factor loadings represent the correlation of each item with the respective factor. 
While there is not a consensus on thresholds, a general rule of thumb is that absolute 
factor loadings should be at least 0.5. Items with lower factor loadings should be 
removed from the measurement model. 

For the first factor MR1, the three retention items cluster together with happiness 
and leadership. This indicates that happier employees who have more favorable 
perceptions of leadership are less likely to leave the organization. 

Loadings for the second factor MR2 indicate that the three engagement items 
cluster together with discretionary effort. This makes intuitive sense, as we would 
expect highly engaged employees to contribute higher levels of effort toward their 
work. 

Loadings for the third factor MR3 show that belonging, inclusion, and psycholog-
ical safety cluster together. In other words, employees who feel a stronger sense of 
belonging and perceive the environment to be more inclusive tend to experience a 
more favorable climate with respect to psychological safety. 

We can visualize this information using the fa.diagram() function from the 
psych library (Fig. 3): 

psych::fa.diagram(efa.fit)
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Fig. 3 Diagram showing 
factor loadings (correlations) 
for each item with the 
respective factor 

Factor Analysis 

ret_2 

ret_3 

ret_1 

happ 

ldrshp 

eng_1 

effort 
eng_3 

eng_2 

incl 
psafety 

belong 

MR1 

MR2 

MR3 

0.9 
0.8 
0.8 
0.6 
0.6 

0.9 
0.9 
0.8 
0.8 

0.7 
0.6 
0.5 

0.4 

0.6 

Confirmatory Factor Analysis (CFA) 

Confirmatory factor analysis (CFA) is used to test how well data align with a 
theoretical factor structure. 

We expect items associated with a given construct to be highly correlated with 
one another but relatively uncorrelated with items associated with independent 
constructs. Consider engagement and retention, which are two independent—yet 
likely correlated—constructs. If multiple items are needed to measure the theoretical 
dimensions of both engagement and retention, we would expect the engagement 
items to be more highly correlated with one another than with the retention items. 
Theory may suggest that retention likelihood increases as engagement increases, 
but there are many other factors which also influence one’s decision to leave an 
organization beyond engagement, so we would not expect changes in engagement 
levels to always be associated with a commensurate change in retention. 

We can illustrate using our survey_responses data, which contains three items 
for both engagement and retention. Figure 4 shows pairwise relationships between 
the items. As expected, eng_1, eng_2, and eng_3 have stronger correlations with 
one another (r ≥ 0.70) than with ret_1, ret_2, or  ret_3 (r ≤ 0.52). 

CFA enables us to move beyond inter-item correlations to quantify the extent to 
which latent variables in our data fit an expected theoretical model. We can leverage 
the lavaan package in R to perform CFA, which is implemented via a three-step 
procedure:
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Fig. 4 Bivariate correlations and relationship visualizations for engagement and retention survey 
items 

1. Define the model. 
2. Fit the model. 
3. Interpret the output. 

Step 1: Define the Model 
Step 1 is defining the model within a string per the syntax required by lavaan: 

# Load library 
library(lavaan) 

# Model specification; each line represents a separate latent 
factor↪→ 

model <- paste('engagement =~ eng_1 + eng_2 + eng_3 
retention =~ ret_1 + ret_2 + ret_3') 

Step 2: Fit the Model 
Step 2 is fitting the model to the data using the cfa() function from the lavaan 
package: 

# Fit the model 
cfa.fit <- lavaan::cfa(model, data = survey_dat)
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Fig. 5 Path diagram showing survey items as indicators of latent engagement and retention factors 

We can also create what is known as a path diagram to assist with understanding 
the CFA model. A path diagram is a symbolic visualization of the measurement 
model, with circles depicting latent variables (factors), rectangles representing 
observed indicators (survey items), and arrows indicating paths (relationships) 
between variables. The measurement model (CFA) together with the structural 
(path) model is known as structural equation modeling (SEM); CFA is a subset 
of the SEM umbrella. 

The lavaanPlot() package can be used to create and visualize path diagrams 
in R: 

# Load library 
library(lavaanPlot) 

# Visualize path diagram 
lavaanPlot::lavaanPlot(model = cfa.fit, coefs = TRUE, stand = 

TRUE)↪→ 

Factor loadings are shown for each indicator of the latent variable in Fig. 5. All  
are well above the absolute threshold of 0.5. 

Step 3: Interpret the Model 
Step 3 is interpreting the output of the fitted model: 

cfa.fit <- lavaan::cfa(model, data = survey_dat) 

# Summarize the model 
summary(cfa.fit, fit.measures = TRUE) 

## lavaan 0.6-12 ended normally after 25 iterations 
## 
## Estimator ML 
## Optimization method NLMINB 
## Number of model parameters 13
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## 
## Number of observations 400 
## 
## Model Test User Model: 
## 
## Test statistic 35.477 
## Degrees of freedom 8 
## P-value (Chi-square) 0.000 
## 
## Model Test Baseline Model: 
## 
## Test statistic 1495.174 
## Degrees of freedom 15 
## P-value 0.000 
## 
## User Model versus Baseline Model: 
## 
## Comparative Fit Index (CFI) 0.981 
## Tucker-Lewis Index (TLI) 0.965 
## 
## Loglikelihood and Information Criteria: 
## 
## Loglikelihood user model (H0) -2456.223 
## Loglikelihood unrestricted model (H1) -2438.484 
## 
## Akaike (AIC) 4938.446 
## Bayesian (BIC) 4990.335 
## Sample-size adjusted Bayesian (BIC) 4949.085 
## 
## Root Mean Square Error of Approximation: 
## 
## RMSEA 0.093 
## 90 Percent confidence interval - lower 0.063 
## 90 Percent confidence interval - upper 0.125 
## P-value RMSEA <= 0.05 0.011 
## 
## Standardized Root Mean Square Residual: 
## 
## SRMR 0.040 
## 
## Parameter Estimates: 
## 
## Standard errors Standard 
## Information Expected 
## Information saturated (h1) model Structured
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## 
## Latent Variables: 
## Estimate Std.Err z-value P(>|z|) 
## engagement =~ 
## eng_1 1.000 
## eng_2 0.880 0.044 19.827 0.000 
## eng_3 0.963 0.050 19.355 0.000 
## retention =~ 
## ret_1 1.000 
## ret_2 0.799 0.039 20.384 0.000 
## ret_3 0.699 0.038 18.562 0.000 
## 
## Covariances: 
## Estimate Std.Err z-value P(>|z|) 
## engagement ~~ 
## retention 0.406 0.051 7.932 0.000 
## 
## Variances: 
## Estimate Std.Err z-value P(>|z|) 
## .eng_1 0.235 0.027 8.839 0.000 
## .eng_2 0.188 0.021 9.013 0.000 
## .eng_3 0.265 0.027 9.820 0.000 
## .ret_1 0.482 0.044 10.952 0.000 
## .ret_2 0.095 0.018 5.145 0.000 
## .ret_3 0.215 0.020 10.571 0.000 
## engagement 0.649 0.064 10.188 0.000 
## retention 0.917 0.097 9.458 0.000 

The lavaan package provides many fit measures, but we will focus only on the 
most common for evaluating how well the data fit the measurement model. 

• Model Chi-Square (χ2): Tests whether the covariance matrix derived from the 
model represents the population covariance (Test Statistic under the Model 
Test User Model section of the lavaan output) 

• Comparative Fit Index (CFI): Values range from 0 to 1, with CFI > 0.95 
indicating good fit 

• Tucker Lewis Index (TLI): Values range from 0 to 1, with T LI  >  0.95 
indicating good fit 

• Root Mean Square Error of Approximation (RMSEA): Values of 0.01, 0.05, 
and 0.08 indicate excellent, good, and mediocre fit, respectively (though some 
texts suggest 0.10 is an adequate threshold for mediocre fit) 

• Standardized Root Mean Square Residual (SRMR): Square root of the differ-
ence between residuals of the sample covariance matrix and the hypothesized 
model, with SRMR < 0.08 indicating good fit
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Given data sets are often small in people analytics, it is important to note that 
RMSEA often exceeds thresholds with small df and n—even when the model is 
correctly specified (Kenny et al., 2015). Therefore, it is important to index more 
on fit indices such as CFI and LT I in determining how well the data fit the 
measurement model. 

The χ2 statistic is sometimes referred to as a “badness of fit” measure since 
rejecting the null hypothesis (p < 0.05) indicates a lack of fit. Though χ2 is 
significant (p < 0.001), both CFI (0.98) and TLI (0.97) are above the 0.95 threshold 
for good fit. In addition, SRMR = 0.04 is beneath the threshold of 0.08 and 
RMSEA = 0.09 is between the mediocre fit threshold range of 0.08 and 0.10. 
Therefore, the indicators (survey items) in these data adequately fit the two latent 
constructs defined by this measurement model. 

For more extensive coverage of SEM, Kline (2005) is an excellent resource. 

Clustering 

Clustering is an ML technique that groups observations into clusters which have 
similar characteristics but different characteristics relative to the observations in 
other clusters. Clustering is similar to factor analysis in that it is also unsupervised 
since there is not a response variable, but it differs in that it does not seek to 
find a low-dimensional representation of observations that capture a large portion 
of variance in the data; clustering aims to find homogeneous subgroups among 
observations. 

Clustering is common in marketing in which it is implemented to create customer 
segments with shared characteristics. By grouping customers based on attributes 
such as income, household size, occupation, and geography, companies can tailor 
marketing campaigns to each segment based on what is most likely to appeal to the 
unique needs of each. 

In people analytics, clustering has important applications as well. For example, 
clustering can be implemented to define personas based on unique talent devel-
opment needs (e.g., early tech career, newly promoted people leaders) or attrition 
risk (e.g., rising stars with hot skills, low performers in high churn roles, high 
performers in specialized roles). Grouping employees based on relative attrition risk 
levels is often a more viable path for action planning, as there are important legal 
and privacy considerations when applying predictive model scores at the individual 
level of analysis. 

This section will cover two popular clustering techniques: k-means and hierar-
chical clustering.
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K-Means Clustering 

K-means clustering is a simple approach to grouping observations into K distinct 
clusters. K-means clustering is implemented via a four-step process: 

1. Define K . 
2. Randomly assign observations to one of K clusters. 
3. For each of the K clusters, compute the cluster centroid. 
4. Assign each observation to the cluster with the closet centroid (middle). 

To assign observations to the cluster with the nearest centroid, a distance metric 
needs to be selected in order to measure the distance between each observation 
and cluster centroids. While calculating the distance between observations in two 
dimensions is simple, distance in higher dimensional space is more challenging. We 
will focus on the most common distance metric, Euclidean distance, though there 
are many others (e.g., Manhattan, Jaccard, Minkowski, Cosine). The Euclidean dis-
tance between two data points is the straight line distance based on the observations’ 
coordinates using the Pythagorean theorem: 

. a2 + b2 = c2,

where a and b are sides of a triangle that intersect to form a right angle, and c is the 
hypotenuse (the side opposite the right angle). 

Let us implement K-means clustering using numeric variables in the employees 
data. Since the scale of variables matters when comparing distances between 
observations and cluster centers, we will first scale the variables to have x̄ = 0 
and s = 1 in support of a consistent, apples-to-apples comparison: 

# Filter employee data to numeric variables 
idx <- which(sapply(employees, is.numeric)) # store indices of 

numeric variables↪→ 

employees <- employees[, idx] # filter df using indices 

# Drop unimportant and sparsely populated sales variables 
employees <- subset(employees, select = -c(employee_id, 

standard_hrs, ytd_leads, ytd_sales))↪→ 

# Center and scale data 
employees_trans <- scale(employees, center = TRUE, scale = 

TRUE)↪→ 

Next, we need to define K . One way to determine the optimal number of clusters 
is to leverage the fviz_nbclust() function from the factoextra library to 
visualize the sum of squared differences between observations and cluster centers 
against the range of clusters:



276 Unsupervised Learning
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# Load library 
library(factoextra) 

# Determine optimal number of clusters 
factoextra::fviz_nbclust(employees_trans, kmeans, method = 

"wss")↪→ 

When interpreting Fig. 6, we are looking for the elbow which marks the 
inflection point at which the sum of squares begins to level off. The goal is to 
achieve the fewest number of clusters, optimizing for subgroups that are distinctly 
different between and highly similar within. The elbow indicates the optimal number 
of clusters, as additional clusters beyond the elbow do not offer a meaningful 
improvement in achieving homogeneous subgroups of the observations. 

There is a discernible elbow at three clusters in Fig. 6. Intuitively, fewer clusters 
promote action taking in people analytics since clusters need to be defined, and this 
becomes increasingly challenging as the number of clusters increases. With a large 
number of clusters, it may be difficult to meaningfully tailor career development or 
retention strategies, for example, to the unique needs of employees assigned to each 
cluster as the distinction between each subgroup becomes more opaque. 

We can now implement K-means clustering with K = 3 using  the  kmeans() 
function in base R: 

# Perform K-means clustering 
km <- kmeans(employees_trans, centers = 3) 

# Return n-count of clusters 
km$size 

## [1] 592 603 275
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Of the 1470 employees in our employees data, the n distribution across the 
K = 3 clusters is 592, 603, and 275. 

We can calculate the mean (and other descriptives) for each variable by cluster 
to better understand cluster distinctions: 

# Calculate mean of each cluster using original data 
aggregate(employees, by = list(cluster = km$cluster), mean) 

## cluster stock_opt_lvl trainings age commute_dist ed_lvl engagement 
## 1 1 0.7787162 2.805743 35.31757 8.907095 2.880068 2.685811 
## 2 2 0.7860697 2.781095 35.38474 9.646766 2.854063 2.792703 
## 3 3 0.8436364 2.825455 43.75636 8.810909 3.112727 2.687273 
## job_lvl hourly_rate daily_comp monthly_comp annual_comp salary_hike_pct 
## 1 1.834459 47.09291 376.7432 8162.77 97953.24 15.26520 
## 2 1.724710 83.51078 668.0862 14475.20 173702.42 15.24876 
## 3 3.301818 67.72364 541.7891 11738.76 140865.16 15.00364 
## perf_rating prior_emplr_cnt env_sat job_sat rel_sat wl_balance work_exp 
## 1 3.148649 2.668919 2.746622 2.859797 2.673986 1.824324 9.315878 
## 2 3.159204 2.645108 2.666667 2.665008 2.706468 1.852405 8.684909 
## 3 3.152727 2.850909 2.789091 2.585455 2.807273 1.854545 21.196364 
## org_tenure job_tenure last_promo mgr_tenure interview_rating 
## 1 5.146959 3.452703 1.467905 3.300676 3.979730 
## 2 4.552239 2.827529 1.077944 2.878939 3.952570 
## 3 16.527273 8.974545 6.170909 8.621818 4.090545 

We can see that relative to the first two clusters, the third cluster has—on 
average—an older demographic with more education and a higher job level. In 
addition, employees in the first cluster earn significantly lower compensation, on 
average, which may be correlated with categorical variables that were initially 
dropped such as dept or job_title. 

We can also add a new column in the employees data frame with the cluster 
assignment from K-means to facilitate further analysis: 

# Add cluster assignment to df 
employees <- cbind(employees, km_cluster = km$cluster) 

While K-means clustering is a simple and efficient algorithm (even for large 
data sets), an a priori specification of K is not always ideal. K-means clustering 
will create K clusters—even if they are nonsensical—so caution must be exercised. 
Plotting WSS against cluster count as shown in Fig. 6 can be helpful in defining K , 
but alternative clustering algorithms exist that do not require K to be predefined. 

Hierarchical Clustering 

Like K-means clustering, hierarchical clustering seeks to group observations into 
clusters which have similar characteristics but different characteristics relative to
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the observations in other clusters. However, unlike K-means, the number of clusters 
is not specified prior to implementing the algorithm with hierarchical clustering. 
The optimal number of clusters is determined using a dendrogram, which is a tree 
diagram visualizing the hierarchical relationships in data. 

One key difference between K-means and hierarchical clustering is that hier-
archical clustering involves linkage methods to measure cluster similarity. There 
is not a one-size-fits-all option for linkage, as the performance of a given linkage 
technique can vary based on the structure of the data. Outlined below are the five 
most common types of linkage in hierarchical clustering: 

1. Complete Linkage: the distance between two clusters is defined as the 
maximum distance between any individual data point in cluster A and any 
individual data point in cluster B 

2. Single Linkage: the distance between two clusters is defined as the minimum 
distance between any individual data point in cluster A and any individual 
data point in cluster B 

3. Average Linkage: the distance between two clusters is defined as the average 
distance between data points in cluster A and data points in cluster B 

4. Centroid Method: the distance between two clusters is defined as the 
distance between the centroid of cluster A and the centroid of cluster B 

5. Ward’s Method: ANOVA-based approach in which the distance between 
clusters A and B is based on how the sum of squared distances increases 
when the clusters are merged 

To implement hierarchical clustering, we will leverage the same centered and 
scaled data used for K-means clustering in the prior section. Note that the 
km_cluster column was only added to the original employees data; if this column 
was present in employees_trans, we would need to drop it so that the hierarchical 
clustering algorithm is not influenced by results of another clustering technique (K-
means). 

Since we do not know what linkage method will work best for these data, we will 
also develop a function that enables us to try a range of techniques and select the 
one that performs best. The agnes() function from the cluster library is used to 
implement hierarchical clustering: 

# Load library 
library(cluster) 

# Define linkage methods 
# Note: centroid is not available for agnes() function 
methods <- c("complete", "single", "average", "ward") 
names(methods) <- c("complete", "single", "average", "ward") 

# Create function to compute agglomerative coefficient 
agg_coeff <- function(x) {
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cluster::agnes(employees_trans, method = x)$ac 
} 

# Compute agglomerative coefficient for each linkage method 
sapply(methods, agg_coeff) 

## complete single average ward 
## 0.7990373 0.6248688 0.7582732 0.9571736 

Agglomerative coefficients closer to 1 indicate stronger clustering performance. 
Therefore, Ward’s distance measure performs best on these data, and we will 
implement hierarchical clustering using this linkage option. 

# Perform hierarchical clustering using Ward's linkage method 
hclust <- cluster::agnes(employees_trans, method = "ward") 

To produce a dendrogram, the pltree() function from the cluster library can 
be used in conjunction with the hclust object holding the clustering results: 

cluster::pltree(hclust, main = "Dendrogram") 

At the bottom of the dendrogram shown in Fig. 7, each leaf of the tree represents 
an individual observation. Since n = 1470, the bottom of the tree is too congested to 
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Fig. 7 Dendrogram for hierarchical clustering of employees using Ward linkage
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Fig. 8 Plot of gap statistic against cluster count for hierarchical clustering 

interpret. As we move up the tree, individual observations are fused together based 
on the degree of similarity as defined by Ward’s linkage method. 

To aid in determining the optimal number of clusters, a gap statistic can be 
calculated, which compares the within-cluster variation for different K values to 
reference values for a random uniform distribution with no clustering. We will use 
the clusGap() function from the cluster library to calculate the gap statistic and 
then visualize using the fviz_gap_stat() function from the factoextra library: 

# Calculate gap statistic across 1-10 clusters 
gap_stat <- cluster::clusGap(employees_trans, FUN = hcut, 

nstart = 25, K.max = 10, B =  50)↪→ 

# Generate plot of gap statistic against cluster count 
factoextra::fviz_gap_stat(gap_stat) 

We ideally want to select the value of K that maximizes the gap statistic. 
In practice, however, balancing cluster parsimony with maximization of the gap 
statistic is not always straightforward. Figure 8 indicates that the gap statistic 
increase is fairly constant across the range of K = 2 to  K = 10 clusters. In this 
case, we may look to select a value of K based on an inflection point at which the 
trajectory of increase in the gap statistic begins to slow. Based on this approach, we 
may select K = 7.
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We can now cut the dendrogram into 7 clusters using the cutree() function and 
then append the cluster to each observation in our original employees data: 

# Compute distance matrix 
d_matrix <- dist(employees_trans, method = "euclidean") 

# Perform hierarchical clustering using Ward's method 
hclust_final <- hclust(d_matrix, method = "ward.D2" ) 

# Cut the dendrogram into 7 clusters 
groups <- cutree(hclust_final, k =  7) 

# Append cluster labels to original data 
employees <- cbind(employees, hier_cluster = groups) 

Review Questions 

1. How can high-dimensional data create problems in analytics, and how do 
dimension reduction techniques remediate these issues? 

2. What is the difference between Exploratory Factor Analysis (EFA) and Confir-
matory Factor Analysis (CFA)? 

3. What is the difference between Exploratory Factor Analysis (EFA) and Princi-
pal Components Analysis (PCA)? 

4. What is Structural Equation Modeling (SEM), and what are some use cases for 
it in people analytics? 

5. How can we test whether data satisfy the eligibility criteria for factor analysis? 
6. How are factor loadings interpreted to ascertain which variables are members 

of each factor? 
7. What is a data-informed approach to selecting the optimal value of K in K-

means clustering? 
8. What is Euclidean distance, and what is its function in clustering? 
9. How is a dendrogram interpreted in the context of hierarchical clustering? 

10. When optimizing for both cluster parsimony and gap statistic maximization 
is not feasible, how can the optimal value of K be determined in hierarchical 
clustering?
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