
Predictive Modeling 

In people analytics, inferential models like those covered in chapters “Linear 
Regression”, “Linear Model Extensions”, and “Logistic Regression” are generally 
warranted by the research objectives. However, there are times when we need to go 
beyond interpreting coefficients to understand relative influences of predictors on 
an outcome and leverage the models to estimate or predict the most likely future 
values. This type of modeling is often referred to as predictive analytics and is the 
subject of this chapter. 

A branch of Artificial Intelligence (AI) known as Machine Learning (ML) 
is often associated with predictive modeling. ML is a set of methods that aim to 
improve performance on a set of tasks by learning from data (Mitchell, 1997). 
ML applications can be found in medical diagnostics, autonomous vehicles, speech 
recognition, automated securities trading, lending decisions, marketing, and many 
other domains. The difference between statistics and ML is largely philosophical. 
Logistic regression, for example, is covered in both statistics and ML textbooks. 
While statistics focuses more on modeling and ML is more algorithmic, both can 
be used for prediction. The broader field of data science often further confounds 
distinctions between these disciplines, though data science represents the entire end-
to-end process—from data extraction and engineering to modeling and analysis. 

A good use case for a predictive model in people analytics is data restatement to 
adjust for reorganizations over time. In this case, accuracy may be more important 
than the explainability of the model. A predictive model may be used to predict 
and assign a current functional executive to historical records to support leader-
wise trending analyses. For example, consider a scenario in which the current VP of 
Product Marketing was hired six months ago to replace the former VP of Product 
Marketing who was in the role for the prior five-year period. If the new VP wants to 
see monthly termination counts for their organization over the past three years, term 
records prior to the VP’s start date need to be associated with the current—rather 
than former—VP of Product Marketing to accomplish this. A model can be trained 
to learn from patterns in the combinations of current workers’ department, leader, 
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and job attributes that can be used to assign current executives to past data (e.g., 
historical termination events, month-end worker snapshots). 

It is important to note that while there are AI/ML applications for people 
analytics, feeding data to black box models without an understanding of how 
the underlying algorithms work is generally a bad idea. Despite the glamour 
predictive analytics has seen in recent years due to the allure of a magical elixir 
that can portend the future, more times than not inferential statistical approaches 
are more appropriate in a people analytics setting (Fig. 1). Unfortunately, the hype 
has given rise to AI snake oil to justify a premium price point for modern HR 
tech solutions, which are often little more than the descriptive statistics covered 
in chapter “Descriptive Statistics”. 

It is both a blessing and a curse that a predictive model can be built with a single 
line of code in R, and it is dangerous to blindly make recommendations on the basis 
of the output. A simpler model that you can understand and explain is generally a 
better option than a more complex one that you cannot. There is a high probability 
that stakeholders will ask deeper questions about why a particular segment of the 
workforce is predicted to exit at higher rates, for example, and answering these 
questions requires a deeper understanding of the factors that led to them being 
classified as such. 

People data are messy, and understanding why people vary in attitudes, percep-
tions, and behaviors is an inherently difficult endeavor. Spoiler alert: there is no 
crystal ball that will soften this reality. 

Cross-Validation 

Predictive modeling involves training a model on a data set referred to as a training 
set and using the model to make predictions for observations on a separate data set 
known as the test set or validation set to evaluate model performance. 

A model is blind to data in the test set, since only the data in the training set 
are used to train the model. Therefore, the test set provides a convenient way to 
compare the actual known values to the predicted values and estimate how well the 
model will generalize to other data. Evaluating model performance on the basis of 

Fig. 1 Satirical illustration 
based on the viral meme of 
2019 which depicts the 
enduring popularity and 
utility of linear regression, 
even in light of the billions 
companies invest in ML each 
year
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training data would be akin to having students take an exam after providing them 
the answers. Strong performance on the training data is almost a certainty, so the 
value of a model rests on its performance on data not used to build it. 

This partitioning procedure is known as cross-validation (CV). While there are 
many methods of splitting data into training and test sets, a common feature among 
all is that the partitioning strategy is random. Without randomization, the model may 
learn patterns characteristic of the training set that result in inaccurate predictions 
for other data which do not feature consistent patterning. 

This section will explore a few of the most common CV methods. 

Validation Set Approach 

The validation set approach is the most basic form of CV. This approach involves 
defining proportions by which to partition data into training and test sets—usually 
2/3 and 1/3, respectively. The model is trained on the training set and then 
differences between actual y and predicted . ŷ values are calculated on the test set 
to evaluate model performance. 

Leave-One-Out 

Leave-one-out CV fits a model using .n − 1 observations n times. The test error is 
then evaluated by calculating differences between actual y and predicted . ŷ values 
for all omitted observations. 

k-Fold 

k-fold CV randomly partitions observations into k groups, or folds, that are 
approximately equal in size. The first fold is treated as the test set, and the model is 
trained on the remaining .k −1 folds. This procedure is repeated k times, each with a 
different set of observations (fold) as the test set. The test error is then evaluated by 
calculating differences between actual y and predicted . ŷ values across all test sets. 

Model Performance 

There are several methods of quantifying how well models perform on test data in 
order to assess the extent to which the model will generalize. Predictive modeling
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applications will be categorized as either classification or forecasting to reflect the 
families of use cases germane to people analytics. 

Classification 

In a classification setting, predictions are either right or wrong. Therefore, calculat-
ing the overall error rate across test data is straightforward: 

. 
1

n

n∑

i=1

I (yi �= ŷi ),

where I is an indicator variable equal to 1 if .yi �= ŷi and 0 if .yi = ŷi . 
A confusion matrix is often used in classification to parse the overall model 

accuracy rate into component parts and understand whether the model performs 
at a level appropriate to a defined tolerance level per the research objective. In an 
attrition project, it may be more important to correctly predict high performers who 
leave than to correctly predict those who stay, as prediction errors for the former are 
likely far more costly. Several performance metrics are provided by the confusion 
matrix to aid in a more granular understanding of model performance, which are 
represented in Fig. 2:

• True Positive: Number of correct true predictions
• True Negative: Number of correct false predictions
• False Positive: Number of incorrect true predictions (Type 1 error)
• False Negative: Number of incorrect false predictions (Type 2 error)
• Accuracy: Rate of correct predictions overall
• Sensitivity: Rate of actual true cases predicted correctly (also known as 

Recall) 

Fig. 2 Confusion matrix
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• Specificity: Rate of actual false cases predicted correctly
• Precision: Rate of correct predictions among all cases predicted true
• Negative Predictive Value: Rate of correct predictions among all cases 

predicted false 

Forecasting 

While predictions are either right or wrong in a classification context, evaluating 
model performance in a forecasting context involves assessing the magnitude of 
differences between actual y and predicted . ŷ values—usually across time periods. 
There are many methods for assessing forecasting model performance, and we will 
focus on some of the most common.

• Mean absolute deviation (MAD): average absolute difference between actual 
y and predicted . ŷ values 

.MAD =
∑ |yi − ŷi |

n

• Mean square error (MSE): average squared difference between actual y and 
predicted . ŷ values 

. MSE =
∑

(yi − ŷi )
2

n

Squaring differences accomplishes two key objectives: (1) converts negative 
differences to positive (consistent with the MAD approach) and (2) imposes 
a greater penalty on larger differences, which causes error rates to increase 
at an exponential rather than linear rate (e.g., .22 = 4, .32 = 9, .42 = 16). 
MSE is perhaps the most pervasive model performance measure in predictive 
modeling.

• Mean absolute percentage error (MAPE): average absolute difference 
expressed as a percentage 

. MAPE =
(

100

n

) ∑ ∣∣∣∣
yi − ŷi

yi

∣∣∣∣

Bias–Variance Tradeoff 

Bias–variance tradeoff refers to the important endeavor of minimizing two sources 
of error that prevent models from generalizing beyond their training data: bias and 
variance.
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Fig. 3 Bias–variance tradeoff. Dashed line represents optimal model performance

• Bias: Error from erroneous assumptions in the model. High bias results from 
models that are too simplistic to accurately capture the relationships between 
predictors and the outcome; this is known as underfitting.

• Variance: Error from sensitivity to small fluctuations in training data. High 
variance results from models that capture random noise rather than the 
significant patterns in the training data; this is known as overfitting. 

As a general rule, the more flexible the model, the more variance and less bias. 
As shown in Fig. 3, minimizing test error by achieving a model with optimal fit to 
the data requires limiting both bias and variance. 

Tree-Based Algorithms 

While there are many flexible ML algorithms, such as Extreme Gradient Boosting 
(XGBoost), Artificial Neural Networks (ANN), and Support Vector Machines 
(SVM), that tend to perform well across a range of prediction problems, these will 
not be covered as we will focus on more interpretable tree-based algorithms that 
have more applications to people analytics. 

Decision Trees 

In addition to the inferential models covered in the previous chapters, decision trees 
are also excellent tools that lend to simple and effective narratives about factors
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Fig. 4 Conceptual decision tree for employee attrition prediction 

influencing outcomes in either a regression or a classification setting. As illustrated 
in Fig. 4, decision trees resemble a tree that depicts a set of decisions as well as 
consequences of those decisions. The top-level Department variable is known as a 
root node, and the remaining Tenure, Performance Rating, and Remote nodes 
are known as interior nodes. Decisions represented in Active and Inactive boxes 
are referred to as leaf, terminal, or end nodes. 

As evidenced by the inactive status prediction in the leaf node, this decision tree 
shows that employees in the Engineering department are unlikely to stick around 
for two or more years. In addition, employees in other departments terminate if they 
are low performers or if they are high performers who do not work remotely. It is 
important to note that in practice, it is rare to achieve complete purity in leaf nodes, 
as there is usually a mix of results in a given node—though a more frequent class 
or range of values is expected in the presence of meaningful variables. If leaf nodes 
for a classification problem are comprised of a single class, it may be evidence of 
overfitting, especially if the n-count is small. 

Predictions based on a deep tree with an excessive number of partitions and few 
observations will likely be highly inaccurate beyond the training data. The goal of 
decision trees is to arrive at a set of decisions that best delineate one class or range of 
values from others by identifying patterns and natural cutpoints among a reasonably 
large subset of the data at each level. There must be signal in the features used to 
partition the data such that predictions are an improvement over random guessing 
(e.g., 50/50 chance in a binary classification setting).
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Random Forests 

A random forest (RF) is a natural extension of the decision tree. As the name 
implies, a random forest is a large number (forest) of individual decision trees 
that operate as an ensemble. The process of fitting multiple models on different 
subsets of training data and then combining predictions across all models is referred 
to as bagging. This is a case of wisdom of the crowd decision-making in which 
a large number of uncorrelated trees (models) functioning as a committee should 
outperform individual trees. 

To understand the mechanics of a random forest, consider an investment strategy 
in which you diversify an investment portfolio by spreading investments across 
different assets. By investing in assets that are uncorrelated, there is a lower 
likelihood that the portfolio’s value will be negatively impacted by a negative 
event impacting a single holding. In the same way, a random forest constructs an 
ensemble of trees that are each based on different randomized subsets of data and 
combinations of features to amalgamate the information and arrive at more accurate 
predictions. The potential for poor performance from a single tree is mitigated by 
the many trees working in concert with one another. 

Though random forests combine information from many decision trees, there 
are still intuitive ways of understanding which features are most important in 
segmenting employees to understand drivers of various outcomes. 

Predictive Modeling 

We will now integrate these concepts into attrition classification and forecasting 
examples. The high-level prediction workflow will follow four steps:

• Step 1: Partition data into training and test sets for cross-validation.
• Step 2: Build models using training data.
• Step 3: Use models to make predictions on test data.
• Step 4: Evaluate model performance. 

Classification 

To demonstrate the prediction workflow steps for classification, we will leverage 
our employees data set: 

# Load library 
library(peopleanalytics) 

# Load data
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data("employees") 

# Load employee data 
prediction_dat <- employees 

# One-hot encode active outcome variable, setting inactives to 
↪→ 1 and actives to 0

prediction_dat$active <- ifelse(prediction_dat$active == 'No', 
↪→ 1, 0)

Step 1: Partition Data into Training and Test Sets for Cross-Validation 
For this example, we will implement the validation set approach for CV. 

# Load library 
library(dplyr) 

# Set seed for reproducible training and test sets 
set.seed(9876) 

# Randomly select 2/3 of employees for the training set 
training_ids <- sample(prediction_dat$employee_id, size = 

nrow(prediction_dat) * 2/3, replace = FALSE)↪→ 

# Create training data 
training_dat <- prediction_dat |> dplyr::filter(employee_id 

%in% training_ids)↪→ 

# Create test data using remaining 1/3 of observations 
test_dat <- prediction_dat |> dplyr::filter(!employee_id %in% 

training_ids)↪→ 

# Return Boolean to validate that all observations are 
accounted for↪→ 

nrow(training_dat) + nrow(test_dat) == nrow(prediction_dat) 

## [1] TRUE 

Step 2: Build Models Using Training Data 
Machine learning (ML) algorithms are sensitive to imbalanced classes. That is, 

when there is not an equal representation of each class we wish to predict in the 
data (e.g., employees who left and employees who did not), it can adversely impact 
our results. In the case of our employees data set, there are 1233 observations for 
active employees but only 237 observations for inactive employees. Therefore, we 
will introduce a popular technique to address this known as Synthetic Minority
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Oversampling Technique (SMOTE), which will be important for the RF model 
we will train. This technique takes random samples with replacement (i.e., each 
observation may be chosen more than once) from the minority class to augment the 
class’s representation in the data set and achieve balanced classes. 

While functions exist for implementing SMOTE, such as the SMOTE() function 
from the DMwR library, in the spirit of demystifying black box ML approaches we 
will step through this procedure without the use of an available function: 

# Calculate class representation delta in training data 
training_class_delta <- nrow(training_dat |> 

dplyr::filter(active == 0)) - nrow(training_dat |> 
dplyr::filter(active == 1))

↪→
↪→ 

# Copy training data to separate data frame for oversampling 
training_dat_os <- training_dat 

# Set seed for reproducible results 
set.seed(9876) 

# Oversample the underrepresented inactive class by 
training_class_delta to align observation counts with 
active class

↪→
↪→ 

# Note: A loop is not the most efficient -- especially with 
large data sets -- but it is leveraged here to simplify 
instruction on SMOTE mechanics

↪→
↪→ 

for (i in 1:training_class_delta){ 

# Sample employee id from underrepresented class 
oversampled_id <-

sample(training_dat_os[training_dat_os$active == 1, 
'employee_id'], size = 1, replace = TRUE)

↪→
↪→ 

# Store observation for sampled employee id 
new_obs <- unique(training_dat_os |> 

dplyr::filter(employee_id == oversampled_id))↪→ 

# Append sampled observation to training data frame 
training_dat_os <- rbind(training_dat_os, new_obs) 

} 

# Return Boolean to validate that classes are equal in the 
training data↪→ 

nrow(training_dat_os |> dplyr::filter(active == 0)) == 
nrow(training_dat_os |> dplyr::filter(active == 1))↪→
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## [1] TRUE 

Next, we will fit a binomial logistic regression model using a subset of predictors 
from the oversampled training data. For comparison, let us summarize a model using 
original and oversampled data. 

## 
## Call: 
## glm(formula = active ~ overtime + job_lvl + engagement + interview_rating, 
## family = binomial, data = training_dat) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -2.78408 -0.00157 0.00000 0.00000 2.54959 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 85.7594 16.4594 5.210 1.88e-07 *** 
## overtimeYes 2.5156 0.8766 2.870 0.00411 ** 
## job_lvl -0.1372 0.4805 -0.285 0.77528 
## engagement -0.6845 0.6304 -1.086 0.27755 
## interview_rating -24.9181 4.7673 -5.227 1.72e-07 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 869.013 on 979 degrees of freedom 
## Residual deviance: 44.466 on 975 degrees of freedom 
## AIC: 54.466 
## 
## Number of Fisher Scoring iterations: 11 

## 
## Call: 
## glm(formula = active ~ overtime + job_lvl + engagement + interview_rating, 
## family = binomial, data = training_dat_os) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -3.801 0.000 0.000 0.000 2.704 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 131.12905 19.56650 6.702 2.06e-11 *** 
## overtimeYes 2.27109 0.67614 3.359 0.000782 *** 
## job_lvl 0.04793 0.36730 0.130 0.896172 
## engagement -0.41182 0.42738 -0.964 0.335252 
## interview_rating -37.87539 5.64636 -6.708 1.97e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 2276.295 on 1641 degrees of freedom 
## Residual deviance: 88.655 on 1637 degrees of freedom 
## AIC: 98.655 
## 
## Number of Fisher Scoring iterations: 12
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As we can see, results of the two binomial logistic regression models are 
consistent in the sense that only overtime and interview_rating emerge as 
significant in classifying employees into active and inactive classes. Since the 
oversampled data have a larger n-count, there is greater power to detect effects, 
and we see this reflected in the larger coefficients and lower standard errors. 

Using a similar syntax, we can fit an RF using the randomForest() function 
from the package by the same name: 

# Load library 
library(randomForest) 

# Train RF model using original data 
rf.fit <- randomForest::randomForest(active ~ overtime + 

job_lvl + engagement + interview_rating, data = 
training_dat)

↪→
↪→ 

# Train RF model using oversampled data 
rf.os.fit <- randomForest::randomForest(active ~ overtime + 

job_lvl + engagement + interview_rating, data = 
training_dat_os)

↪→
↪→ 

While RFs generally offer a significant lift in performance beyond a single 
decision tree, we could also apply tuning wrappers around the randomForest() 
function to tune the model’s hyperparameters. Experimenting with a range of values 
for parameters, such as mtry for the number of variables to randomly sample and 
ntree for the number of trees to grow, may further improve model performance. 
Hyperparameter tuning is beyond the scope of this book, but Kuhn & Johnson 
(2013) is an excellent resource for a more exhaustive treatment on ML models. 

Step 3: Use Models to Make Predictions on Test Data 
While there are packages in R which provide performance metrics for predictive 

models, we will create a function for greater visibility into how each metric is 
calculated: 

# Develop function that returns a data frame of classification 
model performance statistics↪→ 

classifier.perf <- function(actual, predicted){ 

# Check for missing values; metrics will be computed on 
non-missing values only↪→ 

predicted <- predicted[!is.na(actual)] 
actual <- actual[!is.na(actual)] 
actual <- actual[!is.na(predicted)]
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# Produce counts for model performance metrics 
TP <- sum(actual == 1 & predicted == 1) # true positives 
TN <- sum(actual == 0 & predicted == 0) # true negatives 
FP <- sum(actual == 0 & predicted == 1) # false positives 
FN <- sum(actual == 1 & predicted == 0) # false negatives 
P <- TP + FN # total positives 
N <- FP + TN # total negatives 

# Store rates to variables 
accuracy <- signif(100 * (sum(actual == predicted) / 

↪→ length(actual)), 3)
sensitivity <- signif(100 * (TP / (TP + FN)), 3) 
specificity <- signif(100 * (TN / (TN + FP)), 3) 
precision <- signif(100 * (TP / (TP + FP)), 3) 
neg_pred_val <- signif(100 * (TN / (TN + FN)), 3) 

# Format output 
stat_nm <- c("accuracy", "sensitivity", "specificity", 

↪→ "precision", "neg_pred_val")
stat_vl <- c(accuracy, sensitivity, specificity, precision, 

↪→ neg_pred_val)

# Return model performance statistics in a data frame 
return(data.frame(stat_nm, stat_vl)) 

} 

We can use the predict() function in conjunction with the object holding the 
trained model to predict class values for our test data. For classification, we need 
to define a probability threshold for classifying observations into classes. This is 
an important consideration since we want to avoid investing in retention strategies 
for employees who are not actually going to leave (minimizing false positives), 
while ensuring employees who are truly at risk are flagged as such (maximizing 
true positives). 

We will predict the class using both binomial logistic regression and RF 
models, trained on both balanced (SMOTE) and imbalanced class data, and store 
performance metrics in a single data frame for easy comparison: 

# Initialize empty data frame for model performance stats 
class.perf.metrics <- NULL 

# Set probability threshold for classification 
prob_threshold <- .7
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# Predict with logistic regression model 
class.perf.metrics <- rbind(class.perf.metrics, 
↪→ cbind.data.frame(

model = rep("GLM", nrow(test_dat)), 
classifier.perf( 
actual = test_dat$active, 
predicted = ifelse(predict(glm.fit, 
↪→ test_dat, type = "response") >= 
↪→ prob_threshold, 1, 0))))

# Predict with logistic regression model (SMOTE) 
class.perf.metrics <- rbind(class.perf.metrics, 
↪→ cbind.data.frame(

model = rep("GLM (SMOTE)", 
↪→ nrow(test_dat)),

classifier.perf( 
actual = test_dat$active, 
predicted = ifelse(predict(glm.os.fit, 
↪→ test_dat, type = "response") >= 
↪→ prob_threshold, 1, 0))))

# Predict with RF model 
class.perf.metrics <- rbind(class.perf.metrics, 
↪→ cbind.data.frame(

model = rep("RF", nrow(test_dat)), 
classifier.perf( 
actual = test_dat$active, 
predicted = ifelse(predict(rf.fit, 
↪→ test_dat, type = "response") >= 
↪→ prob_threshold, 1, 0))))

# Predict with RF model (SMOTE) 
class.perf.metrics <- rbind(class.perf.metrics, 
↪→ cbind.data.frame(

model = rep("RF (SMOTE)", 
↪→ nrow(test_dat)),

classifier.perf( 
actual = test_dat$active, 
predicted = ifelse(predict(rf.os.fit, 
↪→ test_dat, type = "response") >= 
↪→ prob_threshold, 1, 0))))
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Fig. 5 Classification performance for binomial logistic regression and RF models using balanced 
(SMOTE) and imbalanced classes 

Step 4: Evaluate Model Performance 
As we can see in Fig. 5, with our stringent probability threshold set at .7 for 

class delineation, all models had perfect specificity (correctly predicting those who 
stay) and precision (all employees who were predicted to attrit did). However, we 
see notable differences in sensitivity across the model types, and this is generally a 
very important performance measure in a predictive attrition project since the cost 
of not flagging employees who attrit can be costly. Sensitivity for the RF model 
trained on balanced classes (SMOTE) performed much better than its imbalanced 
RF counterpart (95.6% vs. 71.6%), reinforcing that ML models are sensitive (no 
pun intended) to imbalanced classes. 

The results also show that there is likely no benefit to compromising model 
interpretability by using a flexible ML model like RF since our trusty binomial 
logistic regression model performs just as well on these data. Nevertheless, we can 
construct what is known as a Variable Importance Plot on RF output using the 
varImpPlot() function from the randomForest library to understand the relative 
importance of each predictor in the model. 

Variable importance plots are based on the mean decrease in Gini importance. 
Gini importance measures the average gain of purity by splits of a given variable. 
In other words, if a variable is useful, it tends to split mixed labeled nodes (nodes 
with both employees who separated and employees who stayed) into pure single 
class nodes. The most important variables are at the top of the variable importance
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Fig. 6 Variable importance plot for Random Forest model 

plot, indicating that without these variables nodes will not be as pure and as a result, 
classification performance will not be as strong. 

Figure 6 shows that interview_rating is far more important than the second 
most important predictor, overtime. This is consistent with what we observed in 
the results of the binomial logistic regression models too. 

Let us compare the information from the RF’s Variable Importance Plot to a 
single decision tree built on training data with balanced classes. We can build and 
visualize a decision tree in R using the rpart() and rpart.plot() functions from 
libraries by the same names. rpart is an acronym for recursive partitioning and 
regression trees: 

# Load libraries 
library(rpart) 
library(rpart.plot) 

# Construct decision tree on balanced training data 
tree <- rpart::rpart(active ~ overtime + job_lvl + engagement 

+ interview_rating, data = training_dat_os, method = 
"class")

↪→
↪→ 

# Visualize decision tree 
rpart.plot::rpart.plot(tree) 

As shown in Fig. 7, the most important predictor for splitting the data is 
interview_rating when using a single decision tree. At the root node, there is a 
50% chance of leaving and staying, which is expected given we balanced the classes
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Fig. 7 Decision tree for 
employee attrition prediction 
using training data with 
balanced classes (SMOTE) interview_rating >= 3.5 
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using SMOTE. A prediction that is no better than a fair coin toss is of course not 
helpful. Walking down to the leaf nodes, we can see that for the 50% of employees 
with interview_rating >= 3.5, the algorithm predicts they will stay (status 
= 0); for the 50% of employees with interview_rating < 3.5, the algorithm 
predicts they will leave (status = 1). Given what we observed in the results of 
the binomial logistic regression output, additional partitioning by overtime may 
further increase node purity on the test data since classes are mixed for those with 
interview ratings between 3.3 and 3.6. However, given the strong performance 
splitting data only on interview_rating, further partitioning will likely result in 
modeling noise and overfitting. 

Forecasting 

To demonstrate the prediction workflow steps for forecasting, we will leverage our 
turnover_trends data set: 

# Store forecasting data 
forecasting_dat <- turnover_trends 

Step 1: Partition Data into Training and Test Sets for Cross-Validation 
Since we have 60 months of data for each combination of values for the 

job, level, and remote variables, we will select a combination for which 
turnover_rate can be projected for future months. To simplify, we will train a 
model using data for the first 48 months and test using the final 12 months. 

# Create training data 
train_dat <- forecasting_dat |> dplyr::filter(job == 'People 

Scientist' & level == 1 & year %in% 1:4)↪→ 

# Create test data 
test_dat <- forecasting_dat |> dplyr::filter(job == 'People 

Scientist' & level == 1 & remote == 'Yes' & year == 5)↪→
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Step 2: Build Models Using Training Data 
Given the significant quadratic and cubic terms identified in chapter “Linear 

Model Extensions”, we will fit a cubic regression model on the training data. 

# Fit cubic model 
train.cube.fit <- lm(turnover_rate ~ year + month + I(monthˆ2) 

+ I(monthˆ3) + remote, data = train_dat)↪→ 

# Produce model summary 
summary(train.cube.fit) 

## 
## Call: 
## lm(formula = turnover_rate ~ year + month + I(month^2) + I(month^3) + 
## remote, data = train_dat) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -0.3360 -0.1605 0.0075 0.1680 0.3210 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 2.7650000 0.1594281 17.343 < 2e-16 *** 
## year -0.1130000 0.0230955 -4.893 4.33e-06 *** 
## month 2.4100000 0.0935806 25.753 < 2e-16 *** 
## I(month^2) -0.4100000 0.0163907 -25.014 < 2e-16 *** 
## I(month^3) 0.0200000 0.0008311 24.064 < 2e-16 *** 
## remoteYes -1.6400000 0.0516430 -31.756 < 2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 0.253 on 90 degrees of freedom 
## Multiple R-squared: 0.9499, Adjusted R-squared: 0.9471 
## F-statistic: 341.4 on 5 and 90 DF, p-value: < 2.2e-16 

All linear, quadratic, and cubic terms on month are statistically significant at the 
p < 0.001 level. 

Step 3: Use Models to Make Predictions on Test Data 
We will again build a function to evaluate the performance of the fitted models 

applied to test data rather than using delivered functions. The following function 
will return mean absolute deviation (MAD), mean squared error (MSE), and mean 
absolute percentage error (MAPE): 

# Develop function that returns a data frame of forecasting 
model performance statistics↪→ 

forecast.perf <- function(actual, predicted){ 

# Check for missing values; metrics will be computed on 
non-missing values only↪→ 

predicted <- predicted[!is.na(actual)]
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actual <- actual[!is.na(actual)] 
actual <- actual[!is.na(predicted)] 

# Store rates to variables 
mad <- round(mean(abs(actual - predicted)), 2) 
mse <- round(mean((actual - predicted)ˆ2), 2) 
mape <- round(mean(abs((actual - predicted) / actual)) * 

↪→ 100, 2)

# Return model performance statistics in a data frame 
return(data.frame(mad, mse, mape)) 

} 

For this forecast, we will also produce a prediction interval. A prediction 
interval is a range of values that is likely to contain the outcome value for a single 
new observation given a set of predictors. For example, a 95% prediction interval 
of [10 15] indicates that we can be 95% confident that the observation for which 
a prediction is being made will have an actual outcome value between 10 and 15. 
Note that this is very different from a confidence interval in inferential statistics, 
which is a range of values that likely contains the value of an unknown population 
parameter. 

We can produce a prediction interval by passing an additional interval = 
'predict' argument into the predict() function: 

# Initialize empty data frames for model predictions and performance 
stats↪→ 

forecast.metrics <- NULL 
forecast.err.rates <- NULL 

# Predict on test_dat 
forecast.metrics <- rbind(forecast.metrics, cbind.data.frame( 

month = test_dat$month, 
actual = test_dat$turnover_rate, 
predicted = predict(train.cube.fit, 

test_dat, type = "response"),↪→ 
lwr_bound = 

as.data.frame(predict(train.cube.fit, 
test_dat, type = "response", interval = 
"predict"))$lwr,

↪→
↪→
↪→ 
upr_bound = 

as.data.frame(predict(train.cube.fit, 
test_dat, type = "response", interval = 
"predict"))$upr))

↪→
↪→
↪→
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Step 4: Evaluate Model Performance 
Next, we can pass a vector of actual and corresponding predicted values into the 

forecast.perf() function to return MAD, MSE, and MAPE performance metrics 
for the fitted model applied to year 5 data. 

# Calculate error rates for year 5 forecast 
forecast.perf(actual = forecast.metrics$actual, predicted = 

forecast.metrics$predicted)↪→ 

## mad mse mape 
## 1 3.84 14.75 48.39 

Given 95% of the variance in turnover rates was explained by the cubic regression 
model fitted to our training data (.R2 = 0.95), these error rates are surprisingly high 
for the test data. 

Evaluating the average turnover rate by year will help in reconciling the high . R2

on the training data with the high error rates on the test data: 

# Calculate year-wise turnover rate mean 
yr1_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year 

== 1) |> dplyr::summarize(Mean = mean(turnover_rate))↪→ 

yr2_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year 
== 2) |> dplyr::summarize(Mean = mean(turnover_rate))↪→ 

yr3_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year 
== 3) |> dplyr::summarize(Mean = mean(turnover_rate))↪→ 

yr4_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year 
== 4) |> dplyr::summarize(Mean = mean(turnover_rate))↪→ 

yr5_avg <- test_dat |> dplyr::summarize(Mean = 
mean(turnover_rate))↪→ 

# Display year-wise turnover rate mean 
print(c(yr1_avg, yr2_avg, yr3_avg, yr4_avg, yr5_avg)) 

## $Mean 
## [1] 4.506667 
## 
## $Mean 
## [1] 4.816667 
## 
## $Mean 
## [1] 4.046667 
##
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Fig. 8 Left: fitted model (red dashed line) with good fit to year 4 training data (black dots). Right: 
fitted model (red dashed line) with poor fit to year 5 test data (black dots). 95% prediction interval 
is represented by the red shaded area around the fit line 

## $Mean 
## [1] 4.386667 
## 
## $Mean 
## [1] 7.996667 

There is clearly a significant difference in average turnover for year 5 (test data) 
relative to years 1–4 (training data). Since the fitted model had no visibility into 
year 5 data, it did not account for the spike in turnover beyond year 4. Differences 
are further evidenced in Fig. 8, in which actual values for year 5 are far and away 
outside the 95% prediction interval. 

This is an important lesson that highlights the centrality of cross-validation in 
evaluating whether predictive models will generalize beyond the available data. We 
can easily fit a model that performs well on training data and claim that the model 
has exceptional accuracy. However, what matters in predictive modeling is how well 
the model performs on data it has not seen as part of the training process.
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Review Questions 

1. What factors influence the balance between model interpretability and flexibil-
ity? 

2. How does cross-validation (CV) help improve the performance of predictive 
models? 

3. What is bias–variance tradeoff? 
4. In a classification setting, what performance metrics are available in a confusion 

matrix? 
5. What are some measures used to evaluate the performance of a forecast? 
6. What is Synthetic Minority Oversampling Technique (SMOTE), and how does 

it help improve the performance of machine learning (ML) models? 
7. How is the stack ranking of predictors in a variable importance plot determined? 
8. How does a prediction interval differ from a confidence interval? 
9. How can a prediction interval be calculated in R? 

10. What does high R2 on training data and high MSE on test data indicate about 
the utility of a predictive model? 
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