
Predictive Modeling

In people analytics, inferential models like those covered in chapters “Linear
Regression”, “Linear Model Extensions”, and “Logistic Regression” are generally
warranted by the research objectives. However, there are times when we need to go
beyond interpreting coefficients to understand relative influences of predictors on
an outcome and leverage the models to estimate or predict the most likely future
values. This type of modeling is often referred to as predictive analytics and is the
subject of this chapter.

A branch of Artificial Intelligence (AI) known as Machine Learning (ML)
is often associated with predictive modeling. ML is a set of methods that aim to
improve performance on a set of tasks by learning from data (Mitchell, 1997).
ML applications can be found in medical diagnostics, autonomous vehicles, speech
recognition, automated securities trading, lending decisions, marketing, and many
other domains. The difference between statistics and ML is largely philosophical.
Logistic regression, for example, is covered in both statistics and ML textbooks.
While statistics focuses more on modeling and ML is more algorithmic, both can
be used for prediction. The broader field of data science often further confounds
distinctions between these disciplines, though data science represents the entire end-
to-end process—from data extraction and engineering to modeling and analysis.

A good use case for a predictive model in people analytics is data restatement to
adjust for reorganizations over time. In this case, accuracy may be more important
than the explainability of the model. A predictive model may be used to predict
and assign a current functional executive to historical records to support leader-
wise trending analyses. For example, consider a scenario in which the current VP of
Product Marketing was hired six months ago to replace the former VP of Product
Marketing who was in the role for the prior five-year period. If the new VP wants to
see monthly termination counts for their organization over the past three years, term
records prior to the VP’s start date need to be associated with the current—rather
than former—VP of Product Marketing to accomplish this. A model can be trained
to learn from patterns in the combinations of current workers’ department, leader,

© The Author(s) 2023
C. Starbuck, The Fundamentals of People Analytics,
https://doi.org/10.1007/978-3-031-28674-2_13

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28674-2protect T1	extunderscore 13&domain=pdf
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13
https://doi.org/10.1007/978-3-031-28674-2_13

240 Predictive Modeling

and job attributes that can be used to assign current executives to past data (e.g.,
historical termination events, month-end worker snapshots).

It is important to note that while there are AI/ML applications for people
analytics, feeding data to black box models without an understanding of how
the underlying algorithms work is generally a bad idea. Despite the glamour
predictive analytics has seen in recent years due to the allure of a magical elixir
that can portend the future, more times than not inferential statistical approaches
are more appropriate in a people analytics setting (Fig. 1). Unfortunately, the hype
has given rise to AI snake oil to justify a premium price point for modern HR
tech solutions, which are often little more than the descriptive statistics covered
in chapter “Descriptive Statistics”.

It is both a blessing and a curse that a predictive model can be built with a single
line of code in R, and it is dangerous to blindly make recommendations on the basis
of the output. A simpler model that you can understand and explain is generally a
better option than a more complex one that you cannot. There is a high probability
that stakeholders will ask deeper questions about why a particular segment of the
workforce is predicted to exit at higher rates, for example, and answering these
questions requires a deeper understanding of the factors that led to them being
classified as such.

People data are messy, and understanding why people vary in attitudes, percep-
tions, and behaviors is an inherently difficult endeavor. Spoiler alert: there is no
crystal ball that will soften this reality.

Cross-Validation

Predictive modeling involves training a model on a data set referred to as a training
set and using the model to make predictions for observations on a separate data set
known as the test set or validation set to evaluate model performance.

A model is blind to data in the test set, since only the data in the training set
are used to train the model. Therefore, the test set provides a convenient way to
compare the actual known values to the predicted values and estimate how well the
model will generalize to other data. Evaluating model performance on the basis of

Fig. 1 Satirical illustration
based on the viral meme of
2019 which depicts the
enduring popularity and
utility of linear regression,
even in light of the billions
companies invest in ML each
year

Model Performance 241

training data would be akin to having students take an exam after providing them
the answers. Strong performance on the training data is almost a certainty, so the
value of a model rests on its performance on data not used to build it.

This partitioning procedure is known as cross-validation (CV). While there are
many methods of splitting data into training and test sets, a common feature among
all is that the partitioning strategy is random. Without randomization, the model may
learn patterns characteristic of the training set that result in inaccurate predictions
for other data which do not feature consistent patterning.

This section will explore a few of the most common CV methods.

Validation Set Approach

The validation set approach is the most basic form of CV. This approach involves
defining proportions by which to partition data into training and test sets—usually
2/3 and 1/3, respectively. The model is trained on the training set and then
differences between actual y and predicted . ŷ values are calculated on the test set
to evaluate model performance.

Leave-One-Out

Leave-one-out CV fits a model using .n − 1 observations n times. The test error is
then evaluated by calculating differences between actual y and predicted . ŷ values
for all omitted observations.

k-Fold

k-fold CV randomly partitions observations into k groups, or folds, that are
approximately equal in size. The first fold is treated as the test set, and the model is
trained on the remaining .k −1 folds. This procedure is repeated k times, each with a
different set of observations (fold) as the test set. The test error is then evaluated by
calculating differences between actual y and predicted . ŷ values across all test sets.

Model Performance

There are several methods of quantifying how well models perform on test data in
order to assess the extent to which the model will generalize. Predictive modeling

242 Predictive Modeling

applications will be categorized as either classification or forecasting to reflect the
families of use cases germane to people analytics.

Classification

In a classification setting, predictions are either right or wrong. Therefore, calculat-
ing the overall error rate across test data is straightforward:

.
1

n

n∑

i=1

I (yi �= ŷi),

where I is an indicator variable equal to 1 if .yi �= ŷi and 0 if .yi = ŷi .
A confusion matrix is often used in classification to parse the overall model

accuracy rate into component parts and understand whether the model performs
at a level appropriate to a defined tolerance level per the research objective. In an
attrition project, it may be more important to correctly predict high performers who
leave than to correctly predict those who stay, as prediction errors for the former are
likely far more costly. Several performance metrics are provided by the confusion
matrix to aid in a more granular understanding of model performance, which are
represented in Fig. 2:

• True Positive: Number of correct true predictions
• True Negative: Number of correct false predictions
• False Positive: Number of incorrect true predictions (Type 1 error)
• False Negative: Number of incorrect false predictions (Type 2 error)
• Accuracy: Rate of correct predictions overall
• Sensitivity: Rate of actual true cases predicted correctly (also known as

Recall)

Fig. 2 Confusion matrix

Bias–Variance Tradeoff 243

• Specificity: Rate of actual false cases predicted correctly
• Precision: Rate of correct predictions among all cases predicted true
• Negative Predictive Value: Rate of correct predictions among all cases

predicted false

Forecasting

While predictions are either right or wrong in a classification context, evaluating
model performance in a forecasting context involves assessing the magnitude of
differences between actual y and predicted . ŷ values—usually across time periods.
There are many methods for assessing forecasting model performance, and we will
focus on some of the most common.

• Mean absolute deviation (MAD): average absolute difference between actual
y and predicted . ŷ values

.MAD =
∑ |yi − ŷi |

n

• Mean square error (MSE): average squared difference between actual y and
predicted . ŷ values

. MSE =
∑

(yi − ŷi)
2

n

Squaring differences accomplishes two key objectives: (1) converts negative
differences to positive (consistent with the MAD approach) and (2) imposes
a greater penalty on larger differences, which causes error rates to increase
at an exponential rather than linear rate (e.g., .22 = 4, .32 = 9, .42 = 16).
MSE is perhaps the most pervasive model performance measure in predictive
modeling.

• Mean absolute percentage error (MAPE): average absolute difference
expressed as a percentage

. MAPE =
(

100

n

) ∑ ∣∣∣∣
yi − ŷi

yi

∣∣∣∣

Bias–Variance Tradeoff

Bias–variance tradeoff refers to the important endeavor of minimizing two sources
of error that prevent models from generalizing beyond their training data: bias and
variance.

244 Predictive Modeling

Fig. 3 Bias–variance tradeoff. Dashed line represents optimal model performance

• Bias: Error from erroneous assumptions in the model. High bias results from
models that are too simplistic to accurately capture the relationships between
predictors and the outcome; this is known as underfitting.

• Variance: Error from sensitivity to small fluctuations in training data. High
variance results from models that capture random noise rather than the
significant patterns in the training data; this is known as overfitting.

As a general rule, the more flexible the model, the more variance and less bias.
As shown in Fig. 3, minimizing test error by achieving a model with optimal fit to
the data requires limiting both bias and variance.

Tree-Based Algorithms

While there are many flexible ML algorithms, such as Extreme Gradient Boosting
(XGBoost), Artificial Neural Networks (ANN), and Support Vector Machines
(SVM), that tend to perform well across a range of prediction problems, these will
not be covered as we will focus on more interpretable tree-based algorithms that
have more applications to people analytics.

Decision Trees

In addition to the inferential models covered in the previous chapters, decision trees
are also excellent tools that lend to simple and effective narratives about factors

Tree-Based Algorithms 245

Fig. 4 Conceptual decision tree for employee attrition prediction

influencing outcomes in either a regression or a classification setting. As illustrated
in Fig. 4, decision trees resemble a tree that depicts a set of decisions as well as
consequences of those decisions. The top-level Department variable is known as a
root node, and the remaining Tenure, Performance Rating, and Remote nodes
are known as interior nodes. Decisions represented in Active and Inactive boxes
are referred to as leaf, terminal, or end nodes.

As evidenced by the inactive status prediction in the leaf node, this decision tree
shows that employees in the Engineering department are unlikely to stick around
for two or more years. In addition, employees in other departments terminate if they
are low performers or if they are high performers who do not work remotely. It is
important to note that in practice, it is rare to achieve complete purity in leaf nodes,
as there is usually a mix of results in a given node—though a more frequent class
or range of values is expected in the presence of meaningful variables. If leaf nodes
for a classification problem are comprised of a single class, it may be evidence of
overfitting, especially if the n-count is small.

Predictions based on a deep tree with an excessive number of partitions and few
observations will likely be highly inaccurate beyond the training data. The goal of
decision trees is to arrive at a set of decisions that best delineate one class or range of
values from others by identifying patterns and natural cutpoints among a reasonably
large subset of the data at each level. There must be signal in the features used to
partition the data such that predictions are an improvement over random guessing
(e.g., 50/50 chance in a binary classification setting).

246 Predictive Modeling

Random Forests

A random forest (RF) is a natural extension of the decision tree. As the name
implies, a random forest is a large number (forest) of individual decision trees
that operate as an ensemble. The process of fitting multiple models on different
subsets of training data and then combining predictions across all models is referred
to as bagging. This is a case of wisdom of the crowd decision-making in which
a large number of uncorrelated trees (models) functioning as a committee should
outperform individual trees.

To understand the mechanics of a random forest, consider an investment strategy
in which you diversify an investment portfolio by spreading investments across
different assets. By investing in assets that are uncorrelated, there is a lower
likelihood that the portfolio’s value will be negatively impacted by a negative
event impacting a single holding. In the same way, a random forest constructs an
ensemble of trees that are each based on different randomized subsets of data and
combinations of features to amalgamate the information and arrive at more accurate
predictions. The potential for poor performance from a single tree is mitigated by
the many trees working in concert with one another.

Though random forests combine information from many decision trees, there
are still intuitive ways of understanding which features are most important in
segmenting employees to understand drivers of various outcomes.

Predictive Modeling

We will now integrate these concepts into attrition classification and forecasting
examples. The high-level prediction workflow will follow four steps:

• Step 1: Partition data into training and test sets for cross-validation.
• Step 2: Build models using training data.
• Step 3: Use models to make predictions on test data.
• Step 4: Evaluate model performance.

Classification

To demonstrate the prediction workflow steps for classification, we will leverage
our employees data set:

Load library
library(peopleanalytics)

Load data

Predictive Modeling 247

data("employees")

Load employee data
prediction_dat <- employees

One-hot encode active outcome variable, setting inactives to
↪→ 1 and actives to 0

prediction_dat$active <- ifelse(prediction_dat$active == 'No',
↪→ 1, 0)

Step 1: Partition Data into Training and Test Sets for Cross-Validation
For this example, we will implement the validation set approach for CV.

Load library
library(dplyr)

Set seed for reproducible training and test sets
set.seed(9876)

Randomly select 2/3 of employees for the training set
training_ids <- sample(prediction_dat$employee_id, size =

nrow(prediction_dat) * 2/3, replace = FALSE)↪→

Create training data
training_dat <- prediction_dat |> dplyr::filter(employee_id

%in% training_ids)↪→

Create test data using remaining 1/3 of observations
test_dat <- prediction_dat |> dplyr::filter(!employee_id %in%

training_ids)↪→

Return Boolean to validate that all observations are
accounted for↪→

nrow(training_dat) + nrow(test_dat) == nrow(prediction_dat)

[1] TRUE

Step 2: Build Models Using Training Data
Machine learning (ML) algorithms are sensitive to imbalanced classes. That is,

when there is not an equal representation of each class we wish to predict in the
data (e.g., employees who left and employees who did not), it can adversely impact
our results. In the case of our employees data set, there are 1233 observations for
active employees but only 237 observations for inactive employees. Therefore, we
will introduce a popular technique to address this known as Synthetic Minority

248 Predictive Modeling

Oversampling Technique (SMOTE), which will be important for the RF model
we will train. This technique takes random samples with replacement (i.e., each
observation may be chosen more than once) from the minority class to augment the
class’s representation in the data set and achieve balanced classes.

While functions exist for implementing SMOTE, such as the SMOTE() function
from the DMwR library, in the spirit of demystifying black box ML approaches we
will step through this procedure without the use of an available function:

Calculate class representation delta in training data
training_class_delta <- nrow(training_dat |>

dplyr::filter(active == 0)) - nrow(training_dat |>
dplyr::filter(active == 1))

↪→
↪→

Copy training data to separate data frame for oversampling
training_dat_os <- training_dat

Set seed for reproducible results
set.seed(9876)

Oversample the underrepresented inactive class by
training_class_delta to align observation counts with
active class

↪→
↪→

Note: A loop is not the most efficient -- especially with
large data sets -- but it is leveraged here to simplify
instruction on SMOTE mechanics

↪→
↪→

for (i in 1:training_class_delta){

Sample employee id from underrepresented class
oversampled_id <-

sample(training_dat_os[training_dat_os$active == 1,
'employee_id'], size = 1, replace = TRUE)

↪→
↪→

Store observation for sampled employee id
new_obs <- unique(training_dat_os |>

dplyr::filter(employee_id == oversampled_id))↪→

Append sampled observation to training data frame
training_dat_os <- rbind(training_dat_os, new_obs)

}

Return Boolean to validate that classes are equal in the
training data↪→

nrow(training_dat_os |> dplyr::filter(active == 0)) ==
nrow(training_dat_os |> dplyr::filter(active == 1))↪→

Predictive Modeling 249

[1] TRUE

Next, we will fit a binomial logistic regression model using a subset of predictors
from the oversampled training data. For comparison, let us summarize a model using
original and oversampled data.

Call:
glm(formula = active ~ overtime + job_lvl + engagement + interview_rating,
family = binomial, data = training_dat)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.78408 -0.00157 0.00000 0.00000 2.54959

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 85.7594 16.4594 5.210 1.88e-07 ***
overtimeYes 2.5156 0.8766 2.870 0.00411 **
job_lvl -0.1372 0.4805 -0.285 0.77528
engagement -0.6845 0.6304 -1.086 0.27755
interview_rating -24.9181 4.7673 -5.227 1.72e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 869.013 on 979 degrees of freedom
Residual deviance: 44.466 on 975 degrees of freedom
AIC: 54.466

Number of Fisher Scoring iterations: 11

Call:
glm(formula = active ~ overtime + job_lvl + engagement + interview_rating,
family = binomial, data = training_dat_os)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.801 0.000 0.000 0.000 2.704

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 131.12905 19.56650 6.702 2.06e-11 ***
overtimeYes 2.27109 0.67614 3.359 0.000782 ***
job_lvl 0.04793 0.36730 0.130 0.896172
engagement -0.41182 0.42738 -0.964 0.335252
interview_rating -37.87539 5.64636 -6.708 1.97e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2276.295 on 1641 degrees of freedom
Residual deviance: 88.655 on 1637 degrees of freedom
AIC: 98.655

Number of Fisher Scoring iterations: 12

250 Predictive Modeling

As we can see, results of the two binomial logistic regression models are
consistent in the sense that only overtime and interview_rating emerge as
significant in classifying employees into active and inactive classes. Since the
oversampled data have a larger n-count, there is greater power to detect effects,
and we see this reflected in the larger coefficients and lower standard errors.

Using a similar syntax, we can fit an RF using the randomForest() function
from the package by the same name:

Load library
library(randomForest)

Train RF model using original data
rf.fit <- randomForest::randomForest(active ~ overtime +

job_lvl + engagement + interview_rating, data =
training_dat)

↪→
↪→

Train RF model using oversampled data
rf.os.fit <- randomForest::randomForest(active ~ overtime +

job_lvl + engagement + interview_rating, data =
training_dat_os)

↪→
↪→

While RFs generally offer a significant lift in performance beyond a single
decision tree, we could also apply tuning wrappers around the randomForest()
function to tune the model’s hyperparameters. Experimenting with a range of values
for parameters, such as mtry for the number of variables to randomly sample and
ntree for the number of trees to grow, may further improve model performance.
Hyperparameter tuning is beyond the scope of this book, but Kuhn & Johnson
(2013) is an excellent resource for a more exhaustive treatment on ML models.

Step 3: Use Models to Make Predictions on Test Data
While there are packages in R which provide performance metrics for predictive

models, we will create a function for greater visibility into how each metric is
calculated:

Develop function that returns a data frame of classification
model performance statistics↪→

classifier.perf <- function(actual, predicted){

Check for missing values; metrics will be computed on
non-missing values only↪→

predicted <- predicted[!is.na(actual)]
actual <- actual[!is.na(actual)]
actual <- actual[!is.na(predicted)]

Predictive Modeling 251

Produce counts for model performance metrics
TP <- sum(actual == 1 & predicted == 1) # true positives
TN <- sum(actual == 0 & predicted == 0) # true negatives
FP <- sum(actual == 0 & predicted == 1) # false positives
FN <- sum(actual == 1 & predicted == 0) # false negatives
P <- TP + FN # total positives
N <- FP + TN # total negatives

Store rates to variables
accuracy <- signif(100 * (sum(actual == predicted) /

↪→ length(actual)), 3)
sensitivity <- signif(100 * (TP / (TP + FN)), 3)
specificity <- signif(100 * (TN / (TN + FP)), 3)
precision <- signif(100 * (TP / (TP + FP)), 3)
neg_pred_val <- signif(100 * (TN / (TN + FN)), 3)

Format output
stat_nm <- c("accuracy", "sensitivity", "specificity",

↪→ "precision", "neg_pred_val")
stat_vl <- c(accuracy, sensitivity, specificity, precision,

↪→ neg_pred_val)

Return model performance statistics in a data frame
return(data.frame(stat_nm, stat_vl))

}

We can use the predict() function in conjunction with the object holding the
trained model to predict class values for our test data. For classification, we need
to define a probability threshold for classifying observations into classes. This is
an important consideration since we want to avoid investing in retention strategies
for employees who are not actually going to leave (minimizing false positives),
while ensuring employees who are truly at risk are flagged as such (maximizing
true positives).

We will predict the class using both binomial logistic regression and RF
models, trained on both balanced (SMOTE) and imbalanced class data, and store
performance metrics in a single data frame for easy comparison:

Initialize empty data frame for model performance stats
class.perf.metrics <- NULL

Set probability threshold for classification
prob_threshold <- .7

252 Predictive Modeling

Predict with logistic regression model
class.perf.metrics <- rbind(class.perf.metrics,
↪→ cbind.data.frame(

model = rep("GLM", nrow(test_dat)),
classifier.perf(
actual = test_dat$active,
predicted = ifelse(predict(glm.fit,
↪→ test_dat, type = "response") >=
↪→ prob_threshold, 1, 0))))

Predict with logistic regression model (SMOTE)
class.perf.metrics <- rbind(class.perf.metrics,
↪→ cbind.data.frame(

model = rep("GLM (SMOTE)",
↪→ nrow(test_dat)),

classifier.perf(
actual = test_dat$active,
predicted = ifelse(predict(glm.os.fit,
↪→ test_dat, type = "response") >=
↪→ prob_threshold, 1, 0))))

Predict with RF model
class.perf.metrics <- rbind(class.perf.metrics,
↪→ cbind.data.frame(

model = rep("RF", nrow(test_dat)),
classifier.perf(
actual = test_dat$active,
predicted = ifelse(predict(rf.fit,
↪→ test_dat, type = "response") >=
↪→ prob_threshold, 1, 0))))

Predict with RF model (SMOTE)
class.perf.metrics <- rbind(class.perf.metrics,
↪→ cbind.data.frame(

model = rep("RF (SMOTE)",
↪→ nrow(test_dat)),

classifier.perf(
actual = test_dat$active,
predicted = ifelse(predict(rf.os.fit,
↪→ test_dat, type = "response") >=
↪→ prob_threshold, 1, 0))))

Predictive Modeling 253

0

25

50

75

100

accuracy sensitivity specificity precision neg_pred_val

Performance Measure

Pe
rfo

rm
an

ce
 V

al
ue

 (%
)

Model
GLM

GLM (SMOTE)

RF

RF (SMOTE)

Fig. 5 Classification performance for binomial logistic regression and RF models using balanced
(SMOTE) and imbalanced classes

Step 4: Evaluate Model Performance
As we can see in Fig. 5, with our stringent probability threshold set at .7 for

class delineation, all models had perfect specificity (correctly predicting those who
stay) and precision (all employees who were predicted to attrit did). However, we
see notable differences in sensitivity across the model types, and this is generally a
very important performance measure in a predictive attrition project since the cost
of not flagging employees who attrit can be costly. Sensitivity for the RF model
trained on balanced classes (SMOTE) performed much better than its imbalanced
RF counterpart (95.6% vs. 71.6%), reinforcing that ML models are sensitive (no
pun intended) to imbalanced classes.

The results also show that there is likely no benefit to compromising model
interpretability by using a flexible ML model like RF since our trusty binomial
logistic regression model performs just as well on these data. Nevertheless, we can
construct what is known as a Variable Importance Plot on RF output using the
varImpPlot() function from the randomForest library to understand the relative
importance of each predictor in the model.

Variable importance plots are based on the mean decrease in Gini importance.
Gini importance measures the average gain of purity by splits of a given variable.
In other words, if a variable is useful, it tends to split mixed labeled nodes (nodes
with both employees who separated and employees who stayed) into pure single
class nodes. The most important variables are at the top of the variable importance

254 Predictive Modeling

engagement

job_lvl

overtime

interview_rating

0 20 40 6

rf.fit

IncNodePurity

0 80

Fig. 6 Variable importance plot for Random Forest model

plot, indicating that without these variables nodes will not be as pure and as a result,
classification performance will not be as strong.

Figure 6 shows that interview_rating is far more important than the second
most important predictor, overtime. This is consistent with what we observed in
the results of the binomial logistic regression models too.

Let us compare the information from the RF’s Variable Importance Plot to a
single decision tree built on training data with balanced classes. We can build and
visualize a decision tree in R using the rpart() and rpart.plot() functions from
libraries by the same names. rpart is an acronym for recursive partitioning and
regression trees:

Load libraries
library(rpart)
library(rpart.plot)

Construct decision tree on balanced training data
tree <- rpart::rpart(active ~ overtime + job_lvl + engagement

+ interview_rating, data = training_dat_os, method =
"class")

↪→
↪→

Visualize decision tree
rpart.plot::rpart.plot(tree)

As shown in Fig. 7, the most important predictor for splitting the data is
interview_rating when using a single decision tree. At the root node, there is a
50% chance of leaving and staying, which is expected given we balanced the classes

Predictive Modeling 255

Fig. 7 Decision tree for
employee attrition prediction
using training data with
balanced classes (SMOTE) interview_rating >= 3.5

0
0.50

100%

0
0.01
50%

1
1.00
50%

yes no

using SMOTE. A prediction that is no better than a fair coin toss is of course not
helpful. Walking down to the leaf nodes, we can see that for the 50% of employees
with interview_rating >= 3.5, the algorithm predicts they will stay (status
= 0); for the 50% of employees with interview_rating < 3.5, the algorithm
predicts they will leave (status = 1). Given what we observed in the results of
the binomial logistic regression output, additional partitioning by overtime may
further increase node purity on the test data since classes are mixed for those with
interview ratings between 3.3 and 3.6. However, given the strong performance
splitting data only on interview_rating, further partitioning will likely result in
modeling noise and overfitting.

Forecasting

To demonstrate the prediction workflow steps for forecasting, we will leverage our
turnover_trends data set:

Store forecasting data
forecasting_dat <- turnover_trends

Step 1: Partition Data into Training and Test Sets for Cross-Validation
Since we have 60 months of data for each combination of values for the

job, level, and remote variables, we will select a combination for which
turnover_rate can be projected for future months. To simplify, we will train a
model using data for the first 48 months and test using the final 12 months.

Create training data
train_dat <- forecasting_dat |> dplyr::filter(job == 'People

Scientist' & level == 1 & year %in% 1:4)↪→

Create test data
test_dat <- forecasting_dat |> dplyr::filter(job == 'People

Scientist' & level == 1 & remote == 'Yes' & year == 5)↪→

256 Predictive Modeling

Step 2: Build Models Using Training Data
Given the significant quadratic and cubic terms identified in chapter “Linear

Model Extensions”, we will fit a cubic regression model on the training data.

Fit cubic model
train.cube.fit <- lm(turnover_rate ~ year + month + I(monthˆ2)

+ I(monthˆ3) + remote, data = train_dat)↪→

Produce model summary
summary(train.cube.fit)

Call:
lm(formula = turnover_rate ~ year + month + I(month^2) + I(month^3) +
remote, data = train_dat)

Residuals:
Min 1Q Median 3Q Max
-0.3360 -0.1605 0.0075 0.1680 0.3210

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7650000 0.1594281 17.343 < 2e-16 ***
year -0.1130000 0.0230955 -4.893 4.33e-06 ***
month 2.4100000 0.0935806 25.753 < 2e-16 ***
I(month^2) -0.4100000 0.0163907 -25.014 < 2e-16 ***
I(month^3) 0.0200000 0.0008311 24.064 < 2e-16 ***
remoteYes -1.6400000 0.0516430 -31.756 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.253 on 90 degrees of freedom
Multiple R-squared: 0.9499, Adjusted R-squared: 0.9471
F-statistic: 341.4 on 5 and 90 DF, p-value: < 2.2e-16

All linear, quadratic, and cubic terms on month are statistically significant at the
p < 0.001 level.

Step 3: Use Models to Make Predictions on Test Data
We will again build a function to evaluate the performance of the fitted models

applied to test data rather than using delivered functions. The following function
will return mean absolute deviation (MAD), mean squared error (MSE), and mean
absolute percentage error (MAPE):

Develop function that returns a data frame of forecasting
model performance statistics↪→

forecast.perf <- function(actual, predicted){

Check for missing values; metrics will be computed on
non-missing values only↪→

predicted <- predicted[!is.na(actual)]

Predictive Modeling 257

actual <- actual[!is.na(actual)]
actual <- actual[!is.na(predicted)]

Store rates to variables
mad <- round(mean(abs(actual - predicted)), 2)
mse <- round(mean((actual - predicted)ˆ2), 2)
mape <- round(mean(abs((actual - predicted) / actual)) *

↪→ 100, 2)

Return model performance statistics in a data frame
return(data.frame(mad, mse, mape))

}

For this forecast, we will also produce a prediction interval. A prediction
interval is a range of values that is likely to contain the outcome value for a single
new observation given a set of predictors. For example, a 95% prediction interval
of [10 15] indicates that we can be 95% confident that the observation for which
a prediction is being made will have an actual outcome value between 10 and 15.
Note that this is very different from a confidence interval in inferential statistics,
which is a range of values that likely contains the value of an unknown population
parameter.

We can produce a prediction interval by passing an additional interval =
'predict' argument into the predict() function:

Initialize empty data frames for model predictions and performance
stats↪→

forecast.metrics <- NULL
forecast.err.rates <- NULL

Predict on test_dat
forecast.metrics <- rbind(forecast.metrics, cbind.data.frame(

month = test_dat$month,
actual = test_dat$turnover_rate,
predicted = predict(train.cube.fit,

test_dat, type = "response"),↪→
lwr_bound =

as.data.frame(predict(train.cube.fit,
test_dat, type = "response", interval =
"predict"))$lwr,

↪→
↪→
↪→
upr_bound =

as.data.frame(predict(train.cube.fit,
test_dat, type = "response", interval =
"predict"))$upr))

↪→
↪→
↪→

258 Predictive Modeling

Step 4: Evaluate Model Performance
Next, we can pass a vector of actual and corresponding predicted values into the

forecast.perf() function to return MAD, MSE, and MAPE performance metrics
for the fitted model applied to year 5 data.

Calculate error rates for year 5 forecast
forecast.perf(actual = forecast.metrics$actual, predicted =

forecast.metrics$predicted)↪→

mad mse mape
1 3.84 14.75 48.39

Given 95% of the variance in turnover rates was explained by the cubic regression
model fitted to our training data (.R2 = 0.95), these error rates are surprisingly high
for the test data.

Evaluating the average turnover rate by year will help in reconciling the high . R2

on the training data with the high error rates on the test data:

Calculate year-wise turnover rate mean
yr1_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year

== 1) |> dplyr::summarize(Mean = mean(turnover_rate))↪→

yr2_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year
== 2) |> dplyr::summarize(Mean = mean(turnover_rate))↪→

yr3_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year
== 3) |> dplyr::summarize(Mean = mean(turnover_rate))↪→

yr4_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year
== 4) |> dplyr::summarize(Mean = mean(turnover_rate))↪→

yr5_avg <- test_dat |> dplyr::summarize(Mean =
mean(turnover_rate))↪→

Display year-wise turnover rate mean
print(c(yr1_avg, yr2_avg, yr3_avg, yr4_avg, yr5_avg))

$Mean
[1] 4.506667

$Mean
[1] 4.816667

$Mean
[1] 4.046667
##

Predictive Modeling 259

3.0

3.5

4.0

4.5

5.0

1 2 3 4 5 6 7 8 9 10 11 12
Month

Tu
rn

ov
er

 R
at

e
Year 4 Turnover Trend

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 1
Month

Tu
rn

ov
er

 R
at

e

Year 5 Turnover Trend

2

Fig. 8 Left: fitted model (red dashed line) with good fit to year 4 training data (black dots). Right:
fitted model (red dashed line) with poor fit to year 5 test data (black dots). 95% prediction interval
is represented by the red shaded area around the fit line

$Mean
[1] 4.386667

$Mean
[1] 7.996667

There is clearly a significant difference in average turnover for year 5 (test data)
relative to years 1–4 (training data). Since the fitted model had no visibility into
year 5 data, it did not account for the spike in turnover beyond year 4. Differences
are further evidenced in Fig. 8, in which actual values for year 5 are far and away
outside the 95% prediction interval.

This is an important lesson that highlights the centrality of cross-validation in
evaluating whether predictive models will generalize beyond the available data. We
can easily fit a model that performs well on training data and claim that the model
has exceptional accuracy. However, what matters in predictive modeling is how well
the model performs on data it has not seen as part of the training process.

260 Predictive Modeling

Review Questions

1. What factors influence the balance between model interpretability and flexibil-
ity?

2. How does cross-validation (CV) help improve the performance of predictive
models?

3. What is bias–variance tradeoff?
4. In a classification setting, what performance metrics are available in a confusion

matrix?
5. What are some measures used to evaluate the performance of a forecast?
6. What is Synthetic Minority Oversampling Technique (SMOTE), and how does

it help improve the performance of machine learning (ML) models?
7. How is the stack ranking of predictors in a variable importance plot determined?
8. How does a prediction interval differ from a confidence interval?
9. How can a prediction interval be calculated in R?

10. What does high R2 on training data and high MSE on test data indicate about
the utility of a predictive model?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Predictive Modeling
	Cross-Validation
	Validation Set Approach
	Leave-One-Out
	k-Fold

	Model Performance
	Classification
	Forecasting

	Bias–Variance Tradeoff
	Tree-Based Algorithms
	Decision Trees
	Random Forests

	Predictive Modeling
	Classification
	Forecasting

	Review Questions

